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1. INTRODUCTION

Abstract: Nowadays we have the dynamical velocity vector field of turbulent flow at our 

disposal coming thanks advances of either mathematical simulation (DNS) or of experiment 

(time-resolved PIV). Unfortunately there is no standard method for analysis of such data 

describing complicated extended dynamical systems, which is characterized by excessive 

number of degrees of freedom. An overview of candidate methods convenient to spatio-

temporal analysis for such systems is to be presented. Special attention will be paid to 

energetic methods including Proper Orthogonal Decomposition (POD) in regular and 

snapshot variants as well as the Bi-Orthogonal Decomposition (BOD) for joint space-time 

analysis. Then, stability analysis using Principal Oscillation Patterns (POPs) will be 

introduced. Finally, the Independent Component Analysis (ICA) method will be proposed for 

detection of coherent structures in turbulent flow-field defined by time-dependent velocity 

vector field. Principle and some practical aspects of the methods are to be shown. Special 

attention is to be paid to physical interpretation of outputs of the methods listed above.

In fluid dynamics experimental research the data related to various physical quantities 
are acquired. The data is evaluated by means of sensor in distinct locations. Classical 
methods perform measurement in a single point in space (pressure probe, hot wire 
sensor, LDA). Recently, the spatial methods as PIV, evaluating measured quantities in 
many points distributed in a measuring plane or even in space simultaneously are used 
very often.
In the presented paper we consider the data acquired in multiple points simultaneously, 
covering a given measuring zone. The data could be resolved in time as well, meaning 
that the data acquisition is performed in accordance with the general rules covering a 
reasonable part of the fluid system response spectrum. The rules to be met include the
Nyquist criterion and the autocorrelation functions of the time series, which should be 
resolved properly, at least in connection with the largest structures characterized by the 
turbulence integral scale.
In practice this means the acquisition frequency of order of kilohertz for common 
laboratory conditions in air turbulence, for liquids the frequency could be considerably 
lower. For time-resolved methods the event data acquisition is supposed, the unevenly 
acquired LDA data is not suitable, and then only temporal statistics could be performed.
The resolution in space (i.e. size of interrogation area) and in time (i.e. acquisition 
period) should be in equilibrium. The same size of structures should be resolved in both 
domains. The structures of subgrid scales, if present, will produce the data noise, which 
could not be used for analysis. The spatio-temporal data could be scalars (temperature, 
concentration) or vectors (velocity vectors with 2 or 3 components).
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2. SPATIO-TEMPORAL DATA IN FLUID DYNAMICS

The analysis could be carried out on a spatio-temporal data representing distribution of 
any physical quantity. The velocity vectors are considered very often, and then the sum 
variances could be interpreted as a fluctuating system kinetic energy (to be precise twice 
of it).
The data sizerepresenting distribution of a physical quantityin space defines the number 
of degrees of freedom of the underlying dynamical system. That is number of points for 
scalars, possibly multiplied by number of components for vectors. Number of snapshots 
should be smaller or equal to number of degrees of freedom to justify assumption of 
linear independency of the snapshots.
The measured quantities could be velocity components, pressures, temperatures or 
maybe concentrations. The distribution in a given zone forms a snapshot, for the analysis 
we suppose an adequate number of snapshots to produce representative statistics. The 
measuring zone is typically in shape of a rectangle in plane or a rectangular block in the 
3D space.

3. DECOMPOSITION METHODS

The decomposition methods are based on idea ofthe Hilbert space, which is defined by all
snapshots forming the natural basis of the Hilbert space.
The goal of the decomposition methods is to find another appropriate base with a distinct 
physical meaning. The POD and BOD methods are looking for orthonormal basis 
corresponding to non-correlated modes maximizing the dynamic data variance. The ICA 
method makes the modes statistically independent. The POP method evaluates the basis 
representing oscillating modes, which are characterized by single frequency and 
damping.

