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The purpose of this note is to give an analytic and geometric description of the class of 

Kleinian groups which are finitely generated and which have an invariant component. 

If  one starts with a collection of "basic" groups, and forms finite "combinations" of 

these groups, one gets a class of "constructible" Kleinian groups. In  this paper, our combi- 

nations occur in the sense of the Combination Theorems appearing in [8] and [9], where the 

amalgamated subgroups (Combination I) and the conjugated subgroups (Combination II)  

are trivial or elliptic cyclic or parabolic cyclic. 

To describe our basic groups, we recall the following definitions. A point z lies in the 

limit set A(G) if there is a sequence {gn} of distinct elements of G, and there is a point z 0 with 

gnZo-+ z. The set o/ discontinuity ~(G) is the complement of A(G). The connected components 

of ~(G) are called components of G. A component A 0 of G is invariant if g(A0)=A 0 for all 

gEG. 

If  A(G) is a finite set, then G is elementary. If  G is non-elementary and has a simply- 

connected invariant component A0, then there is a conformal map ~0 from A 0 onto the unit 

disc. A parabolic element g E G is called accidental if q~gq)-i is hyperbolic. By definition, ele- 

mentary groups do not contain accidental parabolic transformations. 

For the purposes of this paper, a basic group is a finitely-generated Kleinian group 

which has a simply-connected invariant .component, and which contains no accidental 

parabolic transformations, 

The basic groups are, in a sense, all known, it was shown in [11] (for proof, see Bers [4] 

and Kra-Maskit [7]) that  every basic group is either elementary, degenerate, or quasi= 

Fuchsian. The degenerate groups are such that  ~(G) is both connected and simply-cormected. 

A quasi-Fuchsian group is a quasiconformal deformation of a l~uchsian group. 

We define the class C1 as being the class of Kleinian groups which have an invariant 

component, and which can be built up in a finite number of steps from the basic groups 
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using the Combination Theorems mentioned above (precise statements of these theorems, 

and the conventions for their use, appear in section 1). 

TH~.OI~WM 1. The class C1 is the class o//initely-generated Kleinian groups having an 

invariant component. 

The proof of Theorem 1 appears in section 3. 

We remark tha t  the Combination Theorems given in [10] are technically different from 

those given in [8] and [9]. Star t ing with the elementary and quasi-Fuchsian groups as 

basic groups and using the Combinations [10], one obtains the subclass C0c C1 of "nice" 

Kleinian groups. This subclass will be discussed elsewhere. 

Theorem 1 asserts that ,  given GE C1, there is a collection G1, ..., Gs of subgroups of G, 

so tha t  G is formed from G1 ..... Gs by  s -  1 applications of Combination I,  and say t appli- 

cations of Combination I I :  Our next  main result is tha t  the subgroups G 1 ..... Gs and the 

number  t are essentially unique. In  order to make them unique, we need some conventions 

regarding the use of the Combination Theorems. The essence ~of these conventions is tha t  

they guarantee uniqueness, in a simple fashion, for the elementary basic groups. Precise 

statements of these conventions appear in section 2, With these conventions, the subgroups 

G1 .... .  Gs are then called the basic subgroups of G. 

In  general a subgroup G' of G is called a ]actor subgroup if G' is a maximal subgroup o f  

G with the following properties: the invariant component of G', which contains the invariant 

component of G, is simply-connected; G' contains no accidental parabolic transformations; 

if gEGis parabolic and the fixed point of g lies in A(G'), then gEG'. 

The Combination Theorems are geometric versions of simple group-theoretic opera- 

tions; Combination Theorem I is the free product with amalgamation. The next  theorem is 

a geometric version of the Kurosh Subgroup Theorem. 

THEOR]~M 2. Every ]actor subgroup G' o /a  group GE C1 is conjugate in G to a unique 

basic subgroup o/G. 

The proof of Theorem 2 and its corollaries, appears in section 2. 

Theorem 2 asserts tha t  the basic subgroups G~ .... .  G~ form a complete set of non- 

conjugate factor subgroups of G, and so the basic subgroups are unique up to order and 

conjugation. 

COROLLARY 1. Let G ~ C1. Then there are only ]initely many con]ugacy classes o//actor 

subgroups o/G, and each ]actor subgroup is ]initely generated. 

I f  A is a component of G other than  the  invariant component, then the subgroup Ga 
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of G keeping A iavariant  is called a component subgroup o/G.  I t  is well known that  every 

component subgroup is a quasi-Fuchsian subgroup. 

COROLLARY 2. For G6 C1, the set o/ component subgroups equals the set o/quasi-Fuchs- 

inn/actor subgroups. 

C 0 R 0 L L A R Y 3. Let G 6 Cx and let g 6 G be parabolic or elliptic. Then g is an element o/ 

some/actor subgroup o/G. 

There is a detailed description of the limit set of a general finitely-generated Kleinian 

group due to Abikoff [1]. The following result is essentially a special case. 

COROLLARY 4. Let GfiC1, and let z be a limit point o /G.  Then either there is a/actor 

subgroup G', with z a limit point o/ G', or the/ollowing holds. There is a simple closed curve y, 

which is invariant under a / in i te  (perhaps trivial)or parabolic cyclic subgroup H o/ G, and 

which lies, except/or the/ixed point o / H ,  in gl(G). There is a sequence {g~} o/elements o/ G, 

where g~(y) nests about z. 

A sequence {yn} of simple closed curves nests about z, if the (spherical) diameter of 

7~-~0, and for each n > 1, Yn separates z from Yn-1. 

COROLLARY 5. Let G6C1 and let G~ and G' 2 be /actor subgroups o/ G. Then either 

G~ f/G~ =r  or G~ N G~ = H is a parabolic or elliptic cyclic group, maximal (as a cyclic subgroup) 

in G. 

In  general, if one has a finitely-generated Kleinian group G with an invariant compo- 

nent A 0, then by Ahlfors' Finiteness Theorem [3], Ao/G = X o is a finite Riemann surface. 

That is, X 0 is a dosed surface of genus g, with finitely many points removed, and with 

finitely many points where the projection p :A0-+ X o is ramified. There are in all, say, n 

removed points and points of ramification, call them x 1 ..... x~. Each x, has a branch number 

v~, 2 ~<vi ~< ~ associated with it, where v, = ~ if x, has no preimage in A 0, otherwise near 

some preimage of x,, p is v,-to-one. The signature of G (or of X0) is then (g, n; vl ..... vn). 

