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DECOMPOSITION OF BIRATIONAL TORIC MAPS IN

BLOW-UPS AND BLOW-DOWNS

JAROS LAW W LODARCZYK

Abstract. We prove that a toric birational map between two complete
smooth toric varieties of the same dimension can be decomposed in a sequence
of equivariant blow-ups and blow-downs along smooth centers.

INTRODUCTION

Two questions, concerning factorization of birational morphisms and maps by
blow-ups along smooth varieties, are of fundamental importance in birational alge-
braic geometry.

Let X ′ and X
′′

be complete algebraic varieties which are birationally equivalent.
(1) Does there exist a third variety X and birational morphisms X −→ X ′, X −→

X
′′

, which are compositions of blow-ups along closed irreducible subvarieties?
(2) Does there exist a sequence of varieties Xi, for i = 0, . . . , n, such that X0 =

X ′, Xn = X
′′

, and Xi+1 is obtained from Xi by a blow-up or blow-down along a
closed irreducible subvariety?

So far an affirmative answer to (1) was given for the surface case by Italian math-
ematicians (see for instance [3]). In higher dimensions nothing in general is known,
except the famous Hironaka’s theorem on elimination of points of indeter-
minacy, which states that for any pair X ′, X

′′
of birationally equivalent complete

complex algebraic varieties there is a finite sequence of blow-ups in smooth closed
irreducible subvarieties X −→ X ′, such that there exists a birational morphism
g : X −→ X

′′
[5].

The present work gives a positive answer to (2) in the case of smooth toric
varieties. The toric version of question (2) appears in [7] and [8], and is called the
weak Oda conjecture. So far the conjecture has been solved by Danilov in the case
when the dimension is ≤ 3 [2]. There is a theorem due to M.Reid in [9], closely
related to the above problem, which shows a way of breaking down a birational toric
morphism of varieties with mild singularities into elementary steps. The elementary
steps, however, are more complicated than blow-ups and blow-downs.

Toric varieties have proven their value as a testing ground for investigating bi-
rational morphisms and maps. (See for instance [6], [9].) The behaviour of toric
varieties permits us to understand, at least partially, the general picture of arbitrary
algebraic varieties. On the other hand, the combinatorial theorems obtained here
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374 JAROS LAW W LODARCZYK

can be directly applied to a larger class of objects, such as toroidal embeddings [6]
or spherical spaces.

The present paper is divided into 3 parts. In the preliminaries we introduce the
main notions of fan theory. Then, using the fan language, we formulate the main
combinatorial theorem of the paper (Theorem A). In Part 1 we talk about general
properies of complexes. We introduce basic definitions and notation used through
the whole paper. In Part 2 we prove the main theorem for simplicial complexes
(Theorem 8.1). Then we associate to any simplicial fan a simplicial complex and
deduce from Theorem 8.1 the simplicial case of Theorem A. In Part 3 we deal
with complexes equipped with some integral structure, corresponding to the lattice
structure on the fan. We also complete the proof of Theorem A.

I would like to thank Professors A. Bia lynicki-Birula J. Jurkiewicz and J.
Wísniewski for advice and help.

After this paper was submitted for publication I learned that a similar result
was obtained by Robert Morelli.

0. PRELIMINARIES

0. Fans: Basic Properties and Notations.

Formulation of the Main Theorem in the Fan Language

We recall briefly the notation from the theory of fans. Fix the rational vector
space Qn, containing the lattice Zn.

For any vectors (vi), i = 1, . . . , k, in Qn by 〈v1, . . . , vk〉 we shall denote the cone
spanned by these vectors.

By a fan we shall understand the finite set Σ of convex cones in Qn provided:

1. Every cone δ ∈ Σ can be written in the form δ = 〈e1, . . . ek〉, where ei ∈ Zn ⊂
Qn.

2. Every face τ of a cone δ ∈ Σ belongs to Σ.
3. Cones are adjacent along their faces.
4. {0} ∈ Σ.

A fan Σ is regular iff every cone δ ∈ Σ can be represented in the form δ =
〈e1, . . . , ek〉, where {ei} is a subset of a basis of Zn. A fan is simplicial iff every
cone belonging to it is simplicial. A support of a fan Σ is the set |Σ| =

⋃
δ∈Σ δ. A

decomposition of a fan Σ is another fan Σ′ such that |Σ| = |Σ′| and ∀δ′∈Σ′∃δ∈Σδ
′ ⊂ δ.

A decomposition Σ′ of a fan Σ is regular iff it is a decomposition and a regular fan.
A fan Σ in Qn is complete if |Σ| = Qn.

There is a bijection between the fans in Qn ⊃ Zn and the normal torus embed-
dings of the n-dimensional torus T [8, Theorem 1.4]. In the above correspondence
the decompositions are associated with the T -equivariant proper morphisms (identi-
cal on T ) [8, Corollary 1.17]. The regular fans are associated with the smooth torus
embeddings [8, Theorem 1.10], and the simplicial fans are in correspondence with
the Q-factorial embeddings ([9]). The complete fans correspond to the complete
torus embeddings [8, Theorem 1.11] (see also [2], [6], [7]).

Let Σ be a fan in Qn. Let v be any vector in Qn. By the blow-up at the ray
〈v〉 we mean the decomposition which changes every cone δ of Σ containing 〈v〉 to
the set of the convex hulls σ+ v, where σ is a face of δ which does not contain 〈v〉.
The inverse transformation will be called a blow-down. We shall say that a blow-up
is regular iff both fans, i.e. before the blow-up and after the blow-up, are regular.
The inverse transformation of a regular blow-up is called a regular blow-down.
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Assume that Σ is a regular fan. One can show that a blow-up at the primitive
vector v is regular iff vector v can be written in the form v = b1 + . . .+ bk for some
cone δ ∈ Σ such that δ = 〈b1, . . . , bk〉, where bi , i = 1, . . . , k , is a subset of a basis
of Zn [8, Proposition 1.26].

In the above mentioned correspondence blow-ups are associated with some blow-
ups along T -equivariant subshemes (which can be non-reduced). The regular blow-
ups are in 1− 1 correspondence with the blow-ups along closed T -equivariant sub-
manifolds.

The main theorem of this paper is the following:

Theorem A. Let Σ′, Σ
′′

be two fans in Qn, such that |Σ′| = |Σ′′ |. Assume that

Σ′, Σ
′′

” are regular (resp. simplicial). Then there is a sequence of regular (resp.

simplicial) fans Σi for i = 0, . . . , n, such that Σ0 = Σ′, Σn = Σ
′′

and each Σi is
obtained from Σi−1 by a blow-up or blow-down for i = 1, . . . , n (which is regular if
Σ′ and Σ′′ are regular).

We prove this theorem for simplicial fans in Part 2, and for regular fans in Part
3. Via the correspondence between fans and torus embeddings we can deduce from
this theorem the following result.

Theorem B. Let X ′ and X
′′

be smooth embeddings of torus T . Assume that either

i) X ′, X
′′

are complete

or

ii) there is an equivariant proper morphism Φ : X ′ −→ X
′′

.

Then there exists a sequence of smooth torus embeddings Xi, for i = 0, . . . , n, such
that X0 = X ′, Xn = X

′′
, and Xi+1 is obtained from Xi by a T -equivariant blow-up

or blow-down along a closed smooth T -equivariant irreducible subvariety.

PART I

1. Complexes. Basic Properties and Notations

We will consider in this work geometric objects of the affine space Qn ⊂ Rn,
where Q is the set of the rational numbers in R.

We adopt all of the definitions and notations from the theory of convex bodies
and complexes in affine real space to the case of the field Q. Thus we are going
to use the standard notions like simplex, polytope, vertex, face, convex hull (conv),
affine hull (aff), relative interior (int), relative boundary (∂), of the polytopes. (For
the definitions see [4].)

By ∆(A0, . . . , An) we shall denote the simplex with vertices A0, . . . , An. By P =
conv(A0, . . . , An) we mean the polytope which is a convex hull of points A0, . . . , An.
By aff(X) we denote the affine hull of a set X . In particular aff(A0, . . . , An) denote
the affine hull of the points A0, . . . , An.

By a complex in Qd, we understand here a finite family C of polytopes in Qd

such that:

i) every face of member of C is itself a member of C, and
ii) the intersection of any two members of C is a face of each of them.

We shall call a member of a complex C a face of C. A complex C will be called
simplicial provided all its members are simplices. By a subcomplex C′ of C we will
understand a subset of C satisfying property i) from the above definition. By the
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support of a complex C we mean the set |C| =
⋃

P∈C P. By a subdivision of a
complex C we shall mean another complex C′ provided:

i) for every face there exists a face ρ′ ∈ C′ of C such that ρ′ ⊂ ρ and
ii) |C′| = |C|.
We shall say that a subdivision C′ of C is proper if the set of vertices of C equals

the set of vertices of C′ : vert(C′) = vert(C). By a triangulation of C we mean a
subdivision which is a simplicial complex. By a proper triangulation we shall mean
a triangulation which is simultaneously a proper subdivision.

Consider a complex C, its subdivision S, and a subcomplex L of C. It is clear
that S determines a subdivision of L, which will be called a restriction of S to L
and denoted by S|L.

We say that a face of a complex is maximal iff it is maximal with respect to the
relation of face. For a complex C denote by Cmax the set of maximal faces of C.
Note that Cmax completely determines C.

Let C be a complex, and P a face in C. The star of P in C is the set Star(P; C),
of all faces of C containing P. We denote by CompStar(P; C) the complex deter-
mined by Star(P; C). The antistar Ast(P; C) of P in C is the complex consisting of
all faces of C which are disjoint from int P. Note that Star(P; C)∪Ast(P; C) = C.

By a complex pair or simply a pair (C; Ω), we understand a pair consisting of a
complex C, and a finite subset Ω of |C|. We will call Ω the set of added vertices .
We define a set of vertices of the pair (C; Ω) as the set vert(C; Ω) := vert C∪Ω. By
a triangulation (or resp., a subdivision) of the pair (C; Ω) we mean a triangulation
T (resp. subdivision T) of the complex C such that vertT = vert(C; Ω). For
example a triangulation of the pair (C; ∅) is just a proper triangulation.

By a polytope (resp. a simplex ) of the pair (C; Ω) we mean any polytope P (resp.,
simplex P) such that P is contained in some face of C and vert P = vert(C; Ω)∩P.

2. Blow-Ups and Elementary Transformations

By the blow-up of a complex K at a point P ∈ |K| we mean a subdivision of K
which is obtained from K by replacing any polytope P ∈ K containing P by the
set of convex hulls of P and all faces of P which do not contain P . By the blow-up
of a complex K at a point P 6∈ |K| we mean the complex K.

The inverse transformation to a blow-up is called a blow-down.
We denote the blow-up of a complex K at P by K(P ). Note that if K is sim-

plicial then K(P ) is also. By K(P1...Pn) we mean succesive blow-ups of K at points
P1 . . . , Pn i.e.

K(P1...Pn) =
(
(K(P1)

)
. . . )(Pn)

We call K(P1...Pn) a blow-up of K at the sequence of points P1 . . . , Pn .

Definition 2.1. By a basic polytope PB = conv(A0, ..., An; B0, . . . , Bm), where
n,m ≥ 1, we mean an n+m-dimensional polytope conv(A0, . . . , An, B0, . . . , Bm),
in Qk, such that

n∑
i=0

aiAj =
m∑
j=0

bjBj for some ai, bj > 0;
n∑
i=0

ai =
m∑
j=0

bj = 1.(1)

By an elementary polytope

PE = conv(A0, . . . , An; B0, . . . , Bm : C1, . . . , Cr)
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we mean an (n+m+ r)-dimensional polytope

conv
(
A0, . . . , An, B0, . . . , Bm, C1, . . . , Cr

)
, where n ≥ 1, m ≥ 1,

such that:
n∑
i=0

aiAi =
m∑
j=0

bjBj for some ai, bi > 0;
n∑
i=0

ai =
m∑
j=0

bj = 1.(1′)

Example 1.

Q
Q
Q
Q

�
�
�
�Q
Q
Q
Q

�
�
�
�

p
p

p
pA0

B0

B1

A1

Note that (1) (or (1′)) is the only relation in the set of vertices of the basic
(or elementary) polytope. Let us call each proper triangulation of a basic or an
elementary polytope a canonical triangulation.

Lemma 2.2. Each basic polytope PB = conv(A0, . . . , An;B0, . . . , Bm) (or ele-
mentary polytope PE = conv(A0, . . . , An;B0, . . . , Bm : C1, . . . , Cr)) has exactly
two canonical triangulations. These are A and B, such that

Amax =
{

∆(A0, . . . , An, B0, . . . , B̌i, . . . , Bm) : i = 0, . . . ,m
}
,

Bmax =
{

∆(A0, . . . , Ǎj , . . . , An, B0, . . . , Bm) : j = 0, . . . , n
}
,

or respectively

Amax = {∆(A0, . . . , An, B0, . . . , B̌i, . . . , Bm, C1, . . . , Cr)}i=0,... ,m,

Bmax = {∆(A0, . . . , Ǎj , . . . , An B0, . . . , Bm, C1, . . . , Cr)}j=0... ,n.

Example 2.
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Q
Q

�
�
�
�Q
Q
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B1

A1

Proof. It suffices to consider the case of a basic polytope. First note that A =
PB

(Ai) for any Ai, and B = PB
(Bi) for any Bj . Thus A and B are in fact

triangulations.
Now note that every n + m-dimensional simplex of a proper triangulation is a

simplex of Amax or Bmax. On the other hand each simplex from Amax has the
face ∆(A0, . . . , An), and each simplex from Bmax has the face ∆(B0, . . . , Bm).
The face ∆(A0, . . . , An) intersects ∆(B0, . . . , Bm) at P . Thus there cannot be a
triangulation which contain simplices of Amax and Bmax.
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The basic polytope PB = conv(A0, . . . , An;B0, . . . , Bm), as is easily seen, is a
face of the elementary polytope PE = conv(A0, . . . , An;B0, . . . , Bm;C1, . . . , Cr).
Triangulations A, B of PB determine triangulations A, B of PE .

Definition 2.3. Let K be a complex.

(a) An elementary subdivision of K is any subdivision SE , such that:
- there is a basic polytope PB which is a face of SE ,
- every face belonging to Star(PB; SE) is an elementary polytope, and
- every face belonging to Ast(PB; SE) is a simplex.

(b) The complex CB = CompStar(PB; SE) is called the basic complex of the
elementary subdivision.

(c) Any proper triangulation of an elementary subdivision SE is called a canonical
triangulation.

By Lemma 2.2. there are exactly two canonical triangulations of SE , which
differ only on CompStar(PB ; SE), where they are induced by the canonical
triangulations of PB.

(d) An elementary transformation of an elementary subdivision changes one of its
canonical triangulations to the other. We then say that the two triangulations
differ by an elementary transformation .

(e) Two triangulations are elementarily equivalent or el-equivalent iff one of them
can be obtained from the other by a sequence of elementary transformations.

From the definitions we deduce that an elementary subdivision determines the
two inverse elementary transformations and, conversely, any elementary transfor-
mation uniquely determines an elementary subdivision. Thus we will talk about the
basic polytopes and canonical triangulations of elementary transformations instead
of the basic polytopes and canonical triangulations of elementary subdivisions.

Definition 2.4. Let K be a complex, and let T0, T1 denote two triangulations.
We call these triangulations equivalent if one of them can be obtained from the
other by a sequence of blow-ups and blow-downs.