4. ENERGETIC METHODS

The existence of so-called “coherent structures” in turbulent flows is now well accepted. 
Lumley [14] introduced the concept of “building blocks” (i.e. basis of non-specified 
functions) based on the concept of “energetic modes” on which the velocity field is 
projected.
Extraction of deterministic features from a random, fine grained turbulent flow has been 
a challenging problem. Lumley proposed an unbiased technique for identifying such 
structures. The method consists in extracting the candidate which is the best correlated, 
in statistical sense, with the background velocity field. The different structures are 
identified with the orthogonal eigenfunctions of the decomposition theorem of probability 
theory. This is thus a systematic way to find organized motions in a given set of 
realizations of a random field.
Kinetic energy of spatio-temporal data is defined as half sum of velocity components 
variances. This means that the highest energy patterns are those with a big amplitude 
and very frequent occurrence. Typical high-energy modes are periodical patterns. In this 
case the two modes are related to each periodical pattern very often corresponding to 
the situations shifted by a quarter of period. For analysis of periodical aspect of such 
flows the reconstruction using those two modes is adequate.
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The spatial modes are, in general, linear combinations of all snapshots. Temporal modes 
represent time evolution of the given mode appearance, could be interpreted as 
projection of a given spatial mode to the snapshots series.
Each mode consists of the energy contents (sum of energy of all local velocity 
components), the spatial mode (topos) and the temporal mode (chronos). The modes are 
ordered according to decreasing energy content very often. The original series of 
snapshots could be fully reconstructed using entire set of modes. Neglecting the high 
order modes we could filter the low-energy random noise, which could arise in 
consequence of the process randomness, measurement/evaluation errors or in 
connection with unresolved subgrid structures in flow.
Both toposes and chronoses form orthonormal bases. To study the embedded system 
dynamics, the toposes multiplied by square root of energy could be used to characterize 
the system evolution in time.

4.1.PROPER ORTHOGONAL DECOMPOSITION

The Proper Orthogonal Decomposition (POD) method has applications in almost any 
scientific field where extended dynamical systems are involved. This fact accounts for the 
frequency of POD's discovery. Pearson 1901, Hotelling 1933, Kosambi 1943, Loeve 1945, 
Karhunen 1946, Kosambi 1943, Pougachev 1953 and Obukhov 1954 have all been 
credited with independent discovery of the POD under one of its many titles, which 
include Principle Component Analysis, Karhunen-Loeve Decomposition or Expansion, 
Principle Factor Analysis, Hotelling Transform, and collective coordinates. Details could be 
found in [19].
Recently, the POD has been widely used in studies of turbulence. Historically, it was 
introduced in the context of turbulence by Lumley [13] as an objective definition of what 
was previously called big eddies and which is now widely known as coherent structures.
The POD is considered to be a natural idea to replace the usual Fourier decomposition in 
nonhomogeneous directions. Adrian et al. [1] considers the POD as inhomogeneous 
filtering applied on the flow data in the framework of the LES method. The classical 
homogeneous filtering, using the Gaussian filter for example, is inconsistent with the fact 
that the turbulent eddies increase in size as they move away from the wall. This problem 
can be addressed by using the method of POD to construct low-pass filters that are 
inhomogeneous in one or more direction. The POD provides an optimal set of base-
functions for an ensemble of data in the sense that it is the most efficient way of 
extracting the most energetic components of an infinite dimensional process with only a 
few modes.
Lumley proposed to define a coherent structure with functions of the spatial variablesthat 
have maximum energy content. That is, coherent structures are � �� � 's(or linear 

combinations of) which maximize the following expression

� � � �� �
� � � �

2

, , t� � � �

� � �� �
, (1)

where the expression � �,f g denotes the inner product fg d
�

�� in 2L on the space 

domain � and the f is mean in time: 
0

1
lim

T

T
f dt

T�� � . So, if � �� � maximizes(1), it 

EFM11

01095-p.3



means that if the flow-field is projected along � �� � , the average energy content is 

larger than if the flow-field is projectedalong any other structure. Then, in the space 
orthogonal to the evaluated � �� � the maximization process can be repeated, and in this 

way a whole set of orthogonal functions � �i� � can be determined. The power of the POD 

lies in the fact that the decomposition of the flow-field in the POD eigenfunctions basis 
converge optimally fast in 2L -sense.

Using variation calculus it could be shown that a necessary condition for � �� � to 

maximize expression (1) is that it is the solution of the following Fredholm integral 
equation of the second type:

� � � � � �2,s d 	
�


 
 
 �� R x x� � � � � , (2)

where� is the flow domain and sR is the space-correlation matrix:

� � � � � � � � � �, ,T T

s
T

t t dt
 
 
� � �R x,x u x u x u x u x . (3)

The correlation matrix is symmetric and positive definite. According to Hilbert-Schmidt 
theory, the equation (2) has a denumerable set of orthogonal solutions – eigenfunctions

� �i� � with corresponding real and positive eigenvalues 2

i	 .The eigenfunctions are 

orthogonal and can be normalized:

� �,i j ij��� � . (4)

The closure of the span of the POD eigenfunctions is equal to the set of all realizable 
flow-fields. Therefore any flow-field could be expressed as a linear combination of the 
eigenfunctions:

� � � � � �
1

, k k

k

t a t
�

�

�u x� � . (5)

The above given formulation represents itself the continuous variant of the POD 
implementation. However, this formulation is not very appropriate for direct application.