In  the special case of a factor subgroup G, of G, we need to enlarge the notion of signa- 

ture to include some of the interaction of G, with the rest of G. If  G, has signature (g,, n,; 

v,l . . . .  , v~n,), then there is a correspondence between each of the n, points and a conjugacy 

class of elliptic or parabolic cyclic subgroups of G; the order of a cyclic subgroup H,j in the 

class corresponding to v,j is v,j. By Corollary 5, we know that  for each other factor subgroup 

G', either H~j= G', or H,j f/G' = 1. The ]-th puncture is a connector if H,j is contained in some 

other factor subgroup, or if the normalizer, N,j of H,j in G, contains H,j as a subgroup of 
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infinite index. We let m~ be the number of connectors and let/r =n~-m~ be the number of 

non-connectors. The (extended) signature is then 

(gi, hi,  ki; vii  . . . . .  ~)ik~, ~ i l  . . . . .  ['~irni)* 

We let (g, n; ~ . . . . .  rn) be the signature of G, acting on the invariant component A o. 

THEOREM 3. 

(a) ~ g~ = g - t 
i ~ l  

(b) ~/c~ = n, 
4=1 

and (vl . . . . .  vn) is a rearrangement o / (un  .. . . .  vsks). 

We assume that  the basic groups have been ordered so that  G~, ,.., G~ are precisely the 

quasi-Fuchsian basic subgroups. Then by Corollary 2, we have 

~(G)/G = • +/hlG1 +... + A~/G, = Xo + Xl  +... + X~, 

where we use " + "  for disjoint union, and each A s is the component of G~ which does not 

intersect A 0. 

The equahties in Theorem 3 can be used to derive inequalities for the component sub- 

groups. Specifically we get inequalities for dim Bq(X~), q >~ 2, the dimension of the space of 

bounded q-forms; A(X~), the non-Euclidean area; and x(X~) the (negative) Euler charac- 

teristic, where all branch points are considered as punctures. 

In  order to state the inequalities, we need several parameters, most of these are zero 

unless G has elementary factor subgroups. 

The total number of connectors is r = ~ = 1  m~. Some factor subgroups have no connec- 

tors; let r0 be the number of elementary basic subgroups for which m~ =0. The number of 

basic subgroups which are cyclic but  non-trivial is rl; we write r 1 =r~ +r~, where r~ is the 

number of these with (extended) signature (0, 2, 0; ju, #), rE is the number with (ex- 

tended) signature (0, 2, 2; v, v). 

The number of basic subgroups which are elementary with signature (0, 3; a, fl, ~) is r~. 

The number of basic subgroups, necessarily elementary, with signature (0, 4; 2, 2, 2, 2), 

respectively (1, 0), is denoted by ra, respectively, r 4. 

THEOREM 4. Let G in C1 have at least two components. Then 
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p 

i = 1  

�9 p 

(b) dim B~ (Xo) - ~ dim B 2 (X,) >~ 3(s + t "  1) - r - r 1 + r a 

(c) dim Bq (Xo) - ~ dim Bq (X,) >~ (2q - 1) (s + t - 1) - (q - 1) (r + to) - (s - p), q >~ 2 

(d) 
P 

dim B q ( X o ) "  ~ dim Bq(X~) >1 (2q - 1) (s + t - 1) - ( q -  1) ( r +  ro) - r~, q = 2, 4, 6 . . . .  
i = 1  

P 

(e) A(Xo) - ~ A (X , )  >12:~(2(s + t -  1) - r -  to) 
~ 1  

p 

(f) Z(Xo) - ~ Z(X~)/> 2(s + t - 1) -- r + r 2 + 2r a 
t = 1  

Inequalities 4 (b) and 4 (f) are simultaneously sharp; equality occurs i/ and only i / no /ac tor  

subgroup o] G is degenerate. 

Inequalit ies 4 (b), (c) and  (d), with R H S  zero are not  new. Ahlfors [3] discovered 4 (b), 

the  others are due to Bers [5]. I n  the  ease t h a t  A 0 is s imply connected, inequalities similar 

to the above appear  in [11]. 

The above inequalities have obscure r ight  hand  sides; these are clarified in Theorem 5, 

where non-negative lower bounds are given. 

I t  should be remarked  tha t  one can naively count  parameters  as one combines groups; 

this was in fact  first done by  Klein [6]. One can view equali ty in 4 (b) as asserting tha t  the  

dimension of the space of bounded  quadrat ic  differentials on G is equal to the  naive para- 

meter  count.  One expects t ha t  "nice"  groups, for which equal i ty  in 4(b) holds, are quasi- 

eonformally stable in the  sense of Bers [4]. This will be pursued elsewhere. 

T~V.OREM 5. Let G be as in Theorem 4. 

(a) For q~>2, dim Bq(Xo) - ~ 1  dim Bq(Xi)  >~p+ t -  1. 

(b) For q = 2, 4, 6 . . . . .  d im Bq (X0) - ~f~l dim Bq (X~)/> s + t -  1. 

(c) I ] / o r  some even q >1 2, dim Bq(Xo)= ~ 1  dim Bq(X~), then G is quasi-Fuchsian. 

(d) A(Xo)  - ~f~IA(X~) >~ 0; i/  equality holds, then A0 is simply-connected and G contains 

no degenerate/actor subgroups. 

(e) r ~< 2(s + t - -  1) ~< 2 dim B~ (Xo). 

(f) p < Yf_~ Z(x,) < Z(Xo). 
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Theorems 3, 4, and 5 are all proven in section 4. 

Combining the constructions given in [12] and [11], one can easily show tha t  the second 

inequality in 4(f) is sharp. That  is, if we are given l~iemann surfaces X0, X1, ..., X~, sat- 

isfying this inequality then, in general, there is a Kleinian group G with ~/G = X o +... + X~. 

However, some of the branch numbers of X I +  ... + X~ are determined by  the branch 

number of X 0, the others must  be chosen in pairs; because of considerations involving 

elementary groups one must  in general exclude branch numbers 2 and 3. 

One can view the inequalities given in Theorem 4 as being an analytic description of 

all groups in C~. One can also get a precise geometric description. We look at the surface X0, 

which is X 0 with the branch points deleted. On X 0 a set of simple disjoint loops {w~, ... ,wq} 

is called homotopically independent, if no wj bounds either a disc or a punctured disc, and if 

for i 4 ] ,  w~ and w] =1 are not freely homotopic. 

T ~ o R ~ 6. Let G E C1. Then there is a homotopically independent set o/loops (w~ .... ,wq} 

on X~, and there is a set o] "integers" {~  ..... ~q}, 1 ~< ~ ~ ~ ,  as ]ollows. Let Y'~ ... . .  Y~ be the 

connected components o/ X o -  (w~ U ... D Wq}. There are 2q boundary curves on Y~ U ... U Y'~; 

let Y~, ..., Y~ be the sur/aces obtained by sewing in 2q discs along these curves, where we piclr 

one point in each o/the two discs bounded by w~, and give it branch number ~ .  The resulting 

sur]aces Yl, ..., Ys are topologically equivalent to the sur/aces X 1 ..... Xs. 

Essentially all possibilities for homotopically independent sets, branch numbers, and 

cortformal structures on X0, X 1 ... . .  X~, can be realized. These were discussed in [12] and 

[11] and will not be pursued here. 

We remark tha t  Theorem 5(b) gives a characterization of quasi-Fuchsian groups. 

