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Simple Summary: Forecasting rabbit house environmental variables is critical to achieving inten-
sive rabbit breeding and rabbit house environmental regulation. As a result, this paper proposes a
decomposition-based multi-step forecasting model for rabbit houses using a time series decomposi-
tion algorithm and a deep learning combinatorial model. The experimental results demonstrated that
the proposed method could provide accurate decisions for rabbit house environmental regulation.

Abstract: To improve prediction accuracy and provide sufficient time to control decision-making,
a decomposition-based multi-step forecasting model for rabbit house environmental variables is
proposed. Traditional forecasting methods for rabbit house environmental parameters perform
poorly because the coupling relationship between sequences is ignored. Using the STL algorithm, the
proposed model first decomposes the non-stationary time series into trend, seasonal, and residual
components and then predicts separately based on the characteristics of each component. LSTM and
Informer are used to predict the trend and residual components, respectively. The aforementioned
two predicted values are added together with the seasonal component to obtain the final predicted
value. The most important environmental variables in a rabbit house are temperature, humidity, and
carbon dioxide concentration. The experimental results show that the encoder and decoder input
sequence lengths in the Informer model have a significant impact on the model’s performance. The
rabbit house environment’s multivariate correlation time series can be effectively predicted in a multi-
input and single-output mode. The temperature and humidity prediction improved significantly,
but the carbon dioxide concentration did not. Because of the effective extraction of the coupling
relationship among the correlated time series, the proposed model can perfectly perform multivariate
multi-step prediction of non-stationary time series.

Keywords: correlated time series; multivariate multi-step prediction; deep learning algorithm;
environment variables forecasting

1. Introduction

The future development trend of the rabbit breeding industry is toward intensification.
The precise regulation of rabbit house environmental variables is the premise of intensive
breeding, and the ability to accurately predict rabbit house environmental variables is the
foundation for achieving environmental regulation.

Temperature, relative humidity, and carbon dioxide concentration are the most im-
portant environmental variables in a rabbit house. The prediction of rabbit house environ-
mental variables falls under the category of time series prediction. Time series forecasting
algorithms are classified into two types based on implementation theory: traditional math-
ematical algorithms [1,2] and machine learning algorithms [3,4]. To effectively predict the
environmental parameters of livestock houses, researchers have proposed Elanco ammonia
concentration prediction equation [5] for cattle houses and ammonia concentration mass
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balance model [6] for swine houses using traditional mathematical forecasting algorithms.
However, the prediction methods based on mathematical principles have poor generaliza-
tion performance and low stability. Machine learning algorithms are classified as either
machine learning or deep learning algorithms [7,8]. Researchers have proposed using
models such as Support Vector Regression (SVR) [9,10] for machine learning algorithms
to predict livestock house environmental variables. These models can accurately predict
non-stationary single-parameter time series data. The variables in the rabbit house environ-
ment are coupled, and the machine learning model’s relatively simple structure makes fully
exploring the coupling relationship between the variables difficult. With the advent of deep
learning, researchers have used Long Short Term Memory (LSTM) [11], Back Propagation
Network (BPN) [12], and other models to predict the gas concentration of the chicken
house, as well as the temperature and humidity of the pig house. Deep learning algorithms
can mine the complex characteristics of variables more effectively.

According to the forecasting step, time series forecasting algorithms are classified
as single-step forecasting or multi-step forecasting. Single-step time series forecasting
algorithms, such as Elman neural network [13] and SVR [14], have produced relatively
accurate results; however, in rabbit house scenarios, environmental regulation is usually
delayed by a small amount of time [15], so single-step forecasting algorithms do not
meet the time requirement. Nonetheless, multi-step forecasting algorithms such as LSTM-
based deformation models [16,17], SVR-based models [18], and Echo State Network-based
models [19] can be used to predict rabbit house environmental variables in multiple steps.

Based on the number of model output variables, time series forecasting algorithms
are further classified as univariate forecasting algorithms and multivariate forecasting
algorithms [20,21]. The series of rabbit house environmental variables exhibits both peri-
odicity and nonlinearity [22] and mutual coupling between variables [23]. The prediction
accuracy will suffer if the prediction is solely based on the law of the predicted variable and
ignores the impact of other variables. Therefore, in rabbit house environmental variable
time series prediction, multivariate and multi-step forecasting corresponds to the actual
demand. Researchers have proposed a few prediction models based on Graph Neural Net-
work [24], Recurrent Neural Network [25], and Echo State Network [26,27] that improved
prediction accuracy by effectively extrapolating and fully utilizing the coupling relationship
between multiple variables, which provides a reference for the multivariate and multi-
step prediction of rabbit house environmental variables, as deep learning algorithms have
rapidly developed.

