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Abstract—The capacitated arc routing problem (CARP) is a
challenging combinatorial optimization problem with many real-
world applications, e.g., salting route optimization and fleet man-
agement. There have been many attempts at solving CARP using
heuristic and meta-heuristic approaches, including evolutionary
algorithms. However, almost all such attempts formulate CARP
as a single-objective problem although it usually has more than
one objective, especially considering its real-world applications.
This paper studies multiobjective CARP (MO-CARP). A new
memetic algorithm (MA) called decomposition-based MA with
extended neighborhood search (D-MAENS) is proposed. The
new algorithm combines the advanced features from both the
MAENS approach for single-objective CARP and multiobjective
evolutionary optimization. Our experimental studies have shown
that such combination outperforms significantly an off-the-shelf
multiobjective evolutionary algorithm, namely nondominated
sorting genetic algorithm II, and the state-of-the-art multiob-
jective algorithm for MO-CARP (LMOGA). Our work has
also shown that a specifically designed multiobjective algorithm
by combining its single-objective version and multiobjective
features may lead to competitive multiobjective algorithms for
multiobjective combinatorial optimization problems.

Index Terms—Capacitated arc routing problem (CARP), local
search, memetic algorithms (MA), meta-heuristics, multiobjective
optimization.

I. Introduction

THE CAPACITATED arc routing problem (CARP) [1] is a
well-known combinatorial optimization problem. Due to

its wide applications in the real world, including winter gritting
[2]–[6], urban waste collection [7], [8], and snow removal [9],
[10], CARP has been intensively investigated in the past few
decades. Given a graph with some edges and arcs required to
be served (called tasks) and a number of vehicles with limited
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capacity, a CARP is defined as seeking an optimal routing
plan for the vehicles under the following conditions.

1) Each vehicle starts and ends at a predefined vertex,
namely depot.

2) Each task is served by exactly one vehicle.
3) The total demand of the tasks served by each vehicle

does not exceed its capacity.

Since CARP is NP-hard [11], exact methods are only
applicable to the instances with small problem sizes. However,
many real-world applications involve large-size CARPs, and
routing plans must be made within a restricted time bud-
get. Therefore, heuristics and meta-heuristics are promising
approaches in such a situation in order to obtain acceptable
solutions in time. During the last century, constructive heuris-
tics were often adopted because of their ability to generate
relatively good solutions in a very short time period. To name
a few, the Augment-Merge heuristic proposed by Golden and
Wong [11], the path scanning heuristic proposed by Golden
et al. [12], and Ulusoy’s splitting heuristic proposed in [13] are
three typical heuristics for CARP. More recently, researchers
shifted their attentions to meta-heuristics, which can provide
much better solutions. Although meta-heuristics usually induce
higher computational cost, this additional cost is now afford-
able due to the rapid development of the computational power
of computers. The first meta-heuristic approach to CARP is
the tabu search proposed by Hertz et al. [14]. After that,
the variable neighborhood descent algorithm [15], the guided
local search [16], the tabu scatter search [17], the memetic
algorithm (MA) [18], and another tabu search algorithm [19]
have been proposed. A comprehensive survey of the recent
results on various arc routing problems is presented in [20].
We have also conducted intensive investigations on CARP
in our previous work. A global repair operator that can be
embedded in any search-based approach was proposed in
[21]. More importantly, we proposed a MA with extended
neighborhood search (MAENS) [22], which has been shown
to outperform most existing approaches in terms of solution
quality.

So far, CARP has been predominantly formulated as a
single-objective problem with the only objective of minimizing
the total cost of the service. However, there is a huge gap
between such a formulation and reality. Contributions are now
needed to fill this gap in literature. For this purpose, Lacomme
et al. [23] considered minimizing total cost and makespan
(i.e., the cost of the longest route) simultaneously. Specifically,

1089-778X/$26.00 c© 2010 IEEE



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

they formulated a multiobjective CARP (MO-CARP) and
developed a hybrid algorithm for it by combining an approach
for single-objective CARP (SO-CARP) [18] and a commonly
used multiobjective evolutionary algorithm (MOEA), namely
Nondominated Sorting Genetic Algorithm II (NSGA-II)
[24].

The two objectives considered by Lacomme et al. in [23]
are conflicting with each other. Thus, no unique global optimal
solution exists in this case. Instead, Lacomme et al. proposed
a multiobjective genetic algorithm (referred to as LMOGA
in this paper) to maintain a set of solutions, which are
good “tradeoffs” between the two objectives. Essentially, the
MO-CARP lies in the reign of multiobjective optimization.
Numerous previous publications have shown that MOEAs
are good approaches to this kind of problem. Nevertheless,
how to make the best use of MOEAs in the context of
MO-CARP has not been fully investigated. Motivated by
this, this paper aims to contribute from two aspects. First,
a number of important issues for evolutionary multiobjective
optimization (EMO) are discussed, and the utility of existing
EMO strategies in the context of MO-CARP is examined.
Second, an algorithm named decomposition-based MAENS
(D-MAENS) is proposed. The D-MAENS employs the frame-
work of the MOEA based on decomposition (MOEA/D), with
MAENS embedded in it. In addition, it adopts proper EMO
strategies based on domain-specific considerations of MO-
CARP. Comparative studies are also presented to evaluate the
efficacy of D-MAENS.

The rest of this paper is organized as follows. Section II
gives the background, including the detailed introduction to
MO-CARP and related work on EMO. Section III discusses
the important issues in solving MO-CARP with MOEAs
and evaluates the existing strategies for addressing them.
Section IV describes the proposed D-MAENS. Afterwards,
experimental studies are presented in Section V. Finally, the
paper is concluded in Section VI.

II. Background

A. Multiobjective CARP

CARP is defined on a graph G(V, E, A), where V , E, and A

stand for the set of vertices, edges, and arcs (directed edges),
respectively. For each edge (vi, vj) ∈ E and arc 〈vi, vj〉 ∈
A, three nonnegative features are associated, i.e., the traversal
cost ctrav(vi, vj), the serving cost cserv(vi, vj), and the demand
d(vi, vj). An edge or arc with a positive demand is called a
task, and is required to be served by vehicles at the cost of its
serving cost. We denote the edge task set as ER = {(vi, vj) ∈
E|d(vi, vj) > 0} and the arc task set as AR = {(vi, vj) ∈
A|d(vi, vj) > 0}. Then, the task set is T = ER ∪AR. Note that
the serving cost is only induced by serving a task, we have
cserv(vi, vj) > 0 ⇐⇒ d(vi, vj) > 0 and cserv(vi, vj) = 0 ⇐⇒
d(vi, vj) = 0. m vehicles with an identical capacity Q are based
at the depot vs ∈ V to serve the tasks. For an edge task (vi, vj),
service in either direction is acceptable. In order to facilitate
the problem definition, each edge task is assigned two IDs
(say t1 and t2), one for each direction, and each arc task is
assigned one ID. All the IDs are unique positive integers. For

Fig. 1. Example of a CARP solution

an ID t ∈ N+, the following six features are associated: the tail
vertex tv(t), the head vertex hv(t), the traversal cost ctrav(t),
the serving cost cserv(t), the demand d(t), and the inverse ID
inv(t). For an edge task (vi, vj), these features are defined as
follows:

1) hv(t1) = tv(t2) = vi;
2) tv(t1) = hv(t2) = vj;
3) ctrav(t1) = ctrav(t2) = ctrav(vi, vj);
4) cserv(t1) = cserv(t2) = cserv(vi, vj);
5) d(t1) = d(t2) = d(vi, vj);
6) inv(t1) = t2, inv(t2) = t1.

For an arc task 〈vi, vj〉 and its ID t, the features are defined
as:

1) hv(t) = vi, tv(t) = vj;
2) ctrav(t) = ctrav(vi, vj);
3) cserv(t) = cserv(vi, vj);
4) d(t) = d(vi, vj);
5) inv(t) = −1.

Since all the IDs are positive, inv(t) = −1 indicates the
inverse ID of t does not exist. In addition, zero is defined as
the ID of the depot loop with the following definitions:

1) tv(0) = hv(0) = vs;
2) ctrav(0) = cserv(0) = d(0) = 0;
3) inv(0) = 0.