Proposition 2.5. Let K be a complex and let T0, T1 be two triangulations. As-
sume that T0 and T1 are el-equivalent. Then they are equivalent.

Proof. It suffices to show that any elementary transformation can be obtained by
a blow-up and a blow-down.

Let CB be the basic complex of our elementary transformation. By definition:

CB
max = {conv(A0, . . . , An;B0, . . . , Bm : Ci1, . . . , C

i
m(i)); i ∈ I}.

Triangulations T0 and T1 coincide outside CB . Their restrictions to CB are two
canonical triangulations A, B such that:

Amax =
{

∆(A0, . . . , An, B0, . . . , B̌j , . . . , Bm, C
i
1, . . . , C

i
m(i)),

j = 0, . . . ,m, i ∈ I} ,
Bmax =

{
∆(A0, . . . , Ǎj , . . . , An, B0, . . . , Bm, C

i
1, . . . , C

i
m(i)),

j = 0, . . . , n, i ∈ I} .
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Assume that T0 on CB is A, and T1 on CB is B. Let P := ∆(A0, . . . , An) ∩
∆(B0, . . . , Bm). Then T0(P ) and T1(P ) coincide outside CB. On CB both equal

{∆(A0, . . . , Ǎr, . . . , An, B0, . . . , B̌j , . . . , Bm, C
i
1, . . . , C

i
m(i), P )

j = 0, . . . ,m, r = 0, . . . , n, i ∈ I}.
Consequently we can obtain T0 from T1 by blowing up at P , and then blowing
down at P .

3. Inducing Triangulations of a Complex

by Triangulations of a Subcomplex.

Let P = conv(A0, . . . , Ak, B0, . . . , Bm) be a polytope such that each Bi is
affinely independent of {A0, . . . , Ak, B0, . . . , Bm} \ {Bi}. In particular, the poly-
tope P′ = conv(A0, . . . , Ak) is a face of P. Let S be a subdivision of P′. Then S
determines a subdivision P(S) of P such that P(S)max = {conv(∆, B0, . . . , Bm) :
∆ ∈ Smax}.

We say that a complex K is simplicial with respect to its subcomplex R (or
simplicial w.r.t. R) iff :

a) for every face k ∈K, k′ = k ∩ |R| is a common face of k and R, and
b) for every face k ∈K, each vertex P in vert(k)\vert(k′) is affinely independent

of the set vert(k) \ {P}.

Examples. A simplicial complex is simplicial w.r.t. any of its faces. Elementary
subdivision is simplicial w.r.t. its basic polytope, elementary polytope.

Assume that C is simplicial w.r.t. its subcomplex L. Then any subdivision T
of L determines the subdivision C(T) of C such that for a polytope P ∈ C

C(T)|P = P
(
T|(|L|∩P)

)
.

The statements below follow easily from the definitions.

Proposition 3.1. If T is a triangulation of L then C(T) is also a triangulation
of C (with the previous assumptions). 2

Proposition 3.2. Assume that C is simplicial w.r.t. L. Let P be a subdivision
of L, and R be a subdivision of P, proper or not. Then C(R) is a subdivision of
C(P), respectively proper or not.

Proposition 3.3. Assume that C is simplicial w.r.t. L and let R be any subdivi-
sion of L. Then C(R) is simplicial w.r.t. R.

Proposition 3.4. Assume that C is simplicial w.r.t. L, and let R be an elemen-
tary subdivision of L. Then C(R) is an elementary subdivision of C. 2

Corollary 3.5. Let C be a complex simplicial w.r.t. its subcomplex L. Let T0, T1

be two triangulations of L.

a) If T0, T1 differ by an elementary transformation, then C(T0), C(T1) do
also.

b) If T0, T1 are el-equivalent, then so are C(T0), C(T1).

Proof. Apply Proposition 3.2 to Proposition 3.4.

Proposition 3.6. Assume that C is simplicial w.r.t. L, and S is a subdivision of
L. Let W ∈ |L|. Then C(S)(W ) = C(S(W)). 2
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Proposition 3.7. Let C be simplicial w.r.t. L. Let T0, T1 be two equivalent
triangulations of L. Then C(T0) and C(T1) are also equivalent. 2

Proposition 3.8. Let C be simplicial w.r.t. L. Let R0, R1 be two subdivisions
of L. Then P is a common polytope of C(R0) and C(R1) iff P ∩ L is a common
polytope of R0 and R1.

PART 2

4. El-Equivalence of Some Triangulations

This section is devoted to the proof of the following proposition:

Proposition 4. A. Let ∆ be a simplex. Let P,Q ∈ ∆. Assume no proper face of
∆ contains both P and Q. Then ∆(P,Q) and ∆(Q,P ) are el-equivalent, and the
elementary transformations realizing the above el-equivalence do not change
the triangulations on the relative boundary of ∆.

B. Let A,B be the two canonical triangulations of the basic polytope

PB = conv(A0, ..., An ; B0, . . . , Bm).

Let Q ∈ PB. Then A(Q) is el-equivalent to B(Q), and the transformations
realizing the el-equivalence do not change the triangulations on the boundary.

C. Let A,B be the two canonical triangulations of an elementary polytope PE.
Let Q ∈ PE\PB. Then A(Q) is el-equivalent to B(Q), and the transformations
realizing the el-equivalence do not change the triangulations on the boundary.

Lemma 4.0. Let C be a complex in Qn and T be a triangulation. Let PB be a
basic polytope and let {PE

i : i ∈ I} be a set of elementary polytopes with the same
basic polytope PB, such that:

1. For each PE
i one of its canonical triangulations is a subcomplex of T.

2. The triangulation B of the basic polytope

PB = conv (A0, . . . , An ;B0, . . . , Bm)

is a subcomplex of T. Then β = ∆(B0, . . . , Bm) is a simplex of T and for
each α in Star(β; T) there is PE

i such that α ⊂ PE
i

Then the set S of all faces of polytopes in Ast(β; T) ∪ {PE
i; i ∈ I} is an el-

ementary subdivision of C, and T is one of the canonical triangulations of this
subdivision.

Proof of Lemma 4.0. PE
i ∩ PE

j = |T|PE
i
∩ T|PE

j
|. Hence PE

i ∩ PE
j is a union

of simplices δ ∈ T|PEi ∩ T|PEj . From the definition of an elementary polytope it

follows that if δ ∈ T|PEi where T is a canonical triangulation, then conv(δ; PB) is

a face of PE
i. Thus PE

i ∩PE
j is a union of common faces conv(δ; PB), and since

it is a convex set it must be a single common face of PE
i and PE

j .
Analogously if σ ∈ Ast(β; T) then PE

i ∩ σ is a union of common faces δ of T|PEi
and σ. Each such δ ∈ T|PEi that does not contain β is a face of PE

i . Thus PE
i ∩σ is

a union of common faces of PE
i and σ, and hence by convexity is a single common

face.
Finally, any two faces of Ast(β; T) ∪ {PE

i : i ∈ I} are adjacent along their faces.
Moreover by property 2 we have that |Ast(β; T) ∪ {PE

i : i ∈ I}| = |C|.
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Let (P ; Ω) be a pair, where P is a polytope and Ω is the set of added vertices.
Let V := vert(P ; Ω). We can represent any subdivision of this pair by the set of
its maximal polytopes. On the other hand each polytope of such a subdivision
can be represented as the set of its vertices, which is a subset of V . Let SET(V )
denote the set of all subsets of V and SET2(V ) denote the set of all the subsets of
SET(V ). Thus each subdivision of the considered pair determines a unique element
of SET2(V ).

It follows that we can take set-theoretical unions and differences in SET2(V ).
We introduce multiplication in SET2(V ) : β0β1 =

{
αi ∪ γj : αi ∈ β0, γj ∈ β1

}
.

Every α ∈ SET(V ) determines the element {α} from SET2(V ). Every nonempty
element α ∈ SET(V ) determines the element 〈α〉 ∈ SET2(V ) given by 〈α〉 := the
set of all (card(α) − 1) subsets of α.

In particular we have the following properties.

1. If α, β ∈ SET(V ) andα ∩ β = ∅ , then {α ∪ β} = {α}{β}.
2. If α, β ∈ SET(V ) andα ∩ β = ∅ , then 〈α ∪ β〉 = 〈α〉{β} ∪ {α}〈β〉.
3. If α, β, γ ∈ SET2(V ), then α(β ∪ γ) = αβ ∪ αγ.

We shall use these operations and notations in representing triangulations as
elements of SET2(V ).

Further, for α ∈ SET(V ) denote by ∆(α) and conv(α) the simplex and the
polytope, respectively, spanned by elements belonging to α. For α ∈ SET2(V ), by
conv(α) we mean {conv(α′) : α′ ∈ α}

Example 1. Let Q ∈ ∆ = ∆(A0, . . . , An). Then the triangulation ∆(Q) is de-

scribed by 〈{A0, . . . , An}〉{{Q}} in SET2(V ).

Example 2. Let PB = conv(A0, . . . , An;B0, . . . , Bm) be a basic polytope. Then

A = {{A0, . . . , An}}〈{B0, . . . , Bm}〉 ∈ SET2(V ),

B = 〈{A0, . . . , An}〉{{B0, . . . , Bm}} ∈ SET2(V ).

Proof of Proposition 4A. Consider a pair (∆; {P,Q}), where P,Q ∈ ∆. Let ∆ =
∆(A0, . . . , An). Choose the increasing sequence (i0, . . . , ik) in {0, . . . , n} such that
for all j = 0, ..., n there are nonnegative pj, qj such that pj/qj ≥ pj+1/qj+1, with
strict inequality for j = il for some l = 0, ..., k. We put also i−1 = −1. Since P and
Q are not contained in any proper face of ∆, we never have pj = qj = 0. Hence
qj/pj is always a well defined number from [0,+∞].

Define P := {P} , Q := {Q} , Aj := {Al : ij−1 < l ≤ ij} ∈ SET(V ), j =
0, . . . , k. Consider 4 cases.

• (0, 0) Q,P ∈ int ∆.
• (0, P ) Q ∈ int ∆, P ∈ ∂∆.
• (Q, 0) Q ∈ ∂∆, P ∈ int ∆.
• (Q,P ) Q,P ∈ ∂∆.

In the cases (*,0), i.e. P ∈ int ∆, we have ∆(P ) max = {∆(A0, . . . , Ǎi, . . . , An, P ) :
i = 0, . . . , n}. (Here (*,0) means (0,0) and (Q, 0).) Using our new notation we can
write

∆(P ) = 〈A0, . . . , Ak〉 {P} ∈ SET2(V )

In the cases (*, P ), i.e. P ∈ ∂∆, we have q0/p0 = ... = qi0/pi0 = ∞, and so
P ∈ int ∆(A1 ∪ . . . ∪ Ak). Thus we have ∆(P ) max = {∆(A0, . . . , Ǎi, . . . , An, P ) :
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i = i0 + 1, . . . , n}. We can write it as follows:

∆(P ) = {A0} 〈A1, . . . , Ak〉 {P}

or

∆(P ) = 〈A0, . . . , Ak〉 {P} \ 〈A0〉{A1 ∪ . . . ∪Ak} ∈ SET2(V ).

Thus in all the cases we have:

∆(P ) = 〈A0, . . . , Ak〉 {P} \ δP 〈A0〉{A1 ∪ . . . ∪Ak} ∈ SET2(V ),

where

δP =

{
0 in the cases (*, 0),
1 in the cases (*, P ).

In the cases (0,*), i.e. Q ∈ int ∆, we have Q ∈ int ∆(A0 ∪ . . . Ak−1 ∪ P ). Indeed

Q =
n∑
i=0

qiAi and P =
n∑
i=0

piAi.

Then

Q =
n∑
i=0

qiAi + (qik/pik)(P −
n∑
i=0

piAi)

=
n∑
i=0

(qi − (qik/pik)pi)Ai + (qik/pik) P.

Here qi 6= 0 since Q ∈ int∆ , qi ≥ qi − (qik/pik)pi ≥ 0; if qi/pi = qik/pik then that
coefficient is zero.

In the cases (Q, *), i.e. Q ∈ ∂∆, we have qik−1+1/pik−1+1 = ... = qik/pik = 0
and Q ∈ int ∆(A0 ∪ . . . ∪Ak−1).

The triangulation ∆(P,Q) is obtained by replacing in ∆(P ) all simplices containing
Q by the convex hulls of Q and their faces which do not contain Q.

In all the considered cases the set of all maximal simplices of ∆(P ) containing Q
is the following:

{A0 ∪ . . . ∪Ak−1}〈Ak〉 {P}.
In the cases (0,*) we replace this set by

〈A0 ∪ . . . ∪Ak−1〉〈Ak〉{P} {Q} ∪ {A0 ∪ . . . ∪Ak−1} 〈Ak〉 {Q}.

In the cases (Q, *) we replace it by

〈A0 ∪ . . . ∪Ak−1〉〈Ak〉{P} {Q}.

By the above

∆(P,Q) = 〈A0 ∪ . . . ∪Ak−1〉 {Ak} {P}
∪ 〈A0 ∪ . . . ∪Ak−1〉 〈Ak〉 {P} {Q}
∪ {A0 ∪ . . . ∪Ak−1} 〈Ak〉 {Q}
\ δP 〈A0〉{A1 ∪ . . . ∪Ak} {P} \ δQ {A0 ∪ . . . ∪Ak−1} 〈Ak〉{Q},

where

δQ =

{
0 in the cases (0,*),
1 in the cases (Q, *).
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By symmetry we have

∆(Q,P ) = 〈A0〉 {A1 ∪ . . . ∪Ak} {P}
∪ 〈A0〉 〈A1 ∪ . . . ∪Ak〉 {P} {Q}
∪ {A0} 〈A1 . . . ∪Ak〉 {Q}
\ δP 〈A0〉 {A1 ∪ . . . ∪Ak} {P} \ δQ{A0 ∪ . . . ∪Ak−1} 〈Ak〉 {Q}.

Lemma 4.1. For s = 0, . . . , k − 1 define:

Ts := 〈A0 ∪ . . . ∪As〉 {As+1 ∪ . . . ∪Ak} {P}
∪ 〈A0 ∪ . . . ∪As〉 〈As+1 ∪ . . . ∪Ak〉 {P} {Q}
∪ {A0 ∪ . . . ∪As} 〈As+1 ∪ . . . ∪Ak〉{Q}
\ δP 〈A0〉{A1 ∪ . . . ∪Ak} {P} \ δQ{A0 ∪ . . . ∪Ak−1} 〈Ak〉 {Q}.

Then Ts is a triangulation; T0 = ∆(Q,P ) and Tk−1 = ∆(P,Q). Moreover Ts

differs from Ts+1 by an elementary transformation for s = 0, . . . , k − 2.

Proof. We use induction on s.
Assume that Ts is a triangulation. We have to show that Ts+1 is a triangulation

which differs from Ts by an elementary transformation.

Lemma 4.1.1. For s = 0, . . . , k − 1 the set

PB
s := conv(A0 ∪ . . . ∪As ∪ P ;As+2 ∪ . . . ∪Ak ∪Q)

is a basic polytope.

Proof. Recall that Q =
∑n
i=0 qiAi and P =

∑n
i=0 piAi; then

Q =
n∑
i=0

qiAi + (qis+1/pis+1)(P −
n∑
i=0

piAi)

=
n∑
i=0

(qi − (qis+1/pis+1)pi)Ai + (qis+1/pis+1) P.

