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Abstract

This study expands the pool of verification methods for probabilistic weather and cli-
mate predictions by a decomposition of the quantile score (QS). The QS is a proper score
function and evaluates predictive quantiles on a set of forecast-observation pairs. We in-
troduce a decomposition of the QS in reliability, resolution and uncertainty, and discuss
the biases of the decomposition. Further, a reliability diagram for quantile forecasts is
presented. Verification with the QS and its decomposition is illustrated on precipitation
forecasts derived from the mesoscale weather prediction ensemble COSMO-DE-EPS of
the German Meteorological Service. We argue that the QS is ready to become as
popular as the Brier score in forecast verification.
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1 Introduction
Recently, forecast verification for probabilistic weather and climate predictions has seen great
advances and interest. This is due to the increasing number of ensemble weather and cli-
mate prediction systems (EPS) on a variety of scales ranging from high-resolution limited
area models of the atmospheric mesoscale to climate models on global scales. An EPS not
only issues a deterministic future state of the atmosphere but a sample of possible future
states. Ensemble postprocessing then translates such a sample of forecasts into probabilis-
tic measures, e.g., in terms of predictive density or distribution functions, probabilities for
threshold excesses or quantiles at given probability levels.

Predictive skill is generally assessed using score functions which apply to a set of forecast-
observation pairs. An important characteristic of a score function for probabilistic forecasts
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is its propriety (Murphy and Epstein, 1967). Only proper score functions guarantee honesty
and prevent hedging. The choice of an appropriate proper score function depends on the
kind of probabilistic measure. Gneiting and Raftery (2007) reviews a variety of proper
score functions, e.g., the Brier score (BS, Brier, 1950) or logarithmic score (Good, 1952) for
probability forecasts, and the continuous ranked probability score (CRPS, Matheson and
Winkler, 1976) to evaluate predictive distributions. Probabilistic predictions in terms of
quantiles for a given probability level are evaluated using the quantile score (QS, Koenker
and Machado, 1999; Gneiting and Raftery, 2007; Friederichs and Hense, 2007) which sums
over a weighted absolute error between forecasts and observations. The advantage of a
quantile representation of probabilistic forecasts is that probability levels can be defined
without prior knowledge of the range of data. Further, they are more intuitive for end users.

It is shown that the CRPS corresponds to the integral of the BS over all thresholds, or
likewise the integral of the QS over all probability levels (Laio and Tamea, 2007; Gneiting
and Ranjan, 2011; Friederichs and Thorarinsdottir, 2012). The CRPS thus averages over
the complete range of forecast thresholds and probability levels. Deficiencies in different
parts of the distribution, e. g. the tail of a distribution, might be hidden. This has also
been shown by Bentzien and Friederichs (2012). Here, a Gamma, log-normal and inverse-
Gaussian distribution was fitted to precipitation data. The CRPS was similar for all three
distributions. The evaluation of quantile forecasts, however, revealed the deficiencies of the
different distributions with respect to the data. Thus, we highly recommend to extend the
verification by considering the QS for different probability levels. This would give a more
complete picture of forecast performance. In a similar sense, Gneiting and Ranjan (2011)
proposed to compare density forecasts using threshold- and quantile-weighted scoring rules.

A comprehensive concept of forecast evaluation is proposed by A. H. Murphy and co-
authors (e.g., Murphy, 1973; Murphy and Winkler, 1987; Murphy, 1993, 1996). Murphy
and Winkler (1987) define a general framework for forecast verification based on the joint
distribution of forecasts and observations. Murphy and Winkler (1987) and Murphy (1993)
emphasize two aspects of prediction quality: reliability and resolution. For a perfectly reliable
or calibrated forecast, the predictive distribution should equal the unknown distribution
of the observation conditional on the forecast. The resolution, in turn, is related to the
information content of a prediction system. It describes the variability of the observations
under different forecasts, and indicates whether a probabilistic forecast can discriminate
between different outcomes of an observation. Pointing in a similar direction, Gneiting et al.
(2007) noted that ”predictive performance (that) is based on the paradigm of maximizing the
sharpness of the predictive distributions subject to calibration”. It is thus of great interest
to assess calibration and sharpness, or its related measures reliability and resolution.

Proper score functions are well suited to quantify these measures, since they can be
decomposed into terms representing uncertainty, reliability, and resolution (e.g., DeGroot
and Fienberg, 1983; Bröcker, 2009). They provide additional insight into the performance of
a prediction system. Moreover, reliability diagrams may indicate important deficiencies. Up
to date, decompositions of proper score functions have been proposed for the BS (Murphy,
1973), the CRPS (Hersbach, 2000; Candille and Talagrand, 2005), and the logarithmic score
(Tödter and Ahrens, 2012).

This study presents the decomposition for the QS, and proposes an estimation procedure
for the reliability, resolution and uncertainty parts. Moreover, we derive a reliability diagram
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Figure 1: Empirical quantiles for precipitation [mm/12h] observed on June 6, 2011 between 12-24
UTC at 1079 rain gauges in Germany. A boxplot is presented in terms of the 0.25, 0.5, 0.75, 0.95
and 0.999 quantile.

for quantile forecasts and discus potential biases. We now dispose of a framework to evaluate
the reliability and resolution components of a forecast system that issues predictive quantiles.
In order to demonstrate the utility of the QS decomposition, we investigate quantile forecasts
based on the mesoscale weather forecast ensemble COSMO-DE-EPS (Gebhardt et al., 2011;
Peralta et al., 2012) operated by the German Meteorological Service (DWD).

The article is organized as follows. A brief description of quantile forecasts and their
verification is given in Section 2. Section 3 reviews the concept of proper score functions and
their decomposition. In Section 4 we derive the decomposition for the QS. Application to
quantile forecasts for precipitation is given in Section 5. We summarize the study in Section
6, and discuss potential biases in an appendix.

