DECOMPOSITION OF CERTAIN KLEINIAN GROUPS

BY
BERNARD MASKIT
State University of New York, Stony Brook, N.Y. 11790, USA

The purpose of this note is to give an analytic and geometric description of the class of Kleinian groups which are finitely generated and which have an invariant component.

If one starts with a collection of "basic" groups, and forms finite "combinations" of these groups, one gets a class of "constructible" Kleinian groups. In this paper, our combinations occur in the sense of the Combination Theorems appearing in [8] and [9], where the amalgamated subgroups (Combination I) and the conjugated subgroups (Combination II) are trivial or elliptic cyclic or parabolic cyclic.

To describe our basic groups, we recall the following definitions. A point z lies in the limit set $\Lambda(G)$ if there is a sequence $\left\{g_{n}\right\}$ of distinct elements of G, and there is a point z_{0} with $g_{n} z_{0} \rightarrow z$. The set of discontinuity $\Omega(G)$ is the complement of $\Lambda(G)$. The connected components of $\Omega(G)$ are called components of G. A component Δ_{0} of G is invariant if $g\left(\Delta_{0}\right)=\Delta_{0}$ for all $g \in G$.

If $\Lambda(G)$ is a finite set, then G is elementary. If G is non-elementary and has a simplyconnected invariant component Δ_{0}, then there is a conformal map φ from Δ_{0} onto the unit disc. A parabolic element $g \in G$ is called accidental if $p g \varphi^{-1}$ is hyperbolic. By definition, elementary groups do not contain accidental parabolic transformations.

For the purposes of this paper, a basic group is a finitely-generated Kleinian group which has a simply-connected invariant component, and which contains no accidental parabolic transformations.

The basic groups are, in a sense, all known, it was shown in [11] (for proof, see Bers [4] and Kra-Maskit [7]) that every basic group is either elementary, degenerate, or quasiFuchsian. The degenerate groups are such that $\Omega(G)$ is both connected and simply-connected. A quasi-Fuchsian group is a quasiconformal deformation of a Fuchsian group.

We define the class \mathcal{C}_{1} as being the class of Kleinian groups which have an invariant component, and which can be built up in a finite number of steps from the basic groups
using the Combination Theorems mentioned above (precise statements of these theorems, and the conventions for their use, appear in section 1).

Theorem 1. The class \mathcal{C}_{1} is the class of finitely-generated Kleinian groups having an invariant component.

The proof of Theorem 1 appears in section 3.
We remark that the Combination Theorems given in [10] are technically different from those given in [8] and [9]. Starting with the elementary and quasi-Fuchsian groups as basic groups and using the Combinations [10], one obtains the subclass $\mathcal{C}_{0} \subset \mathcal{C}_{1}$ of "nice" Kleinian groups. This subclass will be discussed elsewhere.

Theorem 1 asserts that, given $G \in \mathcal{C}_{1}$, there is a collection G_{1}, \ldots, G_{s} of subgroups of G, so that G is formed from G_{1}, \ldots, G_{s} by $s-1$ applications of Combination I, and say t applications of Combination II. Our next main result is that the subgroups G_{1}, \ldots, G_{s} and the number t are essentially unique. In order to make them unique, we need some conventions regarding the use of the Combination Theorems. The essence of these conventions is that they guarantee uniqueness, in a simple fashion, for the elementary basic groups. Precise statements of these conventions appear in section 2. With these conventions, the subgroups G_{1}, \ldots, G_{s} are then called the basic subgroups of G.

In general a subgroup G^{\prime} of G^{\prime} is called a factor subgroup if G^{\prime} is a maximal subgroup of G with the following properties: the invariant component of G^{\prime}, which contains the invariant component of G, is simply-connected; G^{\prime} contains no accidental parabolic transformations; if $g \in G$ is parabolic and the fixed point of g lies in $\Lambda\left(G^{\prime}\right)$, then $g \in G^{\prime}$.

The Combination Theorems are geometric versions of simple group-theoretic operations; Combination Theorem I is the free product with amalgamation. The next theorem is a geometric version of the Kurosh Subgroup Theorem.

Theorem 2. Every factor subgroup G^{\prime} of a group $G \in \mathcal{C}_{1}$ is conjugate in G to a unique basic subgroup of G.

The proof of Theorem 2 and its corollaries, appears in section 2.
Theorem 2 asserts that the basic subgroups G_{1}, \ldots, G_{s} form a complete set of nonconjugate factor subgroups of G, and so the basic subgroups are unique up to order and conjugation.

Corollary 1. Let $G \in \mathcal{C}_{1}$. Then there are only finitely many conjugacy classes of factor subgroups of G, and each factor subgroup is finitely generated.

If Δ is a component of G other than the invariant component, then the subgroup G_{Δ}
of G keeping Δ invariant is called a component subgroup of G. It is well known that every component subgroup is a quasi-Fuchsian subgroup.

Corollary 2. For $G \in \mathcal{C}_{1}$, the set of component subgroups equals the set of quasi-Fuchsian factor subgroups.

Corollary 3. Let $G \in \mathcal{C}_{1}$ and let $g \in G$ be parabolic or elliptic. Then g is an element of some factor subgroup of G.

There is a detailed description of the limit set of a general finitely-generated Kleinian group due to Abikoff [1]. The following result is essentially a special case.

Corollary 4. Let $G \in \mathcal{C}_{1}$, and let z be a limit point of G. Then either there is a factor subgroup G^{\prime}, with z a limit point of G^{\prime}, or the following holds. There is a simple closed curve γ, which is invariant under a finite (perhaps trivial) or parabolic cyclic subgroup H of G, and which lies, except for the fixed point of H, in $\Omega(G)$. There is a sequence $\left\{g_{n}\right\}$ of elements of G, where $g_{n}(\gamma)$ nests about z.

A sequence $\left\{\gamma_{n}\right\}$ of simple closed curves nests about z, if the (spherical) diameter of $\gamma_{n} \rightarrow 0$, and for each $n>1, \gamma_{n}$ separates z from γ_{n-1}.

Corollary 5. Let $G \in \mathcal{C}_{1}$ and let G_{1}^{\prime} and G_{2}^{\prime} be factor subgroups of G. Then either $G_{1}^{\prime} \cap G_{2}^{\prime}=\phi$, or $G_{1}^{\prime} \cap G_{2}^{\prime}=H$ is a parabolic or elliptic cyclic group, maximal (as a cyclic subgroup) in G.

In general, if one has a finitely-generated Kleinian group G with an invariant component Δ_{0}, then by Ahlfors' Finiteness Theorem [3], $\Delta_{0} / G=X_{0}$ is a finite Riemann surface. That is, X_{0} is a closed surface of genus g, with finitely many points removed, and with finitely many points where the projection $p: \Delta_{0} \rightarrow X_{0}$ is ramified. There are in all, say, n removed points and points of ramification, call them x_{1}, \ldots, x_{n}. Each x_{i} has a branch number $\nu_{i}, 2 \leqslant \nu_{i} \leqslant \infty$ associated with it, where $\nu_{i}=\infty$ if x_{i} has no preimage in Δ_{0}, otherwise near some preimage of x_{i}, p is v_{i}-to-one. The signature of G (or of X_{0}) is then ($g, n ; v_{1}, \ldots, v_{n}$).

In the special case of a factor subgroup G_{i} of G, we need to enlarge the notion of signature to include some of the interaction of G_{i} with the rest of G. If G_{i} has signature (g_{i}, n_{i}; $v_{i 1}, \ldots, v_{i n_{i}}$), then there is a correspondence between each of the n_{i} points and a conjugacy class of elliptic or parabolic cyclic subgroups of G; the order of a cyclic subgroup $H_{i j}$ in the class corresponding to $\nu_{i j}$ is $\nu_{i j}$. By Corollary 5 , we know that for each other factor subgroup G^{\prime}, either $H_{i j} \subset G^{\prime}$, or $H_{i j} \cap G^{\prime}=1$. The j-th puncture is a connector if $H_{i j}$ is contained in some other factor subgroup, or if the normalizer, $N_{i j}$ of $H_{i j}$ in G, contains $H_{i j}$ as a subgroup of
infinite index. We let m_{i} be the number of connectors and let $k_{i}=n_{i}-m_{i}$ be the number of non-connectors. The (extended) signature is then

$$
\left(g_{i}, n_{i}, k_{i} ; v_{i 1}, \ldots, v_{i k_{i}}, \mu_{i 1}, \ldots, \mu_{i m_{i}}\right)
$$

We let $\left(g, n ; v_{1}, \ldots, v_{n}\right)$ be the signature of G, acting on the invariant component Δ_{0}.

Theorem 3.

