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Abstract

We present a novel method for the discovery and detec-

tion of visual object categories based on decompositions

using topic models. The approach is capable of learning

a compact and low dimensional representation for multi-

ple visual categories from multiple view points without la-

beling of the training instances. The learnt object com-

ponents range from local structures over line segments to

global silhouette-like descriptions. This representation can

be used to discover object categories in a totally unsuper-

vised fashion. Furthermore we employ the representation as

the basis for building a supervised multi-category detection

system making efficient use of training examples and out-

performing pure features-based representations. The pro-

posed speed-ups make the system scale to large databases.

Experiments on three databases show that the approach im-

proves the state-of-the-art in unsupervised learning as well

as supervised detection. In particular we improve the state-

of-the-art on the challenging PASCAL’06 multi-class detec-

tion tasks for several categories.

1. Introduction

Object representations for categorization tasks should be

applicable for a wide range of objects, scaleable to han-

dle large numbers of object classes, and at the same time

learnable from a few training samples. While such a scal-

able representation is still illusive today, it has been argued

that such a representation should have at least the follow-

ing properties: it should enable sharing of features [27],

it should combine generative models with discriminative

models [13, 10] and it should combine both local and global

as well as appearance- and shape-based features [16]. Ad-

ditionally, we argue that such object representations should

be applicable both for unsupervised learning (e.g. visual

object discovery) as well as supervised training (e.g. object

detection).

The main focus of this paper is therefore a new object

representation that aims to combine the above mentioned

properties to make a step towards more scalable object rep-

resentations applicable to a wide range of objects and suited

both for unsupervised as well as supervised learning. There-

fore, the first main contribution of this paper is a novel ap-

proach that allows to learn a low-dimensional representa-

tion of object classes by building a generative decomposi-

tion of objects. These learned decompositions of objects

contain both local appearance features as well as global

silhouette features shared across object classes. This gen-

erative model of objects is directly applicable to unsuper-

vised learning tasks such as visual object class discovery.

The second main contribution of the paper is then to com-

bine the low-dimensional and generative decomposition of

objects with a discriminative learning framework to enable

supervised training and competitive object class detection.

The third contribution of the paper is a series of experiments

which show the properties of the approach (local vs. global

features, feature sharing, unsupervised vs. supervised learn-

ing) and compares the approach with the state-of-the-art.

Interestingly, the approach outperforms both unsupervised

techniques as well as supervised techniques on various tasks

on common databases.

The paper is structured as follows. In Section 2 we de-

scribe how the generative decomposition is learned from

data. The obtained representation is used in Section 3 for

unsupervised learning problems whereas Section 4 builds a

full object class detection system on top of it. Finally Sec-

tion 5 provides further quantitative evaluations of the model

and a comparison to the state-of-the-art on the challenging

PASCAL’06 database as well as a shape database.

Related Work Feature representations based on gradient

histograms have been popular and highly successful ranging

from local statistics like SIFT [18], over part-like fractions

[14] to the representation of entire objects [6, 1]. Based on

their success we build our method on a dense grid of local

gradient histograms inspired by [6].

In terms of generative modeling, we build on the success

of topic models (e.g. [12, 2, 11]). They have gained increas-

ing attention in computer vision ranging from unsupervised

category discovery [24, 17, 3], over classification [22, 15]

to detection [26, 8, 1]. Often local feature representations
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are employed [24, 15] that neglect the spatial layout with a

few exceptions such as [8, 26, 1]. In contrast we employ a

dense representation based on gradient histograms that ex-

plicitly retains the spatial feature layout. Topic model learn-

ing is then employed to decompose objects into constituent

parts in an unsupervised fashion. Thereby a versatile multi-

class object representation is derived. Without posing any

constraints on the locality of the topics, we obtain topics

ranging from global silhouette types to local edge features.

2. Decomposition of Visual Categories

In this section we describe our approach to decomposi-

tion of multiple visual categories by combining dense gra-

dient representations and topic models. Starting from the

image, we first present our data representation. Then we

describe how we apply the topic model to this representa-

tion and provide visualizations and insights for the obtained

model as well as a quantitative evaluation on an unsuper-

vised learning task.