2 Quantile forecasts
The τ -quantile of a random variable Y with cumulative distribution function F (y) = Pr(Y ≤
y) is given by

F−1(τ) = inf {y : F (y) ≥ τ} ,

for all 0 ≤ τ ≤ 1. qτ = F−1(τ) represents the τ -quantile at a probability level τ . Boxplots are
very intuitive tools to graphically represent probabilistic information and uncertainty. They
show quantile values as illustrated in Fig. 1. It shows the quantile function of precipitation
observed on June 6, 2011 at 1079 weather stations in Germany. 78% measured precipitation
above zero. Since precipitation cannot be negative, the quantiles at τ ≤ 0.22 are zero. In
statistics it is common to say that precipitation is censored at zero. The distribution in Fig.
1 is largely skewed towards higher quantiles, reflecting the large variability of heavy precip-
itation on June 6, 2011. Note that a probability evaluation at a-priori selected thresholds
might be inappropriate to describe the tail behaviour of heavy precipitation.
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Following Koenker and Bassett (1978) and Koenker (2005), quantiles also arise from an
optimization problem based on the check loss function

ρτ (v) = v(τ − I[v<0]) =

{
vτ if v ≥ 0

v(τ − 1) if v < 0 .
(1)

Here, I[.] is an indicator function which is 1 if the condition in brackets is true and zero
otherwise. If v is the difference between a random event y and a quantile estimate q̂τ , the
ρτ (v) can be regarded as a distance measure. The absolute error | y − q̂τ | is then weighted
with τ if the quantile estimate does not exceed y, and 1 − τ otherwise. The minimum of
the expectation EF [ρτ (Y − q̂τ )] with respect to F is obtained if q̂τ = F−1(τ) is the true
quantile of Y (see Koenker, 2005, pp. 5-6). This property makes the check function an
ideal candidate for the estimation (e.g. quantile regression) or verification of quantiles (see
Friederichs and Hense, 2008, appendix). For a more technical description as well as graphical
representation of the check function the reader is referred to Koenker (2005).

3 Proper score functions
The concept of proper score functions goes back to Brier (1950), Good (1952) and Brown
(1970), with a more technically description in Savage (1971) and Schervish (1989). It was
reviewed and advanced by Matheson and Winkler (1976) and Gneiting and Raftery (2007).
A score function projects the probabilistic forecast P from a set of possible probabilistic
predictions P and an element of the sample space ω ∈ Ω onto a real value s(P, ω) ∈ R.
Probabilistic forecasts may be issued in terms of a cumulative distribution functions, prob-
ability density functions, probabilities of threshold excess or quantiles at given probability
levels. This study defines a score function as a cost function that a forecaster intends to
minimize, but it may equally be defined as a reward that a forecaster aims at maximizing
(e.g., Gneiting and Raftery, 2007).

Consider now pairs of observations ω ∈ Ω and forecasts P ∈ P issued by a probabilistic
forecasting scheme. The score of the forecasting scheme is determined by the joint distribu-
tion F (P, ω), and its expected overall score is

S =

∫
P

∫
Ω

s(P, ω) dF (P, ω) .

Following the calibration-refinement factorization proposed by Murphy and Winkler (1987),
the joint distribution is reformulated as F (P, ω) = F (ω | P )F (P ) where F (P ) is the marginal
distribution of the forecasts. The distribution of ω for a fixed P is given by Q(ω) = F (ω | P ).
The expected overall score of the forecasting scheme then reads

S =

∫
P

∫
Ω

s(P, ω) dQ(ω) dF (P )

=

∫
P
S(P,Q) dF (P ) ,
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where S(P,Q) is the expected score given a specific forecast P

S(P,Q) =

∫
Ω

s(P, ω) dQ(ω) .

The score function is proper if S(Q,Q) ≤ S(P,Q) for all P , and strictly proper if equality
is given if and only if P = Q (Gneiting and Raftery, 2007).

3.1 Decomposition of proper scores

Following Gneiting and Raftery (2007), the entropy e(Q) = S(Q,Q) is defined as the mini-
mal achievable score under Q if S(., .) is proper. The divergence d(P,Q) = S(P,Q)−S(Q,Q)
is the non-negative difference between the expected score and the entropy. Note, that pro-
priety of the score function implies propriety of the divergence (Thorarinsdottir et al., 2013).
d(P,Q) represents a measure for similarity between the probabilistic forecast P and the dis-
tribution Q, where smaller values indicate better correspondence. It is generally denoted
as reliability (Murphy and Winkler, 1977). Given entropy and divergence, a proper score
function can be decomposed into

S(P,Q) = e(Q) + d(P,Q) .

The entropy can be further decomposed using e(Q) = S(Q̄, Q)−d(Q̄, Q), where Q̄ denotes
the marginal distribution of the observations, often denoted as climatology (Bröcker, 2009).
S(Q̄, Q) represents the expected score function for a climatological forecast, and is called
uncertainty. The resolution of a forecast P is expressed by the divergence between the
climatological forecasts Q̄ and Q. A large resolution indicates a good discrimination of Q
under different forecasts P . The decomposition of the expected score is now given by

S(P,Q) = S(Q̄, Q)− d(Q̄, Q) + d(P,Q) . (2)

Analogously, we obtain the overall score for the probabilistic forecasting scheme by integrat-
ing over the marginal distribution dF (P )∫

P
S(P,Q)dF (P ) = (3)

S(Q̄, Q̄)︸ ︷︷ ︸
uncertainty

−
∫
P
d(Q̄, Q)dF (P )︸ ︷︷ ︸

resolution

+

∫
P
d(P,Q)dF (P )︸ ︷︷ ︸

reliability

.

Since the uncertainty is solely a characteristic of the observations, changes in the probabilis-
tic forecasting scheme affect only the reliability and resolution parts of the score, not the
uncertainty.
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4 Quantile score
The QS of a quantile forecast pτ = P−1(τ) and an observation ω is defined by the check
function ρτ in Eq. 1 (Koenker and Machado, 1999; Friederichs and Hense, 2007; Gneiting
and Raftery, 2007)

sτ (P, ω) = ρτ (ω − pτ ) .