(a)

$$
\sum_{i=1}^{s} g_{i}=g-t
$$

(b)

$$
\sum_{i=1}^{s} k_{i}=n
$$

and $\left(v_{1}, \ldots, v_{n}\right)$ is a rearrangement of $\left(v_{11}, \ldots, v_{s k_{s}}\right)$.

We assume that the basic groups have been ordered so that G_{1}, \ldots, G_{p} are precisely the quasi-Fuchsian basic subgroups. Then by Corollary 2, we have

$$
\Omega(G) / G=\Delta_{0} / G+\Delta_{1} / G_{1}+\ldots+\Delta_{p} / G_{p}=X_{0}+X_{1}+\ldots+X_{p}
$$

where we use " + " for disjoint union, and each Δ_{i} is the component of G_{i} which does not intersect Δ_{0}.

The equalities in Theorem 3 can be used to derive inequalities for the component subgroups. Specifically we get inequalities for $\operatorname{dim} B_{q}\left(X_{i}\right), q \geqslant 2$, the dimension of the space of bounded q-forms; $A\left(X_{i}\right)$, the non-Euclidean area; and $\chi\left(X_{i}\right)$ the (negative) Euler characteristic, where all branch points are considered as punctures.

In order to state the inequalities, we need several parameters, most of these are zero unless G has elementary factor subgroups.

The total number of connectors is $r=\sum_{i=1}^{s} m_{i}$. Some factor subgroups have no connectors; let r_{0} be the number of elementary basic subgroups for which $m_{i}=0$. The number of basic subgroups which are cyclic but non-trivial is r_{1}; we write $r_{1}=r_{1}^{\prime}+r_{1}^{\prime \prime}$, where r_{1}^{\prime} is the number of these with (extended) signature ($0,2,0 ; \mu, \mu$), $r_{1}^{\prime \prime}$ is the number with (extended) signature ($0,2,2 ; \nu, v$).

The number of basic subgroups which are elementary with signature $(0,3 ; \alpha, \beta, \gamma)$ is r_{2}.
The number of basic subgroups, necessarily elementary, with signature (0,$4 ; 2,2,2,2$), respectively $(1,0)$, is denoted by r_{3}, respectively, r_{4}.

Theorem 4. Let G in \mathcal{C}_{1} have at least two components. Then
(a)

$$
\ddot{g}-\sum_{i=1}^{p} g_{i} \geqslant t+r_{4}
$$

(b)

$$
\operatorname{dim} B_{2}\left(X_{0}\right)-\sum_{i=1}^{p} \operatorname{dim} B_{2}\left(X_{i}\right) \geqslant 3(s+t-1)-r-r_{1}+r_{3}
$$

(c) $\quad \operatorname{dim} B_{q}\left(X_{0}\right)-\sum_{i=1}^{p} \operatorname{dim} B_{q}\left(X_{i}\right) \geqslant(2 q-1)(s+t-1)-(q-1)\left(r+r_{0}\right)-(s-p), q \geqslant 2$
(d) $\operatorname{dim} B_{q}\left(X_{0}\right)-\sum_{i=1}^{p} \operatorname{dim} B_{q}\left(X_{i}\right) \geqslant(2 q-1)(s+t-1)-(q-1)\left(r+r_{0}\right)-r_{1}^{\prime}, q=2,4,6, \ldots$
(e)

$$
\begin{aligned}
& A\left(X_{0}\right)-\sum_{i=1}^{p} A\left(X_{i}\right) \geqslant 2 \pi\left(2(s+t-1)-r-r_{0}\right) \\
& \chi\left(X_{0}\right)-\sum_{i=1}^{p} \chi\left(X_{i}\right) \geqslant 2(s+t-1)-r+r_{2}+2 r_{3}
\end{aligned}
$$

Inequalities 4(b) and 4(f) are simultaneously sharp; equality occurs if and only if no factor subgroup of G is degenerate.

Inequalities 4 (b), (c) and (d), with RHS zero are not new. Ahlfors [3] discovered 4 (b), the others are due to Bers [5]. In the case that Δ_{0} is simply connected, inequalities similar to the above appear in [11].

The above inequalities have obscure right hand sides; these are clarified in Theorem 5, where non-negative lower bounds are given.

It should be remarked that one can naively count parameters as one combines groups; this was in fact first done by Klein [6]. One can view equality in 4 (b) as asserting that the dimension of the space of bounded quadratic differentials on G is equal to the naive parameter count. One expects that "nice" groups, for which equality in 4 (b) holds, are quasiconformally stable in the sense of Bers [4]. This will be pursued elsewhere.

Theorem 5. Let G be as in Theorem 4.

(a) For $q \geqslant 2$, $\operatorname{dim} B_{q}\left(X_{0}\right)-\sum_{i=1}^{p} \operatorname{dim} B_{q}\left(X_{i}\right) \geqslant p+t-1$.
(b) For $q=2,4,6, \ldots, \operatorname{dim} B_{q}\left(X_{0}\right)-\sum_{i=1}^{p} \operatorname{dim} B_{q}\left(X_{i}\right) \geqslant s+t-1$.
(c) If for some even $q \geqslant 2$, $\operatorname{dim} B_{q}\left(X_{0}\right)=\sum_{i=1}^{p} \operatorname{dim} B_{q}\left(X_{i}\right)$, then G is quasi-Fuchsian.
(d) $A\left(X_{0}\right)-\sum_{i=1}^{p} A\left(X_{i}\right) \geqslant 0$; if equality holds, then Δ_{0} is simply-connected and G contains no degenerate factor subgroups.
(e) $r \leqslant 2(s+t-1) \leqslant 2 \operatorname{dim} B_{2}\left(X_{0}\right)$.
(f) $p \leqslant \sum_{i=1}^{p} \chi\left(X_{i}\right) \leqslant \chi\left(X_{0}\right)$.

Theorems 3, 4, and 5 are all proven in section 4.
Combining the constructions given in [12] and [11], one can easily show that the second inequality in $4(f)$ is sharp. That is, if we are given Riemann surfaces $X_{0}, X_{1}, \ldots, X_{p}$, satisfying this inequality then, in general, there is a Kleinian group G with $\Omega / G=X_{0}+\ldots+X_{p}$. However, some of the branch numbers of $X_{1}+\ldots+X_{p}$ are determined by the branch number of X_{0}, the others must be chosen in pairs; because of considerations involving elementary groups one must in general exclude branch numbers 2 and 3.

One can view the inequalities given in Theorem 4 as being an analytic description of all groups in C_{1}. One can also get a precise geometric description. We look at the surface X_{0}^{\prime}, which is X_{0} with the branch points deleted. On X_{0}^{\prime} a set of simple disjoint loops $\left\{w_{1}, \ldots, w_{q}\right\}$ is called homotopically independent, if no w_{j} bounds either a disc or a punctured dise, and if for $i \neq j, w_{i}$ and $w_{j}^{ \pm 1}$ are not freely homotopic.

Theorem 6. Let $G \in \mathcal{C}_{1}$. Then there is a homotopically independent set of loops $\left\{w_{1}, \ldots, w_{q}\right\}$ on X_{0}^{\prime}, and there is a set of "integers" $\left\{\alpha_{1}, \ldots, \alpha_{q}\right\}, 1 \leqslant \alpha_{i} \leqslant \infty$, as follows. Let $Y_{1}^{\prime}, \ldots, Y_{s}^{\prime}$ be the connected components of $X_{0}-\left\{w_{1} \cup \ldots \cup w_{a}\right\}$. There are $2 q$ boundary curves on $Y_{1}^{\prime} \cup \ldots \cup Y_{s}^{\prime}$; let Y_{1}, \ldots, Y_{s} be the surfaces obtained by sewing in $2 q$ discs along these curves, where we pick one point in each of the two discs bounded by w_{i}, and give it branch number α_{i}. The resulting surfaces Y_{1}, \ldots, Y_{s} are topologically equivalent to the surfaces X_{1}, \ldots, X_{s}.

Essentially all possibilities for homotopically independent sets, branch numbers, and conformal structures on $X_{0}, X_{1}, \ldots, X_{p}$, can be realized. These were discussed in [12] and [11] and will not be pursued here.

We remark that Theorem 5 (b) gives a characterization of quasi-Fuchsian groups. One can also use these results to characterize other classes of Kleinian groups; for example, using the result in [13], one can characterize the Schottky groups as follows. A group G in C_{1} is a Schottly group if and only if G contains no non-trivial factor subgroups.

1. Combination Theorems

Let H be a subgroup of the Kleinian group G. A set T is called precisely invariant under H if $H T=T$, and $g T \cap T=\phi$, for $g \in G-H$.

For a cyclic subgroup H, a precisely invariant disc B is the interior of a closed topological dise, with closure \bar{B}, where $\bar{B}-\Lambda(H)$ is precisely invariant under H, and ($\bar{B}-\Lambda(H)$) $\subset \Omega(G)$.

