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Abstract We present in this paper a general decomposition framework to
solve exactly adjustable robust linear optimization problems subject to poly-
tope uncertainty. Our approach is based on replacing the polytope by the set of
its extreme points and generating the extreme points on the fly within row gen-
eration or column-and-row generation algorithms. The novelty of our approach
lies in formulating the separation problem as a feasibility problem instead of
a max-min problem as done in recent works. Applying the Farkas lemma, we
can reformulate the separation problem as a bilinear program, which is then
linearized to obtained a mixed-integer linear programming formulation. We
compare the two algorithms on a robust telecommunications network design
under demand uncertainty and budgeted uncertainty polytope. Our results
show that the relative performance of the algorithms depend on whether the
budget is integer or fractional.

Keywords Adjustable robust optimization · Uncertainty polytope · Benders
decomposition · Mixed-integer linear programming · Network design

1 Introduction

Robust Optimization is now a well-developed paradigm to tackle optimization
problems under uncertainty. The framework has experienced its revival in the
late nineties independently by Ben-Tal and Nemirovski (1998); El Ghaoui et al
(1998); Kouvelis and Yu (1997), and has witnessed an increasing attention in
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the past twenty years. Its essence lies in the use of convex sets to model
uncertainty that can arise when solving optimization problems. In the robust
counterpart of an optimization problem, the constraints involving uncertain
parameters must be feasible for all values of the uncertain parameters in the
convex sets. In particular, the optimization variables are fixed independently of
the values taken by the uncertain parameters; it is not possible to adjust them
after the uncertainty is known. When the problem constraints are linear, this
approach leads to tractable optimization problems. For instance, the robust
counterparts of linear constraints subject to polyhedral uncertainty are still
linear constraints.

The framework can fail to model design problems that involve actions
that are delayed in time, such as network design problems or facility location
problems, among many others. In each of these optimization problem, we must
take part of the decisions today, e.g. implantation of new links or building
facilities. Then, when the new links or facilities are operational, we must choose
how to use them optimally to provide a service to the customers. In these
problems, the demand of the customers is usually not known with precision
until the links or the facilities are constructed.

Adjustable robust optimization has been introduced by Ben-Tal et al (2004)
to improve over static robust optimization by allowing a subset of variables
to account for the uncertainty. Namely, the framework partitions the opti-
mization variables into two sets: part of them must fix their values before the
uncertainty is revealed while the rest of them can adjust themselves accord-
ing to the values taken by the uncertain parameters. These variables become
functions defined on the uncertainty set. Ben-Tal et al (2004) prove that ad-
justable robust optimization is untractable in general, so that they focus on
approximations that restrict the adjustable variables to affine functions of the
uncertainty, yielding the so-called affine decision rules. The main advantage of
affine decision rules is their tractability, since they lead to robust optimization
problems with the structure of classical robust counterparts. The properties of
affine decision rules have been studied in subsequent papers: Bertsimas et al
(2011b) and Iancu et al (2013) study conditions in which affine decision rules
are optimal, while Bertsimas and Goyal (2012) study the suboptimality of
affine decision rules from a worst-case perspective. Authors have also studied
more complex decision rules that offer more flexibility than affine decision rules
while providing tractable optimization problems. Among others, Chen et al
(2008) introduce deflected linear and segregated linear decision rules, Chen and
Zhang (2009) propose to define affine decision rules on extended descriptions
of the uncertainty set, Goh and Sim (2010) introduce complex piece-wise lin-
ear decision rules defined through liftings and projections, and Bertsimas and
Georghiou (2015) propose piece-wise affine decision rules having fixed number
of affine pieces. Alternatively, Bertsimas and Caramanis (2010) dynamically
partition the uncertainty set and use constant decision rules in each set of
the partition. The performance guarantee of the latter scheme is studied the-
oretically by Bertsimas et al (2011a). This idea has been revived recently by
Bertsimas and Dunning (2014) and Postek and Den Hertog (2014) who extend
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it to multi-stage linear mixed-integer linear programs and test it numerically
on different problems.

To assess numerically the quality of the aforementioned approximations,
one needs to compute the (exact) optimal solutions, at least on small instances.
Hence, in contrast with approximations approaches, some authors have tried
to solve exactly the adjustable problems. Indeed, when the robust constraints
are linear and the uncertainty set is a polytope, we know that the latter can
be replaced by the finite set of its extreme points. This reformulation as such
is not very useful because the number of extreme points is usually prohibitive.
However, recent works have proposed decomposition algorithms that gener-
ate the extreme points on the fly. The first work in that line of research was
carried out by Bienstock and Özbay (2008) who propose cutting plane algo-
rithms (denoted RG in the following) for computing optimal base-stock levels
in a supply chain. Similar approaches have been used subsequently by Mat-
tia (2013) who study a network design problem with integer link capacities
under demand uncertainty, by Gabrel et al (2014) who study a facility loca-
tion problem under demand uncertainty, and by Bertsimas et al (2013) who
study a unit commitment problem under nodal injection uncertainty. In these
four papers, the uncertainty is limited to the right-hand side of the constraints
and problem specific algorithms are proposed. Zeng and Zhao (2013) improved
over the previous papers by proposing a row-and-column generation algorithm
(denoted RCG in the following) and comparing the latter numerically to RG.
Their results show that RCG can be up to three order of magnitudes faster
than RG. The idea behind RCG has also been combined with RG heuristically
by Bertsimas et al (2013). More general problems (based on algorithm RG)
have also been considered by Billionnet et al (2014).