Note that terms in is+1 have coefficient 0. Hence we have

Q +
n∑

i=is+1+1

(qis+1/pis+1 − qi/pi)piAi

= (qis+1/pis+1)P +
is∑
i=0

((qi/pi − qis+1/pis+1)piAi.

All coefficients in the above equality are positive. The sum of the LHS coefficients
equals the sum of the RHS coefficients since we subtruct or add the same coefficients
in both sides of the first equality. Therefore we can scale by that sum and get
the relation in a basic polytope. On the other hand Q is independent of the set
(A0 ∪ . . . ∪ As−1 ∪ As+1 ∪ . . . ∪ Ak) since qi 6= 0 for all i ≤ ik−1. Hence the
above relation is the unique relation in the given polytope, which must be a basic
polytope.

Lemma 4.1.2. PEs = conv({A0 ∪ . . .∪As ∪P ; As+2 ∪ . . .∪Ak ∪Q} : 〈As+1〉) for
s = 0, . . . , k − 2 is a set of maximal elementary polytopes such that:

(i) All of the elementary polytopes have the same basic polytope PBs .
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(ii) For every polytope P′ = conv(A0 ∪ . . .∪As ∪P ; As+2 ∪ . . . Ak ∪Q : ∗) in PEs
(∗ is an element of 〈As+1〉) the canonical triangulation

〈A0 ∪ . . . ∪As ∪ P 〉{As+2 ∪ . . . ∪Ak ∪Q}{∗}
of P′ is a subcomplex of Ts.

(iii) For any polytope α belonging to Star({As+2 ∪ . . .∪Ak ∪Q} : Ts} there exists

a polytope P′ ∈ PEs such that α ⊂ P′.

Proof. Let P′ = conv(A0 ∪ . . . ∪ As ∪ P ; As+2 ∪ . . . ∪ Ak ∪ Q : ∗) be a polytope

in PEs . Note that Q is not in the face conv(A0 ∪ . . . ∪As ∪As+2 ∪ . . . ∪Ak ∪ ∗) of
∆, since qi 6= 0 for all is−1 + 1 ≤ i ≤ is. Therefore Q is independent of the set of
vertices of conv(A0 ∪ . . . ∪ As ∪ As+2 ∪ . . . ∪ Ak ∪ ∗). Hence there is the only one
relation on the set of vertices of P′. By the previous lemma P′ is an elementary
polytope with the basic polytope PB

s .
(ii) follows from the fact that

〈A0 ∪ . . . ∪As ∪ P 〉 {As+2 ∪ . . . Ak ∪Q} 〈As+1〉
= {A0 ∪ . . . ∪As} 〈As+1〉 {As+2 ∪ . . . ∪Ak} {Q}
∪ 〈A0 ∪ . . . ∪As〉 〈As+1〉 {As+2 ∪ . . . ∪Ak} {P} {Q}

is a subset of Ts.
(iii) can be deduced from the fact that

Star({As+2 ∪ . . . ∪Ak ∪Q} ; Ts)

= 〈A0 ∪ . . . ∪As ∪ P 〉 〈As+1〉 {As+2 ∪ . . . ∪Ak} {Q}
⊂ conv(A0 ∪ . . . ∪As ∪As+2 ∪ . . . ∪Ak ∪ P ∪Q)〈As+1〉.

By Lemmas 4.0 and 4.1.2 and since Ts is a triangulation, we get that the set
PEs determines an elementary transformation. It changes the set

〈A0 ∪ . . . ∪As ∪ P 〉 {As+2∪ . . .∪Ak ∪Q} 〈As+1〉 ⊂ Ts

into a set {A0∪ . . .∪As ∪P} 〈As+2∪ . . .∪Ak ∪Q〉 〈As+1〉 ⊂ Ts+1, and transforms
the triangulation Ts into Ts+1. In particular the set Ts+1 is a triangulation.

Lemma 4.1 is proved.

To complete the proof of Proposition 4A, note that all the considered triangula-
tions restricted to ∂∆ are equal to ∂∆(P,Q).

Corollary 4.1.3. Each basic polytope in the above elementary equivalence is of the
form

(PB)′ = conv(Ai1 , . . . , Aih , P ;Aih+1
, . . . , Aig , Q)

for some subset {i1, . . . , ig} ⊂ {1, . . . , n} where 0 ≤ h < g.

Proof of Proposition 4B. Pair (PB; {Q}), where PB is a basic polytope and Q ∈
PB.

Consider two projections resp. on the affine space aff(A0, . . . , An) in direction
aff(B0, . . . , Bm) and vice versa. Let r0, r1 be their restriction to PB. We have

r0 : PB −→ ∆(A0, . . . , An),
r1 : PB −→ ∆(B0, . . . , Bm),

r0(
∑
aiAi +

∑
bjBj) =

∑
aiAi + (

∑
bi)P,

ri(
∑
aiAi +

∑
bjBj) = (

∑
ai)P +

∑
biBi,
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where P := ∆(A0, . . . , An) ∩∆(B0, . . . , Bm).
Denote r0(Q) by Q0, and r1(Q) by Q1. For the pairs (∆(A0, . . . , An) : {Q0, P});

(∆(B0, . . . , Bm) : {Qi, P}) choose notations as in the previous case: A :=
{A0, . . . , An} = A0∪ . . .∪Al and B := {B0, . . . , Bm} = B0∪ . . .∪Bd. Set Q :=
{Q}; and P := {P}

We shall represent triangulations of the pair (PB;P ) as elements of SET 2(V ),
where V = {A0, . . . , An, B0, . . . , Bm, Q}. For instance B = 〈A〉{B}.

If P = Q then A(Q) = B(Q) = 〈A〉〈B〉{Q}, and we are done. Assume P 6= Q.
Consider the following cases.

1. Q 6∈ ∂PB : (a) Q 6∈ ∆(B0, . . . , Bm),

(b) Q ∈ int ∆(B0, . . . , Bm);

2. Q ∈ ∂PB : (a) Q ∈ ∂∆(B0, . . . , Bm),

(b) Q ∈ ∂∆(A0, . . . , An),

(c) Q ∈ ∂PB \ ∂∆(B0, . . . , Bm) \ ∂∆(A0, . . . , An).

Case 1a. We then haveQ ∈ int ∆(B0, . . . , Bm, Ai0 , . . . , Aip) for some i0, . . . , ip.
Then Q0 ∈ int ∆(P,Ai0 , . . . , Aip) = int ∆(P ,A0∪ . . .∪Al−1) (as in the (0,*) case).
Hence {Ai0 , . . . , Aip} = A0∪ . . .∪Al−1. Finally, Q ∈ int ∆(B,A0∪ . . .∪Al−1). We
obtain B(Q) from B = 〈A〉 {B} by replacing

{B ∪A0∪ . . .∪Al−1}〈Al〉

with

〈A0∪ . . .∪Al−1 ∪B〉〈Al〉{Q}
= 〈A0∪ . . .∪Al−1〉〈Al〉 {B} {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉〈B〉 {Q}.

Hence

B(Q) = 〈A0∪ . . .∪Al−1〉{Al}{B} ∪ 〈A0∪ . . .∪Al−1〉 〈Al〉 {B} {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉 〈B〉 {Q}.

Since Q ∈ int PB we have PB
(Q) = 〈A〉 〈B〉 {Q}.

Case 1b. B(Q) is obtained from B by changing all its simplices into the set of

simplices 〈A〉 〈B〉 {Q}. Then PB
(Q) = 〈A〉 〈B〉 {Q}, as in the previous case.

Case 2a. Q = Q1 ∈ int ∆(B0∪ . . .∪Bd−1). We insert the set of all simplices
from 〈A〉{B} into the set B(Q) = 〈A〉 〈B0∪ . . .∪Bd−1〉 {Bd} {Q}.

Note also that PB
(Q) = B(Q) = 〈A〉 〈B0∪ . . .∪Bd−1〉 {Bd} {Q}.

Case 2b. Q = Q0 ∈ int ∆(A0∪ . . .∪Al−1). We replace {A0∪ . . .∪Al−1}〈Al〉{B}
by 〈A0∪ . . .∪Al−1〉〈Al〉{B} {Q} and get the triangulation

B(Q) = 〈A0∪ . . .∪Al−1〉 〈Al〉 {B} {Q} ∪ 〈A0∪ . . .∪Al−1〉{Al} {B},

PB
(Q) = 〈A0∪ . . .∪Al−1〉{Al}〈B〉{Q}.

Case 2c. By taking projections r0, r1 we get that

Q ∈ int ∆
(
A0 ∪ . . .∪ Al−1 ∪B0 ∪ . . .∪ Bd−1

)
.
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We replace the subsets {A0∪ . . .∪Al−1 ∪B}〈Al〉 of 〈A〉{B} with the set

〈A0∪ . . .∪Al−1 ∪B0∪ . . .∪Bd−1〉〈Al〉{Bd} {Q}
= 〈A0∪ . . .∪Al−1〉〈Al〉 {B} {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉 〈B0∪ . . .∪Bd−1〉 {Bd} {Q}

and get the triangulation

B(Q) =〈A0∪ . . .∪Al−1〉 {Al} {B}
∪ 〈A0∪ . . .∪Al−1〉 〈Al〉 {B} {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉 〈B0∪ . . .∪Bd−1〉 {Bd} {Q},

PB
(Q) = 〈A〉 〈B〉 {Q} \ {A0∪ . . .∪Al−1}{B0∪ . . .∪Bd−1}〈Al〉〈Bd〉{Q}

Note that in cases 1b and 2a PB
(Q) = B(Q). Consider the other cases.

Let Ts denotes the following triangulations:

Ts :=〈A0∪ . . .∪Al−s〉 {Al−s+1∪ . . .∪As} {B}
∪ 〈A0∪ . . .∪Al−s〉 〈Al−s+1∪ . . .∪As〉 {B} {Q}
∪ {A0∪ . . .∪Al−s}〈Al−s+1∪ . . .∪As〉〈B〉 {Q} \ S,

where

S =


∅ in case 1a,

{A0∪ . . .∪Al−1} 〈Al〉 〈B〉 {Q} in case 2b,

{A0∪ . . .∪Al−1} 〈Al〉 {B0∪ . . .∪Bd−1} 〈Bd〉 {Q} in case 2c.

Lemma 4.2. (a) T1 = B(Q).
(b) Ts is a triangulation for s = 1, ..., l.
(c) Ts is el-equivalent to Ts−1 for s = 2, . . . , l.
(d) Tl is el-equivalent to PB

(Q).

It follows from the lemma that B(Q) is el-equivalent to PB
(Q). By symmetry

we have that A(Q) is el-equivalent to PB
(Q). Finally the lemma yields the el-

equivalence of A(Q) and B(Q).

Proof. (a) follows just from the definition of Ts. In case 2c by properties 1,2,3 of
our operations we have

{A0∪ . . .∪Al−1} 〈Al〉〈B0∪ . . .∪Bd−1〉 {Bd} {Q}
= {A0∪ . . .∪Al−1}〈Al〉〈B〉 {Q}
\ {A0∪ . . .∪Al−1} 〈Al〉 {B0∪ . . .∪Bd−1} 〈Bd〉 {Q}.

Other cases are tautological. We prove (b) and (c) by induction on s.

Lemma 4.2.1. For s = 1, ..., l− 1

PB
s := conv(A0∪ . . .∪Al−s−1 ∪B ; Al−s+1∪ . . .∪Al ∪Q)

is a basic polytope.

Proof. By Lemma 4.1.1 conv(A0∪ . . .∪Al−s−1∪P ; Al−s+1∪ . . .∪Al∪Q0
) is a basic

polytope. There exist aj , p, q > 0 such that
∑
j≤il−s−1

aj + p =
∑
j>il−s

aj + q = 1

and ∑
j≤il−s−1

ajAj + pP =
∑
j>il−s

ajAj + qQ0.(0)
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By the definition of P

P =
n∑
i=0

piBi, where pi > 0 and
n∑
i=0

pi = 1.(1)

There exist a′j and b′i such that Q =
∑
a′iAi +

∑
b′jBj . Then by definition of Q0

and r0

Q0 =
∑

a′iAi+(
∑

b′j)P = Q−
∑

b′jBj+(
∑

b′j)P = Q−(
∑

(b′j−(
∑

b′j)pj)Bj),

Q0 = Q+
∑

kiBi, where
∑

ki = 0.(2)

Putting (1) and (2) into (0) we get :∑
j≤il−s−1

ajAj +
∑
i∈I

biBi =
∑
j>il−s

ajAj + qQ+
∑
i∈I′

biBi,(3)

where bi = |ppi − qki| and ppi − qki ≥ 0 iff i ∈ I. In particular all the coefficients
are non-negative, and I and I ′ denote two disjoint sets of indices such that I ∪ I ′ ⊆
{0, . . . ,m}.

The set I is non-empty since some ki in (2) are non-positive. Assume that I
is not a proper subset of {0, . . . ,m}, i.e. I ′ is nonempty. Then the right side of
(3) would be a point of the face P′ = conv(Aj , Bi : j ≤ il−s−1, i ∈ I) of PB.
If Q 6∈ P′ then by (3) we get that the all points on RHS Aj , j ≥ il−s, Bi, i ∈
I ′ , do not belong to the face P′ of PB. Since these points belong to PB and
do not belong to P′, their convex hull does not intersect P′, which contradicts
(3). If Q ∈ P′ then Q0 ∈ conv(Aj , P : j ≤ il−s−1), which is not possible since
conv(A0∪ . . .∪Al−s−1 ∪ P : Al−s+1∪ . . .∪Al ∪ Q0

) is a basic polytope. Finally

I = {0, . . . ,m} and I ′ is empty. We can write (3) as∑
j≤il−s−1

ajAj +
∑

biBi =
∑
j>il−s

ajAj + qQ.(4)

Note also that (4) is the only relation on the set of vertices.

Lemma 4.2.2. PEs = conv({A0∪ . . .∪Al−s−1 ∪ B ; Al−s+1∪ . . .∪Al ∪ Q}〈Al−1〉)
is a set of maximal elementary polytopes such that:

1. All of the elementary polytopes have the same basic polytope PB
s.

2. For every polytope P′ = conv(A0∪ . . .∪Al−s−1∪B ; Al−s−1∪ . . .∪Al∪Q; ∗) ∈
PEs the canonical triangulation

{A0∪ . . .∪Al−s−1 ∪B}〈Al−s+1∪ . . .∪Al ∪Q〉 {∗}
of P′ is a subcomplex of Ts.

3. For every polytope α belonging to Star({A0∪ . . .∪Al−s−1 ∪ B} : Ts) there

exists a polytope P′ ∈ PEs such that α ⊂ P′.

Proof. As for Lemma 4.1.2.
By Lemmas 4.0 and 4.2.2, and since Ts is a triangulation, the set PEs determines

an elementary transformation. It changes the set

{A0∪ . . .∪Al−s−1 ∪B}〈Al−s+1∪ . . .∪Al ∪Q〉〈Al−s〉 ⊆ Ts

into
〈A0∪ . . .∪Al−s−1 ∪B〉{Al−s+1∪ . . .∪Al ∪Q}〈Al−s〉 ⊆ Ts+1,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



388 JAROS LAW W LODARCZYK

transforming Ts to the triangulation Ts+1. 2

The elementary transformation with the basic complex

conv (B : Q ∪A1 ∪ . . . ∪Al)〈A0〉

changes the set

〈A0〉 〈A1∪ . . .∪Al〉 {B} {Q} ∪ {A1∪ . . .∪Al} {B} ⊆ Tl

into

〈A0〉 {A1∪ . . .∪Al} 〈B〉 {Q} ⊆ PB
(Q)

and transforms Tl to PB
(Q). Lemma 4.2 is proved. 2

To complete the proof of Proposition 4B, note that all the considered triangula-
tions restricted to the boundary ∂PB of PB are equal to (∂PB)(Q).