4.2.SNAPSHOT POD

The method was proposed by Sirovich[16]. For the snapshot POD we need a set of N

snapshots � �iu x of the fluctuating velocity field. The snapshots are taken at different 

times from a simulation

� � � �,k kt�u x u x . (6)

The snapshots should be mutually linearly independent. The maximization problem (1)
can be reformulated for the snapshots

� � � �� �
� � � �� �

2

1

1
,

,

N

kk

k k

N � � � � �

u x u x
. (7)

Supposing applicability of the ergodicity hypothesis we could rewrite expression for 
correlation function in the following way:

� � � � � �
1

lim
N

T

s k k
k

k
��

�


 
� R x,x u x u x . (8)
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In this equation the time between the snapshots has to be largeenough for the snapshots 
to be uncorrelated. The idea is now to take a finite N largeenough for a reasonable 

approximation of � �
R x,x . Substituting (8) into the Fredholmintegral equation (2) results 

into a degenerate integral equation. Therefore the solutions are linear combinations of 
the snapshots:

� � � �
1

N

k ki k

k

q
�

�� � � � . (9)

Thus the problem is reduced to finding the coefficients kiq of the linear combination.If we 

substitute (9)into the degenerated integral equation we obtain the followingeigenvalue 
problem for the coefficients kiq

� � � �� �2 1
, ,ij i jQ

N
	� �Qq Q u x u x . (10)

The dimension of this eigenvalue problem is equal to the number of snapshots, which is
typically much lower than the dimension of the eigenvalue problem(3).The method of 
Sirovich uses the ergodicity hypothesis to approximateR , so we canexpect the POD 
eigenfunction to converge to the POD eigenfunctions of the continuousformulation. In 
fact, the snapshot method proves equivalence of information content in space and time 
correlation. This fact could be utilized for analysis of both space and time structures, as 
the Bi-Orthogonal Decomposition does.

4.3.BI-ORTHOGONAL DECOMPOSITION

The Bi-Orthogonal Decomposition (BOD) represents itself an extension of the POD. While 
POD analyses data in spatial domain only, the BOD performs spatiotemporal 
decomposition.
Aubry et al. [4] presented the BOD as a deterministic analysis tool for complex 
spatiotemporal signals. First, a complete two-dimensional decomposition was performed. 
These decompositions were based on two-point temporal and spatial velocity 
correlations. A set of orthogonal spatial (topos) and temporal (chronos) eigenmodes are 
to be computed to allow the expansion of the velocity field. The BOD method analyses a 
deterministic space-time signal (e.g. velocity) � �, tu x , which is decomposed in the 

following way:

� � � � � �, k k k

k

t t	�u x� � � . (11)

The bar denotes complex conjugate (however all functions are typically real), � �k� � are 

spatial eigenfunctionstopos, � �k t� are temporal eigenfunctionschronos, 2

k	 are the 

common eigenvalues. Both toposes and chronoses are normalized to form the 
orthonormal bases:

� � � �, ,i j i j ij�� �� � � � . (12)

Mathematical details of the BOD method could be found in [4].
The Bi-orthogonal decomposition is optimal in sense of a fast convergence of the 
expansion with a small number of terms. It should be noticed that the BOD introduces a 
time-space separation in the velocity field expansion. While the classic POD is based on 
full two-point space-time correlations and entails space and time-dependent eigenmodes, 
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BOD is closer to analytical and numerical studies where the velocity field is naturally 
expanded over products of spatial functions and temporal functions.
Evaluation technique of the eigenfunctions uses the same mathematics as the POD does. 
In principle the Fredholm integral equation could be written in the two forms for space 
and time correlation matrices, the eigenvalues are common for both problems, but 
eigenfunctions differ, of course. For the time domain formulation we get the following 
form (compare with (2)):

� � � � � �2,t
T

t t t dt t	
 
 
 �� R� � , (13)

where correlation matrix tR stands for 

� � � � � �, , ,T

t t t t t d
�


 
� �R u x u x x . (14)

The sets of toposes and chronoses are mutually related in the following way:

� � � � � �

� � � � � �

1

1

1
, ,

1
, .