Using the above notations, a CARP solution can be repre-
sented as a set of routes S = (R1, R2, . . . , Rm). Each route Rk

is a sequence of the IDs, i.e., Rk=(tk1, t
k
2, . . . , tklk ), where tkp(1 �

p � lk) are the IDs. In order to ensure that each route starts and
ends at the depot, Rk starts and ends at the depot loop 0, i.e.,
tk1 = tklk = 0. An example is illustrated in Fig. 1. In the graph,
the edge task set ER = {(v1, v5), (v2, v6), (v3, v7), (v4, v8)}, and
the depot is v0. There is no arc task in this case. The task IDs
1, 2, 3, and 4 are assigned to 〈v1, v5〉, 〈v2, v6〉, 〈v3, v7〉, and
〈v4, v8〉, respectively, while 5, 6, 7, and 8 are assigned to their
inversions. There are two numbers associated with each edge
task, the one out of the parenthesis denotes the task ID of the
direction traversed by the route, while the other one denotes
its inversion. The dashed arrows between adjacent task IDs
(e.g., 〈v0, v1〉 and 〈v7, v6〉 in Fig. 1) stand for the intermediate
paths.
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For each route Rk = (tk1, t
k
2, . . . , tklk ), its total cost

ctot(Rk) and total demand d(Rk) can be calculated as

ctot(Rk) =
lk−1∑
p=1

[cserv(tkp) + dist(tv(tkp), hv(tkp+1))]

d(Rk) =
lk∑

p=1

d(tkp)

where the function dist(v1, v2) is the distance from vertex v1

to vertex v2, which is equal to the length of the shortest path
from v1 to v2.

Under such a solution representation scheme, the MO-
CARP can be represented as follows:

min ctot(S) =
m∑

k=1

ctot(Rk) (1)

min cmax(S) = max
k

ctot(Rk) (2)

s.t. :
m∑

k=1

(lk − 2) = |T | (3)

tk1
p1

�= tk2
p2

, ∀(k1, p1) �= (k2, p2) (4)

tk1
p1

�= inv(tk2
p2

), ∀(k1, p1) �= (k2, p2) (5)

d(Rk) � Q, ∀1 � k � m (6)

where the inequation (k1, p1) �= (k2, p2) between the two pairs
(k1, p1) and (k2, p2) indicates that at least one of the two
inequations k1 �= k2 and p1 �= p2 is satisfied. Equation (1)
is the total cost of all the routes and (2) is the makespan.
Constraints (3)–(5) guarantee that each task is served exactly
once by one vehicle. Constraints (6), which are also called the
capacity constraints, indicate that the total demand served by
each vehicle does not exceed its capacity.

B. Evolutionary Multiobjective Optimization Revisited

A multiobjective optimization problem can be briefly stated
as follows:

min F (x) = (f1(x), . . . , fn(x))

s.t. : x ∈ �

where � is the decision variable space. F :�→Rn consists of
n objective functions that are conflicting with each other. For
a multiobjective optimization problem, one aims to seek a set
of solutions that have good tradeoffs among the objectives. In
order to make a clear notion of optimality in this scenario,
Pareto defined domination relationship and Pareto optimality
[25]. Let u, v ∈ Rn, u dominates v if and only if ui � vi

for each i ∈ {1, . . . , n} and uj < vj for at least one
j ∈ {1, . . . , n}. Then, a decision variable x∗ ∈ � is said
to be Pareto optimal if there is no other x ∈ � so that F (x)
dominates F (x∗). With the above definitions, a multiobjective
optimization problem requires finding or approximating the set
of Pareto optimal solutions and their corresponding objective

vectors (called Pareto front). Hence, a MOEA should return a
set of nondominated solutions that can well approximate the
Pareto optimal solutions [26].

There are three important issues that must be addressed
in EMO, i.e., fitness assignment, diversity preservation and
elitism. Unlike in single-objective optimization problems, the
fitness of a solution needs to be assigned according to multiple
criteria in a multiobjective optimization problem. Diversity
preservation is important for MOEAs to obtain solutions
that are uniformly distributed on the Pareto front. Elitism is
implemented in MOEAs to keep the nondominated solutions in
the population during the search. These three issues have been
addressed in various ways, and thereby numerous MOEAs
have been proposed (see [24]–[29]).

Despite the lack of research on MO-CARP, evolutionary
multiobjective combinatorial optimization has attracted a lot
of interest. Ehrgott et al. gave a survey of multiobjective
combinatorial optimization problems [30], and introduced the
characteristics of the problems and nominated MOEAs as one
available methodology. Some examples of the approximative
solution methods in multiobjective combinatorial optimization
problems were presented in [31], including various MOEAs,
simulated annealing and tabu search. In addition to directly
using the traditional MOEAs, some researchers considered
combining the MOEA framework with local search to pursue
enhanced performance. For example, Ishibuchi et al. proposed
a genetic local search for solving the flowshop scheduling
problem [32]. Jaszkiewicz proposed a genetic local search
framework for multiobjective combinatorial optimization prob-
lems to determine the weight vectors used in the weighted
sum approach for aggregating the objective functions during
the local search, and successfully applied it to the traveling
salesman problem [33] and the 0/1 knapsack problem [34]. Tan
et al. developed a MOEA for solving a multiobjective vehicle
routing problem in [35]. The algorithm incorporates two
problem-specific heuristics for local exploitation. However,
due to different structures of combinatorial optimization prob-
lems, it is often difficult to directly apply a MOEA developed
for one problem to another. For the same reason, although
traditional MOEAs have shown satisfactory performance on
numerical optimization benchmark test functions, they do not
necessarily guarantee good performance on MO-CARP. First,
our preliminary studies showed that the problem natures of
SO-CARP such as the discrete search space, the lack of a nat-
ural definition of neighborhood and various constraints made
successful algorithms for numerical optimization problems
failed on SO-CARP. This phenomenon may also occur in the
multiobjective case. Second, the shape of the Pareto front can
directly influence the performance of MOEAs [36]. Therefore,
the difference between the shape of the Pareto fronts of MO-
CARP and the numerical test functions makes the performance
of an existing MOEA in the case of MO-CARP unpredictable.

In general, MO-CARP can be solved from two different
directions. One is to extend an approach for SO-CARP to a
multiobjective one, and the other is to directly use an existing
MOEA by employing the problem-specific solution represen-
tation and operators. Lacomme et al. followed the former
direction in [23], while the latter direction has been overlooked
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so far. Both methods have their advantages and disadvantages,
and are actually complementary to each other. When extending
a SO-CARP approach, the strength of searching in the com-
plicated solution space can be inherited. However, the EMO
issues need to be addressed appropriately. On the other hand,
when applying an existing MOEA, it is difficult to search
effectively in the solution space of MO-CARP, although the
EMO issues are deeply considered. Therefore, it is reasonable
to increase the synergy between the two directions so that
both of their drawbacks can be overcome. In this paper, we
consider incorporating an existing SO-CARP approach and
various strategies proposed for EMO issues. By this means, the
hybridized algorithm will be strong in both searching within
the solution space and addressing the EMO issues. In order to
accomplish this, it is necessary to evaluate the EMO strategies
in the context of MO-CARP, as will be presented in the next
section.

III. EMO Issues in MO-CARP

MO-CARP is a combinatorial problem that tries to find
a set of Pareto optimal feasible solutions in a discrete and
finite solution space subject to a number of constraints. The
hybridization of EA with local search has been reported to be
quite efficient for solving combinatorial problems including
SO-CARP (see [18], [22]). This hybridized approach is also
called MA. When combining a MOEA with local search,
a new important issue arises. That is, how to identify a
solution in the neighborhood to replace the current solution.
Usually, the best solution in the neighborhood is selected, and
thus the issue can be seen as identifying the best solution in
the neighborhood. Therefore, when solving MO-CARP with
evolutionary algorithms (EAs), one may have to consider
the following four important issues: 1) fitness assignment;
2) diversity preservation; 3) elitism; and 4) identifying the
best neighboring solution during local search. The first three
issues are commonly considered in EMO, while the last one
must be addressed when local search is employed. The existing
strategies for addressing these issues are evaluated in the case
of MO-CARP one by one.

A. Fitness Assignment in MO-CARP

The existing strategies for fitness assignment in EMO can
be categorized into three types: 1) the criterion-based (see
[27]); 2) domination-based (see [24]); and 3) decomposition-
based (see [29]) methods. Previous studies on numerical
test functions showed that the criterion-based methods will
overlook the intermediate regions of the Pareto front, while the
domination-based methods will not. Since in criterion-based
and domination-based methods, the fitness of a solution only
depends on the values of objective functions, the conclusions
drawn from numerical test functions should still hold in the
case of MO-CARP. Hence, domination-based methods are
more appropriate than criterion-based methods in this context.
On the other hand, the decomposition-based methods are
based on the assumption that each Pareto optimal solution
can be seen as the optimal solution to a scalar optimization

subproblem. However, this is not true in the case of MO-
CARP. In fact, there usually exist solutions which are not
optimal for any weighted sum of the objectives in MO-CARP
[37]. Furthermore, due to the discreteness of the Pareto front
in MO-CARP, one Pareto optimal solution may be the optimal
solution of multiple decomposed subproblems. The search
process may be hindered since most of computing resources
may be wasted to find the same Pareto optimal solution.
Therefore, the decomposition-based methods may not perform
well in MO-CARP.