We need the following forms of the Combination Theorems.

Combination Theoremi. For $i=1,2$, let B_{i} be a precisely invariant disc under H, a cyclic subgroup of both G_{1} and G_{2}. Assume that B_{1} and B_{2} have common boundary γ and $B_{1} \cap B_{2}=\phi$. Let G be the group generated by G_{1} and G_{2}. Then
(1) G is Kleinian;
(2) G is the free product of G_{1} and G_{2} with amalgamated subgroup H;
(3) $\Omega(G) / G=\left(\Omega\left(G_{1}\right) / G_{1}-B_{1} / H\right) \cup\left(\Omega\left(G_{2}\right) / G_{2}-B_{2} / H\right)$, where $\left\{\Omega\left(G_{1}\right) / G_{1}-B_{1} / H\right\} \cap\left\{\Omega\left(G_{2}\right) / G_{2}-B_{2} / H\right\}=\gamma \cap \Omega(H) / H$.
(4) If $z \in \Lambda(G)$, and z is not a limit point of a conjugate of either G_{1} or G_{2}, then there is a sequence $\left\{j_{n}\right\}$ of elements of G so that $j_{n}(\gamma)$ nests about z.
(5) If H is its own normalizer in either G_{1} or G_{2}, then every elliptic or parabolic element of G lies in a conjugate of either G_{1} or G_{2}.

One easily sees that the hypotheses given above are a restatement of the hypotheses in [8], where conclusions (1)-(4) are proven. Conclusion (5) for the case that H is its own normalizer in both G_{1} and G_{2} is proven in [10]; the more general case is a simple modification of the argument given there.

Combination Theorem II. Let G_{1} be a Kleinian group. For $i=1,2$, let B_{i} be a precisely invariant disc for the cyclic subgroup H_{i}, and let γ_{i} be the boundary of B_{i}. We assume that $g\left(\bar{B}_{1}\right) \cap \bar{B}_{2}=\phi$ for all g in G_{1}. Let G^{\prime} be cyclic, generated by f, where $f \gamma_{1}=\gamma_{2}, f\left(B_{1}\right) \cap B_{2}=\phi$, and $f^{-1} H_{2} f=H_{1}$. Let G be the group generated by G_{1} and G^{\prime}. Then
(1) G is Kleinian;
(2) Every relation in G is a consequence of the relations in G_{1} and the relations $f^{-1} H_{2} f=H_{1}$.
(3) $\Omega(G) / G=\Omega\left(G_{1}\right) / G_{1}-\left(B_{1} / H_{1} \cup B_{2} / H_{2}\right)$, where $\left(\gamma_{1} \cap \Omega(G)\right) / H_{1}$ is identified in $\Omega(G) / G$ with $\left(\gamma_{2} \cap \Omega(G)\right) / H_{2}$.
(4) For every point $z \in \Lambda(G)$, where z is not a limit point of a conjugate in G of either G_{1} or G^{\prime}, there is a sequence j_{n} of elements of G, where $j_{n}\left(\gamma_{1}\right)$ nests about z.
(5) If each of H_{1} and H_{2} is its own normalizer in G_{1}, then every elliptic or parabolic element of G lies in some conjugate of G_{1}.

One easily sees that the hypotheses given above imply those of [9], where conclusions (1)-(4) above are proven. The proof of conclusion (5) appears in [10].

There are two technical assumptions, concerning elementary groups, in the definition of the class \mathcal{C}_{1}. The first assumption is that we want to regard an elementary group with
one limit point and signature $(0,4 ; 2,2,2,2)$ as a basic group and not as the group formed via Combination Theorem I from two groups each of signature $(0,3 ; 2,2, \infty)$. To this end, we require first, in the use of Combination Theorem I, that if H is parabolic cyclic, then H must be its own normalizer in either G_{1} or G_{2}. Our second requirement is that, in using Combination Theorem II, we require that if H_{1} and H_{2} are parabolic cyclic, then each is its own normalizer in G_{1}.

We remark that the conventions above are precisely those needed for the use of conclusion (5) in the Combination Theorem. Hence, with these conventions, conclusion (5) of Combination Theorem I (II) says that every elliptic or parabolic element of G is a conjugate of some element of G_{1} or $G_{2}\left(G_{1}\right)$.

Our second assumption is a minimality condition on the number of operations. If we take the free product (Combination Theorem I) of G_{1} and a parabolic or elliptic cyclic group G_{2}, and then adjoin f (Combination Theorem II) which conjugates G_{2} and a cyclic subgroup of G_{1}, we get a group G. This group G could equally well have been obtained from G_{1} by adjoining an element f (Combination Theorem II) which conjugates the identity. In this case we do not want the subgroup G_{2} to appear as a basic group. We thus require in our use of Combination Theorem II, that the cyclic subgroups H_{1} and H_{2} must be equal or must each be a proper subgroup of a conjugate of a basic group.

Before going on to the proofs of the theorems, we mention some of the properties of the Combination Theorems that will be used.

We start with Combination Theorem I. It follows from conclusion 2 that for $g \in G$, $g \gamma=\gamma$ if and only if $g \in H$. If $g \notin H$, then $g \gamma \cap \gamma \neq \phi$ if and only if H is parabolic and g belongs to the normalizer of H in G_{1} or G_{2}; i.e. g belongs to either G_{1} or G_{2} and $g \gamma \cap \gamma$ is the fixed point of H. It follows that the translates of γ under G divide Δ_{0} (or the extended complex plane) into regions; each of these regions is invariant under a conjugate of G_{1} or G_{2}; in fact, the subgroup of G keeping one of these regions invariant is precisely a conjugate of G_{1} or G_{2}.

It was proven in [8], that if $g_{n}(\gamma)$ are all distinct, then their diameters (measured on the sphere) form a null-sequence.

Lemmal (I). Let G_{1}^{\prime} be G_{1} or G_{2} and let G_{2}^{\prime} be $g G_{1} g^{-1}$ or $g G_{2} g^{-1}$, for some $g \in G$. Then either $G_{1}^{\prime}=G_{2}^{\prime}$, or $G_{1}^{\prime} \cap G_{2}^{\prime}=1$, or $G_{1}^{\prime} \cap G_{2}^{\prime}=\tilde{g} H \tilde{g}^{-1}$, for some $\tilde{g} \in G$.

Proof. Let R_{1} and R_{2} be the regions kept invariant by G_{1}^{\prime} and G_{2}^{\prime}, respectively. Let w be a path from an interior point of R_{1} to an interior point of R_{2}, where w crosses each translate of γ at most once. We assume that $R_{1} \neq R_{2}$, so that w crosses at least one translate of γ, say $g_{1}(\gamma)$. We can assume that $g_{1}(\gamma)$ lies in the boundary of R_{1}. Since no element of G_{1}^{\prime} which is not also in $g_{1} H g_{1}^{-1}$ can keep R_{2} invariant, $G_{1}^{\prime} \cap G_{2}^{\prime} \subset g_{1} H g_{1}^{-1}$.

If $G_{1}^{\prime} \cap G_{2}^{\prime}$ is non-trivial, then let $R_{1}^{\prime \prime}$ be the region on the other side of $g_{1}(\gamma)$, and let $G_{1}^{\prime \prime}$ be the subgroup of G keeping $R_{1}^{\prime \prime}$ invariant. Observe that $G_{1}^{\prime \prime} \cap G_{1}^{\prime}=g_{1} H g_{1}^{-1} \supset G_{1}^{\prime} \cap G_{2}^{\prime}$, and we can connect $R_{1}^{\prime \prime}$ to R_{2} by a path which passes through one fewer translate of γ.

The same sort of remarks are also true for Combination Theorem II. For every $g \in G$, either $g \gamma_{1}=\gamma_{1}$, in which case $g \in H_{1}$, or $g \gamma_{1} \cap \gamma_{1}=\phi$. (We are assuming that our convention dealing with the normalizers of H_{1} and H_{2} is in force.) The translates of γ_{1} under G divide Δ_{0} (or the extended complex plane) into regions. Each conjugate of G_{1} determines one of these regions; it is the subgroup of G keeping the region invariant. The union of all these regions, together with the translates of γ_{1}, contains $\Omega(G)$, for any sequence of distinct translates of γ_{1} has (spherical) diameter converging to zero [9].

We repeat the proof of Lemma 1 (I), and obtain
Lemma 1 (II). If G_{1}^{\prime} and G_{2}^{\prime} are conjugates of G_{1}, then $G_{1}^{\prime}=G_{2}^{\prime}$, or $G_{1}^{\prime} \cap G_{2}^{\prime}=1$, or $G_{1}^{\prime} \cap G_{2}^{\prime}=\tilde{g} H \tilde{g}^{-1}$, for some $\tilde{g} \in G$.