N

k i k i

ik

N

k i k i

ik

t t

t x t x

	

	

�

�

�

�





� � � � �

� � �

(15)

The decomposition allows us to study energy and entropy of the fluid system as well as 
its dynamical behavior. 
The global energy E , temporal energy � �tE t and spatial energy � �sE x could be defined 

as follows:

2

1

N

k

k

E 	
�

� , � � � �
22

1

N

t k k

k

E t t	
�

� � , � � � �
22

1

N

s k k

k

E 	
�

�x� � . (16)

N is number of evaluated modes and it is expected to be big. In the similar way the 
Shannon-Kolmogorov entropies could be evaluated. Global entropyH , temporal entropy 

� �tH t and spatial entropy � �sH x with help of respective probabilities p are defined:

� � � � � � � � � � � �

� � � � � � � � � � � �

2 2

1 1

1 1

1 1

1
; log ,

log

1
; log ,

log

1
; log .

log

N N

k k k k k

k k

N N

tk k k k k t tk tk

k k

N N

sk k k k k s sk sk

k k

p H p p
N

p t t t H t p t p t
N

p H p p
N

	 	

	 	

	 	

� �

� �

� �

� � �

� � �

� � �

 

 

 

� �

x� � � � � � �

(17)

The situation when 0H � corresponds to uniform distribution of the energy over the 
modes, while 1H � characterizes situation, when the all energy is concentrated in the 
first mode.
The spatial quantities characterize the distributions in space, while temporal in time. 
According to the developers of the BOD themselves ([4]) there is no real link between 
BOD and POD, since they arebased on fundamentally different principles. In fact, BOD 
can be seen as a time–space symmetric version of theKarhunen–Loeve expansion or, in 
other words, a combination of the classical POD and the snapshot POD. However,the 
main difference seems to be is the assumptions on the analyzed signal, which has to be 
squareintegrable only for the BOD, instead of square integrable, ergodic and stationary 
for the POD. The BOD is a moregeneral method and the POD method should be 
considered as a particular case.Moreover, the BOD is not derived from an optimization 
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problem of the mean-square projection of the signal as inPOD, although the method of 
calculation of BOD leads also to an eigenvalue problem of a correlation operator. 
Thegeometrical interpretation in state space, especially the principal axes of the ellipsoid 
vanishes in the case of BOD.

4.4.PHYSICAL INTERPRETATION OF ENERGETIC DECOMPOSITION RESULTS

The POD as the standard analysis tool for high-dimensional fields provides areduced-
order model of the field, and the subspace represented by this model is the spanof the 
high energy modes. The mathematical structure of POD analysis provides anorthogonal 
decomposition of this low-dimensional subspace, since the modes areeigenvectors of the 
covariance matrix. This mathematical structure follows from themathematical theory of
Gaussian processes, but not from the underlying physics of fluidflow. The POD models of 
pressure fields have, in the past,been challenged with questions of interpretation. The 
orthogonal modes have nostraightforward interpretation in terms of flow, since they are 
the result of an orthogonal“mix” of various flow mechanisms. 
The problem is that the modes are orthogonal and thus uncorrelated but not necessarily 
independent. This problem will be addressed hereafter in this paper.
An advantage of the method is its objectivity and lack of bias. Given a realization of an 
inhomogeneous, energy-integrable velocity field, it consists of projecting the random 
field on a candidate structure, and selecting the structure which maximizes the projection 
in quadratic mean. In other words, we are interested in the structure which is the best 
correlated with the random, energy-integrable field. The Kernel can be expanded in a 
uniformly and absolutely convergent series of the eigenfunctions and the turbulent 
kinetic energy is the sum of the eigenvalues. Thus every structure makes a contribution 
to the kinetic energy and Reynolds stress.
The POD method is optimal in sense that the series of eigenmodes converges more 
rapidly (in quadratic mean) than any other representation. Convergence is very fast in 
the flows in which large coherent structures contain a major fraction of the total kinetic 
energy. As an example the pseudo-periodical vortex streets in wakes or strong shear 
layers could be mentioned.
In practical application the cumulative energy of POD modes is evaluated very often. The 
cumulative energy is defined:

� � � �
1

i

j

CE i E j
�

� , (18)

where � �E j is fractional energy on the j-th mode with relation to the total system 

energy. Then � �CE i is a monotonic increasing function of the mode order i converging to 

1 (meaning the system total energy) for i n� ( n is number of modes). The convergence 
rate is quantified by the entropy value H - see(17). If 0H � , that means situation 
when the POD method provides no advantage in comparison with any other base. This 
situation could occur when the individual series of physical quantities in individual space 
position are totally uncorrelated. Unsatisfactory situation also corresponds to totally 
random occurrence of structures in space and time resulting in extremely slow 
cumulative energy grows and convergence.
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An example of the cumulative energy convergence for the case of a boundary layer 
separation is shown in Fig. 1.from[25]. The first mode contains about 28 % of the total 
energy, the mode order scale is logarithmic.

