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1 Introduction

In his fundamental paper [25], Itô showed how to construct a Poisson point
process of excursions of a strong Markov process X over time intervals when
X is away from a recurrent point a of its statespace. The point process is
parameterized by the local time process of X at a. Each point of the excursion
process is a path in a suitable space of possible excursions of X, starting at a
at time 0, and returning to a for the first time at some strictly positive time
ζ, called the lifetime of the excursion. The intensity measure of the Poisson
process of excursions is a σ-finite measure Λ on the space of excursions, known
as Itô’s excursion law. Accounts of Itô’s theory of excursions can now be found in
several textbooks [48, 46, 10]. His theory has also been generalized to excursions
of Markov processes away from a set of states [34, 19, 10] and to excursions of
stationary, not necessarily Markovian processes [38].

Itô’s excursion theory has been applied to the study of the distribution of
functionals of the trajectories of one-dimensional Brownian motion and Bessel
processes [41, 9, 58, 39], and to the study of random trees [2, 3, 4, 5, 18, 1, 8] and
measure valued diffusions [16]. In such studies, the following two descriptions
of Itô’s law Λ for excursions away from 0 of a reflecting Brownian motion X
on [0,∞) have proved useful. Both involve BES(3), the 3-dimensional Bessel
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process. We recall that for positive integer δ a BES(δ) process can be defined
as the radial part of a δ-dimensional Brownian motion, and that this definition
can be extended using additivity properties of squares of Bessel processes to
define a BES(δ) process for all real δ ≥ 0 [49]. The first description of Itô’s law
Λ is drawn from Itô’s definition and observations of Lévy [33], Itô-McKean [26],
and Williams [54]. The second description is due to Williams [56] and proved
in Rogers [47].

Description I: Conditioning on the lifetime: First pick a lifetime
t according to the σ-finite density (2π)−1/2t−3/2dt on (0,∞); then
given t, run a BES(3) bridge from 0 to 0 over time t.

Description II: Conditioning on the maximum: First pick a maxi-
mum value m according to the σ-finite density m−2dm on (0,∞);
then given m, join back to back two independent BES(3) processes,
each started at 0 and run till it first hits m.

As explained in Biane-Yor [9] and Williams [57], the agreement between these
two descriptions of Itô’s excursion law, combined with Brownian scaling, implies
an identity relating the distribution of the maximum of the standard Brownian
excursion (or BES(3) bridge from 0 to 0 over time 1) and the distribution of
the sum of two independent copies of the hitting time of 1 by BES(3). These
authors show how this identity, expressed in terms of moments, is related to the
functional equation for Riemann’s zeta function. A central result of this paper
is the following generalization of this identity from dimension δ = 3 to arbitrary
positive real δ:

Theorem 1 For each δ > 0, on the space of continuous non-negative paths with
a finite lifetime, starting and ending at 0, there exists a σ-finite measure Λδ

00

that is uniquely determined by either of the following descriptions:

Description I: Conditioning on the lifetime: First pick a lifetime t
according to the σ-finite density 2−

δ
2 Γ( δ

2 )−1t−
δ
2 dt on (0,∞); then

given t, run a BES(δ) bridge from 0 to 0 over time t.

Description II: Conditioning on the maximum: First pick a maxi-
mum value m according to the σ-finite density m1−δdm on (0,∞);
then given m, join back to back two independent BES(δ) processes,
each started at 0 and run till it first hits m.

The measures Λδ
00 defined by Description II for δ > 2 were considered in

[41] and further studied by Biane-Yor [9], who gave Description I in this case.
It was shown in [41] that for 2 < δ < 4 the measure Λδ

00 is Itô’s excursion law
for excursions of BES(4 − δ) away from zero. For all δ ≥ 2 the measure Λδ

00

concentrates on excursion paths starting at 0 and first returning to 0 at their
lifetime. But the measure with density t−

δ
2 dt on (0,∞) is a Lévy measure only

for 2 < δ < 4. So for δ ≤ 2 or δ ≥ 4 the measure Λδ
00 is not the excursion law
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of any Markov process. Nonetheless, these measures Λδ
00 are well defined for all

δ > 0, and have some interesting properties and applications. As shown in [41],
the measure 4Λ4

00 appears, due to the Ray-Knight description of Brownian local
times, as the distribution of the square root of the total local time process of
a path governed by the Itô’s Brownian excursion law Λ3

00. Consequently, Λ4
00

appears also in the Lévy-Khintchine representation of the infinitely divisible
family of squares of Bessel processes and Bessel bridges [41, 39]. For 0 < δ < 2,
the point 0 is a recurrent point for BES (δ), and the measure Λδ

00 concentrates
on paths which, unlike excursions, return many times to 0 before finally being
killed at 0.