2.1. Data Representation

w684 . . . w692

Figure 1. Dense gradient histogram representation.

The loupe shows the 9 possible edge orientation of

the histogram bins that are interpreted as words.

Inspired by [6], we compute gradients on each color

channel of the images and use the maximum response to

obtain a grid of histograms that overlays the image. Each

histogram in the grid has 9 orientation bins equally spaced

from 0◦ to 180◦ to represent the unsigned gradient orien-

tation. An example of such an encoding is visualized in

Figure 2.1. In each cell, the 9 possible edge orientations

associated with the orientation bins are displayed by short

lines. The grayscale value encodes the accumulated gradi-

ent magnitude in each bin. The size of the cells in the grid

is 8×8 pixels.

As the following topic models operate on discrete word

counts, we normalize the histograms to have a constant sum

of discrete entries. We decided not to compute a redun-

dant coding like the blocks in the HOG descriptor [6] as we

believe that the introduced non-linearities by local normal-

ization would hinder the fitting of the probabilistic model.

2.2. Topic Models

To define a generative process for our data representa-

tion, we employ probabilistic topic models [12, 2, 11] which

were originally motivated in the context of text analysis. As
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Figure 2. LDA model as formulated by [11].

it is common habit we adopt the terminology of this domain.

In the following, a document d refers to a sequence of words

(w1, w2, . . . , wNd
), where each wi is one word occurrence.

The underlying idea of these models is to regard each doc-

ument as a mixture of topics. This means that each word

wi of the total Nd words in document d is generated by first

sampling a topic zi from a multinomial topic distribution

P (z) and then sampling a word from a multinomial topic-

word distribution P (w|z). Therefore the word probabilities

for the combined model are:

P (wi) =
T

∑

j=1

P (wi|zi = j)P (zi = j) (1)

where T is the number of topics and P (wi|zi = j) as well

as P (zi = j) are unobserved . According to the notation of

[11], we will abbreviate

θ(d): topic distribution P (z) for document d

φ(j): topic-word distribution P (wi|z = j) for topic j

The particular topic models differ on the one hand in

which additional hyperparameters/priors they introduce

and on the other hand in how inference and parameter esti-

mation is performed. We will discuss the Latent Dirichlet

Allocation model [2] in some more detail focusing on the

version presented in [11] that uses Gibbs sampling for

inference and estimation. The graphical representation

of this model is depicted in Figure 2. It visualizes the

process that generates a total of D documents d, where

each document has Nd words. Above we already described

how each word wi of a particular document is generated.

In the full model, there are 2 additional hyperparameters,

α and β, which place symmetric dirichlet priors on the

topic distribution of each document θ(d) and the topic-word

distributions φ(j) respectively. As the setting for α and

β is common to all documents, these act as forces that

impose global tendencies on these distributions. Intuitively,

the prior α for the topic distribution θ favors co-activation

(sharing) of multiple topics for each document for values
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Figure 3. First row: example topics of 8 topic model for classes

airplane, face, motorbike, watch. Second row: example topics of

50 topic model for the same classes. Third row: example topics of

100 topic model jointly learned on apple-logos, bottles, giraffes,

mugs and swans.

larger than 1, whereas smaller values result in sparser topic

distribution - ultimately having single topics explaining

whole documents (clustering). Consequently, the sparse-

ness of the topic-word distribution φ(j) is affected by this

choice. The second parameter β, has a direct smoothing

effect on the topic distributions.

For more details on the models, inference and estima-

tion, we refer to [2] and [25]. The idea behind the employed

Gibbs sampling procedure is that all topic assignments zi

are initialized (typically randomly) and then iteratively up-

dated in a random order. To perform such a single update, a

topic is drawn from the conditional distribution P (zi|Ω\zi)
and assigned to zi, where Ω \ zi denotes all observed and

unobserved variables but zi. This is repeated for a fixed

number of iterations.

3. Discovery of Visual Categories

In this section we describe how the representation from

Section 2.1 is linked to the generative model from Section

2.2 and perform a quantitative evaluation on an unsuper-

vised learning task.