Corollary 4.2.3. Let Q ∈ int ∆(A0, . . . , An). Then B(Q) and A(Q) differ by a
succesion of elementary transformations with basic polytopes of the form

conv(Ai1 , . . . Aih , Q;B0, . . . Bm, Aih+1
, . . . , Aig )

for some subset {i1, . . . , ig} ⊂ {0, . . . , n} where h ≤ g

Proof. It follows from the previous proof that B(Q) and PB
(Q) differ by elementary

transformations with basic polytopes of the form

conv(Ai1 , . . . , Aih , Q;B0, . . . , Bm, Aih+1
, . . . , Aig )

where h ≤ g.
In case 1a we have that PB

(Q) = B(Q). The case Q ∈ int ∆(A0, . . . , An) is

symmetric to case 1a. Thus we have PB
(Q) = A(Q).

Finally, B(Q) and A(Q) differ by elementary transformations with basic polytopes
of the given form.

Proof of Proposition 4C. Consider a pair (PE;Q), where PE, Q are as in part C
of Proposition 4.

Let C = {C1, . . . , Cr}, A = {A0, . . . , An}, B = {B0, . . . , Bm}, Q = {Q}.
Assume that Q ∈ ∆(C1, . . . , Cr). Thus B(Q) = 〈A〉 {B} 〈C〉 {Q}, A(Q) =

{A} 〈B〉 〈C〉 {Q}, and A(Q) differs from B(Q) by an elementary transformation on
the basic complex {A ∪B}〈C〉{Q}; and we are done.

Thus now we assume that Q 6∈ ∆(C1, . . . , Cr). Let p be the projection from
the face ∆(C1, . . . , Cr) of PE onto the basic polytope PB = conv(A0, . . . , An :
B0, . . . , Bm). Write in affine coordinates

p : PE \ ∆(C1, . . . , CP ) −→ PB,

p(
∑

aiAi +
∑

bjBj +
∑

ckCk) =
∑

(ai/c) Ai +
∑

(bj/c) Bj ,

where c = 1−
∑
ck > 0.

Let Q′ = p(Q). For Q′ ∈ PB find the sets Ai and Bj as in the case 4B. This

allows us to represent triangulations of the considered pair as elements of SET2(V )
where V = {A0, . . . , An, B0, . . . , Bm, C1, . . . , Cr, Q}. (See 4A and 4B.)
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We represent the triangulation B(Q). We have B = 〈A〉 · {B} · {C}. Consider
several cases.

1. Q′ 6∈ ∂PB : (a) Q′ 6∈ ∆(B0, . . . , Bm),

(b) Q′ ∈ int ∆(B0, . . . , Bm);

2. Q′ ∈ ∂PB : (a) Q′ ∈ ∂∆(B0, . . . , Bm),

(b) Q′ ∈ ∂∆(A0, . . . , An),

(c) Q′ ∈ ∂PB \ ∂∆(B0, . . . , Bm) \ ∂∆(A0, . . . , An).

Case 1a. As before, Q′ ∈ int ∆(B,A0,∪ . . .∪Al−1); hence

Q ∈ int ∆(B,A ∪ ... ∪Al−1, C).

B(Q) is obtained from B = 〈A〉 {B} {C} by changing {B∪A0∪ . . .∪Al−1∪C} 〈Al〉
into

〈A0∪ . . .∪Al−1 ∪B ∪C〉 〈Al〉 {Q}
= 〈A0∪ . . .∪Al−1〉 〈Al〉 {B} {C} {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉 〈B〉 {C} {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉 {B} 〈C〉 {Q}.

Hence:

B(Q) =〈A0∪ . . .∪Al−1〉 {Al} {B} {C}
∪ 〈A0∪ . . .∪Al−1〉〈Al〉 {B} {C} {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉 〈B〉 {C} {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉 {B} 〈C〉 {Q}.

Case 1b. Q′ ∈ int ∆(B) =⇒ Q ∈ int ∆(B ∪ C)). B(Q) is obtained from B by
changing the set of all its simplices into the set

B(Q) = 〈A〉 〈B〉 {C} {Q} ∪ 〈A〉{B} 〈C〉{Q}.

Case 2a. Q′ ∈ int ∆(B0∪ . . .∪Bd−1). Hence Q ∈ int ∆(B0∪ . . .∪Bd−1 ∪ C).
We replace the set of all simplices 〈A〉 {B} {C} by the set

B(Q) = 〈A〉 〈B0∪ . . .∪Bd−1〉 {Bd} {C} {Q} ∪ 〈A〉 {B} 〈C〉 {Q}.

Case 2b. Then Q ∈ int ∆(A0∪ . . .∪Al−1 ∪ C}. We replace

{A0∪ . . .∪Al−1}〈Al〉 {B} {C} ⊂ 〈A〉 {B} {C}
by

〈A0∪ . . .∪Al−1〉〈Al〉 {B} {C} {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉 {B} 〈C〉 {Q}

to get

B(Q) =〈A0∪ . . .∪Al−1〉 {Al} {B} {C}
∪ 〈A0∪ . . .∪Al−1〉〈Al〉 {B} {C} {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉 {B} 〈C〉 {Q}.

Case 2c. Then Q′ ∈ int ∆(A0∪ . . .∪Al−1 ∪B0∪ . . .∪Bd−1). Hence

Q ∈ int ∆(A0 ∪ . . . ∪Al−1 ∪B0∪ . . .∪Bd−1 ∪ C).
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We replace the set {A0∪ . . .∪Al−1 ∪B ∪C}〈Al〉 by

〈A0∪ . . .∪Al−1 ∪B0∪ . . .∪Bd−1 ∪ C〉 〈Al〉 {Bd} {Q}
= 〈A0∪ . . .∪Al−1〉 〈Al〉 {B} {C} {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉 {B} 〈C〉 {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉 〈B0∪ . . .∪Bd−1〉 {Bd} {C} {Q}

to get

B(Q) =〈A0∪ . . .∪Al−1〉 {Al} {B} {C}
∪ 〈A0∪ . . .∪Al−1〉 〈Al〉 {B} {C} {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉 {B} 〈C〉 {Q}
∪ {A0∪ . . .∪Al−1} 〈Al〉 〈B0∪ . . .∪Bd−1〉 {Bd} {C} {Q}.

Let TB be denote the following triangulation:

TB := 〈A〉 〈B〉 {C} {Q} ∪ 〈A〉 {B} 〈C〉 {Q}
in cases 1a, 1b,

TB := 〈A〉 〈B0∪ . . .∪Bd−1〉 {Bd}{C} 〈Q〉 ∪ 〈A〉 {B} 〈C〉 {Q}
in case 2a,

TB := 〈A0∪ . . .∪Al−1〉 {Al}〈B〉 {C} 〈Q〉 ∪ 〈A〉 {B} 〈C〉 {Q}
in case 2b,

TB := 〈A〉 〈B〉 {C} 〈Q〉 ∪ 〈A〉 {B} 〈C〉 {Q}
\ {A0∪ . . .∪Al−1} {B0∪ . . .∪Bd−1}〈Al〉 〈Bd〉 {C} {Q}
in case 2c.

We can write it shorter:

TB = 〈A〉 〈B〉 {C} {Q} ∪ 〈A〉 {B} 〈C〉 {Q} \ S
where

S =


∅ in cases 1a, 1b, i.e.Q ∈ ∂PB,

{A}{B0∪ . . .∪Bd−1} 〈Bd〉 {C} {Q} in case 2a,

{A0∪ . . .∪Al−1} 〈Al〉 〈B〉 {C} {Q} in case 2b,

{A0∪ . . .∪Al−1} 〈Al〉 {B0∪ . . .∪Bd−1} 〈Bd〉 {C} {Q} in case 2c.

Note that TB = PE
(Q,Bj) for any vertex Bj of PE. By symmetry let TA =

PE
(Q,Ai) . Then TA = 〈A〉 〈B〉 {C} {Q} ∪ {A} 〈B〉 〈C〉 {Q} \ S
The triangulations TA and TB differ by an elementary transformation on the ba-

sic complex conv({A ; B}〈C〉{Q}). Thus it is sufficient to prove the el-equivalence
of TB and B(Q), and we get the el-equivalence of A(Q) and B(Q) by symmetry.

Note that in cases 1.b and 2.a we have that TB = B(Q). Consider the other

cases. Let Ts denote the following subsets of SET2(V ).

Ts :=〈A0∪ . . .∪Al−s〉 {Al−s+1∪ . . .∪Al} {B} {C}
∪ 〈A0∪ . . .∪Al−s〉 〈Al−s+1∪ . . .∪Al〉 {B} {C} {Q}
∪ {A0∪ . . .∪Al−s} 〈Al−s+1∪ . . .∪Al〉 〈B〉 {C} {Q}
∪ {A0∪ . . .∪Al−s} 〈Al−s+1∪ . . .∪Al〉 {B} 〈C〉 {Q} \ S.

Lemma 4.3. (a) T1 = B(Q).
(b) Ts is a triangulation for s = 1, . . . , l.
(c) Ts is el-equivalent to Ts−1 for s = 2, ..., l.
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(d) Tl is el-equivalent to PE
(Q).

Proof. (a) just follows from the definition.
We prove (b) and (c) by induction on s.

Lemma 4.3.1. PB
s := conv(A0∪ . . .∪Al−s−1∪B∪C;Al−s+1∪ . . .∪Al∪Q), where

s = 1, . . . , l, is a basic polytope.

Proof. By Lemma 4.2.1, conv(A0∪ . . .∪Al−s−1∪B;Al−s+1∪ . . .∪Al∪Q′) is a basic
polytope. Thus ∑

j≤il−s−1

ajAj +
∑

biBi =
∑
j>il−s

ajAj + qQ′(0)

where all coefficients are positive. By the definition of Q′ and of the projection p

Q′ = q′′Q−
∑

kiCi, where ki > 0 and q′′ > 0.(1)

Putting (1) into (0), we get:∑
j≤il−s−1

ajAj +
∑

biBi +
∑

qkiCi =
∑
j>il−s

ajAj + qq′′Q.(2)

To complete the proof note that (2) is the only relation on the set of vertices. (If
we exclude Q we get an affinely independent set.)

Lemma 4.3.2.

PEs = conv({A0∪ . . .∪Al−s−1 ∪B ∪ C ; Al−s+1∪ . . .∪Al ∪Q } 〈Al−s〉 {C})
is a set of maximal elementary polytopes such that:

i) All the elementary polytopes have the same basic polytope PB
s.

ii) For any polytope

P′ = conv(A0∪ . . .∪Al−s−1 ∪B ∪ C ; Al−s+1∪ . . .∪Al ∪Q : ∗)

in PEs , where ∗ ∈ 〈Al−s〉{C}, the canonical triangulation of P′,

{A0∪ . . .∪Al−s−1 ∪B ∪C} 〈Al−s+1∪ . . .∪Al ∪Q〉 {∗},
is a subcomplex of Ts.

iii) For every polytope a belonging to Star(A0∪ . . .∪Al−s−1 ∪B ∪ C : Ts) there

exists a polytope E′ ∈ PEs such that α ⊂ E′.

Proof. As for Lemma 4.1.2.

By Lemma 4.0 and Lemma 4.3.2 PEs determines the elementary transformation
which changes

{A0∪ . . .∪Al−s−1 ∪B ∪C} 〈Al−s+1∪ . . .∪Al ∪Q〉 〈Al−s〉
into

〈A0∪ . . .∪Al−s−1 ∪B ∪ C〉 {Al−s+1∪ . . .∪Al ∪Q} 〈Al−s〉
transforming the triangulation Ts to the triangulation Ts+1. This shows points a)
b) c) of 4.3.

The elementary transformation on the basic complex

conv(B ∪ C : Q ∪A1∪ . . .∪Al)〈A0〉
changes

〈A0〉{A1∪ . . .∪Al}{B}{C} ∪ 〈A0〉〈A1∪ . . .∪Al〉{B}{C} {Q} ⊆ Tl
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into:

〈A0〉{A1∪ . . .∪Al}〈B〉{C}{Q}
∪ 〈A0〉{A1 ∪ . . . ∪Al}{B}〈C〉{Q} ⊆ PE

(Q)

and transforms Tl to PE
(Q).

Thus we have proved Lemma 4.3 and, by symmetry, the whole Proposition 4C.

5. El-Equivalence of Blow-Ups of a Simplicial Complex

Proposition 5.0. Let K be simplicial complex, and let P,Q ∈ |K|. Then:

(a) The triangulations K(Q,P ) and K(P,Q) are el-equivalent
(b) The elementary transformations realizing the above equivalence do not change

the triangulations outside the simplices which contain both P and Q.
(c) The elementary transformations are induced (in the sense of section 3) by an

elementary transformation of the minimal simplex containing both points P ,
Q.

Proof. We consider two cases:
i) P,Q are contained in some simplex ∆ of K.
Assume that ∆ is minimal i.e. P,Q are not contained in any proper face of

∆. By Proposition 4.A ∆(P,Q) and ∆(Q,P ) are el-equivalent, and any elemen-
tary transformation realizing that does not change the triangulations of proper
faces of ∆. By Corollary 3.5, Proposition 3.6 and Proposition 3.8 the trian-
gulations K(∆(P,Q)) = K(∆)(P,Q) = K(P,Q) and K(∆(Q,P )) = K(Q,P ) are el-
equivalent, and the relevant transformations do not change the triangulations out-
side of CompStar(∆ ; K).

ii) P,Q are not contained in any common simplex.
Hence P ∈ int ∆P and Q ∈ int ∆Q, for some simplices ∆P , ∆Q. Therefore

the sets of polytopes of Star(∆P ; K) and of Star(∆Q ; K) are disjoint. Thus
K(P,Q) = K(Q,P )

Lemma 5.1. Assume T0,T1 are two el-equivalent triangulations of K. Let L be
any common subcomplex of T0 and T1 which is not changed during the correspond-
ing transformations. Let P ∈ |K|.

Then T0(P ) and T1(P ) are el-equivalent, and the corresponding transformations
do not change the complex L(P ).

Proof. It suffices to consider the case of T0 , T1 that differ by an elementary
transformation.

Let SE denote the elementary subdivision , CB the basic complex, PB =
conv(A0 . . . An ; B0 . . .Bm) the basic polytope, and

PE
h = conv(A0 . . . An ; B0 . . .Bm : Ch1 . . . C

h
i(h)),

where h ∈ H, be all the elementary polytopes corresponding to the considered
elementary transformation.

By assumption L is a subcomplex of Ast(PB ; K). Consider three cases:
1. P 6∈ |CB|. Then T0(P ) and T1(P ) differ by an elementary transformation on

the same basic complex CB. The transformation does not change L(P ).