Here we establish Theorem 1 for all δ > 0 using a general formulation of
Williams’ path decomposition at the maximum for one-dimensional diffusion
bridges, presented in Section 2. This formulation of Williams’ decomposition,
due to Fitzsimmons [15], contains an explicit factorization of the joint density of
the time and place of the maximum of a one-dimensional diffusion bridge. For
Brownian bridge this density factorization appears already in the work of Vincze
[50] in 1957, and its extensions to Brownian excursion, Brownian meander and
diffusion processes have been derived by several authors [13, 21, 23, 12]. As
an application of this decomposition, in Section 3 we describe the law of the
standard BES(δ) bridge by its density on path space relative to the law obtained
by taking two independent BES(δ) processes started at 0 and run till they first
hit 1, joining these processes back to back, and scaling the resultant process with
a random lifetime and maximum 1 to have lifetime 1 and a random maximum.

Our approach to the family of measures (Λδ
00, δ > 0) leads us to consideration

of a σ-finite measure Λxy associated with a general one-dimensional diffusion
process instead of BES(δ), for an arbitrary initial point x and final point y.
Some instances of these measures were considered in [40]. Some of the results
in this paper were announced in [42].

2 Williams’ Decomposition for a One-dimensional
diffusion

2.1 Decomposition at the maximum over a finite time in-
terval

Let X = (Xt, t ≥ 0) be a regular one-dimensional diffusion on a sub-interval
I of the real line. See [26] for background and precise definitions. To keep
things simple, assume that I contains [0,∞), and that X has infinite lifetime.
The infinitesimal generator A of X, restricted to smooth functions vanishing in
some neighbourhoods of boundary points of I, is of the form

A =
d

dm

d

ds
, (1)

where s = s(dx) and m = m(dx) are the scale and speed measures of the
diffusion. The semigroup of X admits a jointly continuous transition density
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relative to the speed measure

p(t, x, y) = Px(Xt ∈ dy)/m(dy), (2)

which is symmetric in (x, y). Here Px(·) = P (· |X0 = x) defines the distribution
on a suitable path space of the diffusion process started at X0 = x. Let P t

x,y

govern the diffusion bridge of length t from x to y:

P t
x,y(·) = Px(· |Xt = y) (3)

Under P t
x,y the process (Xs, 0 ≤ s ≤ t) is an inhomogeneous Markov process

with continuous paths, starting at x at time 0 and ending at y at time t. The
one-dimensional and transition probability densities of the diffusion bridge are
derived from p(t, x, y) in the obvious way via Bayes rule [14].

Let
Mt = sup

0≤s≤t
Xs; ρt = inf{s : Xs = Mt}. (4)

For a diffusion X whose ultimate maximum M∞ is a.s. finite, Williams [55] gave
a path decomposition of X at the time ρ∞ that X first attains this ultimate
maximum value. Since this fundamental work of Williams variations of his idea
have been developed and applied in a number of different contexts. See for
instance Denisov [13], Millar [35, 36], Jeulin [27], Le Gall [17]. In particular,
Fitzsimmons [15] gave the following decomposition at the maximum over a finite
time interval, part (i) of which appears also in Csáki et al [12]. The density
factorization (7) for Brownian bridge was found already by Vincze [50]. See
also Imhof [21, 22] for related results, and Asmussen et al. [6] for an application
to discretization errors in the simulation of reflecting Brownian motion. Let

fxz(t) = Px(Tz ∈ dt)/dt (5)

where Tz = inf{t : Xt = z} is the first passage time to z. See [26],p.154,
regarding the existence of continuous versions of such first passage densities.
This allows rigorous construction of nice versions of the conditioned processes
appearing in part (ii) of the following theorem, along the lines of [14].