This papers contributes to this line of research, proposing an alternative
approach to solve exactly two-stage robust linear programs with continuous
second stage variables. We implement cutting plane algorithms and row-and-
column generation algorithms very close to those proposed by Zeng and Zhao
(2013), with the difference that we consider the separation problem as a fea-
sibility problem instead of a min-max problem as done by Zeng and Zhao
(2013). Using the Farkas’ lemma, we can reformulate the feasibility problem
into a bilinear program. Whenever the uncertainty set can be obtained as an
affine projection of a 0− 1 polytope, which is the case for the budgeted uncer-
tainty polytope from Bertsimas and Sim (2004), the bilinear program can be
linearized to obtain a mixed-integer linear program. We assess our algorithms
on a difficult telecommunication network design problem that has previously
been studied in the literature by Poss and Raack (2013), comparing our results
with the affine decision rules.
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2 Problem overview

We consider in this paper the following type of two-stage robust optimization
problems:

min c · x (1)

s.t. x ∈ S

(P ) T (ξ)x+Wy(ξ) ≥ h, ξ ∈ Ξ (2)

where u · v denotes the scalar product between any pair of vectors u and v,
c ∈ R

|I|, W ∈ R
|M |×|J|, h ∈ R

|M |, S ⊂ R
|I| denotes the first-stage feasibility

polyhedron, Ξ ⊂ R
|K| denotes the uncertainty polytope, T (ξ) ∈ R

|M |×|I|

denotes the realization of the uncertain first-stage coefficient matrix, and y(ξ)
denotes the second-stage decision vector. We follow a classical assumption
from the robust optimization literature and suppose that T depends affinely
on uncertain parameter ξ. Hence, there exists matrices T 0 and T 1k with the
same dimensions as T such that

T (ξ) := T 0 +
∑

k

T 1kξk.

One readily sees that (P ) encompasses more general problems where (i) h

depends affinely on ξ and (ii) second stage variables y have fixed costs given
by vector k. Similarly, the approaches presented in this paper can be applied
(with minor modifications) to problems where set S is the intersection of
Z
|I1| × R

|I2| and a polyhedron.

When Ξ is not a singleton, problem (P ) is a linear program that contains
an infinite number of variables, since y is defined for each ξ ∈ Ξ, as well as
an infinite number of constraints (2). The ideas presented in this paper rely
on considering only the extreme points of Ξ, which is formalized in the result
below (whose proof can be found in Ben-Tal and Nemirovski (2002), among
others).

Lemma 1 Let vert(Ξ) be the set of extreme points of Ξ and x ∈ R
|I| a given

vector. Vector x can be extended to an optimal solution (x, y) to (P ) if and
only if it can be extended to an optimal solution (x, y′) to

min c · x

s.t. x ∈ S

(P ′) T (ξ)x+Wy′(ξ) ≥ h ξ ∈ vert(Ξ). (3)

We provide next an example showing that Lemma 1 may not hold if the
recourse matrix W depends on the uncertainty parameters ξ, which implies
that our approach cannot handle problems with random recourse. Consider a
unique robust constraint defined by W (ξ) = −1 + 2ξ, T (ξ) = −2 + 3ξ, h = 0,
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and Ξ = [0, 1], and consider x∗ = 1. The constraint becomes:

ξ = 0 ⇒ 2− y(0) ≥ 0 (4)

ξ = 0.5 ⇒ −0.5 ≥ 0 (5)

ξ = 1 ⇒ 1 + y(1) ≥ 0. (6)

Constraints (4) and (6) are feasible while constraint (5) is infeasible. Hence,
x∗ is feasible for the constraints induced by each ξ ∈ vert([0, 1]) but infeasible
for ξ = 0.5, providing a counter-example to Lemma 1 when W is an affine
function of ξ.

Let K denote the projection of the set defined by (3) on variables x. Set
K is a polyhedron. Hence, if a vector x does not belong to K, there exists a
separating hyperplane between x and K. We study in the following section
how to find such a hyperplane and how to use it to solve (P ′).

3 Solution approach

We propose in this section an algorithmic framework to solve (P ′) by gen-
erating scenarios in vert(Ξ) on the fly. First, we provide in Section 3.1 a
mathematical program for the following separation problem: does x belong to
K? Then, assuming that the separation problem can be solved adequately, we
describe in Section 3.2 two algorithms for addressing (P ′).

3.1 Separation

A naive approach to the separation problem would enumerate all elements
of vert(Ξ). This is not suitable for practical problems since Ξ is likely to
have a very large number of extreme points. We propose instead to address
the problem by solving a mathematical program. The next result is based on
Farka’s lemma.

Theorem 1 Let x∗ ∈ R
n be given. Vector x∗ belongs to K if and only if the

optimal solution of the following optimization problem is non-positive

max (h− T (ξ)x∗) · π (7)

(SP ) s.t. ξ ∈ Ξ

WTπ = 0

1 · π = 1

π ≥ 0.