2. Proof of Theorem 2

In order to prove Theorem 2, it suffices to show that every factor subgroup of G is contained in a conjugate of a basic subgroup, that every basic subgroup is in competition to be a factor subgroup, and that no conjugate of a basic subgroup is contained in another.

We take up the last statement first. Using Lemmas 1 (I) and 1 (II) inductively, we see that the only possibility for a conjugate of a basic group to be contained in another, is if the first group is cyclic and is used as an amalgamating or conjugated subgroup. Our convention specifically forbids this.

We next suppose we are given a factor subgroup J, and we want to show that it is conjugate to a subgroup of a basic group. We have several cases to consider.

Case 1. J is cyclic. J is then necessarily parabolic or elliptic cyclic, or trivial, and the result is immediate from conclusion 5 of the Combination Theorems.

Case 2. J is finite, but not cyclic. The proof is by induction on the Combinations.
Suppose the finite non-cyclic group J is a subgroup of G, the group formed via Combination Theorem I from G_{1} and G_{2}. We pick generators j_{1}, j_{2} for J. By conclusion 5 , we can assume that there are conjugates of G_{1} or G_{2}, call them $G_{1}^{\prime}, G_{2}^{\prime}$, so that $j_{1} \in G_{1}^{\prime}, j_{2} \in G_{2}^{\prime}$. Let R_{1}, R_{2} be the regions bounded by translates of γ, kept invariant under $G_{1}^{\prime}, G_{2}^{\prime}$, respectively. As in the proof of Lemma 1 (I), let w be a path, with minimal crossings of translates of γ, which goes from some point of R_{1} to some point of R_{2}. Each translate γ^{\prime} of γ crossed by w must be invariant under either j_{1} or j_{2}; for if not, the two topological dises bounded by γ would be precisely invariant under the identity as a subgroup of the cyclic groups generated by j_{1} and
j_{2}. It follows then that either R_{1} has a translate of γ on its boundary which is invariant under j_{2}, or R_{2} has a translate of γ on its boundary which is invariant under j_{1}, or w passes through a region with two transforms of γ on its boundary, one invariant under j_{1} and the other invariant under j_{2}. The subgroup of G keeping that region invariant contains both j_{1} and j_{2}, and hence it contains J.

Suppose next that J is a finite non-cyclic subgroup of G, the group formed from G_{1} via Combination Theorem II. We again pick generators j_{1}, j_{2} for J, where we can assume that $j_{1} \in G_{1}$ and that there is a $g \in G$ with $j_{2} \in g G_{1} g^{-1}$. We again pick a path w from R_{1}, the region kept invariant under G_{1}, to R_{2}, the region kept invariant by $g G_{1} g^{-1}$. Assume as above that w crosses no translate of γ more than once, and observe that each translate of γ crossed by w must be invariant under either j_{1} or j_{2}. Hence there is some region kept invariant by both j_{1} and j_{2}, and so J is contained in some conjugate of G_{1}.

Case 3. J has exactly one limit point and is not cyclic. In this case J has a parabolic cyclic subgroup J_{1} generated by j_{1}.

We again use induction on the Combinations; we start with Combination I. Using the result in case 1 , we can assume that $j_{1} \in G_{1}$. If j_{1} were not conjugate in G_{1} to an element of H, then the fixed point of j_{1} would not lie on a translate of γ, and so no element of $G-G_{1}$ would normalize J_{1}. Of course, J normalizes J_{1}, hence we can assume that $j_{1} \in H$. Now $g(\gamma) \cap \gamma=\phi$, except for g in G_{1} or G_{2}, and so we can assume that the normalizer of J_{1} in G_{1} is non-trivial. Our convention then requires that $H=J_{1}$ be its own normalizer in G_{2}; i.e. $g(\gamma) \cap \gamma=\phi$ for all $g \in G_{2}$. It now follows that the normalizer of J_{1} in G is the normalizer of J_{1} in G_{1}.

For the second Combination, we again can assume that $j_{1} \in G_{1}$, and as above, we observe trivially that the normalizer of J_{1} in G is the normalizer of J_{1} in G_{1} unless $J_{1}=H_{1}$ or $J_{1}=H_{2}$. We can assume that $J_{1}=H_{1}$. Our convention then requires that H_{1} and H_{2} each be its own normalizer in G_{1}. Then $g \gamma_{1} \cap \gamma_{1}=\phi$ for all $g \in G-H_{1}$; and so $J=J_{1}$.

Case 4. J has more than one limit point.
In this case, the limit set $\Lambda(J)$ is connected. We again use induction on the Combination Theorems. The proof for Combination Theorem II is essentially the same as the proof for Combination Theorem I, given below.

It suffices to show that $\Lambda(J)$ is contained in one of the regions of the sphere cut out by translates of γ. Since $\Lambda(J)$ is connected, unless H is parabolic it is obvious that $\Lambda(J)$ lies on one side or the other of every translate of γ. If H is parabolic and say γ disconnected $\Lambda(J)$, then the fixed point of γ would lie in $\Lambda(J)$ and so by the definition of factor subgroup, $H \subset J$. Since both topological discs bounded by γ contain limit points of J, H is an accidental parabolic subgroup of J.

In order to complete the proof of Theorem 2, we need to show that every basic subgroup is contained in a factor subgroup. We've chosen our basic subgroups so that they each have a simply-connected invariant component, and so that they have no accidental parabolic transformations.

It remains only to show that if G_{i} is a basic subgroup and g is a parabolic element of G whose fixed point lies on the limit set of G_{i}, then $g \in G_{i}$. By conclusion (5), g must lie in some conjugate of some G_{j}. The proof of case 4 above can be used here. G_{i} and a translate of G_{j} can have a limit point in common only if that limit point lies on a translate of $\gamma ; i . e$. , is a parabolic fixed point. In this case, the full parabolic cyclic subgroup is a common subgroup of both G_{i} and the conjugate of G_{j}.

This concludes the proof of Theorem 2. The corollaries require a few words. Corollary 1 is immediate from the definition of the class \mathcal{C}_{1}.

For Corollary 2, it is not immediately obvious that every component subgroup is a factor subgroup. It does, however, follow at once from conclusion 3 of the Combination Theorems, that the component subgroups are precisely the conjugates of basic subgroups having more than one component. Corollary 2 now follows from Theorem 2 and the observation that the quasi-Fuchsian groups are the only basic groups with more than one component.

Corollaries 3 and 4 follow at once from conclusion (5) and (4), respectively of the Combination Theorems. Corollary 5 follows from Lemmas 1 (I) and 1 (II).

3. The basic decomposition

We start now with a finitely-generated group G having an invariant component Δ_{0}. By Ahlfors' Finiteness Theorem [3], $X_{0}=\Delta_{0} / G$ is a finite Riemann surface. We remark that, rather than appealing to Ahlfors' Theorem, we could have started with the assumption that X_{0} be finite.

We remark that if G is non-elementary, and Δ_{0} is simply-connected, then the proof of Theorem 1 is in [11] (where it appears as the proof of Theorem 5); for completeness, we will include an outline of the proof here.

We start by assuming that Δ_{0} is not simply-connected. Let Δ^{\prime} be Δ_{0} with the elliptic fixed points of G removed, and set $X^{\prime}=\Delta^{\prime} / G$. Then $p: \Delta^{\prime} \rightarrow X^{\prime}$ is a regular covering of X^{\prime}, and so by the planarity theorem [14], there is a simple loop w on X^{\prime}, and there is a minimal positive integer α, so that w^{α} lifts to a loop γ in X^{\prime}. Since we have assumed that Δ_{0} is not simply-connected, we can assume that γ is not null-homotopic in Δ_{0} (this requires starting with a loop W which lies in Δ^{\prime} and is homotopically non-trivial in Δ_{0}, and then using the planarity theorem in a neighborhood of $p(W)$).

We first assume that w divides X^{\prime} into two subsurfaces Y_{1}^{\prime} and Y_{2}^{\prime}. We choose a simply connected open set U on X^{\prime}, which intersects w along an are; we choose a lifting \tilde{U} of U which intersects γ; we choose base points $o_{i} \in Y_{i}^{\prime} \cap U$, and $\tilde{o}_{i} \in \tilde{U}$, with $p \tilde{o}_{i}=o_{i}, i=1,2$.

Having chosen these base points, there is a natural identification of $\pi_{1}\left(X^{\prime}, o_{1}\right)$ with $\pi_{1}\left(X^{\prime}, o_{2}\right)$, and with this identification, there is a natural homomorphism $\tau: \pi_{1}\left(X^{\prime}, o\right) \rightarrow G$, where o is either o_{1} or o_{2}. For $i=1,2$, let π^{i} be that subgroup of $\pi_{1}\left(X^{\prime}, o_{i}\right)$ generated by loops at o_{i}, which do not cross w. Set $G_{i}=\tau\left(\pi^{i}\right)$.