Theorem 2 [55, 15, 12]
(i) For x, y ≤ z < ∞, 0 ≤ u ≤ t, the Px joint distribution of Mt, ρt and Xt is
given by

Px(Mt ∈ dz, ρt ∈ du,Xt ∈ dy) = fxz(u)fyz(t− u)s(dz)du m(dy). (6)

Consequently the P t
x,y joint distribution of Mt and ρt is given by

P t
x,y(Mt ∈ dz, ρt ∈ du) =

fxz(u)fyz(t− u)
p(t, x, y)

s(dz)du (7)

(ii) Under Px conditionally given Mt = z, ρt = u and Xt = y, that is to say
under P t

x,y given Mt = z and ρt = u, the path fragments

(Xs, 0 ≤ s ≤ u) and (Xt−s, 0 ≤ s ≤ t− u)
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are independent, distributed respectively like

(Xs, 0 ≤ s ≤ Tz) under Px given Tz = u

and
(Xs, 0 ≤ s ≤ Tz) under Py given Tz = t− u

Integrating out u in formula (7) gives an expression of convolution type for
the density at z of the maximum Mt of a diffusion bridge from x to y over time
t. A second integration then yields

P t
x,y(Mt ≥ z)p(t, x, y) =

∫ t

0

du

∫ ∞

z

s(da)fxa(u)fya(t− u) (8)

=
∫ t

0

fxz(u)p(t− u, z, y)du (9)

Here the equality between (9) and the left side of (8) is clear directly by inter-
preting the latter as

Px(Mt ≥ z,Xt ∈ dy)/m(dy) = Px(t ≥ Tz, Xt ∈ dy)/m(dy)

and conditioning on Tz. Following the method used by Gikhman [20] in the case
of Bessel processes, explicit formulae for the bridge probabilities P t

x,y(Mt ≥ z)
for particular diffusions can be computed using the Laplace transformed version
of (9), which is∫ ∞

0

e−αtP t
x,y(Mt ≥ z)p(t, x, y)dt = φ↑(α,x)φ↑(α,y)

φ↓(α,z)
φ↑(α,z)

(10)

where φ↑(α,x) and φ↓(α,x) are the increasing and decreasing solutions of Au =
αu, for α > 0, normalized so that∫ ∞

0

e−αtp(t, x, y)dt = φ↑(α, x ∧ y)φ↓(α, x ∨ y). (11)

Then

Ex(e−αTz ) =
∫ ∞

0

e−αtfxz(t)dt =
φ↑(α,x)
φ↑(α,z)

for x ≤ z (12)

and the same holds with φ↓(α,·) instead of φ↑(α,·) for x ≥ z. See Itô-McKean
[26] for these formulae. In view of (11) and (12), the equality between the right
sides of (8) and (9) reduces by Laplace transforms to the classical Wronskian
identity

φ↓(α,x)
dφ↑(α,x)

s(dx)
− φ↑(α,x)

dφ↓(α,x)
s(dx)

= 1 (13)

To see this, note from (11) and (12) that the Laplace transform of the righthand
expression in (8) becomes

φ↑(α,x)φ↑(α,y)
∫ ∞

z

s(da)
1

[φ↑(α,a)]2
(14)
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This equals the Laplace transform of the right-hand side of (9), which, as already
remarked, is the expression in (10). Indeed, the Wronskian formula (13) makes

d

s(dz)

(
φ↓(α,z)
φ↑(α,z)

)
=

−1
[φ↑(α,z)]2

and each of the expressions in (10) and (14) vanishes as z ↑ ∞, because the
assumption of infinite lifetime implies φ↑(α,z) ↑ ∞ as z ↑ ∞. Csáki et al [12]
used a variation of this argument to derive (6).

2.2 The agreement formula for a diffusion bridge

With one more simplifying assumption, Theorem 2 can be expressed as in the
next corollary. This corollary is a generalization of Theorem 1 suggested by
work of Williams [56], Pitman-Yor [41], Biane-Yor [9], Biane [7]. The notation
is taken from Section 6 of [9], where more formal definitions can be found. For a
distribution Q on path space, and a random time T , let QT be the distribution
of the path obtained by killing at time T . Let Q∧ be the image of Q by time
reversal. For a second distribution of paths Q′, let Q ◦ Q′, the concatenation
of Q and Q′, be the distribution of the path obtained by first following a path
distributed according to Q, then continuing independently according to Q′.