The expected score with respect to Q for a continuous variable ω ∈ R is given by

Sτ (P,Q) =

∫ ∞

−∞
ρτ (ω − pτ )dQ

=

∫ ∞

−∞
τ(ω − pτ )dQ−

∫ pτ

−∞
(ω − pτ )dQ .

The propriety of this score is shown e.g. in Friederichs and Hense (2008). The decomposition
into entropy and divergence yields

Sτ (P,Q) = Sτ (Q,Q) +

∫ pτ

qτ

(pτ − ω)dQ︸ ︷︷ ︸
dτ (P,Q)

,

where qτ is the τ -quantile of the distribution Q. The divergence measures the agreement
between the quantile forecasts pτ and the respective quantile of the distribution Q. For a
perfect forecast (pτ = qτ ) the integral is zero.

Let q̄τ be the τ -quantile of the climatology Q̄. The entropy may be decomposed into
uncertainty (i.e., the score of the climatology) and the divergence between Q and Q̄

Sτ (Q,Q) = Sτ (Q̄, Q)−
∫ q̄τ

qτ

(q̄τ − ω) dQ︸ ︷︷ ︸
dτ (Q̄,Q)

.

The decomposition in Eq. 2 for the QS is thus expressed as

Sτ (Q̄, Q)− dτ (Q̄, Q) + dτ (P,Q)

=

∫ ∞

−∞
τ(ω − q̄τ )dQ−

∫ q̄τ

−∞
(ω − q̄τ )dQ (4)

−
∫ q̄τ

qτ

(q̄τ − ω)dQ (5)

+

∫ pτ

qτ

(pτ − ω)dQ , (6)

where (4) represents the uncertainty, (5) the resolution, and (6) the reliability parts of the
score. There exists no general solution of the integrals in Eq. 4-6.

6



4.1 Estimation of the QS and its decomposition

Consider a verification data set of n = 1, ..., N pairs of forecasts pτ,n and observations on.
The average QS is given by

SP
N(τ) =

1

N

N∑
n=1

ρτ (on − pτ,n) . (7)

The uncertainty component of the QS is estimated as the average score of the unconditional
sample quantile ōτ , which is given as the τ -quantile of the N observations

SQ̄
N(τ) =

1

N

N∑
n=1

ρτ (on − ōτ ) .

To estimate reliability and resolution we need to condition the observations on the fore-
casts. This requires a categorization of the continuous forecast values (Murphy and Epstein,
1967), so that for each category, the conditional quantile of the observations is estimated. For
this we divide the data into k = 1, . . . , K subsamples Ik. The subsamples are defined such
that they represent similar forecasts. Each subsample Ik is represented by the average value
p
(k)
τ of all forecasts pτ,n with n ∈ Ik. The p

(k)
τ represent the discretized quantile forecasts1,

and the conditional quantiles are estimated as the τ -quantile o
(k)
τ of all observations on with

n ∈ Ik. A quantile forecasting scheme is reliable, if for all bins Ik the observed quantile o
(k)
τ

corresponds to the average forecast p
(k)
τ .

Let Nk be the number of pairs in each bin with
∑K

k=1Nk = N . The entropy Sτ (Q,Q) is
estimated for each bin, separately, as

̂Sτ (Q,Q)
(k)

=
1

Nk

∑
n∈Ik

ρτ (on − o(k)τ ) .

The reliability and resolution parts of the QS are estimated as the differences between the
average scores for p

(k)
τ and ō, respectively, and the entropy in each bin.

̂dτ (Q̄, Q)
(k)

= ̂Sτ (Q̄, Q)
(k)

− ̂Sτ (Q,Q)
(k)

=
1

Nk

∑
n∈Ik

[ρτ (on − ōτ )− ρτ (on − o(k)τ )]

̂dτ (P,Q)
(k)

= ̂Sτ (P,Q)
(k)

− ̂Sτ (Q,Q)
(k)

=
1

Nk

∑
n∈Ik

[ρτ (on − p(k)τ )− ρτ (on − o(k)τ )]

1For the Brier score, the representing forecast value is often set to the mid of the interval. Particularly
if the forecast values are not uniformly distributed the estimates of the reliability component are largely
biased (see for instance Atger, 2004; Bröcker and Smith, 2007, amongst others). A better choice is using
the average forecast value.
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The decomposition (Eq. 3) of the average QS of the discretized forecasts p
(k)
τ , k = 1, ..., K,

is obtained by summation over all bins

K∑
k=1

Nk

N
̂Sτ (P,Q)

(k)

(8)

=
K∑
k=1

Nk

N
̂Sτ (Q̄, Q)

(k)

uncertainty

−
K∑
k=1

Nk

N
̂dτ (Q̄, Q)

(k)

resolution

+
K∑
k=1

Nk

N
̂dτ (P,Q)

(k)

reliability .

Note that, due to the discretization of the forecasts, this average is not equivalent to SP
N(τ)

in Eq. 7.

4.2 Bias of the decomposition

Probabilistic forecasting schemes are subject to different kinds of biases. A bias in the
forecasts results from small ensemble size (see for instance Ferro et al., 2008, and references
herein), an insufficient representation of the underlying distribution, or other deficiencies in
the generation of forecasts. These biases are quantified by proper score functions and their
decomposition, and may be eliminated or reduced by postprocessing.

A bias in score estimates has two major sources: the discretization error, on the one
hand, and the sampling uncertainty due to a finite sample size, on the other hand. The
discretization error results from the categorization of the forecasts, which is necessary do
estimate the decomposition. It affects the score as well as the reliability and resolution
estimates, whereas the uncertainty remains unchanged.

Atger (2003), Atger (2004), Bröcker and Smith (2007), and Bröcker (2008) investigate the
discretization error of the BS. A general procedure here is to categorize the forecast probabil-
ities into intervals of equal width, and derive observed conditional relative frequencies. If the
forecast are not uniformly distributed, this might result in undersampling of some categories
and hence strong biases in the decomposition. (Atger, 2004) shows that the discretization
error is reduced, if the categories are chosen such that they all contain an equal amount
of forecast-observation pairs. They further note that the number of categories should be
adjusted with respect to the sample size. However, any categorization automatically leads
to errors even for perfectly reliable forecast systems (Bröcker, 2008).