B. Diversity Preservation in MO-CARP

The niching technique, cell-based methods and crowding
distance method are three typical existing strategies for di-
versity preservation. They are mainly based on preventing
solutions close to each other from appearing simultaneously
in the population. Therefore, they are expected to be able
to maintain diversity in MO-CARP as well. Among them,
the performance of the niching technique and cell-based
methods are parameter-dependent, i.e., they largely depend on
the parameters such as the sharing parameter in the niching
technique and the cell size in the cell-based methods. The
performance of the crowding distance method is expected to
have a small variance since it has no user-defined parameter. In
addition to the above three strategies, algorithms like MOEA/D
utilize an implicit strategy to maintain diversity. That is, the
diversity is naturally preserved by the “diversity” among sub-
problems [29]. However, this is based on the assumption that
different subproblems can reach different optimal solutions.
In MO-CARP, one Pareto optimal solution can be the optimal
solutions to multiple subproblems. As a result, the diversity
can no longer be maintained in this way.

C. Elitism in MO-CARP

The elitism mechanism can be implemented by either stor-
ing the nondominated solutions in an archive or combining the
parents and offsprings for selection. The archive strategy can
be further divided into two types: the solutions stored in the
archive do or do not influence the search process. There is no
big difference when they are adopted in the test functions and
MO-CARP. Therefore, they can be applied to MO-CARP in
exactly the same way as to the test functions.

D. Evaluating Solutions During Local Search in MO-CARP

Identifying the best neighboring solution is essentially
equivalent to assigning fitness to each solution and then
selecting the one with the best fitness. Therefore, this issue
can be examined from the perspective of fitness assignment.
The criterion-based and domination-based strategies divide
the solutions into different fronts, each of which consists of
solutions with the same fitness. In this way, one can hardly tell
which solution in each front is the best one. The only available
strategy is to use decomposition-based methods. When solving
each decomposed scalar subproblem, the best solution can
be easily identified during local search. In addition to the
decomposition-based methods, aggregating objective functions
into a single one has been a commonly used idea in the
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literature (see [32], [33]). This method is usually faster than
the domination-based methods, but its performance largely
depends on the weight vector.

Based on the evaluations of the existing strategies, one can
either select an existing MOEA for solving MO-CARP or
design a specialized algorithm according to practical require-
ments. Based on the previous discussions, it can be seen that
the existing MOEAs other than MOEA/D are able to address
the first three issues well. MOEA/D is the only algorithm that
can address the last issue in MO-CARP because its distinctive
decomposition-based framework provides a natural way to em-
ploy local search. Therefore, we propose a multiobjective MA,
named D-MAENS, to address all four issues properly. In order
to keep the algorithm simple, among the available strategies,
the ones with the least parameters are employed. Specifically,
D-MAENS employs the fast nondominated sorting procedure
of NSGA-II for fitness assignment, the crowding distance
method of NSGA-II for diversity preservation, both of the two
existing strategies for elitism and the decomposition strategy
of MOEA/D for identifying the best solutions during local
search. Next section describes the full details of D-MAENS.

IV. D-MAENS

D-MAENS adopts a decomposition-based framework which
is analogous with that of MOEA/D. It decomposes the original
MO-CARP into a number of scalar subproblems using the
weighted sum approach with a set of uniformly distributed
weight vectors. A population of individuals (solutions) whose
size equals the number of the subproblems is maintained. Each
individual in the population corresponds to a unique subprob-
lem. When solving each subproblem, the evolutionary opera-
tors and local search are applied to the individuals correspond-
ing to the neighboring subproblems of the current one. The
crossover operator and local search process are exactly those
employed in MAENS. We will describe the decomposition-
based framework of D-MAENS in Section IV-A. Then, the
MAENS ingredients will be briefly introduced in Section IV-B.

A. Decomposition-Based Framework

In the decomposition framework, the original MO-CARP
is first decomposed into a number of SO-CARPs by the
weighted sum approach. To be specific, given the objective
vector F (x) = (f1(x), . . . , fn(x)) and a weight vector
λ = (λ1, . . . , λn), the objective function of a subproblem is
stated as

gws(x|λ) =
n∑

i=1

λifi(x).

Suppose there are N weight vectors λ1, . . . , λN , the orig-
inal MO-CARP is thus decomposed into N SO-CARPs.
The objective function of the ith subproblem is gws(x|λi).
D-MAENS maintains a population X = {x1, . . . , xN} through-
out the optimization process. At each generation, the popula-
tion is evolved in the following steps. First, each subproblem
is assigned a unique solution x ∈ X, which is called its rep-
resentative. Then, N subpopulations are constructed, each for

a subproblem. The subpopulation of a subproblem associated
with weight vector λi is composed of the representatives of
the T subproblems whose associated weight vectors are the
T closest (in term of Euclidean distance) weight vectors to
λi, where T is the size of subpopulation. As stated in [29],
the optimal solution of the ith subproblem should be close
to that of the jth subproblem if λi is close to λj . Thus, the
information of the subproblems whose weight vectors are close
to that of the current subproblem should be helpful for solving
the current subproblem. Second, one new solution is generated
for each subproblem. For the ith subproblem, two parents
are selected from the subpopulation associated with it, and
then crossover and local search of MAENS are applied to the
parents to generate an offspring yi. By repeating this procedure
for all subproblems, an offspring population Y = {y1, . . . , yN}
is generated. Finally, the solutions in both X and Y are
combined together and then sorted by the fast nondominated
sorting procedure and the crowding distance method. The
best N solutions are kept to form the population X in the
next generation. The detailed steps of the decomposition-based
framework are given as below.

Input:
1) a MO-CARP instance P ;
2) a stopping criterion;
3) the number of decomposed subproblems, denoted as N;
4) a number of uniformly distributed weight vectors

λ1, . . . , λN ;
5) the size of the neighborhood of each subproblem,

denoted as T .
Output: A set of nondominated solutions X∗.
Step 1: Initialization.
a) Set X∗ = ∅.
b) Decompose the original MO-CARP P into a set of SO-

CARPs {P1, P2, . . . , PN} with λ1, . . . , λN .
c) Initialize a population X = {x1, . . . , xN} randomly or by

problem-specific methods.
d) Compute the Euclidean distance between each pair of

weight vectors. Then, get the neighborhood B(i) =
{i1, . . . , iT } for each Pi, so that λi1 , . . . , λiT are the T

closest weight vectors to λi (including λi itself).
Step 2: Search for new solutions.
a) Assign each subproblem a unique representative xr

i ∈ X.
b) Construct a subpopulation Xi = {xr

i1
, . . . , xr

iT
} for each

subproblem.
c) Set i = 1.
d) Randomly select two solutions xr

k and xr
l from Xi.

e) Apply the crossover and local search operators of
MAENS to xr

k and xr
l to generate yi for Pi.

f) Remove from X∗ all the vectors dominated by F (yi).
Insert F (yi) in X∗ if no vector in X∗ dominates it.

g) Set i → i + 1. If i � N, go back to Step 2d.
h) Sort the solutions in the set Z = X ∪ Y by the fast

nondominated sorting procedure and crowding distance
approach of NSGA-II [24]. Then, let X be the set of the
best N solutions in the sorted Z.

Step 3: Termination. If stopping criteria are satisfied,
terminate the algorithm. Otherwise, go to Step 2.
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Algorithm 1: The assignment of representatives

Input: A population X = {x1, . . . , xN};
Output: A representative set {xr

1, . . . , xr
N};

1: for i = 1 to N − 1 do
2: for j = i + 1 to N do
3: if f2(xj) < f2(xi) or

(f2(xj) = f2(xi) and f1(xj) > f1(xi)) then
4: swap xi and xj;
5: end if
6: end for
7: end for
8: for i = 1 to N do
9: set xr

i = xi;
10: end for

In Step 2a, a representative xr
i needs to be assigned to

subproblem Pi. It is natural to assign the solution which
is the best one for Pi as the corresponding representative.
However, it may occur that some solutions are assigned to
multiple subproblems while some others are never selected. To
make each subproblem be assigned with a unique solution, a
representative assignment scheme has been further developed.
In the case of the MO-CARP, two objectives are to be
minimized and the weight vectors λ1, . . . , λN are defined as

λi =

(
i − 1

N − 1
,

N − i

N − 1

)
.

As i increases, the importance in the aggregated objective
function decreases on f1 and increases on f2. Therefore, we
designed Algorithm 1 to sort the population based on the
two objective functions. Then, the ith solution in the sorted
population is assigned to Pi.