We use the orientation bins of the histograms described

in Section 2.1 as word vocabulary in Section 2.2. For his-

tograms computed on a m by n grid with b bins for each ori-

entation histogram, our vocabulary is of size |V | = m ·n ·b.

As each word is associated with a gradient orientation at a

grid location, this representation preserves quantized spa-

tial information of the original gradients. The topic model

is trained on the documents given the encoded training ex-

amples. The representations that we promote are given by

the topic activations of the document in the latent space.

To prove the effectiveness of our representations and to

compare our work with previous approaches we first present

quantitative results on an unsupervised ranking task [8] and
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out method 100% 83% 100 % 91% 65% 97% 100% 91%

Fergus [8] 57 % 77% 82% 50% 59% 72% 88% 69%

Schroff [23] 35% – – 29% 50% 63% 93% 54%

Table 1. Comparison to other approaches on re-ranking task of

google images. Performance is measured in precision at 15% re-

call. In contrast to the other methods our approach does not use

any validation set.

then provide further insights connected to the multi-class

data we use in Section 5.3.

3.1. Unsupervised Google Re-Ranking Task

Previously, Sivic et al [24] used topic models on local

feature representations for unsupervised learning. Fergus

et al [8] extended their approach to encode spatial infor-

mation. As the latter can be seen as the sparse counterpart

to our dense representation, we compare on the unsuper-

vised image re-ranking task specified in [8]. The provided

data sets are results of image google queries. The task is to

re-rank the images so that relevant ones appear first. The

main challenge is to extract the relevant information which

is hidden in an image set containing up to 70% junk im-

ages in an unsupervised fashion. Given that our represen-

tation effectively encodes the object structures, we expect

our data to live in compact subspaces of the latent space.

Therefore, we perform k-means clustering on the activa-

tions and consecutively accept the clusters with the most

samples. The precision we obtain in this manner at 15% re-

call is shown in Table 1 and compared to our competitors.

The average precision of 69% obtained by [8] and 54% ob-

tained by [23] is surpassed by our approach which obtains

an average precision of 91%. This performance is obtained

without using the provided validation set which the other

two approaches use. Although our method performs worst

on the leopard data, we still improve over [8]. This is sur-

prising as one would have suspected, that the local feature-

based approach is more suited to encode the spotted texture

of these animals. We account the success of our method to

the added expressiveness by enabling the discovery of reoc-

curring contour fragments and edge segment like structures.

Due to the dense and localized nature of our input features,

we are more flexible to adapt to the object outline and to ne-

glect background information. Figure 3 shows some topics

from the presented experiment that expose these character-

istics. Furthermore, in contrast to local feature-based meth-

ods our representation can easily be visualized (see Figure

3), which lend itself also to interaction and inspection by a

user.
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Figure 4. First row: example topics that were learned by the proposed approach across categories and viewpoints for the 10 classes of the

PASCAL’06 data. Below first row: training images that activated the topic above most. The topics model local structures, line segments

as well as silhouette-like structures. The topics are distinctive enough to separate several category members and even view-points. On the

other hand they are general enough to be shared across categories and viewpoints.

3.2. Unsupervised Object Class Discovery

To extend our findings to the detection task that we are

aiming for in Section 5.3, we extract our representation on

the multi-category, multi-view PASCAL’06 dataset [7], in

order to obtain a decomposition that is shared across cate-

gories.

In the first row of Figure 4 13 of 100 topic distributions

are visualized that were trained on the bounding box anno-

tations of the training and validation data of the PASCAL’06

challenge. The rows below display the examples that acti-

vated this particular topic most. We observe that the topics

capture different levels of objects, ranging from global sil-

houettes (car rear in column 10 and side view in column 13)

over localized parts (legs in column 3, bicycle frame in col-

umn 8 and bicycle wheels in column 12) to line segments

and corners (corner in column 1 and line segments in col-

umn 2 and 4) . The model discovers distinctive parts that

even separate several examples of different categories and

their viewpoints although no such information was available

to the system during training. Importantly, we can see that

other topics like those that got activated on legs are shared

across several categories, which is a desirable property of a

compact decomposition in order to be scalable [27].