Corollary 3 Agreement Formula for Diffusion Bridges. Assume that for all
x, y ∈ I with x < y, Px(Ty < ∞) = 1. Then for all x, y ∈ I there is the
following identity of measures on path space:∫ ∞

0

dt p(t, x, y)P t
x,y =

∫ ∞

x∨y

s(dz)(PTz
x ) ◦ (PTz

y )∧ (15)

Theorem 1.1 amounts to the following instance of this formula when the basic
diffusion is BES(δ) and x = y = 0:

Λδ
00 =

∫ ∞

0

dt
P t

0,0

(2t)
δ
2 Γ( δ

2 )
=
∫ ∞

0

dz(PTz
0 ) ◦ (PTz

0 )∧

zδ−1
(16)

Definition 4 For a one-dimensional diffusion subject to the conditions of Corol-
lary 2.1, let Λxy denote the measure on path space defined by either side of the
agreement formula (15).

The measure Λxy is always σ-finite. Its total mass is the 0-potential density∫ ∞

0

p(t, x, y)dt = s(∞)− s(x ∨ y)

which may be either finite or infinite. Informally, the agreement formula states
that each of the following two schemes derived from a basic diffusion process X
can be used to generate Λxy:
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(LHS) Pick t according to p(t, x, y)dt and then run an X bridge of length t from
x to y
(RHS) Pick z according to the speed measure s(dz) restricted to (x∨y,∞), then
join back to back a copy of X started at x run to Tz and a copy of X started at
y run to Tz.

The (LHS) amounts to conditioning on the lifetime of the path from x to y,
while the (RHS) amounts to conditioning on the maximum.

Clearly, Λxy concentrates on paths starting at x and ending at y, and at-
taining a maximum value, M say, at a unique intermediate time. Note that
Λ∧xy = Λyx. This is obvious from the right side of (15), and can be seen also on
the left side, because p(t, x, y) = p(t, y, x), and (P t

x,y)∧ = P t
y,x.

2.3 Relation to last exit times

We now consider the case when X is transient, i.e. Xt → ∞ as t → ∞. We
can then choose s such that s(∞) = 0. In this transient case, the measure Λxy

is finite, and in fact is a multiple of the restriction of P
Ly
x to Ly > 0, where

Ly = sup{t > 0 : Xt = y} with the usual convention that sup(∅) = 0. To be
precise, by formula (6.e) of [40],

Px(Ly ∈ dt) = −s(y)−1p(t, x, y)dt (17)

where we have dropped a factor of 2 from the formula of [40] due to our definition
of the speed measure m here using A = d

dm
d
ds rather than A = 1

2
d

dm
d
ds as in

[40]. Furthermore, from [40] there is the formula

PLy
x ( · |Ly = t) = P t

x,y (18)

so for transient X the agreement formula (15) can be written

PLy
x ( · ∩ (Ly > 0) ) = − 1

s(y)

∫ ∞

x∨y

s(dz)(PTz
x ) ◦ (PTz

y )∧ (19)

When X is the BES(3) process on [0,∞), and x = y = 0, the σ -finite mea-
sure Λ00 appearing in (15) is Itô’s excursion law. The LHS is the description
of Itô’s law for Brownian excursions due to Lévy [33] and Itô [25], while the
RHS is Williams’ [56] description. As noted in Biane-Yor [9] and Williams
[57], the agreement between these two descriptions of Itô’s law has interesting
consequences related to the functional equation for the Riemann zeta function.

Corollary 3 allows the identity (8) to be lifted to an identity of measures on
path space:

the restriction of Λxy to (M > z) is PTz
x ◦ Λzy (20)

We note also that integration with respect of m(dy) yields the following version
of the agreement formula for unconditioned diffusions:∫ ∞

0

dt P t
x =

∫ ∞

x

s(dz)(PTz
x ) ◦

(∫ z

−∞
m(dy)(PTz

y )∧
)

(21)
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Similar representations of the left side of (21) for Brownian motion appear
in [9] (see also [46], Ex. (4.18) of Ch. XII). These too can be formulated much
as above for a general diffusion.

2.4 Relation to excursion laws

The connection between BES(3) and BM is that BES(3) is BM on [0,∞) con-
ditioned to approach ∞ before 0, a concept made precise by Doob’s theory of
h-transforms. More generally, if 0 is a recurrent point of a regular diffusion Y
on an interval I which contains [0,∞), and X is Y conditioned to approach ∞
before 0, then Λ00 derived from X admits a similar interpretation as Itô’s law
for excursions of Y above 0. See Section 3 of Pitman-Yor [41], where Williams’
representation of Λ00 is given along with two other representations of the mea-
sure in this case, due to Itô and Williams. In view of (20), the second of these
two other descriptions also identifies Λx0 derived from X, for x > 0, as

Λx0 = s(x,∞)QT0
x

where Qx is the distribution of Y started at x. The description of Itô’s excursion
law for a general one-dimensional diffusion Y , via the LHS of (15) for X as above,
is less well known. According to this description, the Lévy measure governing
the duration of excursions of the recurrent diffusion Y above 0 has density at
t identical to p(t, 0, 0) for the diffusion X on [0,∞) obtained by conditioning
Y to approach ∞ before hitting 0. See Knight [31], Kotani-Watanabe [32],
concerning the problem of characterizing such Lévy densities.