Since the decomposition-based framework of D-MAENS
is analogous with that of MOEA/D, it is necessary to make
comparison between them. D-MAENS differs from MOEA/D
in the following aspects. First, in MOEA/D, the solution re-
placement is immediately done once an offspring is generated
at each generation, while in D-MAENS, it is called after
all subproblems have been solved. In this way, changing the
order of solving the subproblems will make no difference
in the framework of D-MAENS. Second, in our framework,
representatives of the subproblems are re-assigned at each
generation, while MOEA/D carries out the assignment at the
initialization phase only. In this way, each subproblem can
be assigned a more appropriate representative according to
the information of the current population during the search
process. Finally, in contrast to the solution replacement of
MOEA/D, in which a solution of a subproblem can only be
replaced by a solution generated for the same subproblem,
D-MAENS combines all the solutions together and compares
them regardless of which subproblem they belong to. By
combining all the solutions together, the subproblems can
help each other by sharing their representatives. In addition,
the crowding distance approach of NSGA-II prevents the
diversity loss caused by the local search operator of MAENS.

Moreover, elitism is implemented in D-MAENS by both using
an archive and maintaining elite solutions during the search in
D-MAENS. This makes it more likely to capture the whole
Pareto front when the number of Pareto optimal solutions is
larger than the population size.

B. MAENS Component

The previous section describes a general framework that
solves a MO-CARP by decomposing it into a number of
single-objective subproblems. In general, any approach to
SO-CARP can be embedded in this framework. We propose
employing MAENS due to its appealing performance. As a
MA, MAENS is characterized by five issues: 1) the solution
representation; 2) the evolutionary operator; 3) the local search
operator; 4) the evaluation schemes in the evolutionary phase;
and 5) the evaluation schemes in the local search. D-MAENS
adopts the exactly same solution representation, crossover and
local search operators as MAENS. Hence, we refer interested
readers to the original publication [22] for the full details of
them. Since MAENS needs to solve a single-objective problem
that is a bit different from the traditional CARP, the evaluation
schemes in both evolutionary and local search phases have
been modified accordingly, as described below.

The SO-CARP to be solved by MAENS in the framework
of D-MAENS takes the following form:

min g(S) = λ1f1(S) + λ2f2(S) (7)

s.t. :
m∑

k=1

(lk − 2) = |T | (8)

tk1
p1

�= tk2
p2

, ∀(k1, p1) �= (k2, p2) (9)

tk1
p1

�= inv(tk2
p2

), ∀(k1, p1) �= (k2, p2) (10)

d(Rk) � Q, ∀1 � k � m. (11)

In the above definition, f1(S) and f2(S) can be directly set
to the two objective functions (i.e., ctot(S) and cmax(S)) of
the MO-CARP. However, ctot(S) and cmax(S) are of different
scales, and the direct use of them will make MAENS bias
more to ctot(S). Therefore, normalization is required. Ideally,
the normalized objective functions should be

f1(S) = (ctot(S) − ctot
∗ )/(ctot

∗∗ − ctot
∗ )

f2(S) = (cmax(S) − cmax
∗ )/(cmax

∗∗ − cmax
∗ )

where ctot
∗ and ctot

∗∗ are the minimal and maximal total costs
of all possible solutions, while cmax

∗ and cmax
∗∗ stand for the

minimal and maximal makespan. However, in practice, we
cannot exhaustively enumerate all possible solutions to get
these values. Hence, one has to replace them with approx-
imated values. Here, we set them as the minimal (maximal)
values among the total cost (makespan) of all feasible solutions
that have been found so far. Concretely, they are firstly set to

ctot
∗ = cmax

∗ = α

ctot
∗∗ = cmax

∗∗ = 0
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where α is a sufficiently large number. Then, they are updated
during the search process. In summary, solutions are evaluated
with the weighted sum of the normalized objective functions
during the evolutionary phase of MAENS. In case some in-
feasible solutions are generated, both (7) and total violation to
the capacity constraints (denoted as tvl(S)) will be considered.
Stochastic ranking [38] will be used in the same way as the
original MAENS.

As for local search, (7) is used as the objective function,
while infeasible solutions are handled in a way more efficient
than stochastic ranking. When comparing two infeasible so-
lutions, they are first compared in terms of tvl(S), and then
in terms of g(S) if they are equal in tvl(S). Concretely, given
two candidate solutions S1 and S2, S1 is said to be better than
S2 if tvl(S1) < tvl(S2) or tvl(S1) = tvl(S2) and g(S1) < g(S2).
In case of a draw, no replacement will occur.

C. Comparisons Between D-MAENS and LMOGA

Comparing D-MAENS with the only existing approach to
MO-CARP, LMOGA [23], it can be seen that they have the
same selection operator, which is the combination of the fast
nondominated sorting procedure and the crowding distance ap-
proach. However, they are totally different in the ways of gen-
erating offspring. At each generation, D-MAENS decomposes
the original MO-CARP into multiple SO-CARPs, and then
generates one offspring for each subproblem. LMOGA, on
the other hand, solves the MO-CARP as a whole. Concretely,
their differences in generating offspring lie in the following
two aspects. First, in D-MAENS, the parents for a certain
subproblem are selected from the predefined neighborhood of
the corresponding representative solution, while in LMOGA,
the parents are consistently selected from the whole popu-
lation. Second, although LMOGA also transforms the MO-
CARP into a SO-CARP by weighted sum when carrying out
local search, the weight vector is determined based on the
location of the objective vector of the offspring in the objective
space. In contrast, the weight vectors are set to fixed values
in the initialization phase in D-MAENS and kept unchanged
throughout the search process.

Moreover, D-MAENS and LMOGA employ different
solution representations and evaluation schemes. LMOGA
utilizes an implicit solution representation, in which a solution
is represented as a single task sequence and the capacity
constraint is temporarily neglected. When a solution is
evaluated, it is first split into a set of feasible routes so that
the additional cutting cost induced is minimized. Since such a
decoding procedure does not take the makespan into account,
LMOGA might be strong in seeking solutions with a low
total cost, but weak in finding low-makespan solutions. The
explicit solution representation employed in D-MAENS, on
the other hand, addresses both total cost and makespan since
a solution is directly evaluated without being transformed by
any decoding procedure.

V. Experimental Studies

In order to evaluate the efficacy of incorporating the strength
of SO-CARP approaches and EMO strategies, we compared

TABLE I

Parameter Settings of the Compared Algorithms

Parameter D-MAENS LMOGA NSGA-II
Population size 60 60 60
Crossover rate 1.0 1.0 1.0
Mutation/LS rate 0.1 Every 10 generations 0.1
Max. generations 200 200 200n/ log n

Neighborhood size 9 - -

n is the number of tasks in the problem.

D-MAENS with LMOGA and NSGA-II on three benchmark
test instances. Here, LMOGA was chosen since it was the only
published algorithm proposed for MO-CARP and represented
the way of extending an approach of SO-CARP to solve MO-
CARP. NSGA-II served as a representative of the traditional
MOEAs without local search and represented the way of
directly using an existing MOEA for MO-CARP.

A. Experimental Setup

The experiments were carried out on three well-known
CARP benchmark sets, i.e., the gdb set [39], the val set
[40] and the egl set [41]–[43]. The gdb set was generated
by DeArmon in [39] and consists of 23 instances, most of
which are small-size instances. The val set was generated by
Benavent et al. [40]. It contains 34 instances based on ten
different graphs. Different instances based on each graph were
generated by changing the capacity of the vehicles. The val
instances have larger problem sizes than the gdb instances.
The egl set was generated by Eglese based on data from a
winter gritting application in Lancashire [41]–[43]. It consists
of 24 instances based on two graphs, each with distinct set
of required edges and capacity constraints. They have the
largest problem sizes among the three benchmark sets. In total,
81 instances were used in our studies, with their complexities
from easy to hard.

In our experiments, the MO9 version of LMOGA proposed
in [23] was selected, for it showed the best performance on the
test instances among all the nine LMOGA versions. NSGA-II
was originally proposed for numerical optimization problems.
In order to apply it to MO-CARP, problem-specific solution
representation and operators need to be employed. In our
experiments, the solution representation and crossover operator
of D-MAENS were directly employed in NSGA-II, and the
mutation operator was a random implementation of the single
insertion operator. That is, a task is randomly selected and
moved to another randomly selected position.

The parameter settings of the compared algorithms are listed
in Table I. We set the parameters in such a way that the three
algorithms shared the same key parameters, such as population
size, crossover rate, and mutation rate. Since NSGA-II does
not employ a local search process, it is assigned a larger
generation number. For each test instance, all the algorithms
were independently run 30 times on a computer with Intel(R)
Xeon(R) E5335 2.00GHz CPU.

B. Performance Measures

The performance of a MOEA is usually evaluated from two
aspects. First, the obtained nondominated set should be as
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close to the true Pareto front as possible. Second, the solutions
in the obtained nondominated set should be distributed as
diversely and uniformly as possible. The two aspects can
hardly be reflected by a single metric, and a number of metrics
have been suggested in [44]. In this paper, the following three
metrics are used.

1) Distance From Reference Set (ID): This metric was
suggested by Czyzzak et al. [45]. It is defined as follows:

ID(A) =

∑
y∈R{minx∈A{d(x, y)}}

|R| .