Before proving the Theorem, we introduce without proof a well-known prop-
erty of bilinear optimization.
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Lemma 2 Let P be a polytope, Q a closed and bounded set, and f(p, q) a
bilinear function. It holds that

{max f(p, q) s.t. p ∈ P, q ∈ Q} = {max f(p, q) s.t. p ∈ vert(P), q ∈ Q}.

Proof (Proof of Theorem 1) Consider a given vector x∗ ∈ R
n. Because x∗ is

fixed, constraints (3) become separable for each ξ ∈ vert(Ξ). Hence, for each
ξ ∈ vert(Ξ), vector y(ξ) must satisfy to

Wy(ξ) ≥ h− T (ξ)x∗. (8)

Let π(ξ) be the dual multipliers associated to constraints (8). Using Farkas’
Lemma, we know that constraints (8) have a solution if and only if

(h− T (ξ)x∗) · π(ξ) ≤ 0

for all π(ξ) that satisfy

WTπ(ξ) = 0 (9)

π(ξ) ≥ 0. (10)

Notice that the coefficients of constraints (9) and (10) do not depend on ξ.
Hence, considering Farkas’ conditions for all ξ ∈ vert(Ξ) simultaneously, we
obtain that constraints (8) for each ξ ∈ vert(Ξ) are consistent if and only if
the optimal solution of

max (h− T (ξ)x∗) · π (11)

s.t. ξ ∈ vert(Ξ) (12)

WTπ = 0

π ≥ 0

is non-positive. Adding normalization constraint

1 · π = 1

to the problem above does not impact the sign of the optimal solution of the
above optimization problem. Finally, we can replace (12) by ξ ∈ Ξ because
objective (11) is bilinear in ξ and π and the constraints of ξ and π are inde-
pendent from each other, so that Lemma 2 holds. ⊓⊔

The objective function of (SP ) is bilinear so that (SP ) belongs to a class
of problems NP-hard to solve exactly (Matsui, 1996). Unreported results show
that algorithms based on spatial branching (Ryoo and Sahinidis, 2003) are
unable to cope with (SP ) even for small instances. Hence, we propose to
address (SP ) through mixed-integer linear reformulations, see Section 4.
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3.2 Algorithms

We propose in this section two solution algorithms for (P ′), denoted by RG

and RCG, assuming that we can solve (SP ) through a black-box method. The
algorithms are both based on generating dynamically a subset Ξ̂ ⊂ vert(Ξ).
Both algorithms start by solving the following master problem

min c · x

(MP ) s.t. x ∈ S.

Given an optimal solution to (MP ), the algorithms solve the separation prob-
lem (SP ), yielding an optimal solution (ξ∗, π∗). The two algorithms differ then
by the way they include more information to (MP ) when the solution cost of
(SP ) is positive. Algorithm RG is a classical Benders’ decomposition approach
that adds a violated Benders’ cut to the master problem

(h− T (ξ∗)x) · π∗ ≤ 0. (13)

The drawback of RG is that a single cut is added to the master problem at each
iteration, facing the risk that many iterations may be required before obtaining
a feasible solution for (P ′). To incorporate more information to the master
problem at each iteration, Algorithm RCG adds to (MP ) all constraints and
variables associated to ξ∗

T (ξ∗)x+Wy(ξ∗) ≥ h. (14)

For completeness, both algorithms are described formally in Algorithm 1.

Algorithm 1: RG and RCG

repeat

solve (MP );
let x∗ be an optimal solution;
solve (SP );
let (ξ∗, π∗) be an optimal solution and z∗ be the optimal solution cost;
if z∗ > 0 then

RG: add constraint (13) to (MP );
RCG: add constraint (14) to (MP );

until z∗ > 0;

4 Mixed-integer programming reformulations

In this section, we propose two mixed-integer linear reformulations for (SP ).
Recall that a polytope Ω is called a 0−1 polytope if each of its extreme points
is a binary vector. Our first mixed-integer linear formulation for (SP ) is based
on reformulating Ξ as the affine mapping of a 0 − 1 polytope Ω ⊂ R

|K′| of
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(a) Ξ

(0, 1)

(1, 0)

(b) Ω = a(Ξ)

Fig. 1 Example of affine mapping such that Ω = a(Ξ) and Ω is a 0− 1 polytope.

reasonable dimension |K ′|. Notice that such a mapping always exists since we
can represent Ξ as the set of all convex combinations of the vectors in vert(Ξ).
This example is useless, however, because the associated polytope Ω would be
the unit simplex of dimension | vert(Ξ)|. A more useful example of pair of
polytopes Ξ and Ω is given in Figure 1.

Theorem 2 Let x∗ ∈ R
|I| be given and suppose that we know a 0−1 polytope

Ω ⊂ R
|K′| and an affine mapping a(ω) = Aω + b such that Ξ = a(Ω). Vector

x∗ belongs to K if and only if the optimal solution of the following optimization
problem is non-positive

max (h− T̃ 0x∗) · π −
∑

k∈K

(T̃ 1kx∗) · vk

(SPL) s.t. ω ∈ Ω

WTπ = 0

1 · π = 1

vkm ≥ πm − (1− ωk) k ∈ K ′,m ∈ M (15)

vkm ≤ ωk k ∈ K ′,m ∈ M (16)

π, vkm ≥ 0,

ω ∈ {0, 1}|K
′|

where T̃ 1k =
∑

h∈K

T 1hAhk for each k ∈ K and T̃ 0 = T 0 +
∑

k∈K

T 1k
∑

h∈K

Akhb
k.