One can also use these results to characterize other Classes of Kleinian groups; for example, 

using the result in [13], one can characterize the Schottky groups as follows. A group G i~ 

C1 is a Schottlcy group i /and  only i] G contains no non-trivial ]actor subgroups. 

1. Combination Theorems 

Let H be a subgroup of the Kleinian group G. A set T is called precisely invariant under 

H if H T = T ,  and gT • T = ~ ,  for g 6 G - H .  

For a cyclic subgroup H, a precisely invariant disc B is the interior of a closed topo- 

logical disc, with closure/~, where B - A ( H )  is precisely invariant under H, and (/~ - A ( H ) )  

c ~ ( G ) .  

We need the following forms of the Combination Theorems. 
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COMBINATION TH]~OR~M I. ~or  i = 1, 2, let B t  be a precisely invariant disc under H,  

a cyclic subgroup o/both G1 and G 2. Assume that B 1 and B 2 have common boundary 7x and 

B 1 (~ B 2 = r  G be the group generated by G 1 and G 2. Then 

(1) G is Kleinian; 

(2) G is the/ree product o / G  1 and G 2 with amalgamated subgroup H; 

(3) s = (~(G1)lG1 - BI lH)  U (~(G2)IG ~ - B21H ), where 

(~2(G~)IG ~ -  B~IH } n (~(G2)IG ~ - B J H )  =? r~ ~ (H) IH .  

(4) I / z  eA(G), and z is not a limit point  o] a conjugate o/ either G 1 or G2, then there is a sequence 

(j~) o/elements o/ G so that ]~(?) nests about z. 

(5) I / H  is its own normalizer in either G1 or Ge, then every elliptic or parabolic element o /G  lies 

in a conjugate o/ either G 1 or G~. 

One easily sees that  the hypotheses given above are a restatement of the hypotheses in 

[8], where conclusions (1)-(4) are proven. Conclusion (5) for the case that  H is its own nor- 

malizer in both G 1 and G 2 is proven in [10]; the more general case is a simple modification 

of the argument given there. 

COMBINATION T~WORV.M II. Let G 1 be a Kleinian group. For i = l ,  2, let B t  be a 

precisely invariant disc/or  the cyclic subgroup Hi, and let ?i be the boundary o] Bi. We assume 

that g(B1) n B2 = r  all g in G 1. Let G' be cyclic, generated by ], where/?l  =7~, ](B1) N B2 =r 

a n d / - 1 H  2 / = H 1. Let G be the group generated by G 1 and G'. Then 

(1) G is Kleinian; 

(2) Every relation in G is a consequence o/ the relations in G 1 and the relat ions/-1H 2 / = H i .  

(3) ~(G)/G = ~(G1)/G 1 - (B1/H 1 O Be~H2), where (?~ fi ~ (G)) /H 1 is identi/ied in gI(G)/G with 

(~ n ~(G) )IH2. 

(4) For every point z EA(G), where z is not a limit point o / a  conjugate in G o/either G 1 or 

G', there is a sequence ]~ o/elements o /G,  where jn(gXl) nests about z. 

(5) I~ each o/ H 1 and H2 is its own normalizer in G1, then every elliptic or parabolic element 

o / G  lies in some conjugate o / G  1. 

One easily sees tha t  the hypotheses given above imply those of [9], where conclusions 

(1)-(4) above are proven. The proof of conclusion (5) appears in [10]. 

There are two technical assumptions, concerning elementary groups, in the definition 

of the class C1- The first assumption is that  we want to regard an elementary group with 
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one limit point and signature (0, 4; 2, 2, 2, 2) as a basic group and not as the group formed 

via Combination Theorem I from two groups each of signature (0, 3; 2, 2 ,~ ) .  To this end, 

we require first, in the use of Combination Theorem I, that i / H  is parabolic cyclic, then H 

must be its own normalizer in either G 1 or G 2. Our second requirement is that ,  in using 

Combination Theorem II ,  we require tha t  i / H  1 and H~ are parabolic cyclic, then each is its 

own normalizer in G r 

We remark tha t  the conventions above are precisely those needed for the use of con- 

clusion (5) in the Combination Theorem. Hence, with these conventions, conclusion (5) of 

Combination Theorem I (I][) says tha t  every elliptic or parabolic element of G is a conjugate 

of some element of G 1 or G~ (G1). 

Our second assumption is a minimality condition on the number  of operations. I f  we 

take the free product (Combination Theorem I) of G 1 and a parabolic or elliptic cyclic 

group G~, and then adjoin / (Combination Theorem I I )  which conjugates G~ and a cyclic 

subgroup of G1, we get a group G. This group G could equally well have been obtained from 

G 1 by  adjoining an element / (Combination Theorem I I )  which conjugates the identity. 

In  this case we do not want  the subgroup G 2 to appear as a basic group. We thus require in 

our use of Combination Theorem I I ,  tha t  the cyclic subgroups H 1 and H 2 must  be equal or 

must  each be a proper subgroup of a conjugate of a basic group. 

Before going on to the proofs of the theorems, we mention some of the properties of 

the Combination Theorems tha t  will be used. 

We star t  with Combination Theorem I.  I t  follows from conclusion 2 tha t  for g E G, 

g? =7  if and only if g E H. I f  g ~ H, then g? N 7 ~= r if and only if H is parabolic and g belongs 

to the normalizer of H in G1 or G2; i.e. g belongs to either G 1 or G~ and g? N 7 is the fixed 

point of H. I t  follows tha t  the translates of 7 under G divide A 0 (or the extended complex 

plane) into regions; each of these regions is invariant under a conjugate of G 1 or G~; in fact, 

the subgroup of G keeping one of these regions invariant  is precisely a conjugate of G1 or G~. 

I t  was proven in [8], tha t  if gn(7) are all distinct, then their diameters (measured on 

the sphere) form a null-sequence. 

LEi~MA 1 (I). Let G~ be G1 or G~ and let G~ be gGlg -1 or gG2g -1, /or some gEG. Then 

either G; =G~, or G'I N G~=I ,  or G~ N G~=~H~ -1, /or some ~eG. 

Proo]. Let R 1 and R 2 be the regions kept invariant  by  G~ and G~, respectively. Let  w be 

a pa th  from an interior point of R~ to an interior point of R 2, where w crosses each translate 

of 7 at  most once. We assume tha t  R~ =~ R~, so tha t  w crosses at  least one translate of 7, 

say g1(7). We can assume tha t  gl(?) lies in the boundary of R 1. Since no element of G~ 

which is not also in glHg~ 1 can keep R 2 invariant, G~ N G~=glHg~ 1. 
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g~! ^ G ?  // t/ If ~: II ~ is non-trivial, then let R: be the region on the other side of g1(7), and let G: 

be the subgroup of G keep ing /~  invariant. Observe that  G~ A G~ =g:Hg~: ~ G~ O G~., and 

we can connect R~ to R~ by a path which passes through one fewer translate of 7. 