Given a set A, ID(A) provides information about the average
distance from a solution in the reference set R to the closest
solution in A. A smaller value of ID(A) indicates that A is
closer to R. If the reference set R is defined as a set of
Pareto optimal solutions whose objective vectors are uniformly
distributed on the Pareto front, ID will indicate the closeness
of the set A to the Pareto front and the distribution of the
solutions in A. However, it is difficult to obtain the Pareto
optimal solutions in a MO-CARP instance. Furthermore, the
Pareto optimal solutions themselves may even be distributed
non-uniformly. Alternatively, the nondominated solutions ob-
tained by all the three algorithms in 30 runs on a test instance
were combined, and those solutions remained nondominated
in this set were used as the reference set in our experiment.

2) Spread (�): This metric was suggested by Deb et al.
[24]. It can be stated as follows:

�(A) =
df + dl +

∑n−1
i=1 |di − d̄|

df + dl + (n − 1) × d̄

where df and dl are the Euclidean distances between the
leftmost and rightmost solutions of the Pareto front and the
extreme solutions in A. n is the number of solutions in A and
di is the Euclidean distance between the ith left and the (i+1)th
left solutions in A. d̄ stands for the average over all di’s. �

is an indicator of the distribution of solutions. A smaller �

indicates that the solutions are distributed more uniformly and
have a better extent. In practice, the leftmost and rightmost
solutions of the Pareto front are not available. Therefore, in
our experiments, they are defined as the leftmost and rightmost
solutions among the nondominated solutions obtained by all
the 30 runs of the compared algorithms.

3) Hypervolume (IH ): This metric was suggested by
Zitzler et al. [28] to indicate the area in the objective space
that is dominated by at least one solution of the nondominated
set. In practice, IH of a given nondominated set A is calculated
as follows:

IH (A) =
∫

. . .

∫
z ∈∪x∈AHV (f (x),f ∗)

1 · dz

where HV (f (x), f ∗) = [f1(x), f ∗
1 ] × · · · × [fm(x), f ∗

m] is
the Cartesian product of the closed intervals [fi(x), f ∗

i ],
i = 1, . . . , m.

Here we assume the objectives are to be minimized and the
reference point f ∗ = (f ∗

1 , . . . , f ∗
m) is the ideal worst point,

i.e., f ∗
i = maxx∈� fi(x), ∀i = 1, . . . , m. An example with two

Fig. 2. Hypervolume of a set of nondominated solutions

objectives is given in Fig. 2, where the objective vectors of
the solutions in the set A are a, b, and c. The area in shadow
indicates the hypervolume of A.

It is obvious that if solution x1 dominates solution x2,
then HV (f (x1), f ∗) ⊇ HV (f (x2), f ∗). Hence, IH reflects the
closeness of the nondominated set to the Pareto front. The
larger the IH , the closer the corresponding nondominated set
is to the Pareto front. In addition, from the fact that for two
sets A1 and A2, A1 ⊇ A2 ⇒ IH (A1) � IH (A2), it is deduced
that a larger IH implies that the nondominated set covers the
Pareto front more completely. Furthermore, IH is the only
unary measure which is consistent with the Pareto dominance
relationship, i.e., if a set dominates another one, it always
has a better IH [46]. For this reason, IH is one of the most
commonly used measures for evaluating MOEAs nowadays.

In our study, all the metrics were computed based on the
normalized objective vectors of the nondominated solutions,
which were obtained by

f̂i = (fi − f min
i )/(f max

i − f min
i ), i = 1, 2

where f1 and f2 stand for the total cost and makespan. f max
i

and f min
i are the maximal and minimal values of fi among all

the results obtained over the 30 runs of the three compared
algorithms. Since the elements of the normalized objective
vectors always lie in the interval [0, 1], the point (1, 1) was
used as the reference point in our experiment.

C. Experimental Results

Tables II-IV present the average value of ID, � and IH over
the 30 independent runs of the compared algorithms on the
three test sets, respectively. The characteristics of the instances
such as the number of vertices and edges are also provided.
In the tables, the columns headed “|V |” and “|E|” stand for
the number of vertices and edges in the graph of the instance,
while the column headed “|R|” represents the number of tasks.
In the gdb and val sets, all edges in the graph need to be served.
Therefore, the column headed “|R|” is omitted in Tables II
and III. The column headed “τ” indicates the minimal number
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TABLE II

Average Value of ID, � and IH Over 30 Independent Runs of the Compared Algorithms on the gdb Set

Problem |V | |E| τ ID � IH

D-MAENS LMOGA NSGA-II D-MAENS LMOGA NSGA-II D-MAENS LMOGA NSGA-II
gdb1 12 22 5 0.000000 0.000000 0.141144 0.737152 0.737152 0.738243 0.933333 0.933333 0.801793
gdb2 12 26 6 0.047577 0.055494 0.201959 0.744072 0.775904 0.846040 0.968374 0.968089 0.733586
gdb3 12 22 5 0.008124 0.049914 0.190699 0.835997 0.879512 0.820943 0.960873 0.950715 0.821352
gdb4 11 19 4 0.001766 0.019672 0.149119 0.780746 0.737634 0.809841 0.928217 0.923841 0.782717
gdb5 13 26 6 0.013742 0.081535 0.191624 0.798773 0.869112 0.824886 0.925012 0.881022 0.665339
gdb6 12 22 5 0.022758 0.010959 0.166298 0.820776 0.844730 0.777610 0.927929 0.930271 0.744261
gdb7 12 22 5 0.001905 0.206082 0.259892 0.727180 0.787064 0.779443 0.779109 0.632002 0.532821
gdb8 27 46 10 0.065808 0.097087 0.214706 0.812013 0.859538 0.823990 0.924160 0.872941 0.724383
gdb9 27 51 10 0.038974 0.051164 0.274357 0.874343 0.857652 0.881908 0.930479 0.917804 0.633869
gdb10 12 25 4 0.017936 0.258262 0.351409 0.709984 0.879912 0.853631 0.823408 0.630947 0.465408
gdb11 22 45 5 0.039002 0.277287 0.315678 0.785507 0.918200 0.900487 0.881007 0.708175 0.512891
gdb12 13 23 7 0.005164 0.016110 0.104416 0.850628 0.832020 0.853378 0.980243 0.979106 0.809011
gdb13 10 28 6 0.170071 0.180372 0.273860 0.988458 1.000000 0.874523 0.865900 0.862069 0.707721
gdb14 7 21 5 0.033982 0.261274 0.352942 0.769615 0.863232 0.854531 0.872280 0.794213 0.589352
gdb15 7 21 4 0.050147 0.349475 0.227593 0.695741 0.869075 0.776009 0.735185 0.562500 0.556944
gdb16 8 28 5 0.068613 0.303918 0.331089 0.731969 0.890029 0.844825 0.797619 0.608333 0.467989
gdb17 8 28 5 0.180030 0.550350 0.380069 0.700056 0.931299 0.756089 0.825556 0.621111 0.550556
gdb18 9 36 5 0.064065 0.314809 0.339070 0.705372 0.875640 0.880833 0.842605 0.737725 0.533990
gdb19 8 11 3 0.000000 0.000000 0.217262 0.689926 0.689926 0.673179 0.714286 0.714286 0.504762
gdb20 11 22 4 0.125009 0.195592 0.182633 0.768393 0.823900 0.823426 0.819643 0.776587 0.735615
gdb21 11 33 6 0.066627 0.252814 0.237787 0.777325 0.914989 0.888137 0.850412 0.713228 0.634039
gdb22 11 44 8 0.066028 0.143205 0.243994 0.823458 0.911066 0.813657 0.869808 0.740383 0.606475
gdb23 11 55 10 0.104860 0.144992 0.386921 0.875470 0.881174 0.869281 0.803514 0.719563 0.389269

For each instance and each metric, the result that is significantly better than others is in boldface (with smallest ID and �, while with greatest IH ).