2. P ∈ PB. Then C is simplicial with respect to PB. Two canonical triangula-
tions A and B of PB induce triangulations T0,T1. By Proposition 3.6, T0(P ) and
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T1(P ) are induced by A(P ) and B(P ). By Proposition 4.B, A(P ) is el-equivalent
to B(P ). By Corollary 3.5 and Proposition 3.8 we obtain our assertion: the corre-
sponding transformations only change the triangulations of polytopes which contain
PB.

3. P 6∈ PB and P ∈ PE
h for some h. This is the same case as 2 above, using

Proposition 4.C instead of Proposition 4.B.

Proposition 5.2. Let ∆ be a simplex and Pi ∈ ∆ for i = 1, . . . , n. Assume
P ∈ int ∆. Then

∆(P0,... ,Pj−1,P,Pj ,...Pl) and ∆(P0,... ,Pk−1,P,Pk,...Pl)

are el-equivalent for all j, k, l, and the corresponding transformations do not change
the relative boundary of ∆.

Proof. It is sufficient to consider the transposition

∆(P0...Pj−1,P,Pj ...Pl) −→ ∆(P0,...Pj ,P,Pj+1...Pl)

Apply Proposition 4.A to ∆(P0...Pj−1) and to the points Pj and P . We get that
∆(P0...Pj−1,P,Pj) and ∆(P0...Pj−1,Pj ,P ) are el-equivalent and the relevant transforma-
tions only change simplices which contain P and Pj . Therefore none of the simplices
lying on the boundary is changed. We then get our statement by applying Lemma
5.1 to the points Pj+1, . . . , Pl.

6. Flat Pairs. Equivalence of Blow-Ups of an Arbitrary Complex

Let C be a complex in Qd and H be an affine space. We denote by C|H the
complex which consists of all faces of C contained in H. We write C ∩H for the
complex of all the polytopes of the form P ∩H, where P is a face of C.

Clearly C|H is a subcomplex of C ∩ H. Note also that if C is simplicial then
so is C|H , and if C0 is a subdivision of C1 then C0 ∩ H is also a subdivision of
C1 ∩H.

Theorem 6.1 ([4], Theorem 1 in 5.1). Every polytope P is affinely isomorphic to
the polytope ∆ ∩H, where ∆ ⊂ Rk is a simplex and H an affine space in Rk. 2

Although this theorem is proved for the field R, it also holds for Q and the proof
is the same.

Proposition 6.2. Let C be a complex and let H be an affine space. Assume P ∈
|C| ∩H. Then C(P ) ∩H = (C ∩H)(P ).

Proof. Both operations, blow-up and intersection of complexes, are performed on
each polytope separately. Thus it suffices to prove the above for each face P of C
containing P .

Let Γ be the set of all faces of P which do not contain P . Let ΓH be the of all
polytopes K ∩H, where K is a face of P and P 6∈K ∩H. Clearly ΓH = {K ∩H :
K ∈ Γ}. Thus

P(P ) = {conv(K;P ) : K ∈ Γ} ∪ Γ,

P(P ) ∩H = {conv(K;P ) ∩H : K ∈ Γ} ∪ {K ∩H : K ∈ Γ},
= {conv(K ∩H;P ) : K ∈ Γ} ∪ ΓH ,

= {conv(K;P ) : K ∈ ΓH} ∪ ΓH = (P ∩H)(P ).
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We say that a pair (∆ ; {Pi : i = 0, . . . , l}) is flat with respect to an affine space
H (or H-flat) if ∆ is a simplex and H ∩∆ = conv(Pi : i = 0, . . . , l) (here the Pi
are not necessarily vertices)

Proposition 6.3. Let S be a subdivision of the H-flat pair

(∆ ; {Pi : i = 0, . . . ., l}).
Let P = conv(P1, . . . , Pl) = ∆ ∩H. Then S|H is a subdivision of the pair

(P ; {Pi : i = 0, . . . ., l}).
Proof. Let ∆ = ∆(A0, . . . , Ak) and let Q ∈ P. By induction on dim ∆ we show the
following fact: For each Q ∈ P there exists a polytope LQ ∈ S such that Q ∈ int LQ

and LQ ⊆ P .
This is trivial in dimension one. Now suppose that LQ 6⊆ P for some Q ∈ P. By

assumption LQ is a polytope of the pair (∆ ; {Pi : i = 0, . . . , l}).
There are two possible cases.

1. LQ = ∆(Ai(1), . . . , Ai(n)), where {i(1), . . . , i(n)} ⊂ {1, . . . , k} and n < k.

Then LQ ∩ H = LQ ∩ P is a face of P. Hence LQ ∩ P = conv{Pi : Pi ∈
LQ}. This means that the pair (LQ ; {Pi : Pi ∈ LQ}) is flat. By the
inductive assumption, Q ∈ int L′ for some polytope L′ ⊆ LQ ∩P of the pair
(LQ ; {Pi : Pi ∈ LQ}). This means that L′ is also a polytope of the pair
(∆ ; {Pi : i = 0, . . . , l}). Finally, by definition, L′ = LQ ⊆ P.

2. LQ = conv(Ai(1), . . . , Ai(n), Pj(1), . . . , Pj(r)). Then

Q = ai(1)Ai(1) + . . .+ ai(n)Ai(n) + pj(1)Pj(1) + . . .+ pj(r)Pj(r),

where all coefficients are positive.

Since Q ∈ H, then

Q′ := (ai(1)/
∑

ai(j)) · Ai(1) + . . .+ (ai(n)/
∑

ai(j)) · Ai(n) is also in H.

But Q′ ∈ int ∆(Ai(1) . . . Ai(n)), and the simplex ∆(Ai(1) . . . Ai(n)) is a face of LQ.
Now apply 1 to Q′ and ∆(Ai(1), . . . , Ai(n)), to get ∆(Ai(1), . . . , Ai(n)) ⊂ H. Finally

LQ = conv(Ai(1), . . . , Ai(n), Pj(1), . . . Pj(r)) ⊆ H.

Corollary 6.4. If S is a subdivision of an H-flat pair (∆ ; {Pi ; i = 0, . . . , 1}
then S|H = S ∩H.

Proof. S|H is a subcomplex of S ∩H. On the other hand, their supports are equal
to |S|H | = |S| ∩H = |S ∩H|.

We say that a blow-up C(P1,... ,Pm) of C is complete iff Vert(C) ⊂ {P1, . . . , Pm}.
We say that the blow-up C(P1,... ,Pm) is simplicial if it is a triangulation.

Corollary 6.5. Let C(P1,... ,Pm) be a complete blow-up of C. Then C(P1,... ,Pm) is
simplicial.

Proof. It is sufficient to prove the corollary for arbitrary face P ∈ C. Then
P(P1,... ,Pl) = P(Pi1 ,... ,Pil )

, where Pi1 , . . . , Pin is the sequence otained from the

sequence (P1, . . . , Pm) by removing all points not belonging to P. By Theorem
6.1 P = ∆ ∩ H, where ∆ is a simplex and H is some affine space. Vert(P) ⊂
{Pi1 , . . . , Pil}. Thus the pair (∆; {Pi1 , . . . , Pil}) is H-flat, and hence by Corollary
6.4 P(Pi1 ,... ,Pil )

= ∆(Pi1 ,... ,Pil )|H is simplicial.
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Corollary 6.6. Let P be a polytope in Qd and H be an affine space in Qd. Let
Pi ∈ P for i = 0, . . . ., n be such that P ∩H = conv(P0, . . . , Pn). Then

P(P0,... ,Pn)|H = P(P0,... ,Pn) ∩H = (P ∩H)(P0,... ,Pn).

Proof. The second equality follows from Proposition 6.2. Consider the first equality.
By Theorem 6.1 we can assume that P = ∆ ∩ H ′ for some simplex ∆ and affine
space H ′ := aff(P). By replacing H by H ∩H ′ we can assume that H ⊆ H ′. Then
P ∩H = ∆ ∩H, and the pair (∆ ; {P0, . . . , Pn}) is H-flat. By Proposition 6.2,

P(P0,... ,Pn) ∩H = (P ∩H)(P0,... ,Pn) = (∆ ∩H)(P0,... ,Pn) = ∆(P0,... ,Pn) ∩H.

Since H ⊆ H ′ we infer that ∆(P0,... ,Pn)|H is a subcomplex of

∆(P0,... ,Pn) ∩H ′|H = P(P0,... ,Pn)|H .

Since the pair (∆; {P0, . . . , Pn} is flat, Corollary 6.4. yields

∆(P0,... ,Pn)|H = ∆(P0,... ,Pn) ∩H.

Finally,

P(P0,... ,Pn)|H ⊇ ∆(P0,... ,Pn)|H = ∆(P0,... ,Pn) ∩H = P(P0,... ,Pn) ∩H.

The other inclusion is obvious.

Proposition 6.7. Let T0, T1 be two el-equivalent triangulations of the H-flat pair
(∆ ; Ω). Then T0|H , T1|H are el-equivalent triangulations of the polytope P :=
∆ ∩H.

Proof. It is sufficient to prove the proposition for T0, T1 differing by an elementary
transformation.

Let SE be the elementary subdivision of that transformation, and PB its basic
polytope. By Definition 2.3, SE consists of simplices and of elementary polytopes
belonging to Star(PB ; SE). Consider two cases.

1. PB ⊆ H. Then SE
|H consists of simplices of SE lying in H, and of the elemen-

tary polytopes of Star(PB ; SE) lying in H. That means that SE
|H consists

of simplices and elementary polytopes belonging to Star(PB ; SE
|H), and

thus SE
|H is an elementary subdivision. By Proposition 6.3, P =| T0|H |=|

T1|H |=| SE|H |. By Corollary 6.4, Ti|H = Ti ∩H for i = 0, 1 are subdivisions

of SE|H = SE ∩ H. Again by Proposition 6.3, Vert(Ti|H) = Vert(SE|H) = Ω.

Finally T0|H , T1|H are two different proper triangulations of SE
|H , which

means that they differ by an elementary transformation.
2. PE is not contained in H. Then none of the elementary polytopes of SE lies

in H. Therefore SE
|H consists only of simplices. Hence T0|H , T1|H are equal,

as they are proper triangulations of SE
|H .

Proposition 6.8. Let C(P1,... ,Pm) be a complete blow-up of a complex C. Let
dim C = n. Let Pi(j), j = 1, . . . , l, be the sequence obtained from P1, . . . , Pm
by omitting all points belonging to the relative interior of the n-dimensional poly-
topes of C. Then C(Pi(1),... ,Pi(l)) is also a complete blow-up of C, and moreover
C(Pi(1),... ,Pi(l)) is equivalent to C(P1,... ,Pm).
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Proof. Let Pp(j), j = 1, . . . ,m − l, denote the interior points of n-dimensional
polytopes in the sequence P1, . . . , Pm taken in the same order. We show first that
the triangulations C(Pi(1),... ,Pi(l),Pp(1),... ,Pp(m−l)) and C(P1,... ,Pm) are el-equivalent.

It suffices to show that C(∗,Pi(h),Pp(g),∗∗) and C(∗,Pp(g),Pi(h),∗∗) are el-equivalent

for each h and g and arbitrary * and **.
If Pi(h), Pp(g) do not belong to any common n-dimensional polytope then both

triangulations coincide. Assume that Pi(h), Pp(g) belong to a common n-dimensional
polytope P. Then the given blow-ups are the same outside P.

Consider the polytope P. By Theorem 6.1 we can write P = ∆ ∩ H, where
∆ is a simplex and H is an affine space. By assumption of completeness of
the blow-up C(P1,... ,Pm) we have that vert(P) ⊂ {P1, . . . , Pm} . Thus the pair
(∆ ; {P1, . . . , Pm} ∩P) is flat. Remove from the sequences (∗, Pi(h), Pp(g), ∗∗) and
(∗, Pp(g), Pi(h) ∗ ∗) all points which are not in P. Then we get two permutations
of the set {P1, . . . , Pm} ∩P : (∗′, Pi(h), Pp(g), ∗∗′) and (∗′, Pp(g), Pi(h) ∗ ∗′) for the
respective ∗′ and ∗∗′. By Proposition 5.2, ∆(∗′,Pi(h),Pp(g),∗∗′) and ∆(∗′,Pp(g),Pi(h),∗∗′)
are el-equivalent and the corresponding transformations do not change them on the
boundary of ∆. Hence by Corollary 6.6 and Proposition 6.7

∆(∗′,Pi(h),Pp(g),∗∗′)|H = P(∗′,Pi(h),Pp(g),∗∗′) = P(∗,Pi(h),Pp(g),∗∗)

is el-equivalent to

∆(∗′,Pp(g),Pi(h),∗∗′)|H = P(∗′,Pp(g),Pi(h),∗∗′) = P(∗,Pp(g),Pi(h),∗∗).

Moreover the corresponding transformations do not change the triangulations on
the boundary of P. Since the triangulations C(∗,Pi(h),Pp(g),∗∗) and C(∗,Pp(g),Pi(h),∗∗)
are the same outside of P, the el-equivalence on P extends to the el-equivalence
of these two triangulations. Thus C(Pi(1),... ,Pi(l),Pp(1),... ,Pp(m−l)) and C(P1,... ,Pm) are
el-equivalent. But in the first triangulation we can blow down the points Pp(i)) for
i = 1, . . . ,m− l in the opposite order to get the triangulation C(Pi(1),... ,Pi(l)). Note
that all these blow-downs are done in the category of simplicial complexes because
we here operate with complete blow-ups of C (Corollary 6.5).

Proposition 6.9. Any two simplicial blow-ups of an arbitrary complex C are equiv-
alent.

Proof. We can assume that the considered blow-ups are complete and have the
same set of vertices. (If this is not the case we blow-up the triangulations at the
missing points, which does not change the equivalence class). This means that the
triangulations are of the form

C(Qσ0(1),... ,Qσ0(m)) and C(Qσ1(1),... ,Qσ1(m)),

where σ0, σ1 are two permutations of the set {1, . . . ,m} and {Qi : i = 1, . . . ,m} ⊇
Vert(C).

We prove our proposition by induction on dim C. For n = 0 the proposition
is obvious. Assume it holds for all k-dimensional complexes where k < n, and let
dim C = n. Then C has a finite number of n-dimensional polytopes, say Pj , for
j = 1, . . . , w. In each Pj we choose a point Pj ∈ int Pj .

For any permutation σ of the set {1, . . . ,m}, by (Qσ(i(s)) ; s = 1, . . . , h)
where h ≤ m we mean the sequence obtained from the sequence Qσ(i) by omit-
ting interior points of n-dimensional faces of C. Then by Proposition 6.8 the
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complete blow-up C(Qσ(i(1)) ,...,Qσ(i(h))) is equivalent to both C(Qσ(1),...,Qσ(m)) and
C(P1,...,Pw,Qσ(i(1)) ,...,Qσ(i(h))). Thus we can we reduce the equivalence of

C(Qσ0(1),... ,Qσ0(m)) and C(Qσ1(1),... ,Qσ1(m))

to the equivalence of

C(P1,... ,Pw,Qσ0(i(1)) ,... ,Qi(σ0(h))) and C(P1,... ,Pw,Qσ1(i(1)) ,... ,Qσ1(i(h)))),

hence to the equivalence of the complete blow-ups of the complex C(P1,... ,Pw) with
centers lying in the (n− 1)-dimensional skeleton C(n− 1) of C.