Figure 1: Cumulative energy as function of the mode order

To study the dynamical system, we truncate the set of modes on a given order m and 
we model the real system by the dynamical model of order m. The system is represented 
by toposes and chronoses. As both toposes and chronoses are normalized (see (12)), the 
chronoses should be multiplied by root square energy to obtain real ratios of variables in 
phase space.
Typically the most energetic low-order modes are characterized by big structures in topos 
and low-frequency in chronos. However the spectrum ofchronoses is always continuous, 
possibly with peaks. The spectra of toposes are very similar in high-frequency region 
differing in low-frequencies. An example could be seen in Fig. 2

Figure 2: Spectra of 10 lowest chronoses

In Fig. 2 the spectra of the chronoses for frequencies higher than 50 Hz are nearly the 
same, but for lower frequencies differ considerably.
As mentioned before, in the case of periodical or nearly-periodical patterns the energetic 
methods give the low-order modes corresponding to those patterns containing high 
energy. As example see vortex shedding behind circular cylinder data from mathematic 
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simulation [2]. The vorticity distributions in first 4 modes show periodical vortical 
structures development, the basic frequency in the modes 1 and 2, the superharmonics 
in the modes 3 and 4. The even modes are shifted by quarter period relatively to the odd 
ones.

Figure 3: First 4 modes of flow behind circular cylinder

As the example of application of the BOD method on non-stationary data we will show 
results from the decay process of a swirling jet from [29].
The situation is characterized in Fig. 4, where total instantaneous energy of the system 
during the transition process from high-energy compact jet state (“start”) to low-energy 
jet decay state (“finish”) is seen. The transition between the states is covered by pink 
color.

Figure 4: Swirling jet decay – total energy time development

The BOD analysis has been carried out from the whole process 3 velocity components, 
obtaining modes with sets of toposes and chronoses. The three types of modes could be 
recognized: shift, oscillation and random modes. The shift modes are those, which differ 
in energy level during the process substantially. The chronoses show clearly that only the 
first five modes exhibit different behavior in the three flow states (no breakdown, 
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transient, breakdown), the remaining modes are qualitatively state independent. The 
state-sensitive modes contain about 89% of the total kinetic energy; among them shift 
and oscillation modes are identified. Modes 1 to 3 exhibit strong changes during the 
transient state and more or less constant levels at the stationary states (before/after 
transient). In Fig. 5 the first mode – topos and chromos are shown, energy content is 
75 % of the total energy. The mode 2 shows the similar structure as the mode 1.

Figure 5: The 1sttopos and chromos – a typical shift mode

The 4thand 5thmode span the basis for an oscillating mode, as they both show an 
oscillating signal, with the same amplitude and 1/4 period phase shift. They exhibit 
chaotic low intensity fluctuation during the first state and quasi-periodical behavior in the 
final state - see Fig. 6. These oscillation modes are related to the precision of vortex 
breakdown. The energy of 4th mode is no more than about 0.8 % of the total energy.

Figure 6: The 4thtopos and chromos – a typical periodic mode

The typical random modes are characterized by small-grain structures in space
distributed more or less uniformly. The chromos is typically random and stationary in 
statistical sense. There is no qualitative change of the mode during the transition 
process. As an example see the 500th mode in Fig. 7 covering no more then 1.4 10-5 of 
the total kinetic energy.

g
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Figure 7: The 500thtopos and chromos – a typical random mode

5. STATISTICAL (IN)DEPENDENCE

Individual sources of perturbations in turbulent field could be assigned to independent 
time signals detected within the flow-field. Although the POD modes are orthogonal and 
thus uncorrelated, they are not necessarily independent. To decompose the turbulent 
signals into independent components some other method should be used. We suggest 
application of Independent Component Analysis (ICA) method. The ICA has been 
introduced in 80‘s to treat some neurophysiological problems (muscle contraction), while 
from 90’s it is applied in numerous fields of mathematics and physics. ICA is a statistical 
method, its goal is decomposition of a given multivariate data into a sum of statistically 
independent components. The method works with little prior information.
The Proper Orthogonal Decomposition extracts small number of the orthogonal 
components explaining maximal amount of variance possible. Both POD and ICA are 
linear transforms of multivariate data with aim of data compression and/or classification.
The POD is based on second order statistics (correlations), it is orthogonal and provides 
optimal coding in least mean square sense, i.e. it maximizes variance content in the 
components.
The ICA is represented by the higher-order statistics and is related to projection pursuit. 
It is non-orthogonal transformation.
To compare both approaches let us consider the mixed components. The components 
evaluated using the ICA and POD procedures are shown in Fig. 8.