TABLE III

Average Value of ID, � and IH Over 30 Independent Runs of the Compared Algorithms on the val Set

Problem |V | |E| τ ID � IH

D-MAENS LMOGA NSGA-II D-MAENS LMOGA NSGA-II D-MAENS LMOGA NSGA-II
val1A 24 39 2 0.021581 0.288084 0.277642 0.826860 1.000000 0.872144 0.943678 0.684483 0.598121
val1B 24 39 3 0.044519 0.115148 0.244812 0.836487 0.884870 0.870302 0.872647 0.830208 0.544473
val1C 24 39 8 0.026728 0.032653 0.814618 0.900184 0.896428 1.000000 0.958554 0.941799 0.117460
val2A 24 34 2 0.015511 0.206106 0.218118 0.778396 0.870051 0.879490 0.794212 0.664432 0.528108
val2B 24 34 3 0.029323 0.122290 0.204035 0.795504 0.878269 0.861804 0.804240 0.748594 0.563582
val2C 24 34 8 0.075862 0.125862 0.605525 0.996913 0.991727 0.882948 0.925115 0.875517 0.404713
val3A 24 35 2 0.009113 0.130534 0.244528 0.829782 0.933323 0.879654 0.855250 0.758879 0.535624
val3B 24 35 3 0.003884 0.009137 0.226411 0.880052 0.879665 0.797203 0.901889 0.894556 0.659611
val3C 24 35 7 0.007143 0.050000 0.726190 1.000000 0.979689 0.989825 0.992857 0.950000 0.273810
val4A 41 69 3 0.036222 0.097135 0.517681 0.845928 0.928517 0.877692 0.881834 0.793611 0.257703
val4B 41 69 4 0.040741 0.055040 0.640778 0.829101 0.861189 0.884425 0.895275 0.835651 0.179179
val4C 41 69 5 0.044510 0.039666 0.521099 0.854632 0.888505 0.883814 0.908314 0.900294 0.319008
val4D 41 69 9 0.042473 0.066038 0.650771 0.948836 0.954178 0.861916 0.968994 0.938014 0.378267
val5A 34 65 3 0.043365 0.211394 0.365025 0.855040 0.918426 0.917828 0.859080 0.701103 0.424836
val5B 34 65 4 0.046929 0.152943 0.499159 0.823922 0.900973 0.939342 0.829466 0.692898 0.222838
val5C 34 65 5 0.053699 0.155414 0.528122 0.800515 0.861334 0.884102 0.830813 0.702173 0.237407
val5D 34 65 9 0.055831 0.074474 0.465619 0.876871 0.911589 0.844131 0.928692 0.891527 0.376311
val6A 31 50 3 0.030430 0.212964 0.241787 0.779257 0.863983 0.839278 0.849628 0.678763 0.539604
val6B 31 50 4 0.047001 0.196831 0.312510 0.789869 0.906557 0.871675 0.749397 0.694004 0.424838
val6C 31 50 10 0.203895 0.235074 0.735624 0.840530 0.901210 0.887079 0.867320 0.855501 0.249619
val7A 40 66 3 0.050913 0.361388 0.292486 0.848629 0.871379 0.862394 0.869234 0.619957 0.520646
val7B 40 66 4 0.053772 0.311073 0.526678 0.793655 0.910238 0.875159 0.785541 0.560383 0.212282
val7C 40 66 9 0.038781 0.106679 0.295054 0.807624 0.877243 0.854016 0.899756 0.865095 0.480320
val8A 30 63 3 0.032564 0.197845 0.385505 0.846041 0.946727 0.924361 0.877391 0.749813 0.418221
val8B 30 63 4 0.033601 0.130713 0.426237 0.814564 0.893369 0.894872 0.874730 0.775106 0.357385
val8C 30 63 9 0.074759 0.117168 0.320418 0.836183 0.847926 0.832353 0.922176 0.822137 0.535190
val9A 50 92 3 0.060197 0.301938 0.536941 0.822405 0.935880 0.871752 0.830741 0.708264 0.257671
val9B 50 92 4 0.069932 0.254137 0.662066 0.805901 0.925571 0.909500 0.773374 0.653468 0.115218
val9C 50 92 5 0.064638 0.189373 0.411132 0.816305 0.906102 0.875979 0.848982 0.804664 0.358905
val9D 50 92 10 0.061239 0.083620 0.648318 0.835957 0.861696 0.831780 0.912214 0.838818 0.216695
val10A 50 97 3 0.057796 0.342043 0.506623 0.838297 0.955142 0.929302 0.818545 0.656889 0.318174
val10B 50 97 4 0.058944 0.274119 0.381459 0.841877 0.951383 0.942558 0.862753 0.791315 0.443111
val10C 50 97 5 0.069181 0.222700 0.652653 0.837638 0.932813 0.940012 0.803281 0.695455 0.145332
val10D 50 97 10 0.093867 0.153825 0.546695 0.832806 0.886949 0.862742 0.812797 0.740643 0.224720

For each instance and each metric, the result that is significantly better than others is in boldface (with smallest ID and �, while with greatest IH ).
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TABLE IV

Average Value of ID, � and IH Over 30 Independent Runs of the Compared Algorithms on the egl Set

Problem |V | |E| |R| τ ID � IH

D-MAENS LMOGA NSGA-II D-MAENS LMOGA NSGA-II D-MAENS LMOGA NSGA-II
E1-A 77 98 51 5 0.036912 0.041494 0.267209 0.837173 0.871417 0.886003 0.961134 0.953894 0.673405
E1-B 77 98 51 7 0.022972 0.027591 0.393926 0.928263 0.901692 0.811100 0.985737 0.973730 0.620783
E1-C 77 98 51 10 0.103739 0.115848 0.783209 0.806003 0.810029 0.710195 0.842120 0.830386 0.154459
E2-A 77 98 72 7 0.034070 0.155534 0.228773 0.871803 0.852683 0.856005 0.929793 0.895206 0.624767
E2-B 77 98 72 10 0.030468 0.048951 0.319239 0.865474 0.832002 0.830119 0.949172 0.917306 0.605356
E2-C 77 98 72 14 0.052499 0.108517 0.394959 0.896010 0.860160 0.841612 0.912012 0.853518 0.547432
E3-A 77 98 87 8 0.039940 0.067949 0.295953 0.861154 0.890025 0.890814 0.929949 0.856558 0.532301
E3-B 77 98 87 12 0.049111 0.079399 0.385193 0.886609 0.860360 0.906476 0.920454 0.871371 0.544479
E3-C 77 98 87 17 0.055030 0.128920 0.754184 0.919013 0.897894 0.861464 0.934317 0.845319 0.234861
E4-A 77 98 98 9 0.052780 0.075407 0.361713 0.884950 0.894944 0.904382 0.926844 0.872198 0.461175
E4-B 77 98 98 14 0.132789 0.208926 0.403383 0.922241 0.906295 0.924598 0.949293 0.905957 0.649063
E4-C 77 98 98 19 0.055220 0.121632 0.736181 0.928553 0.951792 0.845886 0.956615 0.884639 0.314961
E1-A 140 190 75 7 0.030514 0.080384 0.177150 0.904305 0.921717 0.884422 0.890462 0.842490 0.649117
E1-B 140 190 75 10 0.029941 0.055984 0.214091 0.884088 0.903788 0.851167 0.932369 0.891414 0.707422
S1-C 140 190 75 14 0.074585 0.167701 0.552732 0.822246 0.859363 0.856784 0.906602 0.806034 0.333658
S2-A 140 190 147 14 0.034959 0.049498 0.353840 0.869846 0.907437 0.937896 0.928025 0.862601 0.486828
S2-B 140 190 147 20 0.044781 0.079291 0.374232 0.897434 0.919009 0.881360 0.948473 0.883102 0.582001
S2-C 140 190 147 27 0.071934 0.111792 0.673141 0.930810 0.924213 0.919789 0.932086 0.885749 0.288865
S3-A 140 190 159 15 0.046492 0.059549 0.328910 0.859125 0.910351 0.883791 0.923804 0.868949 0.516624
S3-B 140 190 159 22 0.055405 0.096119 0.479496 0.848864 0.883151 0.868471 0.924604 0.862733 0.450213
S3-C 140 190 159 29 0.084777 0.132210 0.699735 0.889979 0.921042 0.900136 0.916414 0.858534 0.257848
S4-A 140 190 190 19 0.076616 0.160206 0.420624 0.910406 0.942660 0.895271 0.958476 0.916048 0.517106
S4-B 140 190 190 27 0.094041 0.212546 0.831535 0.949837 0.930120 0.958830 0.917572 0.806978 0.171004
S4-C 140 190 190 35 0.064972 0.103996 0.842116 0.986036 0.973376 0.940114 0.939239 0.904580 0.163917

For each instance and each metric, the result that is significantly better than others is in boldface (with smallest ID and �, while with greatest IH ).

TABLE V

Nondominated Solutions With the Least Total Cost Obtained

by D-MAENS and the Best Solutions Obtained by MAENS Over

30 Runs on the gdb Set

Problem D-MAENS MAENS
Total Cost Makespan Total Cost Makespan

gdb1 316 74 316 76
gdb2 339 69 339 73
gdb3 275 65 275 65
gdb4 287 74 287 78
gdb5 377 78 377 79
gdb6 298 75 298 75
gdb7 325 68 325 73
gdb8 348 48 348 44
gdb9 304 50 303 49
gdb10 275 70 275 73
gdb11 395 80 395 90
gdb12 458 97 458 97
gdb13 536 151 536 154
gdb14 100 21 100 23
gdb15 58 15 58 17
gdb16 127 26 127 30
gdb17 91 13 91 22
gdb18 164 33 164 37
gdb19 55 21 55 22
gdb20 121 36 121 37
gdb21 156 27 156 30
gdb22 200 26 200 29
gdb23 233 28 233 36

For each instance, the solution dominating the other is in boldface.

of vehicles required subject to the capacity constraints. It was
obtained by dividing the total demand of the tasks by the
capacity of vehicles. A greater value of τ indicates a higher
complexity of the instance. For each instance and each perfor-
mance metric, the Wilcoxon rank sum test was further carried
out on the results obtained by 30 runs of the three compared
algorithms, and the one that is significantly better than that of
the other two (with the significance level of 5%) is in boldface.