One easily sees that G_{i} can equivalently be defined as follows. Let \tilde{Y}_{i} be the connected component of $p^{-1}\left(Y_{i}^{\prime}\right)$ which contains \tilde{o}_{i}. Then G_{i} is the subgroup of G which keeps \tilde{Y}_{i} invariant.

We next observe that $G_{1} \cap G_{2}$ contains a subgroup H, of order α, which keeps γ invari ant. For $i=1,2$, let B_{i} be the open topological disc bounded by γ which does not contain $\tilde{\sigma}_{i}$.

Lemma 2 (I). For $i=1,2, B_{i}$ is a precisely invariant disc for H as a subgroup of G_{i}.
Proof. Since w is a simple loop, every translate of B_{i} is either equal to B_{i}, disjoint from B_{i}, or is a relatively compact subset of B_{i}. Since for $g \in G_{i}, g \in H$ if and only if $g B_{i}=B_{i}$, it suffices to show that the last possibility cannot occur. If $g\left(B_{i}\right)$ were a relatively compact subset of B_{i}, then every path from \tilde{o}_{i} to $g\left(\tilde{o}_{i}\right)$ would cross γ, and so g could not be in G_{i}.

Using Lemma $2(\mathrm{I})$, we see that G_{1} and G_{2} satisfy the hypotheses of Combination Theorem I. Since $\pi_{1}\left(X^{\prime}, o\right)$ is generated by π^{1} and $\pi^{2}, G=\tau\left(\pi_{1}\left(X^{\prime}, o\right)\right)$ is generated by G_{1} and G_{2}; hence G is formed from G_{1} and G_{2} via Combination Theorem I.

The group G_{i} has an invariant component $\Delta^{i} \supset \Delta$. In order to describe Δ^{i} / G_{i}, we fill in the branch points on Y_{i}^{\prime}, i.e., let Y_{i}^{*} be the component of $\left(p\left(\Delta_{0}\right)-w\right)$ which contains Y_{i}^{\prime}.

Lemma 3 (I). Δ^{i} / G_{i} is the surface Y_{i}^{*} with a disc T sewn in along w. T contains exactly one branch point of G_{i} of order $\alpha\left(\right.$ if $\alpha=1$, then $p^{-1}(T)$ contains no elliptic fixed points).

Proof. We already know that $p^{-1}\left(Y_{i}^{*}\right) \subset \Delta^{i}$, and, since B_{i} is precisely invariant under the finite cyclic subgroup H, that $B_{i} \subset \Delta^{i}$. We let $\tilde{\Delta_{i}}=p^{-1}\left(Y_{i}^{*}\right) \cup \bigcup_{g \in G_{i}} g\left(B_{i}\right)$. We have to show that $\tilde{\Delta}_{i}=\Delta^{i}$. For this, we have to show that if z is a point on the boundary of $\tilde{\Delta}_{i}$, then $z \in \Lambda\left(G_{i}\right)$. Every point on the boundary of $\tilde{\Delta}_{i}$ is a point of $\Lambda(G)$; hence there is a sequence $\left\{g_{n}\right\}$ of elements of G with $g_{n}(\gamma) \rightarrow z$. Now either $g_{n} \in G_{i}$, or there is a $g_{n}^{\prime} \in G_{i}$ with $g_{n}(\gamma) \subset g_{n}^{\prime}\left(B_{i}\right)$. Then $g_{n}^{\prime}(\gamma) \rightarrow z$, and so $z \in \Lambda\left(G_{i}\right)$.

Before going on to the next case, we need to make one more observation, which is an immediate corollary of conclusion (3) of Combination Theorem I.

Lemma $4(\mathrm{I}) . \Omega(G) / G=\Delta_{0} / G+\Omega\left(G_{1}\right) / G_{1}-\Delta^{1} / G_{1}+\Omega\left(G_{2}\right) / G_{2}-\Delta^{2} / G_{2}$.

We next take up the case that w is non-dividing. Then there is a loop v on X^{\prime} which crosses w exactly once. There is a lifting \tilde{v} of v, which starts at some point of $\gamma=\gamma_{1}$ and ends at some $\gamma_{2}=f\left(\gamma_{1}\right)$. We choose base points o on v, but not on w, and \tilde{o} on \tilde{v}, lying over o. Let π^{1} be the subgroup of $\pi_{1}\left(X^{\prime}, o\right)$ generated by loops which do not cross w. Let $G_{1}=\tau\left(\pi^{1}\right)$, where $\tau: \pi_{1}(X, o) \rightarrow G$ is the natural homomorphism.

As in the preceding case, we observe that G can equivalently be defined as follows. Let \tilde{Y}_{1} be the connected component of $p^{-1}\left(X^{\prime}-w\right)$ which contains $\tilde{\sigma}$. Then G_{1} is the subgroup of G which keeps \tilde{Y}_{1} invariant.

For $i=1,2$, we let H_{i} be the subgroup of G_{1} which keeps γ_{1} invariant, and we let B_{i} be that topological disc bounded by γ_{i} which does not contain $\tilde{\sigma}$. We already know that $f\left(\gamma_{1}\right)=\gamma_{2}$; we easily see that $f^{-1} \circ H_{2} \circ f=H_{1}$; following orientation along \tilde{v}, we see that $f\left(B_{1}\right) \cap B_{2}=\phi$.

Lemma 2 (II). For $i=1,2, B_{i}$ is a precisely invariant disc under H_{i}, as a subgroup of G_{1}; for every $g \in G_{1}, g\left(\widetilde{B}_{1}\right) \cap \widetilde{B}_{2}=\phi$.

Proof. Since $p\left(\gamma_{1}\right)=p\left(\gamma_{2}\right)=w$ is a simply loop, for every $g \in G$, there are four possibilities: $g\left(B_{1}\right)=B_{1} ; g\left(B_{1}\right)=B_{2} ; g\left(\bar{B}_{1}\right)$ does not intersect either \bar{B}_{1} or $\bar{B}_{2} ; g\left(B_{1}\right)$ is a relatively compact subset of either B_{1} or B_{2}.

For $g \in G_{1}$, the last possibility cannot occur, since we must be able to connect \tilde{o} to $g(\tilde{o})$ without crossing either γ_{1} or γ_{2}. We also cannot have $g\left(B_{1}\right)=B_{2}$, for then $f^{-1} \circ g$ would be fixed-point free on γ_{1} while mapping B_{1} onto its complementary component.

The proof of Lemma 2 (II) is completed by observing that the same remarks apply to translates of B_{2}.

Since $\pi_{1}\left(X^{\prime}, o\right)$ is generated by π^{1} and v, G is generated by G_{1} together with f; hence G is formed from G_{1} via Combination Theorem II.

We let Δ^{1} be that invariant component of G_{1} which contains Δ_{0}, and we let Y_{1}^{*} be Y_{1}^{\prime} with the branch points filled in. Then Y_{1}^{*} has two boundary components corresponding to w; call them w_{1} and w_{2}.

Lemma 3 (II). Δ^{1} / G_{1} is Y_{1}^{*} with two discs attached; one each along w_{1} and w_{2}. Each of these discs contains exactly one branch point of order α.

The proof of the above is essentially the same as the proof of Lemma 3 (I).
We again make explicit the meaning of conclusion (3) of the Combination Theorems.
Ltima 4 (II). $\Omega\left(G^{\prime}\right) / G-\Delta_{0} / G=\Omega\left(G_{1}\right) / G_{1}-\Delta^{1} / G_{1}$.
We remark at this point that we have not as yet used the fact that X^{\prime} is a finite Riemann surface.

Suppose that X^{\prime} has signature $\left\{g, n, v_{1}, \ldots, v_{n}\right\}$. In the first case, where w divides X^{\prime} into Y_{1}^{\prime} and Y_{2}^{\prime}, since w^{α} lifts to a homotopically non-trivial loop in Δ_{0}, both Y_{1}^{\prime} and Y_{2}^{\prime} must either have positive genus, or have more than one puncture. Then as a corollary of Lemma 4 (I), we get that since Δ^{i} / G_{i} is a finite Riemann surface, $i=1,2, G_{1}$ and G_{2} are both finitely generated. We see further that the signatures $\left(g_{i}, n_{i}, v_{i 1}, \ldots, v_{i n_{i}}\right)$ of $Y_{i}=\Delta^{i} / G_{i}$ satisfy

Lemma 5 (I).
(a) $g_{1}+g_{2}=g$.
(b) If $\alpha>1$, then $n_{1}+n_{2}=n+2$, where up to order

$$
\left\{v_{1}, \ldots, v_{n}, \alpha, \alpha\right\}=\left\{v_{11}, \ldots, v_{1 n}, v_{21}, \ldots, v_{2 n a}\right\}
$$

If $\alpha=1$, then $n_{1}+n_{2}=n$, where up to order

$$
\left\{\nu_{1}, \ldots, v_{n}\right\}=\left\{v_{11}, \ldots, \nu_{2 n_{2}}\right\}
$$

(c) $3\left(g_{i}-1\right)+n_{i}<3(g-1)+n, i=1,2$.