Figure 8: The mixed data decomposition using ICA (a) and POD (b)

a) b)
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The ICA finds the independent components (aka factors, latent variables or sources) by 
maximizing the statistical independence of the estimated components. We may choose 
one of many ways to define independence, and this choice governs the form of the ICA 
algorithms. The two broadest definitions of independence for ICA are minimization of 
mutual information and maximization of non-Gaussianity.
The Non-Gaussianity family of ICA algorithms, motivated by the central limit theorem, 
uses kurtosis and negentropy. The Minimization of Mutual Information family of ICA 
algorithms uses measures like Kullback-Leibler Divergence and Maximum-Entropy.
Let us define the statistical latent variables model first. We observe n linear mixtures 

1,..., nx x of m signals 1,... ms s :

1 1 2 2 ...j j j jm mx a s a s a s� � � � , 1,...j n� (19)

Note, that number of signals and mixtures could be different in general, there are no 
restrictions even for theirs relation, i.e. the n could be equal, larger or even smaller then 
m . All mixtures and independent components are random variables

The starting point for ICA is the very simple assumption that the components is are 

statistically independent. In addition we also assume that the independent components 
must have Non-Gaussian distributions, however we do not assume these distributions 
known. Then, after estimating the matrix A , we can compute its inverse and obtain the 
independent components. In tensor notation we have vectors x , s and matrix A :

� �x A s , 1�� �s A x (20)
ICA is very closely related to the method called Blind Source Separation or Blind Signal 
Separation (BSS). “Blind” means that we know very little, if anything, on the mixing 
matrix, and make little assumptions on the source signals. ICA is one of the methods, 
perhaps the most widely used, for performing blind source separation.
Typical algorithms for ICA use centering, whitening (usually with the eigenvalue 
decomposition), and dimensionality reduction as preprocessing steps in order to simplify 
and reduce the complexity of the problem for the actual iterative algorithm. Whitening 
and dimension reduction can be achieved with POD or similar method. Whitening ensures 
that all dimensions are treated equally a priori before the algorithm is run.
However there are some ambiguities connected with the ICA method. In general, ICA 
cannot identify the actual number of source signals, a uniquely correct ordering of the 
source signals, nor the proper scaling (including sign) of the source signals. It could not 
indicate the components variances as well, because it introduces components 
normalization.
Uruba [28] has used the ICA method to construct independent modes of the dynamical 
system represented by reduced order POD model. The independent modes are linear 
combination of the POD modes, but they are considerably different.

6. STABILITY METHODS

The stability methods are based on modal structures representing temporal or spatial 
linear evolution dynamics. The methods were introduced in climatology to model 
temporal and spatial evolution of meteorological data. A few attempts of the methods 
application in general fluid dynamics has been made (see e.g. [7]). Recently, similar 
method was introduced by DANTEC as Dynamics Mode Decomposition (DMD) method
(see [18]).
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Each stability mode is characterized by a complex frequency involving information on 
frequency, phase and growth/decay. There are several modifications of the method 
involving complex or cyclostationary variants.

6.1.PRINCIPAL OSCILLATION PATTERNS

In general the Principal Oscillation Patterns (POPs) method is very effective for studying 
travelling waves, on the other hand, this is unable to resolve standing oscillations.
The basis of the POPs analysis was formulated by Hasselmann [2] for discrete Markov 
processes in linearized dynamical systems driven by white noise with application in 
climatology. The POPs theory is a special case of more general Principal Interaction 
Patterns (PIPs) method for nonlinear dynamical systems.
In the POPs approach the fluctuating part of Navier-Stokes equation is modeled by 
Langevin equation for the linear Markov process:

� � � � � �
d t

t t
dt

� � �
u

B u� , (21)

where � �tu is vector of velocity fluctuations, B is the deterministic feedback matrix, 

� �t� is noise driving the system which could be interpreted as influence of smaller, 

unresolved scales. The equation (21) is a starting point for both POP and DMD methods, 
however the way of the evaluation of eigenmodes of the operator B differs for the two 
methods. Details on the DMD method see [18].
The noise � �t� in equation (21) forms covariance matrix Q , while the process itself is 

characterized by the covariance matrix � :

;T T� �� �� 	 �� (22)

The Langevin equation (21) is a stochastic differential equation, which could be 
transformed into a Fokker-Planck equation (see [3]). It could be rewritten for time lag �
as followed:

� � � � � � � �,t t t� � �� � � �u G u
 , (23)

whereG is the Green function.