Proof The proof consists of two steps. First, we take (SP ) and make the change
of variable ξ = a(ω):

max (h− T̃ (ω)x∗) · π (17)

s.t. ω ∈ Ω (18)

WTπ = 0

1 · π = 1

π ≥ 0.
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Then, using Lemma 2, we replace constraint (18) by ω ∈ vert(Ω). Because
Ω is a 0 − 1 polytope, we can add binary restrictions ω ∈ {0, 1}|K

′| to the
problem. Hence, each product ωkπm involved in objective function (17) can
be reformulated by introducing auxiliary variables vkm and using big-M coef-
ficients. Finally, the big-M coefficients can be set to 1, because 0 ≤ πm ≤ 1,
which yields constraints (15) and (16). ⊓⊔

An interesting example of non-bijective affine mapping arises with the bud-
geted uncertainty set introduced in Bertsimas and Sim (2004):

ΞΓ ≡

{

ξ ∈ [0, 1]|K| s.t.
∑

k∈K

ξk ≤ Γ

}

.

Polytope ΞΓ is a 0 − 1 polytope only when Γ is integer. Nevertheless, ΞΓ

for fractional values of Γ can be obtained as the affine transformation of the
following polytope

ΩΓ ≡

{

(ω1, ω2) ∈ [0, 1]2|K| s.t. ω1k + ω2k ≤ 1, k ∈ K,
∑

k∈K

ω1k ≤ ⌊Γ ⌋,
∑

k∈K

ω2k ≤ 1

}

,

using mapping a(ω) = ω1 + (Γ − ⌊Γ ⌋)ω2. One readily sees that ΩΓ is a 0− 1
polytope.

A different approach has been used by Mattia (2013) for a specific network
design problem. The result below generalizes the one of Mattia (2013) in two
aspects: we do not assume that S has a specific form, and we allow the first-
stage constraint matrix to depend on the uncertainties (while Mattia (2013)
only considers right-hand-side uncertainty).

Theorem 3 Let x∗ ∈ R
n be given and let Ξ = {ξ ∈ R

|K| s.t. Bξ ≤ b, ξ ≥ 0}.
Vector x∗ belongs to K if and only if the optimal solution of the following
optimization problem is non-positive

max (h0 − T 0x∗) · π + b · γ

s.t. WTπ = 0

1 · π = 1

π ≥ 0

BT γ ≥
∑

k∈K

uk(T 1kx∗) Bξ ≤ b

γ ≥ 0 ξ ≥ 0

−BT γ −Mµ ≥ −M1−
∑

k∈K

uk(T 1kx∗) ξ −Mµ ≤ 0

γ +Mν ≤ M1 −Bξ −Mν ≤ −b

µ ∈ {0, 1}n, ν ∈ {0, 1}m
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Proof Introducing notations τ0(x∗) := h0−T 0x∗ and τ1k(π, x∗) := (T 1kx∗) ·π
for each k ∈ K, (h− T (ξ)x∗) can be rewritten as

τ0(x∗) · π + τ1(π, x∗) · ξ, (19)

where only the second term of (19) depends on ξ. Hence, for any polyhedron
Π, we have that

max
π∈Π,ξ∈Ξ

τ0(x∗) · π + τ1(π, x∗) · ξ = max
π∈Π

(

τ0(x∗) · π +max
ξ∈Ξ

τ1(π, x∗) · ξ

)

so that we can rewrite (SP ) as a bilevel program sending ξ to the follower’s
decisions:

max τ0(x∗) · π + τ1(π, x∗) · ξ (20)

s.t. WTπ = 0

1 · π = 1

π ≥ 0

ξ ∈ argmax τ1(π, x∗) · ξ

ξ ∈ Ξ

Recall that Ξ is described by {ξ : Bξ ≤ b, ξ ≥ 0}. Because Ξ is bounded and
non-empty, we know by linear programming duality that

{max τ1(π, x∗) · ξ : Bξ ≤ b, ξ ≥ 0} = {min b · γ : BT γ ≥ τ1(π, x∗), γ ≥ 0}.

Then, replacing the follower’s problem by its dual and substituting the bilinear
term τ1(π, x∗) · ξ in the objective function (20) with the objective function of
the dual, b · γ, we obtain:

max τ0(x∗) · π + b · γ

s.t. WTπ = 0

1 · π = 1

π ≥ 0

γ ∈ argmax −b · γ (21)

BT γ ≥ τ1(π, x∗)

γ ≥ 0.

The result finally follows from applying the mixed-integer reformulation from
(Audet et al, 1997, Corollary 3.2) to the bilevel problem above. ⊓⊔

Notice that in spite of its generality, the reformulation from Theorem 3 can be
very hard to solve to optimality (Mattia, 2014). Hence, it should be combined
with heuristic separation of violated extreme points as done by Mattia (2013)
for a network loading problem.
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5 Application to telecommunications network design

We illustrate in this section the performance of Algorithm 1 on an adjustable
robust optimization problem previously studied in the literature.