The definition of the subsamples Ik is thus a critical point in the decomposition of the
QS. To keep the discretization error as small as possible, we suggest a binning procedure
which is similar to Atger (2004). The quantile forecasts are ordered and divided into K
equally populated bins, i.e. the intervals are defined by the 1/K-percentiles of the forecasts
{pτ,n} , n = 1, ..., N . We discuss the discretization error in Sec. 5 and show that the findings
of Atger (2004) hold for the QS.
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Other biases in score estimates are due to the finite sample size and affect the reliability,
resolution, and uncertainty estimates, but not the average score itself. Bröcker (2011) and
Ferro and Fricker (2012) discuss these biases for the BS decomposition. They underline
that unbiased estimators of reliability and resolution are unattainable. However, Ferro and
Fricker (2012) were able to prove that the biases of their estimators converge faster to zero
than those proposed by Bröcker (2011), which in turn converge faster to zero than those of
the standard decomposition. It is thus of interest to assess at least qualitatively the biases
of the QS decomposition. A detailed derivation is provided and discussed in an appendix.

4.3 Quantile reliability plot

A quantile reliability plot can be derived from the average forecasts p(k)τ and the conditional
quantiles o

(k)
τ . For each k = 1, ..., K, o(k)τ is plotted against p

(k)
τ . For calibrated forecasts

(i.e., reliability → 0), the points should lie on a diagonal line. The interpretation concerning
over- or underforecasting of a quantile reliability diagram is analogue to the interpretation of
a reliability diagram for probability forecasts of dichotomous events (see for example Wilks
(2006), pp. 287–290).

Software routines for the calculation and decomposition of the QS as well as for plotting
the quantile reliability will be available for the R statistical language (R Core Team, 2013)
within the "verification" package (NCAR - Research Application Program, 2012), or upon
request from the authors.

5 Results

5.1 Simulation Study

In order to demonstrate the performance of the QS and its decomposition, we assess quantile
forecasts from a simulation with a well defined joint distribution between the random vari-
ables Y (observations or predictand) and X (forecasts or predictor). The joint distribution
F (x, y) = FY (y | X = x)FX(x) describes the statistical dependence of the observations from
the forecasts. If this distribution is known, perfect reliable forecasts can be generated from
X. An analytical solution of the score function can be derived if the integral in Eq. (3) can
be solved under the given joint distribution. The average score for a sample of realizations
from the joint distribution can be analyzed against the analytical score.

Let Y be a gamma-distributed random variable with Y | X ∼ FY |X(y | X = x). Y
depends on the random variable X through E[Y |X = x] = 1/x. For the shape parameter
of FY |X(y | X = x) we assume αy = 1, so that the rate parameter is βy = αyx = x. The
predictive distribution of Y for a given X = x is given as

fY |X(y | X = x) = fΓ(y;αy, βy) = x exp(−xy) . (9)

X also follows a gamma-distribution with fixed shape αx = 5 and rate βx = 1 parameter,

9



and thus

fX(x) = fΓ(x;αx, βx) =
1

24
x4exp(−x) . (10)

Realizations from the joint distribution of X and Y can now be obtained by drawing x from
Eq. (10) and plug into Eq. (9). Now the observation y is obtained by drawing from (9).
We use this setup for two reasons. On the one hand, the gamma-distribution is a widely
used distribution to statistically model precipitation and provides more complexity than a
normal distribution. On the other hand, parameters and dependence of Y and X are kept
simple such that conditional quantiles and scores can be calculated analytically.

The conditional τ -quantiles of the response variable Y for a given X = x are given by

F−1
Y |X(τ | X = x) = − log(1− τ)

x
= qτ . (11)

The marginal density function of Y unconditional on X (i.e. the climatology) is obtained
by marginalization of fY |X(y|X = x)fX(x) over x

fȲ (y) =

∫ ∞

0

fY |X(y | X = x)fX(x)dx =
5

(y + 1)6
.

The marginal distribution is obtained by integrating the density

FȲ (y) =

∫ y

0

fȲ (y
′)dy′ = 1− 1

(y + 1)5
,

which in turn gives us the quantile function of the climatology

F−1
Ȳ

(τ) = (1− τ)−1/5 − 1 = q̄τ .

The entropy Sτ (Q,Q) of this simulation and the uncertainty Sτ (Q̄, Q̄) can be calculated
analytically. Moreover, the resolution is equal to the difference between uncertainty and en-
tropy, and the reliability part for this perfect forecast model is zero. The score decomposition
can be derived analytically, and reads

Sτ =
log(1− τ)(τ − 1)

4
,

E[Sτ (Q̄, Q̄)] =
5

4
(1− τ)q̄τ ,

EX [dτ (Q̄, Q)] = E[Sτ (Q̄, Q̄)]− Sτ ,

EX [dτ (P,Q)] = 0 .

5.1.1 Discretization error using true forecasts

In the following we concentrate on the results for median forecasts, but the results are similar
for other probability levels (not shown). We generate N = 5000 random draws for X from

10



Table 1: Analytical values of QS and its decomposition for the median of the simulation study, and
the respective estimates and uncertainty based on 1000 simulations of length N = 5000. Estimates
of resolution and reliability depend on the binning procedure and are shown in Fig.2 .

τ = 0.5 analytical estimate sd
QS 0.0866 0.0867 ±0.0018
UNC 0.0929 0.0930 ±0.0021
RES 0.0063 — —
REL 0 — —

the distribution given in Eq. (10) and τ = 0.5 . For each x, observations y are drawn from Eq.
(9), and true quantile forecasts pτ = qτ are obtained from the conditional quantile function
in Eq. (11). True forecasts are perfectly reliable forecasts and thus have a reliability of zero.
The average score Sqτ

N and uncertainty S q̄τ
N are estimated using Eq. (7). Table 1 shows the

analytical QS and its decomposition for the true median forecasts. The mean value of the
average score is estimated from 1000 re-samples, each with N = 5000 draws, and is close to
the true scores and within the standard-deviation.