The same sort of remarks are also true for Combination Theorem II.  For every g E G, 

either gT: =71, in which ease geH:, or g71N 7: =r (We are assuming that  our convention 

dealing with the normalizers o f / t :  and H~ is in force.) The translates of 7: under G divide 

A 0 (or the extended complex plane) into regions. Each conjugate of G: determines one of 

these regions; it is the subgroup of G keeping the region invariant. The union of all these 

regions, together with the translates of 71, contains ~(G), for any sequence of distinct 

translates of 7: has (spherical) diameter converging to zero [9]. 

We repeat the proof of Lemma 1 (I), and obtain 

LEMMA 1 (II). I] G~ and G~ are conjugates o/ G:, then G~=G~, or G~ N G~=I, or 

G~ N G~=~ H~ -1, /or 8ome ~eG. 

2. Proof of Theorem 2 

In order to prove Theorem 2, it suffices to show that  every factor subgroup of G is 

contained in a conjugate of a basic subgroup, tha t  every basic subgroup is in competition 

to be a factor subgroup, and that  no conjugate of a basic subgroup is contained in another. 

We take up the last statement first. Using Lemmas 1 (I) and 1 (II) inductively, we see 

that  the only possibility for a conjugate of a basic group to be contained in another, is if 

the first group is cyclic and is used as an amalgamating or conjugated subgroup. Our con- 

vention specifically forbids this. 

We next  suppose we are given a factor subgroup J,  and we want to show that  it is 

conjugate to a subgroup of a basic group. We have several cases to consider. 

Case 1. J is cyclic. J is then necessarily parabolic or elliptic cyclic, or trivial, and the 

result is immediate from conclusion 5 of the Combination Theorems. 

Caze 2. J is finite, but  not cyclic. The proof is by induction on the Combinations. 

Suppose the finite non-cyclic group J is a subgroup of G, the group formed via Combi- 

nation Theorem I from G: and G2. We pick generators ?'1, ?'2 for J .  By conclusion 5, we can 

assume that  there are conjugates of G: or G2, call them G~, G~, so that  ?'1 e G~, ?'2 E G~. Let  R:, 

R 2 be the regions bounded by translates of 7, kept invariant under G~, G~, respectively. As 

in the proof of Lemma 1 (I), let w be a path, with minimal crossings of translates of 7, which 

goes from some point of R: to some point of R 2. Each translate 7' of 7 crossed by w must be 

invariant under either ~: or 72; for if not, the two topological discs bounded by  7 would be 

precisely invariant under the identi ty as a subgroup of the cyclic groups generated by ?'1 and 
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J2. I t  follows then that  either R i has a translate of ? on its boundary which is invariant under 

J2, or R 2 has a translate of 7 on its boundary which is invariant under Jl, or w passes through 

a region with two transforms of ? on its boundary, one invariant under ]i and the other 

invariant under ]2. The subgroup of G keeping that  region invariant contains both Ji and 

J2, and hence it contains J, 

Suppose next that  J is a finite non-cyclic subgroup of G, the group formed from G1 

via Combination Theorem I I .  We again pick generators ?'i, ?'2 for J,  where we can assume 

that  ?'iEG~ and that  there is a gEG with ?'2EgG~g -i. We again pick a path w from R1, the 

region kept invariant under Gi, to R2, the region kept invariant by gGlg -i. Assume as above 

that  w crosses no translate of ? more than once, and observe that each translate of ? crossed 

by w must be invariant under either ]i or ?'3. Hence there is some region kept invariant 

by both ?'i and ?'3, and so J is contained in some conjugate of G1. 

Case 3. J has exactly one limit point and is not cyclic. In  this case J has a parabolic 

cyclic subgroup J i  generated by ?'i. 

We again use induction on the Combinations; we start with Combination I. Using the 

result in case 1, we can assume that  ?'1 E G~. If  ]i were not conjugate in G i to an element of 

H, then the fixed point of ?.i would not lie on a translate of ?, and so no element of G - G  i 

would normalize Ji .  Of course, J normalizes Ji ,  hence we can assume that  ?.iEH. Now 

g(?) N ? =r except for g in G i or G 2, and so we can assume that  the normalizer of J1 in G i is 

non-trivial. Our convention then requires that  H=J~ be its own normalizer in G2; i.e. 

g(?) N ? = r for allg E G 2. I t  now follows that the normalizer of J i in  Gis the normalizer of J i i n  G i. 

For the second Combination, we again can assume that  ?'i E Gi, and as above, we observe 

trivially that  the normalizer of J i  in G is the normalizer of J i  in Gi unless J i  =Hi or J i  =H2. 

We can assume that  J1 =H~. Our convention then requires that H i and H 2 each be its own 

normalizer in G i. Then g?i ~ ?i =r for all gEG - H i ;  and so J = Ji. 

Case 4. J has more than one limit point. 

In  this case, the limit set A(J) is connected. We again use induction on the Combina- 

tion Theorems. The proof for Combination Theorem I I  is essentially the same as the proof 

for Combination Theorem I, given below. 

I t  suffices to show that  A(J) is contained in one of the regions of the sphere cut out by 

translates of ?. Since A(J) is connected, unless H is parabolic it is obvious that  A(J) lies 

on one side or the other of every translate of ?. I f  H is parabolic and say ? disconnected 

A(J), then the fixed point of ? would lie in A(J) and so by the definition of factor subgroup, 

H c J .  Since both topological discs bounded by ? contain limit points of J,  H is an accidental 

parabolic subgroup of J .  
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In  order to complete the proof of Theorem 2, we need to show tha t  every basic sub- 

group is contained in a factor subgroup. We've chosen our basic subgroups so tha t  they each 

have a simply-connected invariant component, and so tha t  they have no accidental para- 

bolic transformations, 

I t  remains only to show tha t  if G i is a basic subgroup and g is a parabolic element of G 

whose fixed point lies on the limit set of G~, then g E Gi. By conclusion (5), g mus t  lie in some 

conjugate of some Gr The proof of case 4 above can be used here. G~ and a translate of Gj 

can have a limit point in common only if tha t  limit point lies on a translate of y; i.e., is a 

parabolic fixed point. In  this case, the full parabolic cyclic subgroup is a common subgroup 

of both G~ and the conjugate of Gj. 

This concludes the proof of Theorem 2. The corollaries require a few words. Corollary 1 

is immediate from the definition of ' the class C1. 

For Corollary 2, it is not immediately obvious tha t  every component subgroup is a 

factor subgroup. I t  does, however, follow at  once from conclusion 3 of the Combination 

Theorems, tha t  the component subgroups are precisely the conjugates of basic subgroups 

having more than  one component. Corollary 2 now follows from Theorem 2 and the observa- 

tion tha t  the quasi-Fuchsian groups are the only basic groups with more than  one compo- 

nent. ~ ' 

Corollaries 3 and 4 follow at  once from conclusion (5) and (4), respectively of the Com- 

bination Theorems. Corollary 5 follows from Lemmas 1 (I) and 1 (II). 