5.1 Problem description

Telecommunications networks have evolved quickly, especially in the last two
decades. This is due to the expansion of the Internet, on-line gaming, instant
messaging, file sharing and plenty of other applications requiring fast and
reliable communication technologies. This has resulted in increasing demands
for higher bit-rates. Network operators are then under constant pressure to
design high speed networks with larger capacities such as to satisfy the growing
need for fast connections with no interruptions and latency. However, network
operators also tend to design networks while minimizing capital costs and
taking into account that resources are limited. Given a directed graph (V,A)
and a set of point-to-point commodities K, network design can be defined as
a planning process that involves setting up link capacities xa for each a ∈ A

and traffic routing yka for each a ∈ A and k ∈ K in order to route data packets
for each commodity k ∈ K from its source sk to its destination tk. Its goal
is to minimize the total capacity cost

∑

a∈A caxa while satisfying all traffic

demands dk for k ∈ K.

Traditional models for network design ignored demand uncertainty and
overestimated demand values to avoid blockages. This led to a waste in network
capacities and investments. In order to obtain a more robust and efficient
network, demand fluctuation has to be taken into consideration throughout
the design procedure. As a result, the idea of demand uncertainty must be
included in the mathematical program that models the planning process of
the network.

Robust network design considers that the vector of demands d is uncertain
and depends affinely on the uncertain parameters ξ that can take any value
in a predetermined uncertainty polytope. The problem becomes an adjustable
robust optimization problem: capacities x are first-stage decision variables
while routings y are second-stage decision variables. Let δ+v and δ−v be the
sets of outgoing arcs and incoming arcs, respectively, for each v ∈ V . The
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mathematical program for the problem is given below.

min
∑

a∈A

caxa (22)

(RND) s.t.
∑

a∈δ
−

v

yka(ξ)−
∑

a∈δ
+
v

yka(ξ) =







−dk(ξ) if v = sk

dk(ξ) if v = tk

0 otherwise
v ∈ V, k ∈ K

(23)
∑

k∈K

yka(ξ) ≤ xa a ∈ A

(24)

x ≥ 0, y ≥ 0.

Objective function (22) minimizes the total capacity installation cost subject
to flow balance constraints (23) and capacity constraints (24).

The above optimization problem has been studied previously by Poss and
Raack (2013). Poss and Raack (2013) solves (RND) by enumerating the ex-
treme points of Ξ using Lemma 1. This approach is of course restricted to
uncertainty polytopes having limited number of extreme points and they ad-
dress larger problems by applying affine decision rules to routing variables
y:

yk(ξ) = f0k +
∑

h∈K

fhkξh, k ∈ K. (25)

Other approximations of (RND) have been considered in the literature, see
Poss (2013) and the references therein. Among them, static routing which
enforces yk to depend linearly on ξk by adding constraints

yk(ξ) = fkξk, k ∈ K (26)

to (RND), where f are non-negative optimization variables. It must be said
that (RND) with static or affine routing is much easier to solve than (RND)
because the problem can then be reformulated as a static robust optimization
problem, which can be solved by dualizing the robust constraints.

In the next section, we apply the two versions of Algorithm 1 to the in-
stances studied by Poss and Raack (2013).

5.2 Numerical results

We consider three realistic networks from SNDlib (Orlowski et al, 2010) : janos-
us, sun, and giul-39. These networks have 26/27/39 nodes and 84/102/172 arcs,
respectively. The networks are originally undirected and we direct them by
replacing each edge by two arcs with opposite directions. To reduce the size of
the formulations and to be able to do a series of runs, we considered the largest

20-50 commodities with respect to the mean value of d
k
. Our uncertainty

set is based on the budgeted uncertainty polytope from Bertsimas and Sim
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(2004). Namely, dk(ξ) = d
k
+ ξkd̂k where the deviation d̂k is set to 0.4d

k
,

and Ξ ≡ {ξ ∈ R
|K| s.t.

∑

k∈K ξk ≤ Γ, 0 ≤ ξk ≤ 1 for each k ∈ K}. Polytope
Ξ is a 0 − 1 polytope so that we can reformulate the subproblem as (SPL)
from Theorem 2. Notice that our uncertainty set does not consider downward
deviations. Hence, Ξ corresponds to Dσ

+ used in Poss and Raack (2013). We
consider two sets of instances. In the first set, Γ is integer and belongs to
{1, 2, . . . , 6}. In the second set, Γ is fractional and belongs to {1.5, 2.5, . . . , 5.5}.
Our algorithms have been coded using the Concert Technology library for
JAVA from CPLEX 12.6 (IBM-ILOG, 2015) on a 64-bit 2.53Ghz Quad-Core
CPU with 6GB of memory and 16 threads. CPLEX is called with its default
parameters and we have set a time limit of T seconds of CPU time for every
individual run and our computing times are presented in seconds.

(a) Integer values of Γ .

(b) Fractional values of Γ .

Fig. 2 Performance profiles comparing the solution times of RG, RCG, and aff .