As aforementioned the estimates of reliability and resolution may strongly depend on the
categorization. In order to investigate its influence, each data set of N forecast-observation
pairs is divided into K equally populated bins, with Nk = N/K data points within each bin.
Figure 2 displays the QS decomposition for the median and a K ranging from 1 to 100. For
K = 1, the conditional observed quantile equals the unconditional sample quantile, and the
resolution part is zero. The respective discretized quantile forecast is given as the mean over
all forecasts 1/N

∑N
i=1 pτ,i. So even in the case of perfect quantile forecasts pτ,i, the average

quantile forecast that represents the bin is not anymore perfect, and reliability is strongly
biased. This effect is larger if the number of bins is small.

Increasing K leads to an increased resolution and a reduced QS estimate which approaches
its analytical value. Although the QS becomes minimal for large K, we observe again an
increase in the bias in the estimate of the reliability which we know is zero. Here, the effect of
the sampling errors in the conditional quantile estimate as discussed in the appendix starts
to become relevant. The larger K the fewer observations are within one bin and the larger
are the sampling errors in the conditional quantile estimates. Another indication of this
sampling bias is that the resolution part increases at the expense of reliability.

Fig. 2 also shows the results for an equidistant binning (grey letters). In general, a much
larger number of bins is necessary to eliminate the discretization error in the QS. At lest
30 bins are needed to obtain a resolution term that is significantly larger than zero. Even
for K = 100, the estimated resolution lies below the uncertainty range of the unbinned QS
estimate. The sampling biases are much larger as indicated by the large reliability part,
which results from an undersampling in the less populated bins. Very similar results are
obtained for other probability levels (not shown).

A careful binning does not avoid biases, but helps to keep them as small as possible. We
want to remind the reader, that the BS and its decomposition is subject to the same kind of
biases. Atger (2004) has discussed ideas to estimate an optimal value of K. A re-sampling
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Figure 2: Reliability vs. resolution for a sample of N = 5000 median forecast, equally divided into
K bins ranging from K = 1 to 100 indicated by black small letters. For a comparison, the grey
small letters refer to a binning in equidistant intervals. The standard deviation for each point is
estimated from 1000 re-samples. The grey contours denote lines of constant quantile score. The
bold black line denotes the QS for the unbinned data set, the dashed lines the respective standard
deviation. The legend refers to the number of bins K.

technique is proposed in order to assess significant differences in the conditional relative
frequency estimate when two probability categories are merged together. However, as an
ad-hoc solution, we suggest to use the smallest K where the gain in QS becomes smaller
than the loss in reliability.

If different forecasting schemes are compared, the number of bins K should be kept
constant for all schemes. K must be chosen such that the differences to the QS for unbinned
data is small for all forecasting schemes. In this case we assume that resolution and reliability
estimates can be compared honestly. We refrain from keeping the bin boundaries fixed for
all forecasting schemes, since it cannot be guaranteed that fixed bins will be equally well
represented for every scheme.

Table 2: Average values of QS and its decomposition for the true median forecasts, biased and
stochastically disturbed median forecasts. Estimates are based on an equi-populate binning with
K = 15. The uncertainty is a characteristic of the observations and obtained as 0.093± 0.002.

τ = 0.5 true biased stochastic
QS 0.0871± 0.0018 0.0901± 0.0020 0.0908± 0.0018
RES 0.0060± 0.0006 0.0060± 0.0006 0.0041± 0.0005
REL 0.0002± 0.0001 0.0032± 0.0005 0.0019± 0.0004
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Figure 3: Q-REL plot for a sample of N = 5000 median forecasts, equally divided into K = 15
bins. Reliability curves are plotted for the true quantiles (solid line), and quantile forecasts derived
with biased (dashed line) and stochastic (dotted line) rate parameter. The 95% confidence interval
for each point is estimated from 1000 re-samples.

5.1.2 Quantile reliability

We now consider the effect of imperfect median forecasts. One forecast is systematically
biased by constant errors ϵ0 and ϵ1 with βy = ϵ0 + ϵ1x. For the other imperfect forecast x is
disturbed by a multiplicative noise ξ. Figure 3 shows a quantile reliability (Q-REL) plot for
the perfect forecasts, the biased forecasts with ϵ0 = 2 and ϵ1 = 0.8, and the stochastically
disturbed forecast with ξ being uniformly distributed on the interval [−0.5,+0.5]. We choose
K = 15 equally populated bins to estimate the reliability and resolution parts of the QS.
For each bin the conditional quantile of the observations is plotted against the average
forecast value. Note that in case of our simulation study, the variable of interest takes values
between 0 and 1, and is not a probability. The axes of a Q-REL plot resemble the range of
forecast/observation values, which can in general be any interval on the real line depending
on the variable of interest (temperature, pressure, precipitation, etc.). Since we keep only
the number of bins K constant (and not the bin boundaries), the re-sampling also modifies
the binning intervals. Confidence intervals are obtained for the conditional quantiles (y-axis)
as well as for the average forecast values (x-axis).

The true quantiles are perfectly calibrated. The biased forecasting scheme shows strong
deviations in reliability particularly for large quantile forecasts, with a systematic under-
forecasting of the observed quantiles. However, the resolution of the biased forecasts is not
affected, since the linear transformation does not change the information content given by
the predictor variable X (see Tab. 2). The increase of the QS of about 3.4% is thus solely
due to an increase in the reliability term.

The reliability curve of the stochastically perturbed forecasting scheme is significantly
flatter than the 45◦ line, indicating an underforecasting of the lower and overforecasting of
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Figure 4: Location of 1079 observational sites (points) and model domain of COSMO-DE (grey
lines).

the higher quantiles. The outcomes of Y have a weaker dependence on the predictor variable
X (Wilks, 2006, p. 288-289), and the resolution is reduced (see Tab. 2). The QS of the
stochastically perturbed forecasts is about 4.2% larger than the QS of the perfect forecast.
This increase is related in almost equal parts to an increased reliability term and a loss in
resolution.