Proof. Only the last inequality needs proving. The minimum possible for $3\left(g_{i}-1\right)+n_{i}$ is -1 , which can occur only if G_{i} is cyclic, and then $\alpha=1$. Inequality (c) now follows from (a) and (b).

Similar considerations show that if w is non-dividing, then we get again that G_{1} is finitely generated.

Lemma 5 (II).
(a) $g_{1}=g-1$.
(b) If $\alpha>1$, then $n_{1}=n+2$, where up to order

$$
\left\{v_{1}, \ldots, v_{n}, \alpha, \alpha\right\}=\left\{v_{11}, \ldots, v_{1 n_{1}}\right\}
$$

If $\alpha=1$, then $n=n_{1}$ and up to order

$$
\left\{v_{1}, \ldots, v_{n}\right\}=\left\{v_{11}, \ldots, v_{1 n_{1}}\right\} .
$$

(c) $3\left(g_{1}-1\right)+n_{1}<3(g-1)+n$.

Since (-3) is an absolute minimum for the quantity $3(g-1)+n$, we can use the last inequality in Lemmas 5 (I) and 5 (II) for inductive purposes. Thus we have shown that every finitely-generated Kleinian group with an invariant component can be built up, using Combination Theorems I and II, from finitely-generated Kleinian groups which have a simply connected invariant component.

We remark that in this inductive process, our old loop w appears on our new surface, say X_{1}^{\prime}, as bounding a disc or punctured disc. Hence we can choose our next simple loop w_{1} on X_{1}^{\prime} to be disjoint from our old loop w.

In order to complete the proof of Theorem 1, we have to decompose a group G which has a simply-connected invariant component. It suffices to consider the case that G is a B-group; i.e. non-elementary. Then there is a conformal map $\varphi: \Delta_{0} \rightarrow U$, the unit disc. One easily sees [11] that if $h \in G$ is an accidental parabolic transformation, then the axis of $\varphi h \varphi^{-1}$ does not intersect any of its translates under $\varphi G \varphi^{-1}$. The projection of this axis to X_{0} is a simple loop, unless the axis has elliptic fixed points, necessarily of order 2, on it. In the latter case, a simple modification yields a simple loop on X_{0}.

We thus have a simple loop w on X_{0}, in fact on X^{\prime}, and a connected component γ^{\prime} of $p^{-1}(w)$ which is invariant under the (accidental) parabolic cyclic subgroup H. We adjoin the fixed point of H to γ^{\prime}; the resulting simple closed curve γ is precisely invariant under H.

If w divides X^{\prime}, into Y_{1}^{\prime} and Y_{2}^{\prime}, then, exactly as in the preceding case when H is finite, we pick base points near w, and define G_{1} and G_{2} by loops which do not cross w. We observe that γ bounds two topological discs, B_{1} and B_{2}, where B_{i} is a precisely invariant disc under H_{i}, and we observe that Lemmas $3(\mathrm{I}), 4(\mathrm{I})$ and $5(\mathrm{I})$ all hold in this case where $\alpha=\infty$.

We also remark that since our original group G is non-elementary, H has index at most 2 in its normalizer N. Since $G_{1} \cap G_{2}=H, H$ must be its own normalizer in at least one of G_{1}, G_{2}.

If w doesn't divide X^{\prime}, then proceeding as before, we again choose a loop v which crosses w at exactly one point; we let f be the element of G corresponding to the lifting of v, starting at $\gamma=\gamma_{1}$; we let $\gamma_{2}=f\left(\gamma_{1}\right)$; for $i=1,2$, we let H_{i} be the (parabolic cyclic) subgroup of G keeping γ_{i} invariant; and we let G_{1} be the subgroup of G defined by loops on X^{\prime} which do not cross w. Exactly as in the preceding case, we see that each γ_{i} bounds a precisely invariant disc B_{i}.

In order to see that Combination Theorem II is again applicable, we need to know that $H_{1}\left(H_{2}\right)$ is its own normalizer in G_{1}, and that no translate of γ_{1} under G_{1} intersects γ_{2}. Since Δ_{0} is simply-connected, the first possibility follows from the known fact about Fuchsian groups that if a hyperbolic cyclic subgroup is not its own normalizer, then a simple deformation of its axis projects to a dividing loop (one side is a disc containing exactly two, branch points, each of order 2). For the second possibility, since f is definitely not in G_{1}, we could have $g_{1}\left(\gamma_{1}\right) \cap \gamma_{2} \neq \phi, g_{1}\left(\gamma_{1}\right) \neq \gamma_{2}, g_{1} \in G_{1}$, only if the corresponding Fuchsian group contained a rank 2 free abelian subgroup, which it doesn't.

Hence Combination Theorem II is applicable, and Lemmas 3 (II), 4 (II) and 5 (II) again hold, where $\alpha=\infty$.

Theorem 1 now follows by induction on the quantity $3(g-1)+n$.

Lemmas 3 (I) and 3 (II) show that our induction process yields new surfaces, which except for a finite number of discs, are disjointly embedded in our old surface. The loop w, which we use for our construction, appears as the boundary of these discs in the new surfaces. Hence, as we proceed with the induction, we can choose the new loops to be disjoint from all the old loops.

Combining the above remark with Lemmas 3 (I), 3 (II) and Theorem 2, we obtain a proof of Theorem 6.

4. Equalities and inequalities

In this section, we apply the results of the preceding sections to obtain proofs of Theorems 3, 4 and 5.

Statement (a) in Theorem 3 is an immediate consequence of statement (a) in Lemmas 5 (I) and 5 (II).

Statement (b) of Lemmas 5 (I) and 5 (II) asserts the following. There is a branchnumber preserving correspondence between the n distinguished points of Δ_{0} / G, and a subset of the $\sum_{i=1}^{s} n_{i}$ distinguished points of $\bigcup_{i=1}^{s} \Delta^{i} / G_{i}$. Each of these distinguished points corresponds to a conjugacy class of maximal elliptic or parabolic cyclic subgroups of G (or G_{i}). A distinguished point of some Δ^{i} / G_{i} actually corresponds to a distinguished point of Δ_{0} / G if and only if no cyclic subgroup of the corresponding conjugacy class is used as a subgroup H or H_{i} in one of the Combinations.

Our proof of Theorem 3 is thus reduced to showing that the conjugates of cyclic subgroups which are used in the Combinations are precisely those cyclic subgroups which represent punctures in their factor subgroups and which are either contained in two factor subgroups or which are of infinite index in their normalizer in G.

We already know, via Lemmas 1 (I) and 1 (II) that the intersection of two conjugates of basic groups is either trivial or is an elliptic or parabolic cyclic subgroup used in one of the Combinations. A parabolic cyclic subgroup H of infinite index in its normalizer N, does not represent a puncture in $\Omega(N) / N$, and so does not represent a puncture in the factor group containing H. An elliptic cyclic subgroup H of infinite index in its normalizer, represents at least one puncture in the factor subgroup containing H, but represents no puncture in $\Omega(N) / N$; hence by the remark above, H is a conjugate of a subgroup used in one of the combinations.

To go the other way, it is obvious in the use of Combination Theorem I, that the amalgamated subgroup H is a subgroup of both G_{1} and G_{2}. In the use of Combination Theorem II, H_{1} is a subgroup of both G_{1} and $f^{-1} G_{1} g$. If, however, $G_{1}=f^{-1} G_{1} f$, then there will be infinitely many regions bounded by translates of γ which are invariant under G_{1}; i.e., if R is a
region kept invariant by G_{1}, then $f^{n}(R), n= \pm 1, \pm 2, \ldots$, is also invariant under G_{1}. By Accola's Theorem [2], G_{1} is cyclic. Then $G_{1}=H_{1}=H_{2}$, and f commutes with H_{1}.

This concludes the proof of Theorem 3.
We come now to the proof of Theorem 4. To this end, we reorder the basic subgroups G_{1}, \ldots, G_{s}, so that G_{1}, \ldots, G_{p} are the quasi-Fuchsian basic subgroups and G_{p+1}, \ldots, G_{s} are the elementary and degenerate basic subgroups.