Note that the complex C(P1,... ,Pw) is simplicial with respect to its subcomplex
C(n− 1). By the inductive assumption the blow-ups

C(n− 1)(Qσ0(i(1)) ...Qσ0(i(h))) and C(n− 1)(Qσ1(i(1))...Qσ1(1(h)))

are equivalent. By Propositon 3.6 we have:

C(P1,... ,Pw)(C(n− 1)(Qσ0(i(1))...Qσ0(i(h)))) = C(P1,... ,Pw,Qσ0(i(1))...Qσ0(i(h))),

C(P1,... ,Pw)(C(n− 1)(Qσ1(i(1))...Qσ1(1(h)))) = C(P1,... ,Pw,Qσ1(i(1))...Qσ1(i(h))).

By Corollary 3.5 and the above, the two triangulations are equivalent.

7. Flat Cuts. Equivalence of All Triangulations of a Complex

Proposition 6.9 allows us to extend the equivalence of triangulations to equiva-
lence of subdivisions: We say that two subdivisions S0, S1 of a given complex C
are equivalent if some of their simplicial blow-ups are equivalent.

Definition 7.1. Let C be a complex in Qd. Let S be any subdivision of C, and
H be a hyperplane in Qd. The flat cut S ·H of S with H is a subdivision S′ such
that every polytope of it is the intersection of some polytope of S with H, or with
one of the halfspaces determined by H.

Proposition 7.2. Let S be any subdivision of a complex C. Then S·H is equivalent
to S.

Proof. Let {P1, . . . , Pk} = Vert(S ∩H). We have to show that there exist simpli-
cial blow-ups of S and of S · H which are equivalent. We will in fact show that
S(P1,... ,Pk) = (S ·H)(P1,... ,Pk) is their common blow-up, which can be further blown
up to a common simplicial blow-up. By arguments similar to those in Proposition
6.3 we see that (S · H)(P1,... ,Pk) = (S(P1,... ,Pk)) · H It is sufficient to show that
(S(P1,... ,Pk)) · H = S(P1,... ,Pk). We prove this for an arbitrary face P of S. Let
{Pi(j) : j = 1, . . . , n} be those Pi which lie in P. Then P(P1,... ,Pk) = P(Pi(1),... ,Pi(n)).
From Corollary 6.6 we get

P(Pi(1),... ,Pi(n)) ∩H = P(Pi(1),... ,Pi(n))|H = P(P1,... ,Pk)|H .

That means that intersection with H of every polytope P′ of P(P1,... ,Pk) is a face
of P′. Hence this polytope is contained either in H or in one of the halfspaces
determined by H. Thus P(P1,... ,Pk) = P(P1,... ,Pk) ·H because we get no new poly-
topes.

Proposition 7.3. Let C be a complex in Qm. Then all triangulations of C are
equivalent.
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Proof. Let T1 and T2 be any two triangulations. Every polytope of T1 and T2 is
the intersection of a face of C with some halfspaces in Qm. Take hyperplanes Hi

for i = 1, . . . , n determining all the halfspaces associated with all the faces of T0

and T1. We get that

T0 ·H · . . . ·Hn = T1 · H1 · . . . ·Hn.

By the previous lemma we are done.

8. Simplicial Case of Theorem A

Consider a simplicial fan Σ in Qn. Let Σ(1) = {ρi : i ∈ I} denote the set of
edges of the fan Σ. Attach to each edge ρi ∈ Σ(1) any nonzero vector vi ∈ ρi. It
will determine the correspondence between cones 〈vi1 , . . . , vij 〉 ∈ Σ and simplices
conv(ρi1 , . . . , ρij ), which gives rise to a correspondence of fan Σ and the complex

C(Σ) :=
{

conv(ρi1 , . . . , ρij ) : 〈vi1 , . . . , vij 〉
}

Any decomposition Σ′ of Σ determines a subdivision Σ′ ∩ C(Σ) of C(Σ) and vice
versa. Thus we have a natural correspondence fΣ between decompositions (resp.
simplicial decompositions of Σ) and subdivisions and triangulations of the complex
C(Σ). The above correspondence is a bijection. The inverse map is given as
follows: With a subdivision S of C(Σ) we associate a fan {σi = conv(t ·∆i): where
∆i ∈ S; t ≥ 0). The blow-ups and blow-downs of fans are in 1-1 correspondence
with the blow-ups and blow-downs of the respective complexes.

Propositions 7.3 can be translated into the following theorem:

Theorem 8.1. Let C be an arbitrary complex in Qm. Let T′, T′′ be triangulations
of C. Then there exists a sequence of triangulations Ti of C for i = 0, . . . , n such
that T0 = T′, Tn = T′′ and each Ti+1 is obtained from Ti by a blow-up or blow-
down.

Note that the above theorem is valid also over the field of real numbers.
Let Σ be a fan in Qn. By means of the correspondence fΣ we can translate the

above theorem into a theorem on fans:

Theorem 8.2. Let Σ be a simplicial fan in Qm. Let Σ′, Σ′′ be simplicial decom-
positions of Σ. Then there exists a sequence of simplicial decompositions Σi of Σ
for i = 0, . . . , n such that, Σ0 = Σ′, Σn = Σ

′′
, and each Σi+1 is obtained from Σi

by a blow-up or blow-down.

Corollary 8.3. Let Σ′, Σ′′ be two simplicial fans such that |Σ′| = |Σ′′ |. Then
there exists a sequence of simplicial fans Σi, for i = 0, . . . , n, such that Σ0 = Σ′,
Σn = Σ′′, and each Σi+1 is obtained from Σi by a blow-up or blow-down.

Proof. For any two fans Σ′, Σ′′ we can easily find a common simplicial subdivision
Σ. Then we apply Theorem 8.2. to Σ′ and Σ, and to Σ and Σ′′.

PART 3

Let Σ be a simplicial fan in Qn+1. In the previous section we attached to it the
complex C(Σ) ⊂ Qn+1. Now we shall introduce on C(Σ) an integral structure,
which will correspond to the lattice structure. Namely on the set |C(Σ)| we have
a function [·] : C(Σ)→ Qn+1 which associates with P ∈ |C(Σ)| the only primitive
vector [P] lying on the ray t ·P , where t ≥ 0, and t ∈ Q. By definition this function
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is an injection. We shall call the complex C(Σ) equipped in such a function a
Farey complex (or F -complex). (See [10].) Using this function allows us to talk of
regular triangulations, regular blow-ups, determinants, etc. of simplicial complexes.
Namely, a triangulation T of C(Σ) is regular if coresponding decomposition of Σ
is regular. A blow-up of a triangulation is regular if the corresponding blow-up is
regular, etc.

9. Basic Definitions

Let V = Qk ⊃ Zk. Let V ′ be an l-dimensional vector subspace of V with a fixed
orientation. Then V ′ contains the l-dimensional lattice L = Zk ∩ V ′.

For vectors v1, . . . , vk, in L, by det(v1, . . . , vk) we mean the determinant of the
matrix (v1, . . . , vk), where all vi are taken in a standard basis of L.

Let C be a F -complex in Qk. Let B1, . . . , Bl belong to a face of C. Fix an
oriented (l− 1)-dimensional affine subspace H of Qk, containing B1, . . . , Bl. Then
V ′ = aff(H, 0) is an oriented vector subspace of Qk. Define

det(B1, . . . , Bl) := det([B1], . . . , [Bl]).

Let ∆ = ∆(B1, . . . , Bl) be a simplex contained in a face of C. Let

H = aff(B1, . . . , Bl).

Choose an orientation of H. Define

Det ∆ := | det(B1, . . . , Bl)|

Lemma 9.1 ([1, Proposition 8.2]). If a simplex ∆ = ∆(B0, . . . , Bl) is not regular
there is a point A ∈ ∆ such that Det ∆(A,B0, . . . , B̌i, . . . , Bl) < Det ∆ for all
i.

Lemma 9.2. Let ∆ = ∆(B0, . . . , Bl, C1, . . . , Cm). Set H = aff(B0, . . . , Bl).
Then Det ∆ = Det ∆(B0, . . . , Bl) · f(C1, . . . , Cm;H), where f(C1, . . . , Cm;H) is
an integer which depends only on C1, . . . , Cm, H

Proof. Let v0, . . . , vl be a basis of the lattice (affH, 0)) ∩ Zk+1. Then

det(B0, . . . , Bl, C1, . . . , Cm) = det(B0, . . . , Bl) · det(v0, . . . vl, [C1], . . . , [Cm])

Set f(C1, . . . , Cm;H) = | det(v0, . . . , vl, [C1], . . . , [Cm])|.

Let K be an F -complex and ∆ be a face. The determinant Det(Star(∆; K)) of
Star(∆; K) is the maximum of determinants of the simplices in the star.

By the multiplicative factor µ(Star(∆; K)) of Star(∆; K), we mean

µ(Star(∆; K)) = Det(Star(∆))/Det ∆,

which by 9.2 is a positive integer.

Proposition-Definition 9.3. Let K be a complex, simplicial w.r.t a face P. Let
T′ be a triangulation of P and ∆ ∈ T′max. Then µ(Star(∆′; K(T′)) is independent
of ∆′ and T′.

We shall call this number the multiplicative factor of Star(P,K) and denote it
by µ(Star(P; K))
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Proof. Let P = conv(A0, . . . , Al). Then

Star(P,K)max = {conv(A0, . . . , Al, B
i
1, . . . , B

i
s(i)), i = 1, . . . , r}.

By assumption (Bi1, . . . , B
i
s(i)) are affinely independent of the points from the affine

space H := aff (A0, . . . , Al) (see definition in Section 3).
For ∆′ = ∆(A′0, . . . , A

′
n) we have that

Star(∆′; T)max = {∆(A′0, . . . , A
′
n, B

i
1, . . . , B

i
s(i)), i = 1, . . . , r}.

By Lemma 9.2

Det ∆(A′0, . . . , A
′
n, B

i
1, . . . , B

i
s(i)) = Det ∆(A′0, · · · , A′n) · f(Bi1, . . . , B

i
s(i);H).

Finally, µ(Star(∆′, T ) = max{f(Bi1, . . . , B
i
s(i);H)}.

Fix a K and n ∈ Z≥0. An (n)-blow-up of K is a blow-up K′ such that all
simplices of K′ which are not simplices of K have determinant ≤ n. In particular:

Lemma 9.4. A (1)-blow-up of a regular complex is a regular blow-up.

Corollary 9.5. Let K be a complex simplicial w.r.t a face P. Let T be a triangu-
lation of P. Let Q ∈ intP determines an (n)-blow-up of T. Then Q determines a
(µ(Star(P,K) · n))-blow-up of K(T ). 2

Let T0 and T1 be triangulations of a complex K that differ by an elementary
transformation at a basic complex CB. Assume the determinants of all simplices
of T0|CB are ≤ r and the determinants of all simplices of T1|CB are ≤ s. Then we
say that T0 and T1 differ by an elementary transformation of type (r, s) (if r ≥ s)
or (s, r) (if s ≥ r).

Corollary 9.6. Let K be a complex simplicial w.r.t. a face P. Let T0 and T1 be
two triangulations of P which differ by elementary transformations of type (r,s).
Assume that these transformations do not change triangulations on the bound-
ary of P. Then K(T0) and K(T1) differ by elementary transformations of type
µ(Star(P; K)) · r and µ(Star(P; K)) · s 2

A decreasing blow-up of an F -complex K is a blow-up such that the determinant
of every simplex which is divided is greater than the determinants of the simplices
obtained by its subdivision.

By Lemma 9.1, every non-regular simplex or F -complex admits a decreasing
blow-up. Note also that decreasing blow-ups do not change any regular simplices.

Lemma 9.7. Let K be an F -complex and P ∈ |K|. Assume that P ∈ ∆ for ∆ ∈K.
Then the blow-up of K at P is decreasing iff it is decreasing for ∆.

A multiple decreasing blow-up of a given triangulation T is a triangulation ob-
tained by a composition of finitely many (perhaps zero) decreasing blow-ups of T.
By definition a multiple decreasing blow-up does not change any regular simplices.

With a triangulation T of K we associate the word

ω(T) := (ω1(T), . . . , ωi(T), . . . )

where ωi(T) is the number of maximal faces of K with determinant i. In particular
ωi(T) = 0 for i >> 0. Define

ωj(T) = (ωj(T), ωj+1(T), . . . ).
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Let T1 and T2 be triangulations of K. Define ω(T1) > ω(T2) if there exists j ∈ N
such that ωi(T1) = ωi(T2) if i > j and ωj(T1) > ωj(T2).

Analogously we define ω(T1) ≥ ω(T2), ωr(T1) > ωr(T2), ωr(T1) ≥ ωr(T2) for
some r > 0

Lemma 9.8. If ωr(T1) ≤ ωr(T2) and s ≥ r then ωs(T1) ≤ ωs(T2).

Lemma 9.9. If T1 is a decreasing blow-up of T2 then ω(T1) < ω(T2).

Lemma 9.10. If T1 is an (n)-blow-up of T2 then ωn+1(T1) ≤ ωn+1(T2).

Lemma 9.11. If T1 and T2 differ by elementary transformation of type (n,n) then
ωn+1(T1) = ωn+1(T2).

A regular decreasing decomposition of an F -complex K (or simply a decreasing
decomposition of K) is a multiple decreasing blow-up which is a regular complex.

Lemma 9.12. Each F -complex K admits a decreasing decomposition.

Proof. By Lemma 9.9 each decreasing blow-up of T decreases ω(T). But we cannot
decrease this number infinitely many times.

We call a triangulation good iff any two decreasing decompositions of it can be
connected by a finite sequence of regular blow-downs and regular blow-ups. In
particular every regular triangulation is good, since it has a unique trivial decreas-
ing decomposition. We say that two good triangulations T0 and T1 are regular
equivalent iff some of their decreasing decompositions can be connected by a finite
sequence of regular blow-ups and regular blow-downs. We show in the next sections
that all good, and in particular regular, triangulations of a given F -complex C are
regular equivalent.

Lemma 9.13. A multiple decreasing blow-up of a good triangulation is a good tri-
angulation regular equivalent to the original one.

Proof. This follows from the fact that each decreasing decomposition of a multiple
decreasing blow-up of the triangulation is in fact the decreasing decomposition of
that triangulation.

10. Relations Between Determinants

of Simplices in a Basic Polytope

Lemma 10. Let PB := conv(A0, . . . , An;B0, . . . , Bm) be a basic polytope con-
tained in a face of an F -complex C in Qk. Fix an orientation of the affine space
H = aff(A0, . . . , An, B0, ..., Bm). Then,∑

(−1)i det(A0, . . . , Ǎi, . . . , An, B0, . . . , Bm)[Ai]

=
∑

(−1)n+j det(A0, . . . , An, B0, . . . , B̌j , . . . , Bm)[Bj ] = g[P ],

where P = ∆(A0, . . . , An) ∩∆(B0, . . . , Bm) and g is some integer. Moreover the
numbers

{(−1)i det(A0, . . . , Ǎi, . . . , An, B0, . . . , Bm);

(−1)n+j det(A0, . . . , An, B0, . . . , B̌j, . . . , Bm), g}
are either all positive or all negative.

Proof. Set V := linQ{[Ai], [Bj] : i = 0, . . . , n, j = 0, . . . ,m}. The functions
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det(· , A0, . . . , Ǎi, . . . , Ǎj , . . . , An, B0, . . . , Bm),
det(· , A0, . . . , Ǎi, . . . , An, B0, . . . , B̌j , . . . , Bm),
det(· , A0, . . . , An, B0, . . . , B̌i, . . . , B̌j , . . . , Bm)

define functionals on V via

V 3 w −→ det(w, ∗, . . . , ∗) := det(w, [∗], . . . , [∗]) ∈ Q.