Figure 2 shows performance profiles (Dolan and Moré, 2002) that com-
pare the solution times of algorithms RG and RCG as well as affine routing
(denoted aff). Figure 2(a) reports the profile for Γ ∈ {1, 2, . . . , 6} while Fig-
ure 2(b) reports the profile for Γ ∈ {1.5, 2.5, . . . , 5.5}. Notice that the solution
times of unsolved instances have been set to T seconds, so that the right part
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of the profiles should be considered as approximations of the true relative per-
formance of the algorithms. Despite this, one can observe from the profiles
that RG and RCG behave differently on the two sets of instances. Namely,
when Γ is integer, RCG clearly outperforms RG, and the performance of RCG

is close to the one of affine routing. In contrast, when Γ is fractional, RCG

is outperformed by RG and both algorithms behave much worse than affine
routing. This behavior can be explained by the following observations. First,
the solution times of (SPL) is usually higher when Γ is fracional (see below).
Second, algorithm RCG generates much more extreme points when Γ is frac-
tional. Hence, the time spent solving (MP ) increases, making it an important
part of the total solution time. In contrast, the time spent solving (MP ) is
insignificant for RG, which concentrates all of its effort on solving (SPL).

(a) janos-us. (b) sun

(c) giul-39

Fig. 3 Average solution times in seconds for (SPL) for each value of K ∈ {20, . . . , 50}.
Integer and fractional values of Γ are reported in gray and black, respectively.

We present the extensive computational results on Tables 1 and 2. The
columns of these tables report the number of commodities (K), the value of
Γ , the optimal solution cost for static routing (optstat), the cost reduction
(gapaff ) when using affine routing constraints (25) instead of static routing
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constraints (26), the cost reduction (gapdyn) for the true optimal solution
of (RND), the time required by RCG (tRCG) and RG (tRG), the number
of iterations of both algorithms (iter), and the time that they spent solving
(SPL) as a percentage of the total solution time (tSPL (%)). We also report
the solution times spent to solve the problem with affine routing (taff ) and
to solve the problem that contains all extreme points (tP ′), although this last
model very often consumes all memory available. Time and memory hits are
denoted by T and M, respectively. Table 1 confirms the results summarized
in Figure 2(a); that is, RCG is more efficient than RG on instances with
integer values of Γ , solving the instances faster than the latter. In contrast
Table 2 shows that RCG can solve only two instances with fractional values
of Γ , while RG can solve roughly half of them. The tables also show that
both algorithms spend most of their time in the solution of (SPL) apart from
RCG for the instances with high numbers of iterations. Figure 3 reports the
arithmetic averages of the solution times for solving (SPL) for each instance,
which are based on the separations problems that were solved to optimality.
Figure 3(a) and Figure 3(b) show that for the instances janos-us and sun, the
solution times of (SPL) is much higher for fractional values of Γ than for
the integer ones. In contrast, Figure 3(b) shows the opposite behavior for sun,
particularly when K = 50.

6 Conclusion

We propose in this paper decomposition algorithms to solve adjustable robust
linear programs under polytope uncertainty by generating the extreme points
of the uncertainty polytope on the fly. We discuss algorithmic frameworks
for decomposing the robust problem and solution algorithms to address the
subproblem. Our numerical results show that the relative efficiency of row
generation and row-and-column generation algorithms depends on the type
of polytope considered. In any case, the bottleneck of these algorithms lies in
finding the extreme point of the polytope that is mostly violated by the current
solution, which amounts to solve a mixed-integer linear program (MIP).
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instance K Γ optstat gapdyn(%) gapaff (%) tRCG tSPL (%) iter tRG tSPL (%) iter tP ′ taff

janos-us

20 1.0 4,65E5 7.2 7.2 9 81 10 29 100 73 2 84
20 2.0 5,12E5 6.5 6.2 36 70 18 61 100 67 7 78
20 3.0 5,12E5 2.5 0.9 33 67 18 76 100 84 55 68
20 4.0 5,12E5 0.0 0.0 40 63 20 57 100 70 293 47
20 5.0 5,12E5 0.0 0.0 21 80 13 34 100 55 M 44
20 6.0 5,12E5 0.0 0.0 22 71 15 37 100 59 M 37
30 1.0 6,12E5 7.5 7.5 30 89 12 77 100 85 7 345
30 2.0 6,72E5 8.7 8.4 85 82 19 170 100 86 22 490
30 3.0 6,99E5 7.0 6.6 137 85 21 235 100 82 307 401
30 4.0 6,99E5 2.9 2.4 245 81 27 474 100 92 M 371
30 5.0 6,99E5 0.7 0.0 276 83 27 587 100 87 M 290
30 6.0 6,99E5 0.0 0.0 139 83 22 335 100 84 M 252
40 1.0 6,72E5 8.2 8.2 52 80 14 130 100 90 34 567
40 2.0 7,32E5 8.8 8.4 205 76 22 376 100 91 63 988
40 3.0 7,63E5 7.6 6.7 432 82 25 747 100 88 M 1490
40 4.0 7,66E5 4.1 2.9 977 80 32 2231 100 98 M 1865
40 5.0 7,66E5 1.5 0.2 1300 80 35 2186 100 100 M 2427
40 6.0 7,66E5 0.0 0.0 1036 77 34 1372 100 89 M 1213
50 1.0 7,32E5 8.4 8.4 90 81 15 251 100 95 103 2511
50 2.0 7,93E5 8.9 8.5 464 76 25 794 100 98 122 4494
50 3.0 8,27E5 8.2 7.3 1836 91 28 2776 100 101 M 5454
50 4.0 8,39E5 6.0 4.9 4188 93 33 10093 100 104 M 4419
50 5.0 8,41E5 3.2 2.2 4079 88 39 T 100 96 M 3529
50 6.0 8,41E5 0.8 0.1 6309 78 50 T 100 99 M 4866