The inequalities in Theorems 4 and 5 follow from Theorem 3, via some complicated counting arguments by observing that $\Omega(G) / G-\Delta_{0} / G$ is anti-conformally equivalent to

$$
X_{\mathbf{1}}=\Delta^{\mathbf{1}} / G_{\mathbf{1}}+\ldots+X_{p}=\Delta^{p} / G_{p}
$$

Theorem 3(a) asserts that

$$
\begin{equation*}
g=\sum_{i=1}^{s} g_{i}+t=\sum_{i=1}^{p} g_{i}+\sum_{i=p+1}^{s} g_{i}+t . \tag{1}
\end{equation*}
$$

If G_{i} is elementary, $g_{i} \neq 0$ if and only if G_{i} has signature (1,0). Hence
4(a)

$$
g-\sum_{i=1}^{p} g_{i}=t+\sum_{i=p+1}^{s} g_{i} \geqslant t+r_{\mathbf{4}} .
$$

We recall that if G_{i} is quasi-Fuchsian, then $\operatorname{dim} B_{2}\left(X_{i}\right)=\mathbf{3}\left(g_{i}-1\right)+n_{i}$. For convenience in writing, we use this formula to define $B_{2}\left(X_{i}\right)$ if G_{i} is elementary or degenerate. Without further mention, we will similarly define $B_{q}\left(X_{i}\right), A\left(X_{i}\right)$ and $\chi\left(X_{i}\right)$.

Since G has at least two components, it is surely not elementary. Using Theorem 3, we observe that

Hence

$$
\begin{align*}
\operatorname{dim} B_{2}\left(X_{0}\right)=3(g-1)+n & =\sum_{i=1}^{s}\left\{3\left(g_{i}-1\right)+k_{i}\right\}+3(s+t-1) \\
& =\sum_{i=1}^{s} \operatorname{dim} B_{2}\left(X_{i}\right)+3(s+t-1)-r \tag{2}\\
& =\sum_{i=1}^{p} \operatorname{dim} B_{2}\left(X_{i}\right)+\sum_{i=p+1}^{s} \operatorname{dim} B_{2}\left(X_{i}\right)+3(s+t-1)-r . \tag{3}
\end{align*}
$$

Elementary computations show that for G_{i} elementary, $\operatorname{dim} B_{2}\left(X_{i}\right) \neq 0$ only if G_{i} has signature $(0,2 ; \alpha, \alpha)$, in which case $\operatorname{dim} B_{2}\left(X_{i}\right)=-1$; or G_{i} has signature $(0,4 ; 2,2,2,2)$, in which case $\operatorname{dim} B_{2}\left(X_{i}\right)=+1$.

Combining the above remarks with (3), we get inequality $4(\mathrm{~b})$, together with the remark as to when equality holds.

We go on to inequality $4(\mathrm{c})$ and recall that in general $\operatorname{dim} B_{q}\left(X_{i}\right)=(2 q-1)\left(g_{i}-1\right)+$ $\Sigma_{j}\left[q-q / \nu_{i j}\right]+\Sigma_{j}\left[q-q / \mu_{i j}\right]$ where $[x]$ is the integral part of x, and $[q-q / \infty]=q-1$. We compute, using Theorem 3,

$$
\begin{align*}
\operatorname{dim} B_{q}\left(X_{0}\right) & =(2 q-1)(g-1)+\sum_{j}\left[q-q / v_{j}\right] \\
& =\sum_{i=1}^{s}\left\{(2 q-1)\left(g_{i}-1\right)+\sum_{j}\left[q-q / v_{i j}\right]\right\}+(2 q-1)(s+t-1) \tag{4}\\
& =\sum_{i=1}^{s} \operatorname{dim} B_{q}\left(X_{i}\right)-\sum_{i, j}\left[q-q / \mu_{i j}\right]+(2 q-1)(s+t-1)
\end{align*}
$$

Hence
$\operatorname{dim} B_{q}\left(X_{0}\right)-\sum_{i=1}^{p} \operatorname{dim} B_{q}\left(X_{i}\right)=\sum_{i=p+1}^{s} \operatorname{dim} B_{q}\left(X_{i}\right)-\sum_{i, j}\left[q-q / \mu_{i j}\right]+(2 q-1)(s+t-1)$.
We estimate the RHS of (5) as follows. First, there are r_{1}^{\prime} terms in the first sum with extended) signature ($0,2,0 ; \mu, \mu$). For these

$$
\begin{equation*}
\operatorname{dim} B_{q}\left(X_{i}\right)-\Sigma_{j}\left[q-q / \mu_{i j}\right]=-(2 q-1) . \tag{6}
\end{equation*}
$$

Next there are r_{0} terms in the first sum for which G_{i} is elementary and $m_{i}=0$. For these, one easily sees that

$$
\begin{equation*}
\operatorname{dim} B_{q}\left(X_{i}\right) \geqslant-(2 q-1)+2\left(\frac{q-1}{2}\right)=-q . \tag{7}
\end{equation*}
$$

Then there are at most $\left(s-p-r_{0}-r_{1}^{\prime}\right)$ terms in the first sum for which $m_{i}>0$. For each of these, we choose a specific $\mu_{i j}$, call it μ_{i}^{\prime}, and observe that since X_{i} does not have signature $(0,2 ; \alpha, \alpha)$,

$$
\begin{equation*}
\operatorname{dim} B_{q}\left(X_{i}\right)-\left[q-q / \mu_{i}^{\prime}\right] \geqslant-q \tag{8}
\end{equation*}
$$

All the terms in the first sum, not yet considered, correspond to degenerate groups, so $\operatorname{dim} B_{q}\left(X_{i}\right)$ is the dimension of some space, hence non-negative.

The number of terms left in the second sum is $r-2 r_{1}^{\prime}-\left(s-p-r_{0}-r_{1}^{\prime}\right)$. For each of these terms

$$
\begin{equation*}
\left[q-q / \mu_{i j}\right] \leqslant q-1 \tag{9}
\end{equation*}
$$

Using the results of (6)-(9) in (5) we obtain
$\operatorname{dim} B_{q}\left(X_{0}\right)-\sum_{i=1}^{p} \operatorname{dim} B_{q}\left(X_{i}\right) \geqslant-(2 q-1) r_{1}^{\prime}-q r_{0}$

$$
\begin{equation*}
-q\left(s-p-r_{0}-r_{1}^{\prime}\right)-(q-1)\left[r-2 r_{1}^{\prime}-\left(s-p-r_{0}-r_{1}^{\prime}\right)\right]+(2 q-1)(s+t-1) \tag{10}
\end{equation*}
$$

Simplifying the RHS, we get 4 (c).
In the case that q is even, we can estimate $[q-q / \mu] \geqslant \frac{1}{2} q$, rather than $[q-q / \mu] \geqslant \frac{1}{2}(q-1)$, as used above. Then we can replace the RHS of (7) and (8) by $(-q+1)$. With these new inequalities, instead of (10), we get

$$
\begin{align*}
\operatorname{dim} B_{q}\left(X_{0}\right) & -\sum_{i=1}^{p} \operatorname{dim} B_{q}\left(X_{i}\right) \geqslant-(2 q-1) r_{1}^{\prime}-(q-1) r_{0} \\
& -(q-1)\left(s-p-r_{0}-r_{1}^{\prime}\right)-(q-1)\left[r-2 r_{1}^{\prime}-\left(s-p-r_{0}-r_{1}^{\prime}\right)\right] \tag{11}\\
& +(2 q-1)(s+t-1), q=2,4, \ldots
\end{align*}
$$

Simplifying the RHS of (11), we get $4(\mathrm{~d})$.
Following Bers [5], we get 4 (e) from 4 (c) by multiplying by $2 \pi q^{-1}$ and taking the limit as $q \rightarrow \infty$.

Inequality $4(f)$ is simpler. We again write

$$
\begin{equation*}
\chi\left(X_{0}\right)=2(g-1)+n=\sum_{i=1}^{s} 2\left(g_{i}-1\right)+\sum_{i} k_{i}+2(s+t-1)=\sum_{i=1}^{s} \chi\left(X_{i}\right)-\sum_{i} m_{i}+2(s+t-1) \tag{12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\chi\left(X_{0}\right)-\sum_{i=1}^{p} \chi\left(X_{i}\right)=\sum_{i=p+1}^{s} \chi\left(X_{i}\right)-r+2(s+t-1) \tag{13}
\end{equation*}
$$

We have to observe that $\chi\left(X_{i}\right)$ is positive if G_{i} is degenerate, and is different from zero only for certain elementary basic groups. If G_{i} is elementary, and $\chi\left(X_{i}\right) \neq 0$, then G_{i} must have signature $(0,3 ; \alpha, \beta, \gamma)$, in which case $\chi\left(X_{i}\right)=1$, or G_{i} has signature $(0,4 ; 2,2,2,2)$, in which case $\chi\left(X_{i}\right)=2$.