5.2 Real forecast data

We will now assess quantile forecasts for precipitation that are derived from the German-
focused COSMO-DE-EPS (Gebhardt et al., 2011; Peralta et al., 2012). COSMO-DE-EPS
is a 20 members ensemble system operated by the German Meteorological Service (DWD)2.
Forecasts are initialized 8 times a day for a lead time of 21 hours. The model domain
of COSMO-DE-EPS is illustrated in Fig. 4 by the grey lines. It contains 421 × 461 grid
points with a horizontal grid spacing of 2.8 km. A study on the general performance and
the calibration of COSMO-DE-EPS can be found in Ben Bouallègue et al. (2013), and with
special emphasis on precipitation in Ben Bouallègue (2013) and Scheuerer (2013).

In the following, we concentrate on daily precipitation accumulations between 12-24 UTC
for the year 2011. Observations are taken from the observational network of DWD with 1079
observational sites located in Germany (Fig. 4).

Due to the rapid update cycle of COSMO-DE-EPS, we use the time-lagging method to
inexpensively increase the ensemble size (Hoffman and Kalnay, 1983). Forecasts initialized
at 12/9/6/3 UTC corresponds to the observational period 12-24 UTC within 0-12/3-15/6-
18/9-21 hours of the forecast. Using four time-lagged forecasts for each of the 20 ensemble
members, we obtain an 80 members time-lagged COSMO-DE-EPS (TLE). Time-lagging

2Please note that forecasts are taken from the pre-operational period, which has the same setup as the
operational system that started in May 2012.
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Figure 5: QSS, reliability and resolution for different probability levels. Forecasts are derived
from the TLE as first-guess forecasts (grey boxes) and via QR (black boxes). The 95% confidence
interval is estimated via block-bootstrapping. For reliability and resolution estimates, forecasts are
categorized into K = 30 equal-populated bins.

increases the ensemble spread and has a positive impact especially for precipitation forecasts
(Ben Bouallègue et al., 2013).

We pursue two approaches to derive predictive quantiles from the TLE. The first approach
is to derive the predictive quantiles directly from the precipitation forecasts at each grid point.
Quantiles are estimated from the order statistics of the ensemble members. To improve the
estimates a spatial neighbourhood of 5×5 grid boxes is included (compare e.g. Bentzien and
Friederichs, 2012), so that quantiles are estimated from a total number of 25 × 80 = 2000
values. We denote the predictive quantiles as first-guess quantiles Qfg

τ .
The skill of the first-guess quantiles can be largely improved by an additional statistical

postprocessing. This second approach uses censored quantile regression (QR) as presented
e.g. in Friederichs and Hense (2007). Based on historical data, QR estimates a statistical
model between the ensembles first-guess estimates and the observations. The postprocessed
quantile forecasts are denoted as Qqr

τ . For an out-of-sample verification we employ cross-
validation. More details on the definition of the predictors, the censored QR, and the cross-
validation procedure is given in Bentzien and Friederichs (2012).

5.2.1 Quantile verification

The overall skill of the quantile forecasts is assessed using the quantile skill score QSS=1-
QS/QSclim. It gives the percental improvement of a forecasting scheme over a reference
forecast, here climatology, which is estimated at each station independently (Hamill and
Juras, 2006). The sampling uncertainty of the QSS is assessed via 7-day block-bootstrapping
(Efron and Tibshirani, 1993) with 1000 replicates simultaneously for all stations, thereby
preserving spatial and temporal correlations. We restrict the presentation to the interquartile
range and two higher quantiles, since the lower quantiles are generally censored at zero.
Positive skill is obtained for all quantile forecasts (Fig. 5). Median and 0.75-quantiles
are already well represented by the first-guesses. The first-guess forecasts are significantly
improved by postprocessing, where the benefits are largest for lower and higher probability

15



reliability

re
so

lu
tio

n

 0.27 

 0.28 

 0.29 

 0.3 

 0.31 

 0.32 

 0.33 

 0.34 

 0.35 

0.008 0.010 0.012 0.014 0.016

0.
42

0.
44

0.
46

0.
48

0.
50

a

b

c

d

e
f

g
h

i j k l m
n

o

a = 5
b = 6
c = 7
d = 8
e = 9
f = 10
g = 15
h = 20
i = 30
j = 40
k = 60
l = 80
m = 100
n = 500
o = 1000

Figure 6: Reliability vs. resolution for the QS decomposition of Qfg
0.9. Forecasts are equally divided

into K bins ranging from 5 to 1000 (indicated by small letters). The standard deviation is estimated
from 1000 bootstrap samples. The grey contours denote lines of constant quantile score. The bold
black line denotes the QS for the unbinned data set, the dashed lines the respective standard
deviation.

levels.
To derive the decomposition of the QS, the data are binned with respect to the quantile

forecasts. The first bin consists of all data where the quantile forecast equals zero. The non-
zero forecasts are regrouped into equally populated intervals. The boundaries of intervals
are defined as the k/K-quantiles of the non-zero forecasts, with k = 1, . . . , K and K the
number of intervals.

Fig. 6 shows the QS decomposition for the discretized forecast-observation pairs Qfg
0.9 as

a function of K ranging between 5 and 1000. For small K, the bias in QS for the discretized
forecasts is very large. Increasing K leads to a larger resolution and thus reduces the QS.
For K > 30, the gain in QS becomes small compared to the loss in reliability. Very similar
results are obtained for the other quantiles (not shown). In the remainder of this section we
thus use equally populated bins with K = 30.

5.2.2 Score decomposition

We will now discuss in more detail the decomposition of the QS (Fig. 5). Table 3 gives the
number of observations in each bin for K = 30. Since lower probability levels are more often
censored, the average number of observations in each bin varies between 2500 and 3100 for
τ = 0.25, and amounts between 7000 to 12000 for τ = 0.99.