sun

20 1.0 4,31E2 9.9 9.9 22 88 12 215 100 152 1 50
20 2.0 4,67E2 9.2 8.9 90 81 23 429 100 160 8 58
20 3.0 4,82E2 6.4 5.5 207 84 29 586 100 149 74 63
20 4.0 4,87E2 3.5 2.0 230 85 29 730 100 161 439 82
20 5.0 4,88E2 1.8 0.7 326 82 34 826 100 156 M 36
20 6.0 4,88E2 1.0 0.2 234 85 29 595 100 145 M 34
30 1.0 5,56E2 9.3 9.3 55 93 13 766 100 200 5 224
30 2.0 6,03E2 10.5 10.1 347 83 31 1413 100 190 22 248
30 3.0 6,3E2 9.6 8.8 1790 90 43 4009 100 174 319 293
30 4.0 6,4E2 6.9 5.7 4921 98 36 T 100 161 M 282
30 5.0 6,47E2 5.2 3.2 T 98 41 T 100 137 M 259
30 6.0 6,49E2 4.2 1.9 T 100 24 T 100 104 M 311
40 1.0 6,69E2 8.6 8.6 119 97 12 1908 100 227 12 867
40 2.0 7,23E2 10.7 10.3 770 93 30 4313 100 209 54 840
40 3.0 7,58E2 10.9 10.2 10038 98 42 T 100 138 1126 1028
40 4.0 7,78E2 10.3 8.9 T 100 18 T 100 89 M 975
40 5.0 7,91E2 11.6 7.2 T 100 9 T 100 78 M 1152
40 6.0 7,96E2 11.4 5.5 T 100 8 T 100 62 M 1421
50 1.0 7,34E2 8.0 8.0 139 98 11 2437 100 207 22 3059
50 2.0 7,92E2 10.4 10.1 1498 97 27 9056 100 199 108 3539
50 3.0 8,3E2 11.1 10.4 T 100 22 T 100 100 M 3347
50 4.0 8,53E2 12.7 9.6 T 100 9 T 100 64 M 3828
50 5.0 8,7E2 13.1 8.6 T 100 7 T 100 50 M 3487
50 6.0 8,81E2 14.9 7.4 T 100 5 T 100 44 M 2927

giul-39

20 1.0 8,97E1 4.8 4.8 33 93 9 166 100 85 3 56
20 2.0 9,93E1 6.2 6.2 62 95 10 383 100 93 13 64
20 3.0 1,04E2 5.1 4.5 177 94 15 696 100 92 94 59
20 4.0 1,07E2 3.1 2.3 338 95 18 973 100 102 735 83
20 5.0 1,09E2 1.3 0.3 401 95 19 985 100 99 M 78
20 6.0 1,09E2 0.8 0.0 571 95 21 731 100 96 M 46
30 1.0 1,42E2 6.1 6.1 111 96 9 837 100 131 19 416
30 2.0 1,52E2 7.4 7.4 366 95 14 2655 100 144 58 501
30 3.0 1,61E2 7.9 7.7 2588 99 18 T 100 117 927 446
30 4.0 1,68E2 7.3 7.2 10718 100 18 T 100 83 M 405
30 5.0 1,72E2 6.0 5.1 T 100 14 T 100 92 M 407
30 6.0 1,73E2 3.2 2.3 T 100 18 T 100 72 M 554
40 1.0 1,9E2 6.9 6.9 469 94 16 3081 100 188 31 4372
40 2.0 2,04E2 8.4 8.4 1480 97 18 T 100 181 119 3000
40 3.0 2,15E2 10.4 8.6 T 100 11 T 100 67 M 3376
40 4.0 2,22E2 12.6 8.1 T 100 6 T 100 31 M 2231
40 5.0 2,27E2 21.7 7.2 T 100 2 T 100 13 M 2728
40 6.0 2,3E2 12.6 5.3 T 100 5 T 100 5 M 3184
50 1.0 2,21E2 8.0 8.0 900 96 16 5767 100 188 82 9680
50 2.0 2,38E2 10.3 9.8 5982 99 20 T 100 139 221 7390
50 3.0 2,49E2 13.6 9.8 T 100 8 T 100 63 M 7324
50 4.0 2,57E2 18.6 9.8 T 100 3 T 100 13 M 6574
50 5.0 2,63E2 23.8 9.1 T 100 2 T 100 7 M 5526
50 6.0 2,68E2 – 7.9 T 100 1 T 100 1 M 5852