The multivariate and multi-step time series forecasting model’s input–output mapping
is quite complex and has a low prediction accuracy. To effectively carry out long sequence
prediction by fully mining the dependence relationship between time series, researchers
have proposed various models based on mathematical transformations [28], Temporal Con-
volutional Network [29], and Ensemble Empirical Mode Decomposition [30]. Informer [31],
a long series forecasting model based on the attention mechanism proposed in 2021, ef-
fectively extracts the coupling relationship between the correlated time series through the
complex nonlinear mapping relationship established by the encoder and decoder, reduces
computational complexity by using the sparse self-attention mechanism, and predicts the
correlated time series accurately and efficiently. Using a sparse self-attention mechanism
reduces computational complexity, allowing for more accurate and efficient prediction of
correlated long-time series.

To ensure the algorithm’s prediction accuracy, it is critical to allow sufficient time for
control of decision-making in practical situations. This paper proposes a decomposition-
based multi-step forecasting model for non-stationary correlated time series to address
this issue.

To improve the prediction accuracy of rabbit house environmental variables and
provide sufficient time for control of decision-making, this paper proposes to establish a
decomposition-based multi-step forecasting model for rabbit house environmental vari-
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ables based on previous research results and to provide an effective reference for rabbit
house environmental supervision decision-making.

2. Materials and Methods
2.1. Time Series Forecasting Algorithms
2.1.1. Long Short Term Memory

LSTM is a time series prediction model that can effectively avoid gradient disappear-
ance and gradient explosion. The trend component obtained by STL decomposition is
the long-term change trend of this variable, with stable fluctuation and a small standard
deviation, which can be accurately predicted using a simple structure time series predic-
tion model. To that end, LSTM is used in this study to predict the trend component of
decomposed time series data. Figure 1 depicts the LSTM cell structure.
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As shown in Figure 1, for a given input sequence I= {I1, I2, . . . , In}, LSTM time series
data prediction process is mainly divided into three steps. In the first forgetting step, the
LSTM unit receives the input data ht−1 of the hidden layer unit at the previous time step
and the input data It at the current time step for weighted sum calculation to control which
input of the previous time step needs to be left over. The data obtained in the previous step
are fed into the sigmoid function in the second step to obtain the ft, which is the Information
that must be forgotten. Furthermore, the weighted sum of ht−1 and xt is calculated. The
output step is the third step. The second stage data are fed into the sigmoid and tanh
functions to obtain the input gate value and state information. The cell state is updated
based on the most recent time data. The value of the output gate is determined to obtain the
output data Ot, and the current hidden layer unit value Ht is later taken to the next unit.

2.1.2. Informer

The Informer uses the Encoder-Decoder architecture, whose overall structure is shown
in Figure 2. For the time series sample pair

{
Ij, Ij+1, . . . , Ij+s−1

} {
Ij+s−l , . . . , Ij+s−1+p

}
,

the encoder receives a long sequence
{

Ij, Ij+1, . . . , Ij+s−1
}

as input, through the sparse
self-attention module, combined with the self-attention distillation mechanism. The feature
vector Ve is obtained.

{
Ij+s−l , . . . , Ij+s−1+p

}
through mask processing, and the feature

vector Vd is obtained throught the input to the sparse self-attention module of the decoder.
The query vector is calculated by Ve, then the key vector and the value vectors are calculated
by Vd. Finally, the full attention mechanism and the fully connected layer are used to obtain
the output, where s, l, and p denote the three custom variables seq_len, label_len, and
pred_len for data processing, respectively.
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2.2. Model Structure

A non-stationary series is the rabbit house variates time series. Non-stationary series
are typically divided into three components: trend, seasonal, and residual, and each data
component has distinct characteristics. It was discovered that decomposing the non-
stationary time series first and then predicting each part individually improve prediction
operation accuracy significantly. Figure 3 depicts the basic structure of the decomposition-
based multi-step forecasting model for rabbit house environmental variables.
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the environmental variables of rabbit house.