This concludes the proof of Theorem 4.
Theorem 5 is a fairly simple corollary of Theorem 4. We need to recall that the total number of operations in the construction of G is $(s+t-1) \geqslant 0$. Each cyclic basic group uses up at least one of these operations where the cyclic subgroup is trivial. The same can be said for each of the r_{0} basic groups for which $m_{i}=0$. Hence r, the total number of connectors, satisfies

$$
\begin{equation*}
r \leqslant 2\left(s+t-1-r_{0}-r_{1}^{\prime}\right) . \tag{14}
\end{equation*}
$$

Substituting (14) into the RHS of 4 (c) yields

$$
\begin{equation*}
\operatorname{dim} B_{q}\left(X_{0}\right)-\sum_{i=1}^{p} \operatorname{dim} B_{q}\left(X_{i}\right) \geqslant p+t-1+(q-1)\left(r_{0}+2 r_{1}^{\prime}\right) \tag{15}
\end{equation*}
$$

and 5 (a) follows by dropping the (non-negative) last term.
Similarly substituting (14) into 4(d) yields 5(b). Remark 5(c) follows from the fact that $(s+t-1)=0$ if and only if G is itself a basic group.

To get $5(\mathrm{~d})$, we first substitute (14) into $4(\mathrm{e})$ to obtain

$$
\begin{equation*}
A\left(X_{0}\right)-\sum_{i=1}^{p} A\left(X_{i}\right) \geqslant 2 \pi\left(r_{0}+2 r_{1}^{\prime}\right) \geqslant 0 \tag{16}
\end{equation*}
$$

In order to get equality, we need $r_{0}=r_{1}^{\prime}=0$, and equality in (14); i.e.,

$$
\begin{equation*}
r=2(s+t-1) \tag{17}
\end{equation*}
$$

Now, with these facts, we need to rederive $4(\mathrm{e})$. We start with

$$
\begin{align*}
(2 \pi)^{-1} A\left(X_{0}\right)=2(g-1)+\sum\left(1-1 / \nu_{j}\right) & =\sum_{i=1}^{s} 2\left(g_{i}-1\right)+\sum_{i, j}\left(1-1 / \nu_{i j}\right)+2(s+t-1) \\
& =\sum_{i=1}^{s}(2 \pi)^{-1} A\left(X_{i}\right)-\sum_{i, j}\left(1-1 / \mu_{i j}\right)+2(s+t-1) \tag{18}
\end{align*}
$$

Then

$$
\begin{equation*}
(2 \pi)^{-1}\left\{A\left(X_{0}\right)-\sum_{i=1}^{p} A\left(X_{i}\right)\right\}=\sum_{i=p+1}^{s}(2 \pi)^{-1} A\left(X_{i}\right)-\sum_{i, j}\left(1-1 / \mu_{i j}\right)+2(s+t-1) \tag{19}
\end{equation*}
$$

Since $r=2(s+t-1)$, and $p \geqslant 1$, we can choose a $\mu_{i j}$ call it μ_{i}^{\prime}, for every $i=p+1, \ldots, s$. We observe further that the $\mu_{i j}$ are paired (i.e., every connector is a common subgroup of two factor subgroups), and that we can choose at most one μ_{i}^{\prime} from each pair. We now rewrite (19) as

$$
\begin{align*}
(2 \pi)^{-1}\left\{A\left(X_{0}\right)\right. & \left.-\sum_{i=1}^{p} A\left(X_{i}\right)\right\} \\
& =\sum_{i=p+1}^{s}\left\{(2 \pi)^{-1} A\left(X_{i}\right)-\left(1-1 / \mu_{i}^{\prime}\right)\right\}-\sum_{i, j}^{\prime}\left(1-1 / \mu_{i j}\right)+2(s+t-1) \tag{20}
\end{align*}
$$

where the second summation extends over all $\mu_{i j} \neq \mu_{i}^{\prime}$.
One consequence of (17) is that $r_{1}=0$, and so one can estimate

$$
\begin{equation*}
(2 \pi)^{-1} A\left(X_{i}\right)-\left(1-1 / \mu_{i}^{\prime}\right) \geqslant-1 \tag{21}
\end{equation*}
$$

where equality occurs only if $\mu_{i}^{\prime}=\infty$ and G_{i} has signature $(0,3 ; 2,2, \infty)$.
The number of terms in the second sum of the RHS of (20) is $r-(s-p)$, hence

$$
\begin{equation*}
\sum_{i, j}^{\prime}\left(1-1 / \mu_{i j}\right) \leqslant r-(s-p)-\frac{1}{2} \sum_{i, j}\left(1 / \mu_{i j}\right) . \tag{22}
\end{equation*}
$$

Combining (20), (21) and (22), we obtain

$$
\begin{equation*}
(2 \pi)^{-1}\left\{A\left(X_{0}\right)-\sum_{i=1}^{p} A\left(X_{i}\right)\right\} \geqslant \frac{1}{2} \sum_{i, j} 1 / \mu_{i j} \tag{23}
\end{equation*}
$$

We conclude that each $\mu_{i j}=\infty$, and that each $G_{i}, p+1 \leqslant i \leqslant s$, has signature $(0,3 ; 2,2, \infty)$. To complete $5(\mathrm{~d})$, we have to prove that Δ_{0} is simply-connected. Rather than go back through the proof of Theorem 1, we observe trivially that if G_{1} and G_{2} both have connected limit sets; and if $\Lambda\left(G_{1}\right) \cap \Lambda\left(G_{2}\right) \neq \phi$, then the group generated by G_{1} and G_{2} has a connected limit set. Likewise, if $\Lambda\left(G_{1}\right)$ is connected, and if $f\left(\Lambda\left(G_{1}\right)\right)$ and $f^{-1}\left(\Lambda\left(G_{1}\right)\right)$ both intersect $\Lambda\left(G_{1}\right)$, then the group generated by G_{1} and f has connected limit set.

Putting the above remarks together with the fact that G is constructed, from groups with non-trivial limit sets, using Combinations with parabolic cyclic subgroups, we conclude that $\Lambda(G)$ is connected. Since Λ_{0} is invariant, $\Lambda(G)$ is the boundary of Δ_{0}, and so Δ_{0} is simply connected.

Only the second half of $5(\mathrm{e})$ needs explanation. Recall that $s+t-1$ is the total number of combinations, and so (Theorem 6) $(s+t-1)$ is at most the number of simple loops in a homotopically independent set. It was shown in [11] that the maximum number of elements in a homotopically independent set is $3(g-1)+n$.

Finally, $4(\mathrm{f})$ together with $5(\mathrm{e})$ shows that $\sum_{i=1}^{p} \chi\left(X_{i}\right) \leqslant \chi\left(X_{0}\right)$, and of course $\chi\left(X_{i}\right) \geqslant 1$.

References

[1]. Abikoff, W., The residual limit set of Kleinian groups. Acta Math., 130 (1973), 127-144.
[2]. Accola, R. D. M., Invariant domains for Kleinian groups. Amer. J. Math., 88 (1966), 329-336.
[3]. Ahlfors, L. V., Finitely generated Kleinian groups. Amer. J. Math., 86 (1964), 413-429.
[4]. Bers, L., On boundaries of Teichmüller spaces and on Kleinian groups: I. Ann. of Math., 91 (1970), 570-600.
[5]. -- Inequalities for finitely generated Kleinian groups.J. Analyse Math., 18 (1967), 23-41.
[6]. Klein, F., Neue Beiträge zur Riemann'schen Functionentheorie. Math. Ann., 21 (1883), 14-218.
[7]. Kra, I. \& Maskit, B., Involutions on Kleinian groups. Bull. Amer. Math. Soc., 78 (1972), 801-805.
[8]. Maskir, B., On Klein's Combination Theorem. Trans. Amer. Math. Soc., 120 (1965), 499509.
[9]. - On Klein's Combination Theorem, II. Trans. Amer. Math. Soc., 131 (1968), 32-39.
[10]. - On Klein's Combination Theorem, III. Advances in the Theory of Riemann Surfaces, Annals of Mathematical Studies, 66 (1971), 297-316.
[11]. - On boundaries of Teichmüller spaces and on Kleinian groups, II. Ann. of Math., 91 (1970), 607-639.
[12]. - Construction of Kleinian groups. Proceedings of the Conference on Complex Analysis, Minneapolis, 1964, Springer-Verlag, Berlin, 1965, 281-296.
[13]. - A characterization of Schottky groups. J. Analyse Math., 19 (1967), 227-230.
[14]. - A theorem on planar covering surfaces with applications to 3-manifolds. Ann. of Math., 81 (1965), 341-355.

Received July 22, 1972