3. The  basic  decompos i t ion  

We start  now with a finitely-generated group G having an invariant  component A 0. 

By Ahlfors' Finiteness Theorem [3], X o =A0/G is a finite Riemanu surface. We remark that ,  

ra ther  than  appealing to Ahlfors' Theorem, we could have started with the assumption 

tha t  X 0 be finite. 

We remark tha t  if G is non-elementary, and A0 is simply-connected, then the proof 

of Theorem 1 is in [11] (where it appears as the proof of Theorem 5); for completeness, we 

will include an outline of the proof here. 

We start  by  assuming tha t  A 0 is not simply-connected. Let A' be A 0 with the elliptic 

fixed points of G removed, and set X'= A'/G. Then p :A ' -+  X' is a regular covering of X' ,  

and so by  the planari ty theorem [14], there is a simple loop w on X' ,  and there is a minimal 

positive integer zr so tha t  w~ lifts to a loop y in X' .  Since we have assumed tha t  A 0 is not 

simply-connected, we can assume tha t  y is not null-homotopic in ?t o (this requires starting 

with a loop W which lies in A' and is homotopically non-trivial in A 0, and then using the 

planari ty theorem in a neighborhood of lo(W)). 
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We first assume tha t  w divides X '  into two subsurfaces Y~ and Y~. We choose a simply 

connected open set U on X',  which intersects w along an are; we choose a lifting f~ of U 

which intersects 7; we choose base points o~E Y~ rl U, and 6i E [7, with p6~ =oi, i = 1, 2. 

Having chosen these base points, there is a natural  identification of ~rl(X', ol) with 

~rl(X', o~), and with this identification, there is a natural  homomorphism ~:~rl(X', o)-->G, 

where o is either o I or o2. For i = l ,  2, let ~z t be tha t  subgroup of ~rl(X', ot) generated by  

loops at  o t, which do not cross w. Set Gt =~(~r~). 

One easily sees tha t  Gt can equivalently be defined as follows. Let  Yt be the connected 

component of p- l (y~)  which contains 6t. Then Gt is the subgroup of G which keeps Yt 

invariant. 

We next observe tha t  G~ IG G~ contains a subgroup H, of order ~, which keeps 7x in- 

vari ant. For i = 1, 2, let B t be the open topological disc bounded by  7x which does not 

contain 6t. 

Lv.~MA 2 (I). .For i= l,  2, B t is a precisely invariant disc for H as a subgroup o/Gt, 

Proof. Since w is a simple loop, every translate of Bt is either equal to B~, disjoint from 

Bf, or is a relatively compact subset of Bl. Since for g E Gt, g EH if and only if gBt = Bt, it 

suffices to show tha t  the last possibility cannot occur. I f  g(Bt) were a relatively compact 

subset of Bt, then every pa th  from 6t to g(dt) would cross 7, and so g could not be in Gt. 

Using Lemma 2 (I), we see tha t  G 1 and G 2 satisfy the hypotheses of Combination 

Theorem I. Since ~rl(X', o) is generated by  ~r t and ~r 2, G=v(~rl(X', o)) is generated by  G1 

and G~; hence G is formed from G 1 and G~ via Combination Theorem I.  

The group G~ has an invariant  component A t ~ A. In  order to describe At/G, we fill in 

the branch points on ]z~, i.e., let Y* be the component of (p(A0)--w) which contains Y~. 

Lv.~MA 3 (I). A~/Gt is the surface Y~ with a disc T sewn in along w. T contains exactly 

one branch point of G~ of order ~ (i/ ~ = 1, then p-l(  T) contains no elliptic/ixed points). 

Proof�9 We already know tha t  p - l ( y * ) ~  Ai, and, since Bi is precisely invariant under 

the finite cyclic subgroup H, tha t  B t =  At. We let 2[ i=p- l (Y*)  tJ l.Jg~at g(Bt). We have to 

show tha t  ~l t =A ~. For this, we have to show tha t  if z is a point on the boundary of ~t, then 

zEA(Gt). Every  point on the boundary of At is a point of A(G); hence there is a sequence 
�9 ! �9 ~ ! 

{gn} of elements of G with gn(7) ~z .  Now either gn E Gt, or there is a gn E Gt with gn(7) g~(B~). 

Then g~(7)-+z, and so zeA(Gt). 

Before going on to the next  case, we need to make one more observation, which is an 

immediate corollary of conclusion (3) of Combination Theorem I.  

L v, MMA 4 (I). ~(G)IG = AolU +~(G,)IG~ - AIIG1 +~(U2) lU~-  A~ l~ .  
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We next take up the case that  w is non-dividing. Then there is a loop v on X '  which 

crosses w exactly once. There is a lifting ~ of v, which starts at some point of 7 =}'1 and ends 

at some 72 =](71). We choose base points o on v, but  not on w, and 6 on ~, lying over o. Let 

~1 be the subgroup of ~I(X',  o) generated by loops which do not cross w. Let G1=~(~1), 

where T:~I(X,  o)-~ G is the natural homomorphism. 

As in the preceding case, we observe that  G can equivalently be defined as follows. 

Let Y1 be the connected component of p- l (X '  - w )  which contains 5. Then G1 is the sub- 

group of G which keeps :Y1 invariant. 

For i = 1, 2, we let H~ be the subgroup of G 1 which keeps 71 invariant, and we let B~ 

be that  topological disc bounded by 7~ which does not contain 6. We already know that  

](71)=72; we easily see that  ]-loH2o]=H1; following orientation along ~, we see that  

](B1) N B 2 =r 

L E P T A  2 (II). For i = 1, 2, B~ is a precisely invariant disc under H~, as a subgroup o/G1; 

]or every geG1, g(BO N B3=r 

Proo]. Since P(F1) =P(F3) = w is a simply loop, for every g E G, there are four possibilities: 

g(B1) =B1; g(B1) =B3; g(-B1) does not intersect either B1 or /]3; g(B1) is a relatively com- 

pact subset of either B 1 or B 3. 

For g E G1, the last possibility cannot occur, since we must be able to connect 6 to g(6) 

without crossing either F1 or F3. We also cannot have g(B1)=B3, for t h e n / - l o g  would 

be fixed-point free on 71 while mapping B 1 onto its complementary component. 

The proof of Lemma 2 (II) is completed by observing that  the same remarks apply to 

translates of B 3. 

Since ~I(X',  o) is generated by ~1 and v, G is generated by G 1 together with [; hence G is 

formed from G 1 via Combination Theorem II .  

We let A 1 be that  invariant component of G1 which contains A 0, and we let Y* be Y~ 

with the branch points filled in. Then Y* has two boundary components corresponding to 

w; call them w I and w 3. 

LEM~IA 3 (II). A1/G1 is Y* with two discs attached; one each along w 1 and w 3. Each o/ 

these discs contains exactly one branch point O/order c~. 

The proof of the above is essentially the same as the proof of Lemma 3 (I). 

We again make explicit the meaning of conclusion (3) of the Combination Theorems. 