Table 1 Results for Γ integer.
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instance K Γ optstat gapdyn(%) gapaff (%) tRCG tSPL (%) iter tRG tSPL (%) iter tP ′ taff

janos-us

20 1.5 4,91E5 7.2 6.8 T 7 399 95 100 78 16 81
20 2.5 5,12E5 4.5 2.8 T 6 202 155 100 75 260 138
20 3.5 5,12E5 1.2 0.0 T 16 387 178 100 82 M 53
20 4.5 5,12E5 0.0 0.0 73 84 20 136 100 72 M 46
20 5.5 5,12E5 0.0 0.0 81 81 20 96 100 64 M 39
30 1.5 6,44E5 8.4 8.0 T 15 357 200 100 80 46 392
30 2.5 6,89E5 11.1 7.8 T 64 242 894 100 84 M 308
30 3.5 6,99E5 7.1 4.4 T 86 127 2230 100 85 M 383
30 4.5 6,99E5 3.0 0.6 T 95 96 5004 100 90 M 566
30 5.5 6,99E5 0.8 0.0 T 100 25 T 100 79 M 201
40 1.5 7,04E5 12.4 8.3 T 21 251 538 100 97 M 511
40 2.5 7,5E5 11.2 7.7 T 64 88 2859 100 91 M 1659
40 3.5 7,64E5 7.9 4.6 T 82 55 9438 100 97 M 2248
40 4.5 7,66E5 2.8 1.3 T 87 55 9079 100 89 M 1448
40 5.5 7,66E5 1.5 0.0 T 94 49 T 100 94 M 577
50 1.5 7,64E5 12.2 8.4 T 26 149 1148 100 105 M 3635
50 2.5 8,13E5 11.4 8.1 T 91 46 T 100 102 M 4249
50 3.5 8,33E5 9.1 5.9 T 99 27 T 100 88 M 5026
50 4.5 8,4E5 6.3 3.4 T 99 25 T 100 79 M 4404
50 5.5 8,41E5 3.3 1.1 T 99 27 T 100 80 M 4308

sun

20 1.5 4,51E2 10.0 9.6 T 16 444 610 100 180 21 65
20 2.5 4,75E2 11.5 7.3 T 35 383 1798 100 172 277 57
20 3.5 4,85E2 5.0 3.3 T 84 200 3504 100 159 M 56
20 4.5 4,88E2 3.8 1.3 T 93 114 4807 100 151 M 68
20 5.5 4,88E2 1.9 0.5 T 95 71 9673 100 165 M 33
30 1.5 5,8E2 10.0 9.8 T 37 343 1446 100 174 61 254
30 2.5 6,18E2 13.2 9.6 T 92 120 T 100 167 M 250
30 3.5 6,35E2 10.7 7.2 T 100 28 T 100 89 M 419
30 4.5 6,43E2 10.2 4.2 T 100 9 T 100 46 M 352
40 1.5 6,96E2 9.8 9.5 T 73 227 5114 100 200 120 813
40 2.5 7,41E2 13.1 10.3 T 100 30 T 100 96 M 988
40 3.5 7,69E2 13.7 9.5 T 100 9 T 100 59 M 952
40 4.5 7,85E2 13.8 8.0 T 100 6 T 100 34 M 854
40 5.5 7,94E2 17.0 6.2 T 100 4 T 100 11 M 880
50 1.5 7,64E2 11.5 9.2 T 88 141 T 100 195 M 3443
50 2.5 8,12E2 12.8 10.3 T 100 15 T 100 75 M 3125
50 3.5 8,42E2 15.2 10.1 T 100 5 T 100 35 M 3424
50 4.5 8,62E2 17.2 9.0 T 100 4 T 100 5 M 3534
50 5.5 8,76E2 20.0 8.0 T 100 3 T 100 3 M 3694

giul-39

20 1.5 9,45E1 5.5 5.5 T 17 213 329 100 94 29 62
20 2.5 1,02E2 5.7 5.2 T 55 168 1465 100 94 479 71
20 3.5 1,06E2 6.7 3.4 T 83 73 4706 100 96 M 71
20 4.5 1,08E2 4.1 1.0 T 81 84 5819 100 102 M 84
20 5.5 1,09E2 1.0 0.0 T 97 42 4940 100 107 M 51
30 1.5 1,47E2 6.8 6.8 T 23 69 2116 100 141 159 393
30 2.5 1,57E2 7.7 7.5 T 91 41 T 100 116 M 420
30 3.5 1,64E2 10.0 7.5 T 100 11 T 100 45 M 425
30 4.5 1,7E2 10.6 6.1 T 100 6 T 100 19 M 463
30 5.5 1,72E2 11.4 3.7 T 100 4 T 100 15 M 448
40 1.5 1,97E2 7.7 7.7 T 53 60 9010 100 200 M 2879
40 2.5 2,09E2 10.9 8.4 T 100 17 T 100 49 M 3576
40 3.5 2,18E2 12.3 8.4 T 100 8 T 100 15 M 2981
40 4.5 2,25E2 12.2 7.7 T 100 8 T 100 14 M 3067
40 5.5 2,29E2 14.0 6.2 T 100 5 T 100 11 M 3426
50 1.5 2,3E2 11.2 9.0 T 88 39 T 100 166 M 8576
50 2.5 2,43E2 12.9 9.8 T 100 11 T 100 21 M 10808
50 3.5 2,53E2 17.3 9.8 T 100 4 T 100 10 M 6153
50 4.5 2,6E2 17.8 9.4 T 100 4 T 100 11 M 6951
50 5.5 2,66E2 15.0 8.6 T 100 6 T 100 9 M 7001

Table 2 Results for Γ fractional.
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