The decomposition-based multi-step forecasting model for rabbit house environmental
variables includes three primary stages, as shown in Figure 3.
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The first stage is to decompose the time series into three parts. The input of model
is the correlated time series {I1, I2, . . . , In}. The time series is decomposed into a trend
sequence{I1_t, I2_t, . . . , In_t}, the seasonal sequence {I1_s, I2_s, . . . , In_s}, and the residual
sequence{I1_r, I2_r, . . . , In_r} by Seasonal and Trend decomposition using Loess (STL),
which is a robust and versatile time series decomposition method and is used to decompose
time series in this paper.

The second stage entails predicting each of the three components individually. Be-
cause the trend component of a time series is relatively stable, the LSTM model is used
for prediction. Then the outputs of the LSTM model are the predicted trend component
of each series

{
I1_t_p, I2_t_p, . . . , In_t_p

}
. The residual component is predicted by the In-

former model. The outputs of the Informer model are the predicted residual component{
I1_r_p, I2_r_p, . . . , In_r_p

}
. The seasonal component does not need to be predicted because

it is a periodic constant.
The final stage is to obtain the final prediction result, which can be obtained by adding

the predicted values of the trend component, residual component, and seasonal component
of the correlated time series. The following equation shows how the final forecast value
is calculated:

Ii_p = Ii_t_p + Ii_s + Ii_r_p (1)

where Ii_p is the final forecast value of the time series. Ii_t_p and Ii_r_p are the predicted
values of trend component and residual component for the ith series. Ii_s is the seasonal
component of the ith series.

2.3. Data Acquisition

The environmental variables of the rabbit house were collected at Qingdao Kangda
Rabbit Co. Ltd. in Shandong Province, China. The company has a large rabbit breeding
base. The rabbit house is a 46-m-long enclosed structure with a span of 11.7 m and a height
of 4.9 m.

Figure 4 depicts the current situation inside the rabbit house. The environmental
variables inside the rabbit house were collected using twelve automated temperature and
humidity recorders (Apresy, 179-TH) and three automated carbon dioxide recorders (Tian
Jian Hua Yi, EZY-1). Figure 5 depicts the sensors’ planar distribution.
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The environmental variables inside the rabbit house were collected at a frequency of
10 min from 00:00 on 30 September 2020 to 23:50 on 28 November 2020. Finally, a total of
8640 rabbit house environmental variables were obtained.

2.4. Dataset Preprocessing
2.4.1. Missing Data

Due to the interference of equipment, external factors, and other factors during the
acquisition data process of rabbit house environmental variables, the collected data contain
some missing values, which is primarily caused by mechanical failures in data collection or
storage. Based on the distribution, missing values can be classified as completely random
missing or completely non-random missing. The missing data in rabbit house environ-
mental variables are not random. Because the rabbit house’s environmental variables are
obtained through continuous timing acquisition every ten minutes, there will be no sudden
environmental change. In this study, the mean value of the data before and after the missing
value was used to fill in the missing value.

2.4.2. Normalization

The dimensions and dimensional units of the rabbit house environment variables vary.
When the model is built directly, it tends to focus on variables with larger dimensions,
resulting in low model prediction accuracy and slowing training speed. To eliminate the
dimensional effect between the parameters, the data must be standardized so that the
preprocessed data is limited to a specific range, typically between zero and one. This
method’s calculation formula is as follows:

yi =
xi − xmin

xmax − xmin
(2)

where xi and yi are the values before and after normalization, respectively. xmin and xmax
are the minimum and maximum values in the same variables, respectively.

2.5. Dataset Analysis

The environmental variables measured inside the rabbit house were processed and
analyzed. The results are shown in Table 1.
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Table 1. Statistical information of the rabbit house environment variables.

Variable Unit Range Mean Standard Deviation

Temperature ◦C [9.3, 25.57] 19.09 2.79

Relative Humidity %rh [32.42, 84.3] 66.03 8.86

CO2 Concentration ppm [138.75, 1858.57] 802.23 250.82

As shown in Figure 6, three line graphs visualize the fluctuation of the temperature,
the relative humidity, and the carbon dioxide concentration variables of the rabbit house
within a week.
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Table 1 and Figure 6 show that the environmental variables of the rabbit house have a
strong periodicity.

To summarize, the three most important environmental variables within the rabbit
house fluctuate on a regular basis. The temperature fluctuates in the opposite direction of
the relative humidity and carbon dioxide concentration once every 24 h, while the latter
two fluctuate in very similar ways.