LEMMA 4 (II). f l(G)/G-Ao/G = fl(G~)/G 1-A1/G 1. 

We remark at this point that  we have not as yet used the fact that  X '  is a finite 

Riemann surface. 
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Suppose t h a t  X '  has s ignature {g, n, vi . . . . .  v~}. I n  the  f i r s t  case, where w divides X '  

into Y~ and Y~, since w ~ lifts to a homotopica l ly  non-tr ivial  loop in A0, bo th  Y~ and Y~ 

m u s t  ei ther have  posit ive genus, or have  more  t han  one puncture .  Then  as a corollary of 

L e m m a  4 (I), we get  t h a t  since A~/G~ is a finite R iemann  surface, i = 1, 2, G i and G2 are bo th  

finitely generated.  We see fur ther  t h a t  the  signatures (g,, hi, v , l , . . .  , V~n,) of Y, = A*/G~ sat isfy 

LEMMA 5 (I). 

(a) gi + g 2 =  g- 

~(b) I / ~ > 1 ,  then ni  E n u = n + 2  , where up to order 

I/o~ = 1, then n i + n~ =n ,  where up to order 

{~)1 . . . .  , ~)n~ : {~)11, " " ,  ?)2n2)" 

(c) 3 ( g ~ - l ) + n i < 3 ( g - 1 ) + n  , i = 1, 2. 

Proo/. Only the  last  inequal i ty  needs proving. The min imum possible for 3 ( g , - 1 ) + n ~  

is - 1 ,  which can occur only  if G, is cyclic, and  then  a = 1 .  Inequa l i ty  (c) now follows 

f rom (a) and  (b). 

Similar considerations show tha t  if w is non-dividing, then  we get again t h a t  G~ is 

f initely generated.  

L~MMA 5 (II).  

(a) g l = g - 1 .  

(b) I / ~  > 1, then n i = n + 2, where up to order 

I / ~  = 1, then n = n i and up to order 

(c) 3 ( g i - 1 ) + n i  < 3 ( g - - 1 ) + n .  

(Vl  . . . .  , ~)n) = {~11 . . . . .  ~ l n , ) "  

Since ( - 3 )  is an  absolute m i n i m u m  for the  quan t i ty  3 ( g - 1 )  + n ,  we can use the  last  

inequal i ty  in L e m m a s  5 (I) and  5 ( I I ) f o r  induct ive purposes.  Thus  we have  shown t h a t  

every/initely.generated Kle in ian  group with an invariant component can be built up,  using 

Combination Theorems I and I I ,  /rom /initely-generated Kle in ian  groups which have a s imply  

connected invariant component. 



DECOM P OS ITION OF C E R T A I N  K L E I N I A N  GROUPS 257 

We remark tha t  in this inductive process, our old loop w appears on our new surface, 

say X~, as bounding a disc or punctured disc. Hence we can choose our next simple loop w 1 

on X~ to be d i s jo in t / rom our old loop w. 

In  order to complete the proof of Theorem 1, we have to decompose a group G which 

has a simply-cormeeted invariant component. I t  suffices to consider the case tha t  G is a 

B-group; i.e. non-elementary. Then there is a conformal map ~0: A0-~ U, the unit disc. One 

easily sees [11] tha t  if bEG is an accidental parabolic transformation, then the axis of 

~0/~p -1 does not intersect any of its translates under ~0G~ -1. The projection of this axis to 

X 0 is a simple loop, unless the axis has elliptic fixed points, necessarily of order 2, on it. 

I n  the latter case, a simple modification yields a simple loop on X 0. 

We thus have a simple loop w on X 0, in fact on X' ,  and a connected component ? '  of 

p-~(w) which is invariant  under the (accidental) parabolic cyclic subgroup H. We adjoin the 

fixed point of H to 7'; the resulting simple closed curve ~, is precisely invariant  under H.  

I f  w divides X' ,  into Y~ and Y~, then, exactly as in the preceding case when H is finite, 

we pick base points near w, and define G1 and G~ by  loops which do not cross w. We observe 

tha t  ? bounds two topological discs, B 1 and B~, where B~ is a precisely invariant disc under 

H~, and we observe tha t  Lemmas 3 (I), 4 (I) and 5 (I) all hold in this case where ~ = 0% 

We also remark tha t  since our original group G is non-elementary, H has index at  

most  2 in its normalizer h r. Since G 1 A G2 = H, H must  be its own normalizer in at  least one 

of G 1, G~. 

I f  w doesn't  divide X' ,  then proceeding as before, we again choose a loop v which crosses 

w at  exactly one point; we let ] be the element of G corresponding to the lifting of v, starting 

at  ? =71; we let ?~ =/(71); for i = 1, 2, we let H~ be the (parabolic cyclic) subgroup of G keeping 

?~ invariant; and we let G~ be the subgroup of G defined by  loops o n X '  which do not cross w. 

Exact ly  as in the preceding case, we see tha t  each ?~ bounds a precisely invariant disc B~. 

In  order to see tha t  Combination Theorem I I  is again applicable, we need to know tha t  

H~(H~) is its own normalizer in G 1, and tha t  no translate of 71 under G1 intersects ?~. Since 

A 0 is simply-connected, the first possibility follows from the known fact about Fuchsian 

groups tha t  if a hyperbolic cyclic subgroup is not its own normalizer, then a simple defor- 

mation of its axis projects to a dividing loop (one side is a disc containing exactly two, 

branch points, each of order 2). For the second possibility, since / is definitely not in G1, 

we could have g1(71) N 72~: r g1(71) =~ ~'~, gl E G 1, only if the corresponding Fuchsian group 

contained a rank 2 free abelian subgroup, which it doesn't. 

Hence Combination Theorem I I  is applicable, and Lemmas 3 (II), 4 (II) and 5 (II) 

again hold, where ~ = ~ .  

Theorem 1 now follows by  induction on the quanti ty 3(g - 1) +n .  

17 - 732905 Acta mathematica 130. I m p r i m ~  le 16 Mai 1973 
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Lemmas 3 (I) and 3 (II) show tha t  our induction process yields new surfaces, which 

except for a finite number  of discs, are disjointly embedded in our old surface. The loop 

w, which we use for our construction, appears as the boundary of these discs in the new sur- 

faces. Hence, as we proceed with the induction, we can choose the new loops to be disjoint 

from all the old loops. 

Combining the above remark with Lemmas 3 (I), 3 (II) and Theorem 2, we obtain a 

proof of Theorem 6. 

4. E~aalities and inequalities 

In  this section, we apply the results of the preceding sections to obtain proofs of Theo- 

rems 3, 4 and 5. 

Statement  (a) in Theorem 3 is an immediate consequence of s tatement  (a) in Lemmas 5 

(I) and 5 (II). 