The two other descriptions of an Itô excursion law, given in Section 3 of
[41], do not make sense in the generality of Corollary 3, because they involve
conditioning on sets which might have infinite mass. In particular, this is the
case if X is recurrent, for example a standard Brownian motion. If y is a
recurrent point for X, the measure Λxy, while σ-finite on path space, has finite
dimensional distributions that are not σ-finite. This follows from the LHS of
the agreement formula (15) combined with the fact that

∫∞
v

p(t, x, y)dt = ∞ for
every v > 0. The measures Λyy, as defined by the LHS of the agreement formula
for a recurrent point y, were considered in Pitman-Yor [40], and applied in case
X is a Bessel process to establish complete monotonicity of some particular
ratios of Bessel functions. As noted in [40], if (τ`, ` ≥ 0) is the inverse of
the local time process (Lt, t ≥ 0) at a recurrent point y, normalized so that
Ex(dLt) = p(t, x, y)dt, then there is the further identity∫ ∞

0

dt p(t, x, y)P t
x,y =

∫ ∞

0

d`P τ`
x (22)

That is to say , for a recurrent point y a third description of the measure
Λxy in (15) is obtained by first picking ` according to Lebesgue measure, then
running the diffusion started at x until the time τ` that its local time at y first
equals `.
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3 The Agreement Formula for Bessel Processes

3.1 Definition and basic properties of Bessel Processes

Let R = (Rt, t ≥ 0) be a BES(δ) process started at R0 = 0. Here δ is a strictly
positive real parameter. For δ = 1, 2, . . . , a BES(δ) diffusion R is obtained as
the radial part of BM in Rδ. See Itô-McKean [26] Section 2.7. For positive inte-
ger parameters, this representation displays the Pythagorean property of Bessel
processes: the sum of squares of independent BES(δ) and BES(δ′) processes is
the square of a BES(δ + δ′) process. As shown by Shiga-Watanabe [49], the
family of BES(δ) processes for real δ > 0 is characterized by extension of this
Pythagorean property to all positive real δ and δ′. Typical properties of Bessel
processes are consequences of the Brownian representation for integer δ that ad-
mit natural extensions to all δ > 0. See [46] for further background and proofs
of the basic properties of BES(δ) now recalled.

The BES(δ) process is a diffusion on [0,∞) whose infinitesimal generator Aδ

acts on smooth functions vanishing in a neighbourhood of 0 as

Aδ =
1
2

d2

dx2
+

δ − 1
2x

d

dx
=

d

dmδ

d

dsδ
. (23)

where the scale and speed measures sδ and mδ can be chosen to be

sδ(dx) = x1−δdx, mδ(dx) = 2xδ−1dx. (24)

For 0 < δ < 2, the definition of the generator is completed by specifying that
the boundary point 0 acts as a simple instantaneously reflecting barrier.

The Pythagorean property implies easily that for all δ > 0

the law of R2
t /2t is gamma ( δ

2 ).

That is to say

P (Rt ∈ dy) = 21− 1
2 δΓ(δ/2)−1t−

δ
2 yδ−1e−

y2

2t dy = pδ(t, 0, y)mδ(dy) (25)

where
pδ(t, 0, y) = (2t)−

δ
2 Γ( δ

2 )−1e−
y2

2t (26)

is the transition probability density relative to the speed measure. This is the
simple special case x = 0 of the general formula for the transition probability
function pδ(t, x, y) of the Bessel diffusion, for which see Itô-McKean [26] Section
2.7, Molchanov and Ostrovski [37].

The BES(δ) process R for each real δ > 0 inherits the familiar Brownian
scaling property from integer dimensions: for every c > 0

(c−1/2Rct, t ≥ 0) d= (Rt, t ≥ 0)

A standard Bessel (δ) bridge is a process

(Rbr
u , 0 ≤ u ≤ 1) d= (Ru, 0 ≤ u ≤ 1|R1 = 0).
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For all δ > 0 a standard BES(δ) bridge Rbr is conveniently constructed from
the unconditioned BES(δ) process R as

Rbr
u = (1− u)R(u/(1− u)), 0 ≤ u < 1.