Figure 7 depicts the normalized temperature, relative humidity, and carbon dioxide
concentration in the rabbit house over one day.
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The temperature in the rabbit house reaches its lowest point around 7:00 a.m. every
day, gradually rises to its peak around 15:00 p.m. every afternoon, and then gradually
decreases toward nightfall, as shown in Figure 7. Furthermore, the data show that when
the temperature is at its highest, the relative humidity and carbon dioxide concentration
are at their lowest, implying that the trend in change of the relative humidity and carbon
dioxide concentration is the inverse of that of temperature. Pearson’s correlation coefficient
was calculated using the data from day one from the rabbit house’s temperature, relative
humidity, and carbon dioxide concentration environment variables. Table 2 summarizes
the results of those calculations.

Table 2. Person’s Correlation Coefficient for rabbit house environmental variables.

Temperature Relative Humidity CO2 Concentration

Temperature 1 −0.8276 −0.5149

Relative Humidity −0.8276 1 0.6505

CO2 Concentration −0.5149 0.6505 1

Consequently, three conclusions can be drawn: first, the daily temperature in the
rabbit house is strongly correlated with the relative humidity; second, the temperature
is correlated with the carbon dioxide concentration; and third, the relative humidity is
correlated with carbon dioxide concentration.

The rabbit house time series of environmental variables show periodicity and a strong
coupling relationship.

2.6. Experimental Settings

The dataset contains a total of 8640 samples representing rabbit house environmen-
tal variables. Temperature, relative humidity, and carbon dioxide concentration are all
included in each sample. The first 7680 samples are chosen as the training set, and the last
960 consecutive samples are chosen as the test set.

Model parameters have a significant impact on model performance. The following are
the proposed model parameters. The LSTM model is made up of three layers: an input
layer, a hidden layer, and an output layer. The LSTM model is fed with the temperature,
relative humidity, and carbon dioxide concentration trends. The LSTM model’s output is
the predicted value of the trend component of temperature, relative humidity, or carbon
dioxide concentration. The number of hidden layers is set to four. The Informer model is
made up of an encoder and a decoder. The residual component of temperature, relative
humidity, and carbon dioxide concentration are the encoder’s inputs, and the predicted
value of the inputs is the decoder’s output. The parameters for each module of the Informer
model are shown in Table 3.

Table 3. The Parameters of the Informer model.

Main Modules Sub-Model Parameters Type/Value

Encoder
Sparse Self-Attention Module

Number 1

Number of heads 8

Number of units 5

Self-attentive distillation
module Number of stack levels 3,2,1

Decoder

Attention Mechanisms
Module

Number of stories 1

Type Full attention

Fully connected layer
Number of stories 1

Number of hidden units 512
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The training parameters of Informer models are set as shown in Table 4.

Table 4. The Training parameters for the Informer model.

Parameters Value/Type

Optimizer Adam

Epoch_size 6

Batch_size 96

Loss Function MSE

Initial Learning Rate 0.001

Learning rate adjustment method Each epoch goes down by half

Iteration times 6

Drop_out 0.05

3. Results and Discussion
3.1. Effect of Model Parameter Settings on Prediction Accuracy

The input sequence length of the encoder and decoder modules has a significant impact
on model performance in the Informer model. There is the encoder input sequence length,
denoted by seq_len, and the decoder input sequence length, denoted by label_len and
pred_len. The predicted sequence’s length is label_len, and the model’s output sequence is
the last pred_len data in the predicted sequence.

Based on preliminary test results and the experience of relevant breeding experts, we
discovered that it takes 20–70 min to adjust the environmental variables in the rabbit house
from the initial value to the desired value. The model’s output sequence length should
be greater than the maximum regulation time to allow enough time for the rabbit house’s
environmental regulation.

The carbon dioxide concentration in the rabbit house varies greatly over time and is
difficult to predict. Therefore, in the experiment of selecting the sequence length of the
informer model, the carbon dioxide concentration was chosen as the model output. The
Dataset_ KD_ minute class has been designed to load, segment, and normalize the dataset
recorded to ensure that the environment variables of the rabbit house are fit for the Informer
model. Dataset_ KD_ minute class divides the data into sequence data and time stamp
data. Time stamped data are the corresponding time stamp of the sequence data, which is
transformed into a vector, and extended to the same dimension as the sequence data vector
through the neural network, and superimposed with the sequence data vector as the final
input data.

The sequence length of the Informer model is set as follows: seq_len is set as 24 (4 h),
36 (6 h), 48 (8 h), 72 (12 h), and 84 (14 h) separately. label_len is set n-24 and n-12 separately,
where n is the corresponding seq_len value; pred_len is set as 7 (70 min), 9 (90 min), and 12
(120 min) separately. The experiments were carried out separately using the above model
parameters, which were then combined. Table 5 displays the experimental results.