Statement  (b) of Lemmas 5 (I) and 5 (II) asserts the following. There is a branch- 

number  preserving correspondence between the n distinguished points of Ao/G, and a subset 

of the ~= ln~  distinguished points of U~=IA~/G~. Each of these distinguished points cor- 

responds to a conjugaey class of maximal  elliptic or parabolic cyclic subgroups of G (or Gi). 

A distinguished point of some A~/G~ actually corresponds to a distinguished point of Ao/G if 

and only if no cyclic subgroup of the corresponding conjugacy class is used as a subgroup H 

or H t in one of the Combinations. 

Our proof of Theorem 3 is thus reduced to showing tha t  the conjugates of cyclic sub- 

groups which are used in the Combinations are precisely those cyclic subgroups which rep- 

resent punctures in their factor subgroups and which are either contained in two factor 

subgroups or which are of infinite index in their normalizer in G. 

We already know, via Lemmas 1 (I) and 1 (II) tha t  the intersection of two conjugates 

of basic groups is either trivial or is an elliptic or parabolic cyclic subgroup used in one of 

the Combinations. A parabolic cyclic subgroup H of infinite index in its normalizer N, does 

not represent a puncture in ~(N)/N, and so does not represent a puncture in the factor 

group containing H. An elliptic cyclic subgroup H of infinite index in its normalizer, repre- 

sents at  least one puncture in the factor subgroup containing H, but  represents no puncture 

in ~(N)/N; hence by  the remark above, H is a conjugate of a subgroup used in one of 

the combinations. 

To go the other way, it is obvious in the use of Combination Theorem I,  that  the amal- 

gamated subgroup H is a subgroup of both G 1 and G~. In  the use of Combination Theorem 

I I ,  H 1 is a subgroup of both G 1 and/-1Gift.  If, however, G 1 =/-1G1/, then there will be infi- 

nitely many  regions bounded by translates of y which are invariant  under G1; i.e., if R is a 
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region kept  invariant  by  G 1, then/~(R),  n = + 1, + 2  . . . .  , is also invariant  under G1. By Ac- 

cola's Theorem [2], G 1 is cyclic. Then G 1 =H 1 =H~, and ] commutes with H p  

This concludes the proof of Theorem 3. 

We come now to the proof of Theorem 4. To this end, we reorder the basic subgroups 

G1 .... .  Gs, so tha t  G1, ..., G~ are the quasi-Fuchsian basic subgroups and G~+I, ..., G8 are the 

elementary and degenerate basic subgroups. 

The inequalities in Theorems 4 and 5 follow from Theorem 3, via some complicated 

counting arguments by observing tha t  tI(G)/G-Ao/G is anti-conformally equivalent to 

x ,  =A,la, +... + x~ =A~la~. 

Theorem 3 (a) asserts tha t  

g= ig ,  +t= ~g,+ i g,+t. (1) 
i = l  i = l  i = p + l  

I f  G t is elementary, g~ 4 = 0 if and only if G~ has signature (1, 0). Hence 

4(a) 
I = l  I = p + l  

We recall tha t  if G~ is quasi-Fuchsian, then dim Bi(X~)=3(g~- 1)+n~. For conveni- 

ence in writing, we use this formula to define Bi(Xi) if Gi is elementary or degenerate. 

Without further mention, we will similarly define Ba(X~), A(X~) and z(X~). 

Since G has at least two components, it is surely not elementary. Using Theorem 3, we 

observe tha t  

dim Bi(Zo) = 3(g - 1) + n = ~ {3(g~- 1) +/c~} + 3(s + t -  1) 
i=1  

8 

= ~ dim B 2 (X~) + 3(s + t - 1 ) - r (2) 
i = l  

= ~ d i m B 2 ( X , ) +  ~ dimBi(X, )+3(s+t-1) -r .  
~=I ~=p+l 

P 

Hence d i m B 2 ( X 0 ) -  ~dimB2(X~)=3(s+t-1)-r+ ~ dimB2(X~). (3) 
t = l  i = p + l  

Elementary computations show tha t  for G i elementary, dim B2(X~) 4= 0 only if G i has 

signature (0, 2; a, a), in which case dim B ~ ( X I ) = - 1 ;  or G~ has signature (0,4; 2,2, 2,2), 

in which case dim Be(X~)= + 1. 

Combining the above remarks with (3), we get inequality 4 (b), together with the re- 

mark  as to when equality holds. 

We go on to inequality 4(c) and recall tha t  in general dim Bq(X~)= ( 2 q -  1 ) ( g , -  1)+ 

Ej[q-q/vij]+Ej[q-q/thj] where [x] is the integral part  of x, and [q-q/~]=q-1.  We 

compute, using Theorem 3, 
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dim Bq (Xo)= ( 2 q -  1 ) ( g -  1 ) +  ~ [ q -  qlvj] 
1 

_ s 2 

- 2 {(  q - 11 (g,: - 1 / +  2 [q - q/~,,j]} + (2q - 11 (8 + t - 11 
i=1 I 

8 

= 2 d im Bq (X~) - • [q - q//~,j] + (2q - 1) (s + t - 1). 
i=l t l  

(4)  

Hence  

dim Bq(Xo)- ~ dim Bq(X,)= ~ dim Bq(X,)- ~ [q-q/#,j]+ (2q- 1)(s+t- 1). 
i=1 t = p + l  ~,] 

(5)  

W e  es t imate  the  R H S  of (5) as follows. First ,  there  are r~ t e rms  in the  first  sum with  

extended)  s ignature (0, 2, 0; ju, #). For  these 

d im Bq(X~) - Z j [ q  -q/#~j] = - ( 2 q -  1). (6) 

Nex t  there  are r 0 t e rms  in the  first  sum for which G~ is e lementa ry  and  m~ =0 .  For  these, 

one easily sees t h a t  

d im Bq(X~)>~-  ( 2 q - 1 ) +  2 (q~-~l) -- - q .  (7) 

Then  there  are a t  mos t  ( s - p - r o - r ~ )  t e rms  in the  first  sum for which m~>0.  For  each of 

these, we choose a specific #~j, call it ju;, and  observe t h a t  since X~ does not  have  signature 

(0, 2; ~, :r 
d im Bq( X~) - [q - q//~] >~ - q. (8) 

All the  t e rms  in the  first  sum, not  ye t  considered, correspond to degenerate  groups,  so 

d im Bq(X~) is the  dimension of some space, hence non-negat ive.  

The  n u m b e r  of t e rms  left in the  second sum is r - 2 r~  - (s - p  - r  0 -  r~). For  each of these 

t e rms  
[q-q//a,j] < q -  1. (9) 

Using the  results  of (6)-(9) in (5) we obta in  

p 

dim Bq(Xo) - ~ dim Bq(X~) >~ - ( 2 q -  1) r ' l -qr  o 
i = l  

- q ( s - p - r o - r ~ ) - ( q - 1 ) [ r - 2 r ' l , ( s - p - r o - r ~ ) ] + ( 2 q - 1 ) ( s + t - 1  ). (10) 

Simplifying the  R H S ,  we get  4 (c). 