Set

v :=
∑

(−1)i det(A0, . . . , Ǎi, . . . , An, B0, . . . , Bm)[Ai]

−
∑

(−1)n+j det(A0, . . . , An, B0, . . . , B̌j , . . . , Bm)[Bj ].

By definition v ∈ V . The set {[Ai], [Bj ] : i = 0, . . . , n , j = 0, . . . ,m− 1} (we omit
j = m!) is a basis of V (it spans V because [Bm] is a combination of the above
vectors, and it is linearly independent because dim V = m+ n+ 1). Hence we can
write for some ai, bj

v =
n∑
i=0

ai[Ai] +
m−1∑
j=0

bj [Bj ].

Then

det(v,A0, . . . , Ǎi, . . . , An;B0, . . . , Bm−1)

= ai det(Ai, A0, . . . , Ǎi, . . . , An, B0, . . . , Bm−1)

= (−1)iai det(A0, . . . , An, B0, . . . , Bm−1).

Thus

ai = (−1)i det(v,A0, . . . , Ǎi, . . . , An, B0, . . . , Bm−1)

· 1/ det(A0, . . . , An, B0, . . . , Bm−1).

Analogously

bj = (−1)n+j det(v,A0, . . . , An, B0, . . . , B̌j , . . . , Bm−1)

· 1/ det(A0, . . . , An, B0, . . . , Bm−1).

By the definition of v,

det (v,A0, . . . , Ǎj , . . . , An, B0, . . . , Bm−1)

=
∑

(−1)i det (A0, . . . , Ǎi, . . . , An, B0, . . . , Bm)

· det (Ai, A0, . . . , Ǎj , . . . , An, B0, . . . , Bm−1)

−
∑

(−1)n+i det (A0, . . . , An, B0, . . . , B̌i, . . . , Bm)

· det (Bi, A0, . . . , Ǎj , . . . , An, B0, . . . , Bm−1)

= (−1)j det (A0, . . . , Ǎj , . . . , An, B0, . . . , Bm)(−1)j

· det (A0, ..., An, B0, ..., Bm−1)

− (−1)n+m det (A0, . . . , An, B0, . . . , Bm−1)(−1)n+m

· det (A0, . . . , Ǎj , . . . , An, B0, . . . , Bm) = 0.
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We have used the facts that det(Ai, A0, . . . Ǎj , . . . , An, B0, . . . , Bm−1) 6= 0 only for
i = j and det(Bi, A0, . . . An, B0, . . . , Bm−1) 6= 0 only for i = m. Also antisymmetry
and bilinearity of determinant have been applied. Analogously,

det(v,A0, . . . , An, B0, . . . , B̌j , . . . , Bm−1) = 0.

Consequently by the above v = 0.
To show the second part of the assertion, note that

P =
n∑
i=0

tiAi =
n∑
j=0

sjBj for some ti, sj > 0,
∑

ti =
∑

sj = 1.(1)

We can treat Ai, Bj as vectors in the standard basis of our lattice Zm. Then
[Ai] = kiAi [Bj ] = pjBj , where ki, pj > 0. Rewrite (1) as,

p[P ] =
∑

t′i[Ai] =
∑

s′j [Bj ],(2)

where t′i = ti/ki, s
′
j = sj/pj, and p is the inverse of the sum of the coordinates of

the vector [P ].
Note that (2) is the only relation (up to a constant factor) between the vectors

[Ai], [Bj ]. Hence the system of numbers

((−1)n+1 det(A0, . . . , An, B0, . . . , B̌j , . . . , Bm−1),

(−1)i det(A0, . . . , A
v
i , . . . , An, B0, . . . , Bm), g)

is proportional to the system of numbers (t′i, s
′
j , p) from (2). Thus we get the

assertion.

11. Determinants of Simplices of the Pair (∆; {P,Q})
Lemma 11.1. Let P,Q belong to a simplex ∆ = ∆(A0, . . . , An). Set

Det ∆(A0, . . . , An) = s,

max{Det ∆(P,A0, . . . , Ǎi, . . . , An) : i = 0, . . . , n} = r

a) If P,Q ∈ int ∆ and max{Det ∆(Q,A0, . . . , Ǎi, . . . , An) : i = 0, . . . , n} ≤ s
then

max{Det ∆(P,Q,A0, . . . , Ǎi, . . . , Ǎj , . . . , An) : i = 0 . . . n, j = 0, . . . , n} < r.

b) If max{Det ∆{Q,A0, . . . , Ǎi, . . . , An) : i = 0, . . . , n} < s then

max{Det ∆(P,Q,A0, . . . , Ǎi, . . . , Ǎj , . . . , An) : i = 0 . . . n, j = 0, . . . , n} < r.

Proof. Fix an orientation of the affine hull of the points of ∆. We have representa-
tions

[P ] =
∑

αpi [Ai], [Q] =
∑

αqi [Ai] for some αpi , α
q
i ≥ 0.

Then

det(P,A0, . . . , Ǎi, . . . , An) = αpi det(Ai, A0, . . . , Ǎi, . . . , An)

= (−1)iαpi det(A0, . . . , An),

det(Q,A0, . . . , Ǎi, . . . , An) = (−1)iαqi det(A0, . . . , An),

Det(Q,A0, . . . , Ǎi, . . . , An) = αqi Det(A0, . . . , An),

(∗)
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det(P,Q, . . . , A0, . . . , Ǎi, . . . , Ǎj , . . . , An)

= det(αpi [Ai] + αpj [Ai], α
q
i [Aj ] + αqj [Aj ], [A0], . . . , [Ǎi], . . . , [Ǎj ], . . . , [An])

= αpiα
q
j det(Ai, Aj , A0, . . . , Ǎi, . . . Ǎj , . . . , An)

+ αpjα
q
i det(Aj , Ai, A0, . . . , Ǎi, . . . , Ǎj , . . . , An)

= (αpiα
q
j − α

p
jα

q
i ) det(Ai, Aj , A0, . . . , Ǎi, . . . , Ǎj , . . . An)

= (αpiα
q
j − α

p
jα

q
i )(−1)i+j−1 det(A0, . . . , An),

Det(P,Q, . . . , A0, . . . , Ǎi, . . . , Ǎj , . . . , An)

= |αpiα
q
j − α

p
jα

q
i |Det(A0, . . . , An).

(∗∗)

(a) By (∗)) and the assumption on s we claim that αqi ≤ 1 in the representation
[Q] =

∑
αqi [A]. On the other hand, αpi , α

q
j > 0, since P,Q ∈ int ∆. Thus,

Det ∆(P,Q,A0, . . . , Ǎi, . . . , Ǎj , . . . , An)

= |αpiα
q
j − α

p
jα

q
i |Det ∆(A0, . . . , An)

< max{αpiα
q
j Det ∆(A0, . . . , An);αpjα

q
i Det ∆(A0, . . . , An)}

≤ max{αpj Det ∆(A0, . . . , An);αpi Det ∆(A0, . . . , An)}
= max{Det ∆(P,A0, . . . , Ǎj , . . . , An); Det ∆(P,A0, . . . , Ǎi, . . . , An)} ≤ r.

(b) By the assumption on s and (∗) we have, in particular, αqi < 1 for all i. Then

Det ∆(P,Q,A0, . . . , Ǎi, . . . , Ǎj , . . . , An)

= |αpiα
q
j − α

p
jα

q
i |Det ∆(A0, . . . , An)

≤ max{αpiα
q
j Det ∆(A0, . . . , An);αpjα

q
i Det ∆(A0, . . . , An)}

< max{αpj Det ∆(A0, . . . , An);αpi Det ∆(A0, . . . , An)}
= max{Det ∆(P,A0, . . . , Ǎj , . . . , An); Det ∆(P,A0, . . . , Ǎi, . . . , An)} ≤ r.

Let T be a triangulation of an F -complex K. P,Q ∈ |T |.

Lemma 11.2. If P determines an (n)-blow-up of T and Q determines a decreasing
blow-up of T, then P determines an (n)-blow-up of T(Q).

Proof. It suffices to prove the theorem for the respective blow-ups of any simplex
∆′ ∈ T such that P,Q ∈ ∆′. Let ∆′ = ∆(A0 . . . , Al). By assumption and Lemma
11.1b),

Det ∆(A0, . . . , Ǎi, . . . , Al, P ) ≤ n
implies that

Det ∆(A0, . . . , Ǎi, . . . , Ǎj , . . . , Al, P,Q) ≤ n.
Finally, P determines an (n)-blow-up of ∆′ and all of T.

Lemma 11.3. Assume that P determines an (n)-blow-up of T which is not de-
creasing and Q determines a decreasing blow-up of T. Assume Q ∈ int ∆′ and
P ∈ ∆′ for some ∆′ ∈ T. Then Q determines an (n− 1)-blow-up of T(P ).
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Proof. It suffices to prove the theorem for the respective blow-ups of any ∆′′ ∈ T
such that Q ∈ ∆′′.

Let ∆′′ = ∆(A0, . . . , Al). By the assumptions we have that P ∈ ∆′′. Since P
determines an (n)-blow-up of ∆′′, but not a decreasing one we claim that Det ∆′′ ≤
n. Since Q determines a decreasing blow-up of ∆′′, it determines (n− 1)-blow-up
of ∆′′. In particular

Det ∆(A0, . . . , Ǎi, . . . , Al, Q) ≤ n− 1, i = 1, . . . , n.

Then by Lemma 11.1b)

Det ∆(A0, . . . , Ǎi, . . . , Ǎj , . . . , Al, P,Q) ≤ n− 1.

Finally, Q determines an (n−1)-blow-up of ∆′′(P ) and hence of the whole T(P ).

Lemma 11.4. If P determines an (n)-blow-up of T which is not decreasing and Q
determines a decreasing blow-up of T, then T(P,Q) and T(Q,P ) differ by a succession
of elementary transformations of type (n, n− 1).

Proof. It is sufficient to prove the lemma for the respective blow-ups of any ∆′ ∈ T
such that P,Q ∈ ∆′.

Let ∆′ = ∆(A0 . . . , Al). By arguments similar that in the previous proof we
claim that Det ∆′ ≤ n and Q determines an (n− 1)-blow-up of ∆′.

There are three types of simplices of the pair (∆′;P,Q):
I. ∆′′ = ∆(A0, . . . , Ǎi, . . . , Al, P ); then Det ∆′′ ≤ n.
II. ∆′′ = ∆(A0, . . . , Ǎi, . . . , Al, Q); then Det ∆′′ ≤ n− 1.
III. ∆′′ = ∆(A0, . . . , Ǎi, . . . , Ǎj , . . . , Al, P,Q); by Lemma 11.1 b) Det ∆′′ ≤

n− 1.
By Corollary 4.1.3 we have that each basic polytope in the elementary equiva-

lence of ∆′(P,Q) and ∆′(Q,P ) is of the form

(PB)′ = conv(Ai0 , . . . , Aih , P ;Aih+1
, . . . , Aig , Q)

for some subset {i0, . . . , ig} ⊂ {1, . . . , l}. Thus for each elementary transformation
one canonical triangulation of the corresponding basic complex (CB)′ consists of
simplices of types I and III and the other one consists of simplices of types II and
III. Finally, each elementary transformation is of type (n, n− 1).

Lemma 11.5. If P determines an (n)-blow-up of T and Q determines a decreasing
(n)-blow-up of T, then T(P,Q) and T(P,Q) differ by elementary transformations of
type (n, n).

Proof. Analogously as for Lemma 11.4

Lemma 11.6. Let n ≥ 1 and ∆ ∈ T. If T is regular and P ∈ int ∆ determines an
(n)-blow-up of T and Q ∈ int ∆ determines a regular blow-up of T, then

(i) P determines an (n− 1)-blow-up of T(Q),
(ii) Q determines an (n− 1)-blow-up of T(P ),
(iii) T(P,Q) and T(Q,P ) differ by elementary transformations of type (n−1, n−1).

Proof. Note that if n = 1 then P = Q and T(P ) = T(Q) = T(P,Q) = T(Q,P ). As-
sume that n > 1. Since ∆ and T are regular, the multiplicative factor of Star(∆; T)
equals one. Since all subdivisions and elementary transformations considered in the
lemma are induced by subdivisions and elementary transformations of ∆, it suffices
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to prove that simplices of any triangulation of the pair (∆;P,Q) have determinant
≤ n− 1.

Let ∆ = ∆(A0, . . . , Al). By assumption we have [Q] =
∑l
i=0[Ai]. We can as-

sume that P determines an (n)-blow-up of T but not an (n−1)-blow-up. Otherwise
we reduce the considerations to smaller n. Without loss of generality P satisfies
the relation

[P ] = n[A0] + · · ·+ n[Aj ] + rj+1[Aj+1] + · · ·+ rl[Al](1)

where j ≥ 0 and rs < n for j + 1 ≤ s ≤ l.
By the above

∆(A0, . . . Ǎi, . . . , Aj , . . . , Al, P ) = n for i ≤ j,
Det ∆(A0, . . . Aj . . . , Ǎi, . . . , Al, P ) = ri < n for i > j,

Det ∆(A0, . . . Ǎi, . . . , Al, Q) = 1 ≤ n− 1 for 0 ≤ i ≤ l.

By Lemma 11.1 a)

Det ∆(A0, . . . Ǎi, . . . , Ǎj , . . . , Al, P,Q) < n, 0 ≤ i < j ≤ l.
Let ∆′ be a simplex of the pair (∆;P,Q) such that Det (∆′) = n. Then by the
above ∆′ = ∆(A0, . . . , Ǎi0 , . . . , Aj , . . . , Al, P ) for some i0 ≤ j. From (1) we have

n[Q] = [P ] + (n− rj+1)[Aj+1] + · · ·+ (n− rl)[Al],
where (n− rj+1), . . . , (n− rl) are positive. Thus Q ∈ conv(P,Aj+1, . . . , Al) ⊂ ∆′.
But ∆′ is a simplex of the pair (∆;P,Q). Hence Q is a vertex of ∆′, which means
Q = P and n = 1, and we get a contradiction.

12. Main Lemma

Lemma 11. Fix an F -complex C and an n ∈ Z≥0. Then the following assertions
hold.
A1(n). If T0 and T1 are two good triangulations of C, that differ by an elementary
transformation of type (n, n) and if each triangulation T of C is good whenever
ω(n+1)(T) ≤ ω(n+1)(T0) or ω(n+1)(T) ≤ ω(n+1)(T0), then T0 and T1 are regular
equivalent.
A2(n). If T0 and T1 are two good triangulations of C, that differ by an elementary
transformation of type (n+ 1, n) and if each triangulation T of C is good whenever
ω(n+1)(T) ≤ ω(n+1)(T0) or ω(n+1)(T) ≤ ω(n+1)(T0), then T0 and T1 are regular
equivalent.
B(n). If a point P determines an (n)-blow-up of a good triangulation T and if each
triangulation T′ of C is good whenever ω(n+2)(T′) ≤ ω(n+2)(T), then T is regular
equivalent to T(P ).
C(n). If T is a triangulation all of whose simplices have determinants ≤ n + 1,
then T is good.

Proof. We write T0 ∼ T1 for two good triangulations which are regular equivalent.
We prove the lemma by induction on n.