It can be found that MSE decreases with an increase in pred_len when seq_len and
label_len are the same. Considering that pred_len is stable, the MSE decreases while
seq_len increases. The reason for this is that as the input sequence lengthens, the correlation
between the input and output sequences weakens. The best prediction is generated when
seq_len is set to 24, label_len is set to 12, and pred_len is set to 7.
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Table 5. Effect of model parameters on prediction accuracy of the model.

seq_len label_len pred_len MSE (ppm)

24

0

7 0.05255134

9 0.05477738

12 0.082935

12

7 0.04983531

9 0.0659451

12 0.08847401

36

12

7 0.0786688

9 0.07736252

12 0.11616067

24

7 0.05427639

9 0.06950006

12 0.09658156

48

24

7 0.08289333

9 0.0991382

12 0.14262368

36

7 0.07137094

9 0.08005989

12 0.12634541

72

48

7 0.09766254

9 0.13091703

12 0.15992408

60

7 0.0786742

9 0.13212924

12 0.15188387

84

60

7 0.09868335

9 0.1437092

12 0.16232075

72

7 0.08037249

9 0.13032459

12 0.15770504

3.2. Effect of Sequence Decomposition on Model Prediction

In this section, the experiment was carried out to investigate if the model can accurately
predict the environmental parameters of the rabbit house. The goal of this experiment is to
evaluate if sequence decomposition improves prediction accuracy, or in other words, to
investigate if the proposed model can accurately predict the environmental variables of the
rabbit house.

The STL algorithm is primarily used to decompose the environmental variables, and
the decomposition results are shown in Figure 8.
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The change trend of the residual component environmental variables of the rabbit
house is found to be similar to that of the original variables. Table 6 shows the results
of calculating the correlation coefficient among the residual component environmental
variables of the rabbit house.

Table 6. Correlation coefficient of the residual component environmental variables of the rabbit house.

Variable t_r h_r cd_r

t_r 1 −0.8277 −0.6424

h_r −0.8277 1 0.7198

cd_r −0.6424 0.7198 1

t_r, h_r, and c_r in Table 6 are the residual component environmental variables of
the rabbit house, which were decomposed by the STL algorithm. After decomposition,
the correlation between the residual components of the rabbit house’s environmental
variables improves in comparison to Table 2. The coefficient of correlation between resid-
ual temperature and relative humidity has shifted slightly. Besides, the carbon dioxide
concentration residual component with the temperature residual component or with the
relative humidity residual component, the correlation coefficient increased by 24.76% or by
10.65%, respectively.

To test whether the proposed model can predict the correlation time series, the In-
former, SVR, XGBoost, and the proposed model were used to predict the environmental
variables of the rabbit house. SVR is a supervised machine learning model that seeks the
best-fitting equation. It is capable of predicting time series data. SVR has high prediction
accuracy as well as good robustness and generalization ability. XGBoost is a boosting-based
supervised learning model. A CART decision tree is generated in each iteration to fit the
difference between the sum of the predicted results of all previous trees and the true value.
It has the benefits of not overtraining and quick training speed. Table 7 displays the results
of the comparison experiments.

Table 7. The prediction results of two models for the prediction of correlated time series.

Predicted Variable Model MAE MSE RMSE

Temperature

Informer 0.12279760 0.02539201 0.15934873

SVR 0.16925226 0.02864633 0.10879960

XGBoost 0.13623399 0.02993292 0.17301134

Proposed model 0.01167244 0.00030404 0.01743695

Humidity

Informer 0.12256409 0.02699366 0.16429749

SVR 0.11360447 0.04006461 0.20016146

XGBoost 0.13044998 0.02799125 0.16730587

Proposed model 0.00261323 0.00015509 0.01245363

CO2 Concentration

Informer 0.15820476 0.04983531 0.22323823

SVR 0.14900408 0.05078254 0.22534983

XGBoost 0.16991315 0.05427113 0.23296165

Proposed model 0.15369803 0.04048497 0.20120878

As shown above, when the proposed model predicts temperature and humidity, the
model evaluation indicators MSE, MAE, and RMSE increase by more than 90% when
compared to other models. Namely, when predicting temperature and humidity, the
prediction effect of the rabbit house time series can be significantly improved. When used
to predict carbon dioxide concentration, the proposed model’s prediction accuracy is less
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improved. This is because the fluctuation of carbon dioxide concentration in the rabbit
house is much greater than the fluctuation of temperature and humidity, indicating that
the proposed model is better suited for time series prediction with small fluctuations.
Communication with breeders about the cause of the large variation in carbon dioxide
concentration reveals that carbon dioxide concentration is affected not only by temperature
and relative humidity but also by external factors such as rearing methods, resulting in
high expectations for the model’s generalization ability. However, in terms of current
breeding needs, the model’s accuracy can meet the decision-making needs of rabbit house
environmental regulation.