Fig. 5 shows reliability and resolution parts of the QS. Note that a smaller reliability
represents a better agreement between forecasts and observations, whereas the resolution
is better the larger it is. We already noticed that, except for the 0.75-quantile, statistical
postprocessing via QR significantly improves the QS. Due to the decomposition of the QS,
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Figure 7: Q-REL plots on double-logarithmic scale for first-guess and QR forecasts derived from
the TLE. The precipitation quantiles are measured in mm/12h. The 95% confidence interval is
estimated via block-bootstrapping.

we can now relate this gain in performance to an improvement of reliability, which is largely
decreased after postprocessing especially for the outer quantiles. In contrast to the reliability,
the resolution is not improved by postprocessing.

Q-REL plots for the first-guess forecasts are shown in Fig. 7. It is well seen in the
double-logarithmic representation that for τ ≤ 0.5, the first-guess quantiles are significantly
overestimated. The high quantiles, τ ≥ 0.9, in turn are largely underestimated. Only the
zero quantile forecasts are well calibrated for almost all probability levels. The Qfg

0.75 is close
to the diagonal, and the potential for further improvements is small. The miscalibration
of the quantile forecasts is a consequence of the underdispersiveness of COSMO-DE-EPS
(Ben Bouallègue et al., 2013), and/or an insufficient ensemble size.

We now turn to the postprocessed quantile forecasts. Quantile forecasts above 0.5 mm
are almost perfectly calibrated for all probability levels except τ = 0.99. The Q-REL plot
reveals an underestimation of the smaller forecast values, whereas the zero quantile forecasts
correspond well to the observations. Although the underestimation of 0.99-quantile is largely
reduce after postprocessing, it still shows deviations from the diagonal. Higher forecast values
are well calibrated. Only for the 0.99 quantile the forecasts in the highest category above 40
mm/12h are significantly overestimated.

5.2.3 Forecast communication

The decomposition of the QS shows us the strengths and weaknesses of this forecast system.
But how can forecasts be communicated to users? As mentioned in Sec. 2 a very intuitive
way is to display quantiles in form of boxplots. Fig. 8 shows time series of daily quantile
forecasts for June 2011 at three selected stations. The boxes denote the interquartile range
(IQR). In 50% of the days the observation is expected to lie within the IQR. Since lower
quantiles are generally censored, only the upper whisker are shown for the 0.9- and 0.99-
quantile.
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Table 3: Number of quantile forecasts equal to zero N0 and number of quantile forecasts within each
bin Nk for K = 30. The total number of forecast-observation pairs is N = 384 679 (with 257 431
observations equal to zero).

TLE FG QR
τ N0 N̄k N0 N̄k

0.25 291447 3108 306072 âĹĳ2498
0.50 264107 4019 264570 âĹĳ3961
0.75 234389 5010 211131 âĹĳ6090
0.90 206956 5924 169848 âĹĳ9632
0.99 171413 7109 115353 12443

The forecast system is able to distinguish between days with and without rainfall. On
June 5-6, and June 22 convective rainfall events occurred in many parts of Germany, and
more local convective events occurred e.g. in Munich between June 16-18 and in Berlin on
June 8. The forecast systems is able to capture these events by higher quantile forecasts.
Especially the 0.99-quantile exceeds the IQR multiple times on such days, indicating a high
risk of extreme precipitation. Note, that there is still a chance of 1% that the 0.99-quantile
will be exceeded, as it happened in Bonn on June 5.

Quantile forecasts present the possible range of observations without limitation, as is the
case for a-priori selected threshold excesses. The range of events can change with location,
season, or climate conditions. A specific quantile, e. g. the 0.99-quantile, is always "extreme"
regardless of such conditions. However, quantile forecasts are only statistical meaningful if
they are calibrated, so that the user can rely on the forecast system and make "good"
decisions. Calibration of quantile forecasts is checked properly by the decomposition of the
quantile score as proposed in this paper.

6 Summary
This article expands the forecast verification framework by introducing a decomposition
of the quantile score. We present an estimation procedure of the reliability, resolution and
uncertainty parts. A graphical representation of the reliability in form of a quantile reliability
diagram is provided, with a similar interpretation as the reliability diagram for probability
forecasts.

The estimation of forecast attributes like reliability and resolution requires the cate-
gorization of continuous forecast values. In order to obtain statistical meaningful results,
each category should be sufficiently represented by the forecast-observation pairs. A binning
approach similar to Atger (2004) divides the data set in equally populated subsamples con-
ditioning on the forecast values. However, even for perfectly reliable forecasts, every kind of
categorization leads to biases in the QS and its decomposition. This is also the case for the
Brier score. Within a simulation study, we show the sensitivity of the biases to the number
of subsamples K. A careful choice of K can keep the bias from the categorization as small
as possible.
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Figure 8: Time series of daily quantile forecasts for June 2011 at three selected stations located
in the northeast (Berlin), west (Bonn), and south (Munich) of Germany. The boxplots show the
interquartile range, the upper whiskers refer to the 0.9-quantile (solid line) and 0.99-quantile (dashed
line). Observations are plotted as squares.

The QS decomposition is illustrated for precipitation forecasts derived from a mesoscale
weather prediction ensemble. The challenge in probabilistic quantitative precipitation fore-
casting is the discrete-continuous character of precipitation and its highly skewed distribu-
tion. First-guess quantile forecasts are estimated from the order statistics of the ensemble
members, enlarged by time-lagging and the neighbourhood method. Although these first-
guess quantile forecasts have positive skill with respect to climatology, the decomposition of
the QS reveals significant deficiencies in the reliability of the first-guess quantile forecasts.
A statistical postprocessing in terms of quantile regression largely improves the reliability,
and provides skilful forecasts even for very high probability levels. The effect of the post-
processing on the resolution in turn is small.

The QS decomposition provides valuable insights in the performance of predictive quan-
tiles, no matter how they are derived. A verification of predictive distributions should assess
the performance of its quantiles, as well as its exceedance probabilities over fixed thresholds.
In a similar sense, Gneiting and Ranjan (2011) proposed to compare density forecasts using
threshold- and quantile-weighted scoring rules. We think that with this decomposition the
quantile score is ready to become as popular in forecast verification as the Brier score.
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Appendix
Motivated by the studies of Bröcker (2011) and Ferro and Fricker (2012) we finally want
to assess sample biases in the estimates of reliability and resolution. We start from dis-
cretized forecasts p

(k)
τ assuming that each forecast is equally probable (i.e., discretization

using equally populated binning). In other words, we assess expectations with respect to
the joint distribution F (p

(k)
τ , on) of the discretized forecasts p

(k)
τ and the observations on.