In particular, for positive integer δ, the square of the standard BES(δ) bridge
is distributed as the sum of squares of δ independent standard one-dimensional
Brownian bridges.

By Brownian scaling, for t > 0, δ > 0, a BES(δ) bridge from 0 to 0 over time
t can be represented in terms of the standard BES(δ) bridge Rbr as

√
tRbr

s/t, 0 ≤ s ≤ t

We note in passing that an interesting continuum of processes, passing from the
Bessel bridges to the free Bessel processes and including the Bessel meanders,
is introduced and studied in [45].

3.2 Random Scaling Construction of the Standard Bessel
Bridge.

The following theorem is an expression of the agreement formula (15) for Bessel
processes. This is a probabilistic expression in terms of standard bridges of
Theorem 1.

Theorem 5 Let R and R̂ be two independent BES(δ) processes starting at 0,
T and T̂ their first hitting times of 1. Define R̃ by connecting the paths of R on
[0, T ] and R̂ on [0, T̂ ] back to back:

R̃t =

 Rt if t ≤ T

R̂T+T̂−t if T ≤ t ≤ T + T̂ ,

and let R̃br be obtained by Brownian scaling of R̃ onto the time scale [0, 1]:

R̃br
u = (T + T̂ )−1/2R̃u(T+T̂ ), 0 ≤ u ≤ 1.

Let Rbr be a standard BESδ bridge. Then for all positive or bounded measurable
functions F : C[0, 1] → R,

E[F (Rbr)] = cδE[F (R̃br)(M̃br)2−δ] (27)

where

M̃br = sup
0≤u≤1

R̃br
u = (T + T̂ )−1/2 (28)

cδ = 2
δ
2−1Γ( δ

2 ). (29)
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Proof. Fix δ. Let fz be the density of Tz = inf{t : Rt = z} for the
unconditional BES(δ) diffusion R started at X0 = 0. Applied to the standard
BES(δ) bridge Rbr, and using (24), (26) and the scaling property

fz(t) = z−2f1(tz−2), t > 0, z > 0,

formula (7) yields

P (Mbr ∈ dz, ρbr ∈ dt)
dz dt

= 2cδf1

(
t

z2

)
f1

(
1− t

z2

)
z−δ−3. (30)

On the other hand, R̃br constructed as above has maximum value

M̃br = (T + T̂ )−1/2 attained at time ρ̃br =
T

T + T̂
(31)

where T and T̂ are independent with density f1. Thus by a change of variables

P (M̃br ∈ dz, ρ̃br ∈ dt)
dz dt

= 2f1

(
t

z2

)
f1

(
1− t

z2

)
z−5. (32)

Comparison of (30) and (32) shows that (27) holds for F a function of the
maximum of the process and the time it is attained. To lift the formula from
the above identity of joint laws for the time and level of the maximum, to the
identity of laws on the path space C[0, 1], it only remains to be seen that the
two laws on path space share a common family of conditional laws given the
time and level of the maximum: for y > 0, 0 < t < 1,

P (Rbr ∈ · |Mbr = y, ρbr = t) = P (R̃br ∈ · |M̃br = y, ρ̃br = t).

But this follows immediately from Williams decomposition as stated in part (ii)
of Theorem 2, and Brownian scaling.

According to (27), the law of the standard Bessel bridge Rbr on C[0, 1] is
mutually absolutely continuous with respect to that of R̃br, with density at
w ∈ C[0, 1]

P (Rbr ∈ dw)
P (R̃br ∈ dw)

= cδ

(
sup

0≤u≤1
wu

)2−δ

. (33)

Our formulation of Theorems 1 and 5 was suggested by Section 3 of Biane-
Yor [9], where some forms of these results are discussed for δ > 2. The present
development shows that everything works also for 0 < δ ≤ 2. Recall the well
known fact that dimension δ = 2 is the threshold between recurrence and tran-
sience of BES(δ) processes:

for δ > 2, there are no recurrent points for the BES(δ) diffusion;

for δ = 2, every x > 0 is a recurrent point, but 0 is only neighbourhood-
recurrent, not point recurrent;

for 0 < δ < 2, every x ≥ 0 is a recurrent point for BES(δ).