3.3. Effect of Input Variable Types on Model Performance

We performed several experiments to evaluate how the number of input variable types
affected model performance when predicting the correlation time series. The experiments
were carried out as follows. The proposed model takes one type, two types, and three
types as input and outputs a single variable. For example, the model inputs are set to
temperature; temperature and relative humidity; temperature and CO2 concentration;
temperature, relative humidity, and CO2 concentration; temperature, relative humidity,
and CO2 concentration; temperature, relative humidity, and CO2 concentration. In contrast,
the proposed model is used to predict temperature, and the model prediction accuracy,
including MAE, MSE, and RMSE, is recorded.

The results show that the best prediction performance is obtained when the model’s
input variable type is three. The percentage improvement in model prediction accuracy
was calculated when the model input was three types versus one type and two types.
Figure 9 depicts the outcomes. The three areas in Figure 9 represent the model output
as temperature, relative humidity, and CO2 concentration, respectively. The abscissa
represents the input type, and the ordinate represents the percentage improvement in
model prediction accuracy.
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Figure 9. The prediction accuracy improvement with different input.

The results show that when temperature, relative humidity, and carbon dioxide con-
centration are used to predict the environmental variables of the rabbit house, the proposed
model has the best prediction effect. This is because the rabbit house’s environmental
variables have a strong coupling relationship. Simultaneously, the coupling relationship
between the remaining terms of the three variables is highlighted after decomposing the
correlation time series, which is more conducive to improving the prediction effect of the
proposed model.
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4. Conclusions

The model performance suffers when we perform multi-step prediction for correlated
non-stationary time series of rabbit house environment because we ignore the time series’
coupling relationship. We propose a decomposition-based multi-step forecasting model for
rabbit house environmental variables to address this issue.

The proposed model first decomposes the non-steady time series into trend, seasonal,
and remainder components using the STL algorithm and then predicts separately based on
the characteristics of each component.

Because its main environmental variables (temperature, humidity, and carbon dioxide
concentration) correlate with non-stationary time series, the proposed model predicted
the rabbit house’s environmental variables to validate its performance. The time series
of the rabbit house’s main environmental variables has a strong time correlation and a
significant coupling relationship. A number of comparative experiments were also carried
out. Accordingly, we reached the following conclusions:

(1) By decomposing the correlation time series and then making specific predictions, the
proposed model can realize multi-step prediction for correlated non-stationary time
series. The experimental results demonstrated that the proposed model could perform
multi-step prediction for the rabbit house’s environmental variables. It can effectively
improve temperature and humidity predictions in particular, but not carbon dioxide
concentration predictions.

(2) The length of the Informer model’s input and output in the proposed model has a
significant impact on the model’s performance. When seq_len and label_len are the
same, MSE decreases with increasing pred_len for the rabbit house’s environmental
variables prediction. MSE decreases as seq_len increases when pred_len remains con-
stant. The effect of predicting environmental variables of the rabbit house is the best
when seq_len, label_len, and pred_len are set to 24, 12, and 7, respectively.

(3) Temperature, relative humidity, and carbon dioxide concentration were the environ-
mental variables of the rabbit house. The absolute value of Pearson’s correlation
coefficient between any of the above two was greater than 0.5, indicating that the time
series of environmental variables of the rabbit house not only had their own time
correlation but also had a significant coupling relationship with other variables. The
model’s complexity and performance are heavily influenced by the types of input
and output. When temperature, relative humidity, and carbon dioxide concentration
are used as model inputs, and a single parameter is used as model output, the best
prediction result for rabbit house environmental variables is obtained. The coupling
relationship between the remaining terms of the correlation time series is highlighted
further after the time series is decomposed, which improves the model’s prediction
performance. When temperature, relative humidity, and carbon dioxide concentration
are used as inputs, the proposed model has the best prediction effect for the rabbit
house’s environmental variables.
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