� � � � � � � � 1exp .Tt t� � � �� � �G B u u� (24)

The eigenvalues kg of the Green function G are related to eigenvalues k� of the 

feedback matrix B as follows:

� �expk kg � �� . (25)

The real part of eigenvalues k� characterizes the decay e-fold time ek� of the POP (more 

precisely its reciprocal value), this could be interpreted as the decay rate of our ability to 
predict development of the POPs. This must be negative for stable system. The imaginary
part gives the k -th POPs oscillation frequency kf :

� �
� �Im1

;
Re 2

k

ek k

k

f
�

�
� �

� � � . (26)

The noise matrix Q could be evaluated from the Fokker-Planck equation as well:
T� � �B� �� 	 � . (27)
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The POPs modes are the eigenfunctions of the matrix G and thus they are the 
empirically computed eigenmodes of the system. 
Common eigenvectors form the set of POPs or normal modes. The right eigenvectors rkv

of theG are computed as well as the left eigenvectors lkv ofthe T
G . The left eigenvectors 

are called adjointor associated patterns very often – see e.g. [33]. The eigenvectors 
could be reorganized into modal matrices rv and lv and could be normalized in following 

manner:
T T

r l l r� �v v v v I , (28)

where I is the identity matrix. The diagonal eigenvalue matrix  could be constructed as 

well.
Then, the deterministic feedback matrix B and the Green function G could be formed:

� �;T T

r l r le ��� � 
B v� � � � . (29)

Note that B and Gmatrices are obtained solely from the time series data � �tu . If the 

system is well described by a linear Markov process, then our estimate of G will be 
independent of the choice of � . On the other hand, if nonlinear effects are important, 
then G will vary significantly with � . As long as the linear approach holds, the 
knowledge of the Green function could be used for a short-time forecasting of the system 
behavior using the equation (23) and neglecting the noise.
The matrix G is real non-symmetrical, so eigenvalues � and corresponding 

eigenvectors v are complex and the complex conjugate � � , �
v satisfy the eigenequation 

as well. The complex eigenvectors v are defined only to within arbitrary complex 
normalizationfactors. The modulus of the normalization factors can be specifiedby 
requiring, as usual, that

� �*, 1�v v . (30)

This stillleaves the phase of the normalization factor free.A natural choice of phase angle 
in the complex plane is torequire that the real and imaginary components of the 
complexpattern, respectively, are orthogonal:

� �, 0r i �v v . (31)

In most cases, all eigenvalues are different and the eigenvectors form a linear basis. So 
each state � �tu may be uniquely expressed in terms of the eigenvectors

� � k k

k

t z�u v . (32)

The coefficients of the pairs of conjugate complex eigenvectors are conjugate complex, 
too. Inserting (32) into (23) we find that the coupled system (23) becomes uncoupled, 
yielding n single equations, where n is the dimension of the process � �tu

� � � �1z t z t�� � � � �v v , (33)

so that if � �0 1z � than

� � tz t 	� � �v v . (34)

Then, contribution � �tV of the complex conjugate pair v , �
v to the process � �tu forms 

the POP signal and it is given by

01095-p.14
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� � � � � �t z t z t
�

� � � �� �� �V v v . (35)

The complex quantities could be written as follows

� � � � � �
,

2 .

r i

r i

i

z t z t z t i

� � �

� � �

v v v
(36)

The contribution is

� � � � � � � � � �cos sinr r i i t r it z t z t t t� � �� �� � � � � � � � �� �V v v v v , (37)

where � �exp i� � �� � � for � �0 1z � . The geometric and physical meaning of (37) is that 

between the spatial patterns r v and i v the trajectory � �tV performs a spiral (Fig. 9)

with period 2T � �� and e-folding time � �1 ln� �� � , in the consecutive order

... ...i r i r i r� � �� � � � � �v v v v v v (38)

Figure 9: Time evolution of the POP signal

In Fig. 9 typical evolution the POPs signal is shown for � �0 0r z � and � �0 1i z � . In this 

demonstration (from [17]) the period is 9T � and the e-folding time is 2,8� � .

The pattern coefficients � �z t are given as the dot product of u and adjoin patterns A

jv ,

which are normalized eigenvectors of the matrix T
B :

� � � �T T
A A

j j k j k

k

z z� �v u v v . (39)

To reduce the number of spatial degrees of freedom in some applications, the data are 
subjected to a truncated POD expansion, and the POPs analysis is applied to the vector of 
the first POD coefficients. A positive by-product of this procedure is that noisy 
components can be excluded from the analysis. Then, the covariance matrix has a 
diagonal form.
If there is a priori information that the expected signal is located in a certain frequency 
band, it is often advisable to time-filter the data prior to the POPs analysis. A somewhat 
milder form of focusing on selected time scales is to derive the POD modes from time-
filtered data and then to project the unfiltered data on these modes.
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6.2.PHYSICAL INTERPRETATION OF STABILITY METHODS RESULTS