11



Dimension 2 plays a special role here, as the unique dimension that makes
the density factor (33) identically equal to 1. Thus for (R̃br

u , 0 ≤ u ≤ 1) defined
as in Theorem 5 by pasting back to back two independent BES(δ) processes run
till they first hit 1 then Brownian scaling the result to have lifetime 1, there is
the following immediate consequence of Theorem 5:

Corollary 6 The process (R̃br
u , 0 ≤ u ≤ 1) is a standard BES(δ) bridge if and

only if δ = 2.

Combined with the skew-product description of planar Brownian motion,
(see e.g. [26] or [46]) this yields in turn:

Corollary 7 Run each of two independent planar Brownian motions Z and Ẑ
starting at the origin until hitting the unit circle, at times T and T̂ respectively.
Rotate the entire path of Ẑ over the time interval [0, T̂ ] to make the two paths
meet when they first reach the unit circle at times T and T̂ . Define a path Z†

with lifetime T + T̂ by first travelling out to the unit circle over time T via
Z, then returning via the reversed and rotated path of Ẑ over a following time
interval of length T̂ . Finally, rescale Z† to have lifetime 1 by Brownian scaling.
Then the resultant process is a standard planar Brownian bridge.

Some applications of this result have been made by Werner [52, 53] to
study the shape of the small connected components of the complement of a
2-dimensional Brownian path. We note also the following asymptotic represen-
tation of the 2-dimensional Brownian bridge as the limit in distribution as r → 0
of (

1√
Tr

Z(uTr); 0 ≤ u ≤ 1
)

where Z = (Z(t), t ≥ 0) is a 2-dimensional Brownian motion started at Z(0) 6= 0,
and Tr is the hitting time of {z : |z| = r} by Z.

A construction like that in Corollary 7 can be made starting from δ dimen-
sional Brownian motion for any δ = 1, 2, 3, . . .. But the result is the standard
bridge only for δ = 2. For other dimensions δ the result has distribution abso-
lutely continuous with respect to that of the bridge, with density the function
of the maximum of the radial part indicated by (33).

3.3 Applications

A subscript δ will now be used to indicate the dimension of the underlying
Bessel process. So

Tδ = hitting time of 1 for a BES(δ) started at 0
T̂δ = independent copy of Tδ

(Mbr
δ , ρbr

δ ) = level and time of the maximum for a standard BES(δ) bridge.

12



The distribution of Tδ is determined by its Laplace transform (Kent [29])

ϕδ(λ) = E exp(−λTδ) =
(2λ)µ/2

cδIµ(
√

2λ)
(34)

where µ = δ
2−1 is the index corresponding to dimension δ, and cδ = 2

δ
2−1Γ( δ

2 ) =
2µΓ(µ + 1) as in (29). According to Ismail-Kelker ([24], Theorem 4.10) the
corresponding density fδ can be written as a series expansion involving the
zeros of Jµ, the usual Bessel function of index µ.

3.3.1 Moment identities

Several consequences of (27), all of which are apparent at the level of the joint
laws (30) and (32), were noted for δ > 2, i.e. µ > 0, as formulae (3.k), (3.l),
(3.k’), (3.k”) of [9]. According to the Theorem 5, these identities in fact hold
for all δ > 0: for all positive measurable functions f :

E[f(Mbr
δ )] = cδE[f((Tδ + T̂δ)−1/2)(Tδ + T̂δ)

δ
2−1] (35)

E[f(ρbr
δ )] = cδE

[
f

(
Tδ

Tδ + T̂δ

)
(Tδ + T̂δ)

δ
2−1

]
. (36)

In particular,
E(Mbr

δ )δ−2 = cδ (37)

E(Tδ + T̂δ)
δ
2−1 = 1/cδ (38)

3.3.2 Relation to Kiefer’s formula

Let f
(2)
δ (t) = fδ ∗ fδ(t) denote the density of Tδ + T̂δ, with Laplace transform

[ϕδ(λ)]2. According to (35),

P [(Mbr
δ )2 ∈ da] = cδa

− δ
2−1f

(2)
δ (a−1)da. (39)

For integer dimensions δ, Kiefer ([30], (3.21)) found a formula for the density
of (Mbr