The biases thus only relate to the estimation of reliability and resolution, not to the effect
that results from the binning of the forecasts. We also assume that the observations given a
certain forecast are identically and independently distributed.

The expectation of the reliability estimate (REL, Eq. 8) with respect to the joint distri-
bution F (p

(k)
τ , o) is calculated as

E[REL] = E

[
K∑
k=1

Nk

N
̂dτ (P,Q)

(k)

]

= Φ
K∑
k=1

E

[
̂dτ (P,Q)

(k)
]
,

where Φ = Nk/N is the relative frequency of p(k)τ . Since the p
(k)
τ represent equally populated

bins Ik, the relative frequency only depends on the number of bins K. Consequently, we
only need to assess the biases of the reliability and resolution within each bin, independently.
For the expectation of the reliability for an interval Ik we can write

E[REL(k)]

=
1

Nk

∑
n∈Ik

(
E
[
ρτ (on − p(k)τ )

]
− E

[
ρτ (on − o(k)τ )

])
= S(P (k), Q(k))− E

[
ρτ (on − o(k)τ )

]
, n ∈ Ik .

The bias in the reliability component results from the fact that we need to estimate the
conditional quantile o

(k)
τ . Let us replace o

(k)
τ = q

(k)
τ + o

(k)
τ − q

(k)
τ , where q

(k)
τ is the true
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quantile, and use a slightly different representation of the check function, namely

ρτ
(
(on − q(k)τ )− (o(k)τ − q(k)τ )

)
= τ(on − q(k)τ )− τ(o(k)τ − q(k)τ )

−
(
(on − q(k)τ )− (o(k)τ − q(k)τ )

)
I
on<o

(k)
τ
.

An aggravating factor is that the estimate of the conditional quantile o
(k)
τ is a function of

the sample of observations within one bin. Other than the true quantile q
(k)
τ it depends on

on. We may split the index function I
on<o

(k)
τ

into

I
on<o

(k)
τ

= I
on<q

(k)
τ

+ I
q
(k)
τ <on<o

(k)
τ
I
q
(k)
τ <o

(k)
τ

− I
o
(k)
τ <on<q

(k)
τ
I
o
(k)
τ <q

(k)
τ

,

and obtain

E[ρτ (on − o(k)τ )] = S(Q(k), Q(k))− E[ρτ (o
(k)
τ − q(k)τ )]︸ ︷︷ ︸
bias I

− E[(on − o(k)τ )I
q
(k)
τ <on<o

(k)
τ
I
q
(k)
τ <o

(k)
τ
]︸ ︷︷ ︸

bias II

+ E[(on − o(k)τ )I
o
(k)
τ <on<q

(k)
τ
I
o
(k)
τ <q

(k)
τ
]︸ ︷︷ ︸

bias II

. (12)

S(Q(k), Q(k)) is now the true expected score or entropy. Bias term I in (12) resembles the
expected score for q

(k)
τ if evaluated on the estimates o

(k)
τ . Bias I is always positive, and as

it comes with a negative sign, bias I always leads to an underestimation of the conditional
entropy estimate. A part of bias I is due to the loss in degrees of freedom by the estimation
of o

(k)
τ , since both the estimation and the evaluation are performed on the same sample.

It is the same effect that leads to the biased variance estimator if one has to estimate the
expectation value. Bias II in turn is always positive and counteracts bias I. It only acts on
those sample members that lie in between q

(k)
τ and its estimator o(k)τ , and thus is particularly

large if o(k)τ is strongly biased. It is responsible for the increased bias in reliability when K
becomes large (compare Sec. 5.1.1 and Fig. 2).

Unbiased estimates of quantiles other than the median are hard to obtain. Hyndman and
Fan (1996) suggest to use a median-unbiased quantile estimator, their type 8 estimator, which
is approximately median-unbiased regardless of the underlying distribution. For normally
distributed data there exists an approximately unbiased estimator which might be preferred
in this case. Note that biases may be particularly large for high quantiles and large K (i.e.
small subsamples).
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For the expectation of the resolution (RES) we obtain a similar expression

E[RES(k)]

=
1

Nk

∑
n∈Ik

(
E[ρτ (on − ōτ )]− E[ρτ (on − o(k)τ )]

)
= S(Q̄, Q(k))− S(Q(k), Q(k))

− E[ρτ (ōτ − q̄τ )]︸ ︷︷ ︸
bias III

− E[(on − ō(k)τ )I
q̄τ<on<ō

(k)
τ
I
q̄τ<ō

(k)
τ
]︸ ︷︷ ︸

bias IV

+ E[(on − ōτ )Iō(k)τ <on<q̄τ
I
oō

(k)
τ <q̄τ

]︸ ︷︷ ︸
bias IV

+ bias I − bias II.

The biases now result from the estimation of q̄τ and q
(k)
τ , and the two components S(Q(k), Q(k))

and S(Q̄, Q(k)), respectively. Since the estimates for the climatology are based on a signifi-
cantly larger data set, the biases III and IV are small. We thus conclude, that a bias in the
quantile estimator (I) leads to an overestimation of the resolution, whereas the bias resulting
from the entropy estimates (II) reduces the resolution.

Bias terms III and IV also affect the uncertainty, as they result from the estimation of
the climatological quantile

E[UNC(k)] =
1

Nk

∑
n∈Ik

E[ρτ (on − ōτ )]

= S(Q̄, Q(k))− bias III + bias IV .

It is important to note that in contrast to the discretization error, the biases do not effect
the overall score. As for the BS, unbiased estimators are unavailable, and at this stage, we
are unable to propose a correction for the biases. The only solution to avoid large biases is
to carefully define the binning intervals.
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