To illustrate that this is indeed an appropriate and ef-

fective approach to capture the variety of the data and to

stress the power of modeling combinations of these discov-

ered topics, we cluster the topic distributions as proposed in

the last paragraph. Figure 5 shows in each row the 10 clus-

ter members that are closest to the cluster center all of the

50 cluster centers. Keeping in mind that they are obtained

in an entirely unsupervised fashion, the clusters turn out to

be surprisingly clean.

We interpret these findings as strong evidence, that our

model indeed captures an effective and low-dimensional

representation for this difficult multi-category detection

task.

4. Detection of Visual Categories

Based on the promising results on unsupervised learning

in the last section, this section describes a complete system

for supervised multi-category detection that leverages the

learned representation.

4.1. Generative/Discriminative Training

Recently, the combinations of generative approaches

with discriminative ones have shown to be very effective

[13, 10]. The idea is that generative models can easily in-

corporate prior information to support learning from small

samples, have increased robustness to noise and generally

have more principled ways of dealing with missing data.

Discriminative models on the other hand have shown to

give superior performance for well posed learning tasks and
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Figure 5. Unsupervised discovery of categories and viewpoints in

PASCAL’06 data. The rows show for all 50 clusters those 10 ex-

amples that are closest to the cluster center.

a sufficient number of training examples. We also follow

this idea and complement the generative model described

in Section 2.2 by a discriminative SVM classifier with an

RBF kernel [4]. In particular we train an SVM to discrimi-

nate between the topic distributions θ(d) which are inferred

for images containing the category of interest and others

that do not contain these. By doing so, we seek to profit

from the above mentioned benefits of the generative model

combined with the discriminative classifier.

4.2. Sliding Window Approach to Detection

As proposed in [6] a sliding window approach can be

done efficiently in this setting if the sliding window is al-

ways shifted by exactly one cell in x or y direction. In this

case, the gradient histograms of the cell grid are computed

once and for each sliding window the relevant sub grid is

used.

Typically, sliding window techniques not only assign a

high score for the correct location and scale in an image,

but also for test windows that have a small offset in space

and scale. We use a simple greedy scheme to cope with this

issue: While there are unprocessed windows in an image,

we accept the one with the highest score and reject all other

windows that fulfill the symmetric overlap criterion

max

(

Ai ∩ Aj

Ai

,
Ai ∩ Aj

Aj

)

> 0.3 (2)

where Ai and Aj are the areas covered by the two windows.

As the bounding box scores from our approach turn out to

be surprisingly consistent over different scales, this basic

scheme has proven to work well in our setting.

Of course multi-scale detection task ranging over mul-

tiple octaves requires the investigation of large number of

test windows – typically more than 10000 per image. While

feature extraction and SVM classification are fast, our ap-

proach requires inference in the topic model for each test

window rendering the method computationally infeasible

for applications of interest. Therefore, we dedicate the

following section to describe speed-ups that make our ap-

proach applicable to large databases.

4.3. Speed-ups: Linear Topic Response and Early
Rejection

While we use the Gibbs sampling method [11] to esti-

mate the model, we use the variational inference method

described in [2] for test as it turns out to be computational

more efficient given our setting. For more substantial im-

provements, we propose to compute a linear topic response

to get an initial estimate on the topic activations. The aim is

to avoid the more expensive inference scheme by perform-

ing an early rejection of the test windows. Different to lin-

ear methods like PCA, where there is linear dependency be-

tween the feature space and the coefficient space, the mix-

ture coefficients of the topic distribution have to be fitted to

the observation. This means that each word/feature can be

associated to different topics depending on its context (pres-

ence of other features) and therefore also lead to strength-

ening or inhibition of other topic activations. This requires

an iterative technique to find the best reconstruction. There-

fore we ask the question how important this iterative fitting
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and how much performance we loose by reverting to the

following simple, linear approximation of the dependency

between observed feature histogram x and topic activations

θ(d) :

θ̃(d) =
(

φ(1) . . .φ (T )
)t

x, (3)

In fact, our results on the UIUC single scale database show

that there is a significant loss of about 8% in equal error rate

performance (see Section 5.2), but a more detailed analy-

sis on the UIUC multi-scale database reveals interesting re-

sults. Although, the linear approximation might be quite

coarse, it can still be used for early rejection of test win-

dows. It turns out, that full recall is achieved for the 2500

highest scored windows of a total of 2.826.783. As a con-

sequence, more than 99.9% of the test windows can be han-

dled by the linear computation that we measured to be 166

times faster than the proper inference. Taking all optimiza-

tions together we can cut down the computation time by a

factor of 180 which corresponds to an reduction from one

hour to around 20 seconds per image (AMD Opteron 270

(Dual-Core), 2.0 GHz).