I n  the  case t h a t  q is even, we can es t imate  [ q -  q/l~] >1 �89 ra ther  t h a n  [ q -  q/g] >1 �89 1), 

as used above.  Then  we can replace the  R H S  of (7) and  (8) b y  ( - q +  1). Wi th  these new 

inequalities, ins tead of (10), we get  
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P 

dim Ba(Xo) - ~ dim Bq(X,) >~ - (2q - 1) r~ - (q - 1) r 0 

- ( q -  1) ( s - p - r o - r ; )  - ( q -  1) [ r - 2 r ; -  ( 8 - p - r o - r l ) ]  

+ (2q -1 )  ( 8 + t -  1 ) , q = 2 , 4  . . . . .  

(ll) 

Simplifying the RHS of (11), we get 4(d). 

Following Bers [5], we get 4 (e) from 4 (e) by multiplying by 2~q -1 and taking the limit 

as q--> cr 

Inequali ty 4 (f) is simpler. We again write 

s Z 
z(Xo)=2(g- l )+n= ~2(g,-1)+~]c ,+2(8+t-1)  ~)~(  , ) -~m~+2(s+t - l ) .  (12) 

~=I i i= I  | 

Hence g(Xo) - ~ Z(Xi) = ~ )~(X~) - r + 2(8 + t - I). (I 3) 
i = l  i = ~ + l  

We have to observe that  z(Xi) is positive if Gt is degenerate, and is different from zero 

only for certain elementary basic groups. If G~ is elementary, and z(X~)=~ 0, then G~ must 

have signature (0, 3; ~, fl, ~), in which case z(X~) = 1, or G, has signature (0, 4; 2, 2, 2, 2), 

in which case z (Xi )=2 .  

This concludes the proof of Theorem 4. 

Theorem 5 is a fairly simple corollary of Theorem 4. We need to recall that  the total 

number of operations in the construction of G is (s + t - 1) >~ 0. Each cyclic basic group uses 

up at least one of these operations where the cyclic subgroup is trivial. The same can be 

said for each of the r 0 basic groups for which m s =0. Hence r, the total number of connectors, 

satisfies 
r ~<2(8 + t  - 1 - r  0-r~). (14) 

Substituting (14) into the RHS of 4 (e) yields 

P 

dim Bq(Xo) - ~ dim Bq(X,) >1 p + t - 1 + (q - 1) (r o + 2r~), (15) 
i=1 

and 5 (a) follows by dropping the (non-negative) last term. 

Similarly substituting (14) into 4(d) yields 5 (b). Remark 5 (c) follows from the fact 

that  (s + t - 1 )  --0 if and only if G is itself a basic group. 

To get 5 (d), we first substitute (14) into 4 (e) to obtain 

A(Xo) - ~ A(Xi)  >~ 2~(ro + 2r~) >~ 0 (16) 
t=1 

In order to get equality, we need r o =r~ =0,  and equality in (14); i.e., 
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r = 2 ( s + t - 1 ) .  (17) 

Now, wi th  these facts,  we need to rederive 4 (e). We s ta r t  with 

Then  

(2~)- lA(Xo) = 2(g - 1) + ~ (1 - l/vj) = ~ 2 ( g , -  1) + Z (1 - 1Iv,j) + 2(s + t - 1) 
|-1 LJ 

= ~ (2Jr)-IA(X~) - ~ (1 - l//~j) + 2(s + t - 1). 
i=1 i,] 

(18) 

(2z)- l{A(X0)  - ~A(X,)}= ~ (2z)-~A(X,) - ~(1-1/l~,j)+2(s+t-1 ). (19) 
i=l i=p+l L] 

Since r=2(s+t-1), and p>~l, we can choose a / ~ j  call i t / ~ ,  for e v e r y / = p + l  . . . . .  s. 

We Observe fur ther  t ha t  t h e / ~ j  are paired (i.e., every  connector  is a common  subgroup of 

two factor  subgroups) ,  and  t h a t  we can choose a t  mos t  one #'~ f rom each pair.  We  now 

rewri te  (19) as 

p 

(2~) -1 {A(X0) - 5 A ( L ) }  
t = l  

= ~ {(270-1A(X~)-(1-1/l~;)}-~'(1-1/l~j)+2(s+t-1), (20) 
~=p+l  t , j  

where the  second summat ion  extends  over  a l l /~ j  4/~'~. 

One consequence of (17) is t h a t  r I =0 ,  and  so one can es t imate  

(2z)-IA(X~) - (1 - 1//~;) ~> - l ,  (21) 

where equal i ty  occurs only  if #'~ = o~ and G~ has s ignature (0, 3; 2, 2,0o). 

The number  of t e rms  in the  second sum of the  R H S  of (20) is r -  (s - :p) ,  hence 

~ '  (1 - 1 /#~ , )  < r -  (s  - p )  - � 8 9  (1/#~,). ( 2 2 )  

Combining (20), (21) and (22), we obta in  

p 

(2~)-l{A(X0) - Y A(X,)}/> ~ Z 1/~j. (23) 
l=1 i ,]  

We conclude t h a t  each # ~ = o% and  t h a t  each G~,p + I ~ i ~ s, has s ignature  (0, 3; 2, 2, 0o). 

To  complete  5 (d), we have  to  prove  t h a t  A 0 is s imply-connected.  R a t h e r  t h a n  go back  

th rough  the proof  of Theorem 1, we observe t r ivial ly  t h a t  if G I and  G~ bo th  have  connected 

l imit  sets; and  if A(G1) f~ A(G2) 4: r then  the  group genera ted  b y  G 1 and  G~ has a connected 

l imit  set. Likewise, if A(G1) is connected,  and  if/(A(G1)) and/- I (A(G1))  bo th  intersect  A(G1) , 

t hen  the  group genera ted  b y  G~ and  / has connected l imit  set. 
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P u t t i n g  the  above  r emarks  toge the r  wi th  the  fac t  t h a t  G is cons t ruc ted ,  f rom groups  

wi th  non- t r iv ia l  l imi t  sets, using Combina t ions  wi th  parabo l ic  cyclic subgroups ,  we con- 

clude t h a t  A(G) is connected.  Since A 0 is invar ian t ,  A(G) is the  b o u n d a r y  of A 0, and  so A0 

is s imply  connected.  

Only  the  second half  of 5 (e) needs  exp lana t ion .  Recal l  t h a t  s + ~ -  1 is t he  t o t a l  n u m b e r  

of combinat ions ,  and  so (Theorem 6) ( s + t - 1 )  is a t  mos t  t he  n u m b e r  of s imple loops in  a 

homotop iea l ly  i ndependen t  set. I t  was shown in [11] t h a t  the  m a x i m u m  n u m b e r  of ele- 

men t s  in  a homotop ica l ly  i ndependen t  set is 3 ( g -  1) § n. 

F ina l ly ,  4 (f) toge the r  wi th  5 (e) shows t h a t  ~f=l X(X~) < z(X0),  and  of course z(X~) >~ 1. 
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