TABLE VI

Nondominated Solutions With the Least Total Cost Obtained

by D-MAENS and the Best Solutions Obtained by MAENS Over

30 Runs on the val Set

Problem D-MAENS MAENS
Total Cost Makespan Total Cost Makespan

val1A 173 58 173 74
val1B 173 60 173 62
val1C 245 41 245 41
val2A 227 114 227 115
val2B 259 108 259 108
val2C 457 71 457 71
val3A 81 41 81 41
val3B 87 32 87 32
val3C 138 27 138 27
val4A 400 134 400 142
val4B 412 106 412 116
val4C 430 100 428 115
val4D 536 82 530 85
val5A 423 141 423 143
val5B 446 112 446 115
val5C 474 97 474 100
val5D 595 79 584 88
val6A 223 75 223 77
val6B 233 68 233 68
val6C 317 54 317 54
val7A 279 85 279 91
val7B 283 58 283 68
val7C 334 50 334 50
val8A 386 129 386 133
val8B 395 99 395 105
val8C 532 83 526 90
val9A 324 109 323 110
val9B 326 83 326 86
val9C 332 68 332 69
val9D 392 51 391 55
val10A 428 143 428 178
val10B 436 117 436 112
val10C 446 92 446 94
val10D 533 61 530 68

For each instance, the solution dominating the other is in boldface.
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TABLE VII

Nondominated Solutions With the Least Total Cost Obtained

by D-MAENS and the Best Solutions Obtained by MAENS Over

30 Runs on the egl Set

Problem D-MAENS MAENS
Total Cost Makespan Total Cost Makespan

E1-A 3548 943 3548 943
E1-B 4525 839 4498 899
E1-C 5595 836 5595 836
E2-A 5018 953 5018 953
E2-B 6347 871 6321 870
E2-C 8339 854 8335 854
E3-A 5926 942 5898 929
E3-B 7801 872 7779 872
E3-C 10 340 827 10 305 875
E4-A 6476 953 6476 930
E4-B 9069 926 9016 914
E4-C 11 774 822 11 628 872
E1-A 5068 1068 5018 1023
E1-B 6435 984 6394 1050
S1-C 8518 1018 8518 1018
S2-A 10 117 1087 9981 1109
S2-B 13 459 1040 13 297 1040
S2-C 16 832 1040 16 552 1040
S3-A 10 469 1099 10 355 1099
S3-B 14 082 1040 13 877 1040
S3-C 17 650 1040 17 362 1061
S4-A 12 602 1092 12 470 1108
S4-B 16 686 1027 16 528 1103
S4-C 21 213 1027 20 874 1067

For each instance, the solution dominating the other is in boldface.

Fig. 3. Nondominated solutions obtained by all 30 runs of the compared
algorithms for the gdb11 instance

Note that ID and � are to be minimized while IH is to be
maximized, the boldfaced ID and � are the smallest while IH

is the greatest among that of the compared algorithms.
First, we focus on the metric ID. It is shown from the

tables that D-MAENS performed significantly better than the
others on 71 out of the total 81 instances, including 18 out
of the 23 gdb instances, 31 out of the 34 val instances, and
22 out of the 24 egl instances. LMOGA was significantly
better on two instances, including one gdb instance and val
instance. NSGA-II failed to outperform the other algorithms
on any instance. Note that on gdb1 and gdb19, D-MAENS
and LMOGA both reached the minimal value 0 of ID. This
shows that for these two instances, D-MAENS and LMOGA

TABLE VIII

Number of Nondominated Solutions on the Test Sets After

Combining the Nondominated Sets Obtained by 30 Runs of the

Compared Algorithms Together

Problem No.NS Problem No.NS Problem No.NS
gdb1 3 val1A 7 E1-A 9
gdb2 4 val1B 7 E1-B 3
gdb3 4 val1C 2 E1-C 2
gdb4 3 val2A 13 E2-A 7
gdb5 6 val2B 12 E2-B 7
gdb6 5 val2C 1 E2-C 5
gdb7 5 val3A 6 E3-A 16
gdb8 6 val3B 4 E3-B 5
gdb9 4 val3C 1 E3-C 4
gdb10 10 val4A 16 E4-A 12
gdb11 17 val4B 11 E4-B 6
gdb12 5 val4C 10 E4-C 2
gdb13 2 val4D 2 S1-A 19
gdb14 5 val5A 19 S1-B 11
gdb15 6 val5B 20 S1-C 7
gdb16 7 val5C 13 S2-A 27
gdb17 4 val5D 9 S2-B 9
gdb18 7 val6A 11 S2-C 6
gdb19 2 val6B 11 S3-A 16
gdb20 6 val6C 4 S3-B 8
gdb21 9 val7A 11 S3-C 7
gdb22 7 val7B 10 S4-A 8
gdb23 7 val7C 5 S4-B 1

val8A 19 S4-C 1
val8B 19
val8C 8
val9A 17
val9B 17
val9C 16
val9D 8

val10A 23
val10B 15
val10C 19
val10D 13

“Problem” indicates the test instance, and “No.NS” stands for the
number of nondominated solutions.

both consistently found all the best nondominated solutions in
all 30 runs. D-MAENS also obtained the smallest average ID

on six other instances (gdb2, gdb13, val1C, val6C, E1-A, and
E1-C), although the results were not statistically significant.

As for the � metric, it can be observed that D-MAENS
performed significantly better than the others on ten gdb in-
stances, 25 val instances, and five egl instances. LMOGA per-
formed the best on one egl instance, and NSGA-II performed
the best on three gdb instances, four val instances, and five egl
instances. There are ten gdb instances, five val instances, and
13 egl instances on which none of the algorithms showed sig-
nificantly better performance than the other two. Among them,
D-MAENS provided the smallest � on four gdb instances,
one val instance, and three egl instances. LMOGA obtained
the smallest � on four gdb instances, two val instances, and
three egl instances. NSGA-II got the smallest � on three gdb
instances, two val instances, and seven egl instances. Note
that on gdb1 and gdb19, although D-MAENS and LMOGA
consistently found all the best nondominated solutions in the
30 runs, their �’s were either statistically comparable with or
significantly worse than that of NSGA-II. This showed that the
best nondominated solutions were not uniformly distributed
due to the discreteness of the solution space.
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Fig. 4. Nondominated solutions obtained by all 30 runs of the compared algorithms for the val10 test instance set

Finally, the algorithms are compared in terms of IH . It is
observed that D-MAENS achieved significantly larger IH than
LMOGA and NSGA-II on 18 instances, 32 val instances and
22 egl instances. LMOGA was superior on one gdb instance,
and NSGA-II failed to be the best on any instance.

To check whether a nondominated solution can be obtained
by applying MAENS to the original SO-CARP instances, we
compared D-MAENS with MAENS as well. To make a fair
comparison, the parameters of MAENS were set in such a
way that the computational time of the two algorithms were
comparable. MAENS was also run 30 times on the same
computer as other compared algorithms.

Tables V–VII present the nondominated solutions with
the lowest total cost obtained by D-MAENS and the best
solutions obtained by MAENS over 30 runs on the three test
sets. For each instance, the solution dominating the other is in
boldface. From the tables, it can be observed that D-MAENS
performed better than MAENS on the gdb and val sets, while
was outperformed by MAENS on the egl set. D-MAENS
obtained solutions dominating those obtained by MAENS on
19 gdb instances, 17 val instances, and 0 egl instances. The
opposite case occurred on two gdb instances, one val instance,
and 11 egl instances. Taking a closer look at the results, we
found that D-MAENS obtained solutions with the best known
total cost on 22 out of the 23 gdb instances and 27 out of the
34 val instances, while only succeeded on 3 out of the 24 egl

instances. The reason is that D-MAENS uniformly allocates
computational resources to all subproblems to search for the
whole Pareto front, while MAENS solely focuses on one
problem whose size is equivalent to that of a subproblem in D-
MAENS. For the egl instances, the computational resources
assigned to each subproblem might not be sufficient for
D-MAENS. On the other hand, the computational resources
were sufficient for relatively simple test instances such as
the gdb and val instances. Hence, D-MAENS was able to
obtain good solutions in terms of both the total cost and the
makespan.