A(0). For n = 0 conditions (a) from A1 and (a) from A2 are satisfied by the
empty set. Therefore the assertions are valid automatically.

B(0). Let P ∈ ∆ for ∆ ∈ T. If ∆ is not regular then Det ∆ > 1. Hence the
(1)-blow-up at P is decreasing. Thus we can apply Lemma 9.13.
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Now suppose that ∆ is regular. Since P determines a (1)-blow-up, then by
Lemma 9.4 it determines a regular blow-up of ∆. Moreover, by the definition of
1-blow-up and Proposition-Definiton 9.3 all simplices of Star(∆; T) are regular.
Consider a decreasing decomposition T(P1,... ,Pk) of T. Since the decomposition
does not change any regular simplices, all simplices of Star(∆; T) are preserved.
Hence the regular blow-up at P commutes with the decreasing decomposition at
the sequence of points P1, . . . , Pk, i.e. T(P )(P1,... ,Pk) = T(P1,... ,Pk,P ). The last
triangulation is regular equivalent to T(P1,... ,Pk).

Hence we have found an decreasing decomposition of T which is regular equiva-
lent to the decreasing decomposition of T(P ). This finishes the proof of B(0).

C(0). Every triangulation T all of whose simplices have determinants ≤ 1 is a
regular triangulation and hence is good.

Proof of the Inductive Step of Lemma 12. We assume that n > 1.
Case A. It follows from the assumption and from Lemmas 9.10 and 9.11 that tri-

angulations T satisfying the condition ωn+1(T) ≤ ωn+1(Ti) where i = 0, 1 remain
good if T is transformed by (n)-blow-ups or (n, n)-elementary transformations.
Since we consider only these kind of transformations, all the triangulations in the
proof below are good.

Let CB denote the basic complex of the given elementary transformation, and
let SE be its elementary subdivision. Without loss of generality we can assume in
both cases A1 and A2 that

max{Det ∆ : ∆ ∈ T0|CB} ≤ max{Det ∆ : ∆ ∈ T1|CB}.

Let PB = conv(A0, . . . , An;B0, . . . , Bm) be the basic polytope of the considered
elementary transformation. Set T0|PB = A, T1|PB = B. (For the notations A,B
see section 2). Then

MA := max{Det ∆ : ∆ is a simplex of A},

MB := max{Det ∆ : ∆ is a simplex of B}.
By Proposition-Definition 9.3 for any triangulation T of PB at any ∆ ∈ Tmax

we have

Det(Star(∆; SE(T))) = µ ·Det ∆,

where µ = µ(Star(PB; SE)) and SE(T) is the induced triangulation.
In particular for any ∆′ ∈ Amax and ∆” ∈ Bmax

Det(Star(∆′; T0)) = µ ·Det ∆′,

Det(Star(∆′′; T1)) = µ ·Det ∆′′.

It follows from the above that µ ·MA ≤ µ ·MB; hence MA ≤MB.
Let A ∈ ∆(A0 . . . An) satisfy [A] =

∑
[Ai]/q0, where q0 is the GCD of the

coordinates.
Let ∆ be a maximal simplex of the pair (PB ;A). Then ∆ is of the form

∆(A0, . . . , Ǎi, . . . , An, B0, . . . , Bk),I.

∆(A0, . . . , Ǎi, . . . , Ǎj , . . . , An, A,B0, . . . , Bk),II.

∆(A0, . . . , Ǎi, . . . , An, A,B0, . . . , B̌j , . . . , Bk).III.
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I. Let ∆I = ∆(A0, . . . , Ǎi, . . . , An, B0, . . . , Bk). Then

det(A,A0, . . . , Ǎi, . . . , An, B0, . . . , B̌j , . . . , Bk)

= (−1)i/q0 · det(A0, . . . , An, B0, . . . , B̌j , . . . , Bk).

Thus

Det ∆I = Det ∆(A,A0, . . . , Ǎi, . . . , An, B0, . . . , B̌j , . . . , Bk) ≤MA.

II. Let ∆II = ∆(A0, . . . , Ǎi, . . . , Ǎj , . . . , An, A,B0, . . . , . . . , Bk). Then

det(A,A0, . . . , Ǎi, . . . , Ǎj , . . . , An, B0, . . . , Bk)

= 1/q0 · det(Ai, A0, . . . , Ǎi, . . . , Ǎj , . . . , An, B0, . . . , Bk)

+ 1/q0 · det(Aj , A0, . . . , Ǎi, . . . , Ǎj , . . . , An, B0, . . . , Bk)

= (−1)i/q0 · det(A0, . . . , Ǎj , . . . , An, B0, . . . , Bk)

− (−1)j/q0 · det(A0, . . . , Ǎi, . . . , An, B0, . . . , Bk)

= (−1)i+j/q0 · {(−1)j · det(A0, . . . , Ǎj , . . . , An, B0, . . . , Bk)

− (−1)i det(A0, . . . , Ǎi, . . . , An, B0, . . . , Bk)}.
By Lemma 10 both last numbers in the braces are negative or both are positive.
Thus

Det ∆II = Det ∆(A,A0, . . . , Ǎi, . . . , Ǎj , . . . , An, B0, . . . , Bk) < MB.

III. Let ∆III = ∆(A0, . . . , Ǎi, . . . , An, B0, . . . , Bk).
Let P := ∆(A0, . . . , An) ∩ ∆(B0, . . . , Bk). By Lemma 10, there exists some

p ∈ Z such that

p[P ] =
∑

(−1)i det(A0, . . . , Ǎi, . . . , An, B0, . . . , Bk)[Ai].

Moreover, p and (−1)i det(A0, . . . , Ǎi, . . . , An, B0, . . . , Bk) have the same sign.
Without loss of generality we can assume that they are positive. Hence p ∈ N
and

p[P ] =
∑

Det ∆(A0, . . . , Ǎi, . . . , An, B0, . . . , Bk)[Ai].

By definition

Det ∆III = Det ∆(A0, . . . , Ǎi, . . . , An, B0, . . . , Bk) ≤MB.

Assume that Det ∆III = MB. By the definition of the point A,

q0MB[A] =
∑
j

MB[Aj ]

= p[P ] +
∑
j

(MB −Det ∆(A0, . . . , Ǎj , . . . , An, B0, . . . , Bk))[Aj ].

Let kj := (MB − Det ∆(A0, . . . , Ǎj , . . . , An, B0, . . . , Bk). Then kj ≥ 0. Set J =
{j ∈ {0, . . . , n} : kj > 0}. By the above,

q0MB[A] = p[P ] +
∑
j∈J

kj [Aj ].(1)

By definition i 6∈ J . Thus

{Aj : j ∈ J} ⊂ ∆(A0, . . . , Ǎi, . . . , An, B0, . . . , Bk).(2)
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and

P ∈ ∆(B0, . . . , Bk) ⊂ ∆(A0, . . . , Ǎi, . . . , An, B0, . . . , Bk)(3)

By (1) A ∈ ∆
′

= conv({P,Aj : j ∈ J)}. From (2) and (3) we conclude that

∆
′ ⊆ ∆III = ∆(A0, . . . , Ǎi, . . . , An, B0, . . . , Bk). Thus A ∈ ∆III, which contradicts

the assumption that ∆III is a simplex of (PB; {A}). Finally, Det ∆III < MB.
Case A1(n). By the assumption, MA ·µ ≤MB ·µ ≤ n. By the above considera-

tions the point A determines (MB)-decomposition of A and B. Hence by Corollary
9.5 it determines (n)-decomposition of T0 = SE(A(A)) and T1 = SE(B(A)). By
B(n− 1) we have T0 ∼ T0(A)

and T1 ∼ T1(A)
.

A(A) and B(A) differ by elementary transformations whose basic polytopes are
of the form

(PB)′ = conv(Ai1 , . . . , Ais , A;B0, . . . , Bk, Ais+1 , . . . , Aih)

where {i1, . . . , ih} ⊂ {1, . . . , n}. Thus one canonical triangulation of the corre-
sponding basic complex of these transformations consists of maximal simplices of
types I and II and another one consists of simplices of types II and III. Thus
by the above these triangulations differ by elementary transformations of type
(MB,MB − 1) and it follows from Corollary 9.6 that induced triangulations SE(.)
differ by elementary transformations of type (n, n − 1). We apply A2(n − 1) and
get T0(A) ∼ T1(A). Finally, T0 ∼ T1

Case A2(n). By the assumption and sinceMA ≤MB, we have that MB ·µ ≤ n+1
and MA · µ ≤ n. If MA = MB then MA · µ = MB · µ ≤ n, and we are done by
the previous case. Assume MA ≤MB − 1. The point A detemines an ({MB − 1})-
decomposition of A and B. Hence it determines (n)-decomposition of T0 and T1.
By B(n− 1) we have T0 ∼ T0(A)

and T1 ∼ T1(A)
.

The triangulations A(A) and B(A) differ by elementary transformations of type
(MB − 1,MB − 1), and it follows from Corollary 9.6 that induced triangulations of
SE differ by elementary transformations of type (n, n). By A1(n) we have T0(A) ∼
T1(A), and finally T0 ∼ T1

Case B(n). All triangulations considered below are good by assumption and by
Lemmas 9.10 and 9.11.

We can assume that P determines an (n + 1)-blow-up which is not decreasing.
Otherwise we are done by Lemma 9.13.

Assume T is not regular. Let Q ∈ int ∆ for ∆ ∈ T determine a decreasing blow-
up. If P 6∈ ∆ then ∆ ∈ T(P ). Q determines a decreasing blow-up of ∆, and hence
by Lemma 9.7 it determines a decreasing blow-up of T(P ). We get T(P,Q) ∼ T(P )

by Lemma 9.13. If P ∈ ∆, then by Lemma 11.3 Q determines an (n)-blow-up of
T(P ), and we get T(P,Q) ∼ T(P ) by B(n − 1). By Lemma 11.4 and A2(n) we get
T(P,Q) ∼ T(Q,P ). Finally, T(Q,P ) ∼ T(P ), and P determines by Lemma 11.2 an
(n+1)-blow-up of T(Q). After finitely many steps we have that T′(P ) ∼ T(P ), where

T′ is a regular decreasing decomposition of T and P determines an (n+1)-blow-up
of T′.

By Lemma 11.6 we find Q such that Q determines a regular blow-up of T′,
Q determines an (n)-blow-up of T′(Q), P determines an (n)-blow-up of T(Q) and

T(P,Q) and T(Q,P ) differ by elementary transformations of type (n, n). By B(n−1)
we have T′(P ) ∼ T′(P,Q), T(Q) ∼ T′(Q,P ). By A1(n) we have T′(P,Q) ∼ T′(Q,P ).

Finally, T′(P ) ∼ T′(Q). Since Q is the regular blow-up of T′, then T′(Q) ∼ T′.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



410 JAROS LAW W LODARCZYK

Since T′ is a regular decomposition of T, then by Lemma 9.13 T′ ∼ T. Finally,
T(P ) ∼ T.

Case C(n). Let Γn+1 denote the set of all triangulations of the complex C
with all simplices having determinants ≤ n + 1. Let Γn+1

i denote the set of all
triangulations of C with all simplices having determinants ≤ n+ 1 and containing
at most i maximal simplices with determinants = n+ 1.

We show that all triangulations in Γn+1 are good. By induction on i we prove
that all triangulations in Γn+1

i are good. Then
⋃∞
i=0 Γn+1

i = Γn+1 yields the asser-
tion of C(n).

For i = 0 we have Γn+1
0 = Γn and we are done by C(n− 1). Assume that i ≥ 1

and all triangulations in Γn+1
i−1 are good.

Fix T ∈ Γn+1
i . Let ∆ ∈ Tmax and Det(∆) = n+ 1. Let T(P1,... ,Pr) be a regular

decreasing decomposition of T and s be the smallest index such the Ps ∈ ∆. Then
T(P1,... ,Ps) ∈ Γn+1

s−1 and hence is good. Hence by Lemma 9.13 we have

T(P1,... ,Pr) ∼ T(P1,... ,Ps).

We show that
T(P1,... ,Ps) ∼ T(Ps).

Set P := Ps. For 1 ≤ j ≤ s− 1 we have that T(P1,... ,Pj ,P ) is a good triangulation.
Since P determines a decreasing blow-up of ∆ ∈ T(P1,... ,Pj), by Lemma 9.7 it
determines a decreasing blow-up of T(P1,... ,Pj). Since Pj determines a decreasing
blow-up of T(P1,... ,Pj−1), it determines the (n)-blow-up. Therefore by Lemma 11.2
Pj determines an (n)-blow-up of T(P1,... ,Pj−1,P ), and we get by B(n− 1) that

T(P1,... ,Pj−1,P ) ∼ T(P1,... ,Pj−1,P,Pj).

By Lemma 11.5, T(P1,... ,Pj−1,P,Pj) differs from T(P1...Pj ,P ) by elementary transfor-
mations of type (n, n), which gives by A1(n)

T(P1,... ,Pj−1,P,Pj) ∼ T(P1,... ,Pj ,P ).

By the above
T(P1,... ,Pj ,P ) ∼ T(P1,... ,Pj−1,P ),

which gives
T(P1,... ,Ps−1,P ) ∼ T(P )

and finally
T(P1,... ,Pr) ∼ T(P ).

Let T(Q1,... ,Ql) be another regular decomposition. Analogously

T(Q1,... ,Ql) ∼ T(Q),

where Q ∈ ∆.
Since Q determines an (n)-blow-up of T(P ) and P determines an (n)-blow-up of

T(Q), we get by Lemma 11.2 and B(n− 1)

T(P ) ∼ T(P,Q), T(Q) ∼ T(Q,P ).

By Lemma 11.5 T(P,Q) and T(Q,P ) differ by elementary transformations of type
(n, n). Hence by A1(n) we get

T(P,Q) ∼ T(Q,P ).

Finally
T(P ) ∼ T(Q).
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Thus any regular decreasing decompositions of T are regular equivalent, which
means that T is good. This completes the proof of the inductive step in the induc-
tion on s.

13. Main Theorems

Proposition 13.1. Every triangulation of a Farey complex is good. The blow-up
of a triangulation is regular equivalent to the triangulation.

Proof. Every triangulation satisfies the assumption of C(n) for sufficiently large n.
Hence every triangulation is good.

Every blow-up is an (n)-blow-up for sufficiently large n. Therefore it satisfies
the conditions in B(n) for a suitable n. Thus by B(n) the triangulations before and
after the blow-up are regular equivalent.

Corollary 13.2. Any two triangulations of an F -complex C are regular equivalent.
In particular, any two regular triangulations are regular equivalent.

Proof. From Proposition 13.1 we conclude that triangulations which are equivalent
are regular equivalent. By Proposition 7.3 we are done.

Via the correspondence between a fan Σ and complex C = C(Σ) described in
Sections 8 and 9, Proposition 13.2 can be translated in the following way.

Theorem 13.3. Let Σ be any simplicial fan in Qm. Let Σ′, Σ
′′

be two regular
decompositions of Σ. Then there exists a sequence of regular decompositions Σi of
Σ, i = 0, . . . , n, such that Σ0 = Σ′, Σn = Σ

′′
, and each Σi+1 is obtained from Σi

by a regular blow-up or regular blow-down.

Since for each two fans Σ′, Σ
′′

such that |Σ′| = |Σ′′ | we can find a common
regular decomposition Σ, then by Theorem 13.3. we prove Theorem A.
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