5. Experiments

This section is divided into 4 parts. First, we show that

our approach makes efficient use of the provided training

examples by comparing to a baseline experiment on the

UIUC single scale car database. Second, we evaluate differ-

ent methods for estimation of the topic model on the UIUC

multi-scale database and compare the obtained performance

to previous work. Third, we present results on the PASCAL

challenge 2006 data, that outperform the state-of-the-art on

three of the ten categories. Fourth, we compare to a shape

based approach on the ETH shape database to underline the

versatility and adaptivity of our approach.

5.1. Efficient Use of Training Examples and Param-
eter Selection

To select parameters appropriate to our problem domain,

we run detection experiments on the UIUC single scale car

database which consists of a training set of 550 car and 500

background images of small size, while the test set has 170

images showing side views of cars in street scenes at a fixed

scale. It turns out that the heuristic specified in [25] for

selecting the hyperparameters α and β works very well for

our setting. Therefore we use α = 50/#topics and β =
0.01. We obtain best performance using 30 topics and a

grid size of (16, 6) for the gradient histograms.

To show that our approach makes efficient use of the pro-

vided training examples, we compare to a baseline experi-

ment that does not use the proposed representation. Figures

6(a) and 6(b) show the precision-recall curves of our sys-

tem, when trained on different numbers of positive and neg-

ative examples. We start with 50 car and 50 background im-

ages and increase by 50 until we use the full training dataset.

The maximum performance is rapidly reached using only

150 positive and 150 negative examples. In contrast, the lin-

ear SVM trained on the same data representation but with-

out our representation has a much slower learning curve. In

fact the performance is 9.5% below the equal error rate of

our new approach using 250 positive and 250 negative ex-

amples. We also tried RBF kernels, but obtained similar,

inferior results.

We account this significant improvement to the genera-

tive properties of our model inferring a generative decom-

position of the presented data. We conclude, that this low

dimensional representation simplifies the learning problem

for the discriminative SVM classifier, which leads to more

efficient use of training examples.

5.2. Comparison of Methods for Estimation and
Evaluation of Approximate Inference

In this section we test the model that we trained for the

UIUC single scale database on the multi-scale version and

compare different estimation schemes for the topic model

during training [2, 11]. We also evaluate the linear topic

activations for testing that we proposed in Section 4.3. The

results are reported in Figure 6(c). The estimation method

based on Gibbs sampling [11] leads to similar performance

as the variational inference method [2] when evaluated in

the whole system, but shows better precision. We notice that

the automatic selection of α that we use for the variational

approach converged to a value of 0.373 which enforces less

co-activation and therefore less sharing of topics. By visual

inspection of the topic-distributions, we confirmed that the

method of [2] learned more global topics, while the ones

obtained by the Gibbs sampling method tends to be a little

sparser. We believe that for detection tasks the second is

to be preferred, as global representations can easier be mis-

lead by effects like occlusion, as it is also supported by our

results.

Replacing the proper inference by the linear approxima-

tion (Section 4.3) results in the third curve displayed in Fig-

ure 6(c). This confirms the importance and superiority of

the proper inference in comparison to linear topic activa-

tions. For this comparison we use non-maxima suppression

in combination with the linear approximation scheme while

it is switched off when used for early rejection to achieve

maximum recall.

The best results obtained by the Gibbs sampling ap-

proach with an equal error performance of 90.6% outper-

form [10] and are on par with the result in [20]. The best

performance on this dataset have been reported by [28] with

93.5% and [19] with 94.7%, where the later used a different

training set.
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Figure 6. (a) and (b): Comparison of learning curve for proposed intermediate representation versus SVM on pure features on UIUC

single-scale database. (c): Performance on UIUC multi-scale dataset using topic model estimated via Gibbs sampling vs variational bayes

approach compared to using pseudo topic activations..

bicycle bus car cat cow dog horse motorbike person sheep

49.75% 25.83% 50.07% 9.09% 15.63% 4.55% 9.40% 27.43% 0.98% 17.22%

Table 2. Average precision achieved on the PASCAL’06 database.