In order to comprehensively evaluate the performance of the
compared algorithms, the nondominated solutions obtained by
them on selected instances are also plotted in the objective
space. It is more important to visualize the Pareto front for
the instances with more Pareto optimal solutions than those
with less Pareto optimal solutions. In practice, the number of
Pareto optimal solutions of an instance is rarely known. Thus,
for each instance, all the solutions obtained throughout the
experiment were first combined together. Then, the nondom-
inated solutions were identified. The instances with the most
nondominated solutions were chosen for illustration.

Table VIII presents the number of nondominated solutions
on the test sets after the combination. It can be seen that
the instances gdb11, val10A–val10D and S2-A–S2-C had the
most nondominated solutions in their corresponding test sets.
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Fig. 5. Nondominated solutions obtained by all 30 runs of the compared algorithms for the egl S2 test instance set

Therefore, they are selected as the representative instances to
be plotted.

Figs. 3–5 show the nondominated solutions obtained on
the selected instances by D-MAENS, LMOGA, NSGA-II,
and MAENS in all 30 runs. First, we compare the MOEAs.
For gdb11, D-MAENS and LMOGA converged better than
NSGA-II. Besides, D-MAENS covered the objective space
more completely than LMOGA. It reached both the areas with
low total cost and low makespan. LMOGA, on the other hand,
was confined to the area with low total cost and relatively
high makespan. In the intermediate area (that with the value
of makespan from 65 to 90), D-MAENS still performed no
worse than LMOGA. Similar scenarios can be observed on the
four val instances. NSGA-II performed the worst. D-MAENS
still had a stronger capability of reaching the area with lower
makespan than LMOGA, although it was outperformed by
LMOGA in the intermediate area on val10A∼val10C. For the
egl instances, all the three MOEAs managed to find solutions
with low makespan. Meanwhile, D-MAENS obtained solu-
tions with the lowest total cost. Further, it is not surprising to
find that MAENS obtained solutions with lower total cost and
higher makespan than those obtained by the MOEAs.

The relationship between the above observations and the
quantitative results in Tables II-IV deserves more discussion.
As mentioned in their definitions, ID and IH reflect the
extent of the convergence to the true Pareto front. ID also
reflects the distribution of the nondominated solutions if the

TABLE IX

Average Computational Time (in Seconds) Used by the

Compared Algorithms

Test set D-MAENS LMOGA NSGA-II
gdb 8.82 1.65 9.66
val 53.98 11.82 78.02
egl 213.50 50.24 95.77
overall 88.42 20.32 63.87

reference solutions are uniformly distributed, while IH also
reflects how well the nondominated solutions cover the Pareto
front. � mainly implies the distribution of the nondominated
solutions. From Figs. 3–5, it is evident that most reference
solutions used in computing ID, especially those with low
makespan, were obtained by D-MAENS. This explains why
D-MAENS got smaller ID’s and larger IH ’s. The value of �

depends on two factors: 1) the location of the leftmost and the
rightmost nondominated solutions; and 2) the distribution of
the nondominated solutions. The advantage of D-MAENS was
not so clear with respect to �. The figures demonstrated that
D-MAENS performed the best while NSGA-II performed the
worst with regard to the first factor. Hence, the results on �

can only be due to the distribution of the solutions, although
it is difficult to tell how well the solutions were distributed
from the figures.

Table IX gives the average runtime of the compared algo-
rithms on each test set. The row headed “overall” shows the
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average runtime on the total 81 instances. It can be seen that
D-MAENS was the most time-consuming among the three
algorithms. LMOGA was the fastest algorithm, whose average
runtime was much less than that of the others. For each test
set, the average runtime of D-MAENS was about 4-5 times
as that of LMOGA. Note that D-MAENS and LMOGA both
employ local search, and their local search rates were set to
the same value in our experiments. However, D-MAENS spent
more time than LMOGA. This is due to the high computational
cost of the Merge-Split operator employed in the local search
phase of MAENS, which also made MAENS much more time-
consuming than other approaches for SO-CARP [22]. The
average runtime of NSGA-II was comparable to that of D-
MAENS on the gdb and val sets, but D-MAENS was much
more time-consuming on the egl set. This is because the
computational time of the local search of D-MAENS increases
with the problem size. With the same parameter settings given
in Table I, D-MAENS is computationally more expensive on
the egl set than NSGA-II. However, when we ran NSGA-II on
the egl set with more generations, no significant improvement
on solution quality was obtained.

VI. Conclusion

In this paper, we investigated a MO-CARP that considers
minimizing the total cost and the makespan as two objectives.
By revisiting the existing EMO strategies in the context of
MO-CARP, a decomposition-based framework for solving
MO-CARP was proposed. Integrating a competitive algorithm
for SO-CARP into this framework, a novel algorithm called
D-MAENS has been developed. Experimental studies on three
well-known benchmark sets demonstrated the advantages of
D-MAENS over LMOGA and NSGA-II. This verified the
efficacy of combining conventional EMO techniques with
domain-specific search algorithms.

In comparison with SO-CARP that only requires minimiz-
ing the total cost, the MO-CARP investigated in this paper
goes one step closer toward reality. However, in most real-
world applications such as winter gritting, many other factors
need to be considered, e.g., the time window constraints, the
intermediate facilities and the time-dependent service costs.
Therefore, our future work will focus on incorporating these
factors into the CARP model.

References

[1] M. Dror, Arc Routing: Theory, Solutions and Applications. Boston, MA:
Kluwer, 2000.

[2] H. Handa, D. Lin, L. Chapman, and X. Yao, “Robust solution of salting
route optimization using evolutionary algorithms,” in Proc. IEEE Congr.
Evol. Comput., Jul. 16–21, 2006, pp. 3098–3105.

[3] H. Handa, L. Chapman, and X. Yao, “Robust route optimization for
gritting/salting trucks: A CERCIA experience,” IEEE Comput. Intell.
Mag., vol. 1, no. 1, pp. 6–9, Feb. 2006.

[4] M. Tagmouti, M. Gendreau, and J. Potvin, “Arc routing problems
with time-dependent service costs,” Eur. J. Oper. Res., vol. 181, no. 1,
pp. 30–39, 2007.

[5] G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno, “Tabu search
heuristics for the arc routing problem with intermediate facilities under
capacity and length restrictions,” J. Math. Model. Algorithms, vol. 3,
no. 3, pp. 209–223, 2004.

[6] A. Amberg, W. Domschke, and S. Voß, “Multiple center capacitated arc
routing problems: A tabu search algorithm using capacitated trees,” Eur.
J. Oper. Res., vol. 124, no. 2, pp. 360–376, 2000.

[7] F. Chu, N. Labadi, and C. Prins, “A scatter search for the periodic
capacitated arc routing problem,” Eur. J. Oper. Res., vol. 169, no. 2,
pp. 586–605, 2006.

[8] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “Evolutionary algo-
rithms for periodic arc routing problems,” Eur. J. Oper. Res., vol. 165,
no. 2, pp. 535–553, 2005.

[9] J. Campbell and A. Langevin, “Roadway snow and ice control,” in
Arc Routing: Theory, Solutions, and Applications. Boston, MA: Kluwer,
2000, pp. 389–418.

[10] M. Polacek, K. Doerner, R. Hartl, and V. Maniezzo, “A variable neigh-
borhood search for the capacitated arc routing problem with intermediate
facilities,” J. Heuristics, vol. 14, no. 5, pp. 405–423, 2008.

[11] B. Golden and R. Wong, “Capacitated arc routing problems,” Networks,
vol. 11, no. 3, pp. 305–315, 1981.

[12] B. Golden, J. DeArmon, and E. Baker, “Computational experiments with
algorithms for a class of routing problems,” Comput. Oper. Res., vol. 10,
no. 1, pp. 47–59, 1983.

[13] G. Ulusoy, “The fleet size and mix problem for capacitated arc routing,”
Eur. J. Oper. Res., vol. 22, no. 3, pp. 329–337, 1985.

[14] A. Hertz, G. Laporte, and M. Mittaz, “A tabu search heuristic for the
capacitated arc routing problem,” Oper. Res., vol. 48, no. 1, pp. 129–135,
2000.

[15] A. Hertz and M. Mittaz, “A variable neighborhood descent algorithm for
the undirected capacitated arc routing problem,” Transp. Sci., vol. 35,
no. 4, pp. 425–434, 2001.

[16] P. Beullens, L. Muyldermans, D. Cattrysse, and D. Van Oudheusden, “A
guided local search heuristic for the capacitated arc routing problem,”
Eur. J. Oper. Res., vol. 147, no. 3, pp. 629–643, 2003.

[17] P. Greistorfer, “A tabu scatter search metaheuristic for the arc routing
problem,” Comput. Ind. Eng., vol. 44, no. 2, pp. 249–266, 2003.

[18] P. Lacomme, C. Prins, and W. Ramdane-Chérif, “Competitive memetic
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