The eigenvalue characterizing each mode defines frequency and e-folding time. The 
frequency has obvious physical meaning. The e-folding time has to be considered with 
some caution, as noted by von Storch [33]. It represents formally the average time for 
an amplitude of strength 1 to reduce to 1 e . But in the POPs context this time is a 
statistic of the entire time interval, it means that it is derived not only from the episodes 
when the signal is active but also from those times when the signal is weak or even 
absent. As such, the mode will be dampened less quickly as indicated by the e-folding 
time when the mode is active. The other limitation refers to the presence or absence of 
high-frequency variations. If these are filtered out, the e-folding time is lengthened.
Each spatial pattern stability mode POP could be observed in the snapshots series, 
however it could be hidden in other modes occurring simultaneously. In Fig. 10 the 3 
possible spatial modes are depicted schematically. The imaginary and real parts of a POP 
are denoted as P1 and P2 respectively.

Figure 10: 3 types of spatial POP modes

In Fig. 10 the upper two rows show the representation in terms of real and imaginary 
parts P1 and P2. Bottom row shows representation by phases (dashed curve) and 
amplitudes (solid curve).
The 3 types correspond to (a) a linearly propagating wave, (b) a standing wave, and (c) 
a purely rotary wave.
The POPs in Figs. 10 (a) and 10 (c) have the amplitudes shown only if they are 
generated by a uniform phase forcing function. The amplitude distribution in Fig. 10 (c)
has minima at the origin and outside the outer circle. The maximum is shown by the light 
curve. The red arrows indicate the structures movement.

s
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In Figs. 10 (a)the structures propagation rate pU could be calculated from a structure 

displacement s during the half-period 2T or a mode frequency f :

2
2p

s
U sf

T
� � . (40)

The standing wave case in Fig. 10 (b) corresponds to uniformly decaying non-oscillating 
mode, because corresponding eigenvalue is real and thus the mode frequency is 0.
The rotation frequency in Fig. 10 (c) is given by mode frequency, of course.
However, distinguishing oscillatory and non-oscillatory modes in practical cases is not 
straightforward (although the pure real modes are possible). The oscillation of rapidly 
decaying modes is not very explicit. We could define really oscillating modes for example 
as those with decaying amplitude by one order (10-times) during one oscillating period. 
That means that the ratio n of e-fold time e� and oscillating period 1T f� should be 

bigger than 0.43.

e
en f

T

�
�� � . (41)

The modes with smaller n could be termed pseudoperiodical or nearlyaperiodically 
decayingmodes.
As an example we will present the case of dynamics of a boundary layer separation 
presented in details in [25]. In Fig. 11 we see the � spectrum of 25 lowest POPs modes.

Figure 11: The POP spectrum

Then, the frequencies and e-folding times has been calculated and shown in Fig. 12. The 
modes are ordered according to the e-folding times, the biggest first, corresponding to 
the least stable mode (the mode 1).
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Figure 12: The first 10 modes – frequenciesand e-folding times

The mode 1 is aperiodic with e-fold time 330 ms, imaginary part of the modevanishes, 
real part is represented by vortical structures over whole separation region,see Fig. 13.

Figure 13: The 1st POPs

The line represents location of zero mean longitudinal velocity component (the neutral 
line), arrows are velocity fluctuation vectors and color represents vorticity (red – positive, 
blue – negative).
The mode 2 is nearly aperiodic with the e-fold time about138 ms and period about 1.2 s
resulting in the ratio 0.12n � , meaning that during one period the amplitude decays 
down to 0.02 % of initial value. The mode 2 is in Fig. 14.

Figure 14: The 2nd POPs

The first really oscillating mode is the mode 5 with e-fold time 65 ms and frequency 
9.1 Hz. The resulting 0.59n � means the decay ratio of 0.18 during the first period. The 
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mode represents system of vortexpairs travelling along the neutralline, this could be seen 
from the imaginary and realparts in Fig. 15.

Figure 15: The 5th POPs

7. CONCLUSIONS

The energetic methods rely on energetic contents of the modes, which are decorrelated. 
Unfortunately decorrelation does not mean necessarily independence of the modes. In 
reality the structures are not independent and they could be deterministic (e.g. 
periodical). The energetic modes are pulsating by definition. They are able to represent 
only Eulerian structures correctly, however the typical structures are Lagrangian, they 
are convected by the mean stream.
The stability approach offers more physical definition of structures entrained by mean 
flow and forming waves. The traveling modes are characterized by periodical topology 
with decaying amplitude and oscillation period. Those modes are really present in flow 
and could interact with the flow-field and the boundaries. Moreover, the sufficient set of 
the modes could be used for to build the model of the dynamical system, it could be used 
for a short-time forecasting.
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