5.3. Comparison to state-of-the-art on PASCAL’06
VOC detection challenge

We evaluate our approach on the competition 3 of the

PASCAL challenge 2006 [7] that poses a much harder de-

tection problem as 10 visual categories are to be detected

from multiple viewpoints over a large scale range.

We leave the hyperparameters untouched, but increase

the number of topics to 100 and adapt the aspect ratio of the

grid to (16, 10). To reduce confusion between categories

and the number of false positives, we adapt a bootstrapping

strategy. First we train an initial model for each category

versus the other categories. This model is then used to gen-

erate false positives on the training set (see also [21, 10, 6]).

Up to 500 of the strongest false detection are added for each

detector to its training set and the model is retrained. The

average precisions of the final detector of all 10 categories

on the test set are shown in Table 2 and the corresponding

precision-recall curves are plotted in Figure 7. Figure 7 also

shows some example detections of the system.

We outperform all other competitors in the 3 categories

bicycle, bus and car by improving the state-of-the-art [7] on

this dataset by 5.75%, 9.14% and 5.67% in average preci-

sion respectively. In particular we surpass the fully global

approach [6] that our method was motived by. Compared

to [5] we improve on bicycles and bus only by 0.65% and

0.93%, but again significantly on cars with 8.87%. How-

ever, in contrast to [5] we do not use the viewpoint annota-

tions to train our approach. For the other categories, we per-

form about average, but also showed some inferior results

on the highly articulated categories. We are currently in-

vestigating means to make the approach less rigid and carry

over the good results from the first 3 categories to the other

ones.
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our method 89.9%(4.5) 76.8%(6.1) 90.5 %(5.4) 82.7%(5.1) 84.0%(8.4) 84.8%

Ferrari [9] 83.2%(1.7) 83.2%(7.5) 58.6 %(14.6) 83.6 %(8.6) 75.4 %(13.4) 76.8%

Table 3. Comparison against shape-based approach of [9] on ETH

shape database. Average detection-rate at 0.4 false positives per

image averaged over 5-folds. Standard deviation is specified in

brackets.

5.4. Comparison to shape features on ETH shape
database

As pointed out in the previous experiments, our repre-

sentation learns features with different characteristics from

local to global and is in particular also capable of modeling

contours. Therefore, we ask the question how our represen-

tation compares to shape-based approaches. We compare

to [9] on the ETH shape database using the same detection

system with the same settings as described in the last sec-

tion. Example topics that were learnt across the 5 classes are

depicted in Figure 3. Using five fold cross-validation as pro-

posed in [9], we obtain the results presented in Table 3. Av-

eraged over all classes we improve the performance of [9]

by 8.0% to 84.8%. On applelogos, giraffes and swans, we

improve the performance by 6.7%, 31.9% and 8.6% respec-

tively. On mugs our approach performs comparable and on

bottles it looses 6.4%. We account the worse performance

on the bottles to the shape which is less discriminant with

respect to the background. As the database was designed to

test shape-based approaches, the improvements obtained by

our approach underlines the versatility and adaptivity of the

learnt representation.
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Figure 7. Results on the PASCAL VOC challenge 2006. Precision-Recall curves and example detections.

6. Conclusions

We present a novel method for representing multiple cat-

egories from multiple viewpoints and successfully employ

it in various settings ranging from unsupervised learning to

supervised detection tasks. In various experiments our ap-

proach shows superior performance with respect to purely

local, shape-based or global approaches. Our representa-

tion has proven effective yet also efficient in showing an in-

creased learning curve in the detection setting. Beyond the

modeling aspects, we pay particular attention to computa-

tional feasibility that enables scalability to large databases.

Lastly, we want to highlight the results on the challenging

PASCAL’06 dataset where we improve the state-of-the-art

on three categories to underline our contribution to category

modeling in the context of a complete detection system.
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