δ )2 which also involves the zeros of Jµ. It appears that Kiefer’s method
and formula are valid also for arbitrary δ > 0. Comparison of Kiefer’s formula
and (39) using the formula of Ismail-Kelker for fδ leads to some tricky identities
involving the zeros of Jµ. Kiefer [30],p.429 discusses the cases δ = 1 and δ =
3. The second case is of special interest because, as noted by Williams [54],
the standard Brownian excursion is a BES(3) bridge. Kiefer’s formulae were
rediscovered in the context of Brownian excursions by Kennedy [28] and Chung
[11].
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3.3.3 Moment identities for dimension 2

Differentiation of (38) with respect to δ at δ = 2 yields

E[log(T2 + T̂2)] = − log 2− Γ′(1) (40)

From (35) with δ = 2 one also gets

2E[log(Mbr
2 )] = log 2 + Γ′(1) (41)

Recently, formula (40) has been useful in checking the following asymptotic
result, which is of interest in certain questions related to random environments:
For (Bs, s ≥ 0) a one-dimensional BM

E

[
log
(∫ t

0

exp(Bs)ds

)]
−
√

2t

π
→ log 2− Γ′(1) as t →∞. (42)

This follows from the consequence of Theorem 2 and the Ray-Knight description
of Brownian local times that for S1 = sup0≤s≤1 Bs

t

∫ 1

0

exp(−
√

t(S1 −Bs))ds
d→ 4(T2 + T̂2) as t →∞ (43)

where d→ denotes convergence in distribution.

3.3.4 A check for dimensions less than 2

For 0 < δ < 2, corresponding to −1 < µ < 0, we have a check that the evaluation
of the constant cδ = 2µΓ(µ+1), in (27), (35) etc. is correct, starting from (34).
For a r.v. X ≥ 0 with Laplace transform ϕ(λ) = Ee−λX , there is the formula

EXp =
1

Γ(−p)

∫ ∞

0

λ−p−1ϕ(λ)dλ, p < 0 (44)

Applied to X = Tδ + T̂δ, p = µ, for −1 < µ < 0, this yields

E(Tδ + T̂δ)µ =
1
cδ

∫ ∞

0

d

dλ

I−µ(
√

2λ)
Iµ(

√
2λ)

dλ (45)

due to the standard formula for the Wronskian of Iµ and I−µ (Watson [51], p.77)
By standard asymptotics of Iµ, this confirms that (38) holds for −1 < µ < 0,
with cδ = 2µΓ(1 + µ) as in (29).

3.3.5 A check for integer dimensions

In case µ = k is a positive integer, formula (38) can be checked using

E
[
(Tδ + T̂δ)k

]
= (−1)k dk

dλk

∣∣∣∣
λ=0

[
φδ(λ)2

]
(46)
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Note also the easy equality

E
[
(Tδ + T̂δ)

]
= 2E(Tδ) =

2
δ
E
[
(Rδ(Tδ))2

]
=

2
δ

(47)

which, in case δ = 4, agrees with (38), since c4 = 2.

3.3.6 Chung’s identity

To further illustrate formula (35), we now show how it implies the remarkable
identity

(Mbr
1 )2 d=

π2

4
T3 (48)

which was discovered by Chung [11]. See Biane-Yor [9] and Pitman-Yor [42, 44,
43] for further discussion and related identities.

Take f(x) = e−
1
2 λ2x2

, so f( 1√
t
) = e−λ2/2t in (35):

E exp
(
−λ2

2
(Mbr

δ )2
)

= cδE

[
(Tδ + T̂δ)

δ
2−1 exp

(
− λ2

2(Tδ + T̂δ)

)]
.

For δ = 1, this expression equals

π E

[
1

√
2π
√

T1 + T̂1

exp

(
− λ2

2(T1 + T̂1)

)]
= πP

(
N

√
T1 + T̂1 ∈ dλ

)
/ dλ

where N is Normal (0, 1) independent of
√

T1 + T̂1. But

E exp
(

iλN

√
T1 + T̂1

)
= E exp

(
−λ2

2
(T1 + T̂1)

)
=

1
cosh2(λ)

whence in this case by Fourier inversion

E exp
(
−λ2

2
(Mbr

1 )2
)

= π
1
2π

∫ ∞

−∞

dθe−iλθ

cosh2(θ)
=
∫ ∞

−∞

dxei λ
2 x

2 · 2 cosh2(x
2 )

=
π λ

2

sinh(π λ
2 )

= E exp
(
−λ2

2 (π2

4 )T3

)
This proves (48).
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