Decomposition of complete graphs into stars

Pauline Cain

Abstract

A star is a connected graph in which every vertex but one has valency 1 . This paper concerns the question of when complete graphs can be decomposed into stars, all of the same order, which have pairwise disjoint edge-sets. It is shown that the complete graphs on $r m$ and $r m+1$ vertices, $r>1$, can be decomposed into stars with m edges, if and only if r. is even or m is odd.

By a graph we shall mean a finite undirected graph without loops or multiple edges. In the complete graph K_{p} there are p vertices and an edge exists between every pair of vertices. The complete bipartite graph, $K_{p, n}$, has two sets of vertices, V_{p} and V_{n}, and two vertices are adjacent if and only if both endpoints do not belong to V_{p} or to V_{n}. An m-star is a complete•bipartite graph, $K_{1, m}$. We shall write x - yztu ... for a star with centre x and terminal vertices y, z, t, u, \ldots.

A decomposition or factorization of a graph into stars is a way of expressing the graph as the union of edge-disjoint stars. A uniform decomposition is one in which the stars are the same size. An m-star decomposition decomposes a graph uniformly into m-stars.

The sum of graphs, $G+H$, consists of the union of the vertices and edges in G and H and all possible edges between every pair of vertices

Received 20 August 1973. Commicated by W.D. Wallis.
g and h where g belongs to G and h belongs to H.
Examples of a 4-star and of a 4-star decomposition of K_{8} are given in Figure 1.

$x-t z y u$

Figure 1

In [1] Ae, Yamamoto, Yoshida have shown that $K_{3 t}$, for t greater than one, is 3-star decomposable.

In this paper we shall show precisely when $K_{r m}$ is m-star de compos able.

LEMMA 1. If K_{p} is m-star decomposable then necessamily the nomber of stars, $p(p-1) / 2 m$, is integral.

LEMMA 2. $K_{2 m}$ is m-star decomposable for all m..
Proof. K_{2} is l-star decomposable. (All graphs are trivially 1-star decomposable.) K_{4} is 2-star decomposable as is shown in Figure 2.

Assume $K_{2 p}$ is p-star decomposable for all $p \leq m . K_{2 m+2}$ may be formed from a $K_{2} \cup K_{2 m}$ by joining by edges, $e_{i j}$, each pair of vertices $\left(v_{i}, w_{j}\right)$, where v_{i}, for $i=1,2$, belongs to the K_{2} and w_{j}, for $j=1, \ldots, 2 m$, belongs to the $K_{2 m}$. (See Figure 3.)

Figure 2

Figure 3
There are $2 m-1$-stars in $K_{2 m}$. Since each vertex in $K_{2 m}$ has a valency of $2 m-1$, every vertex (of $K_{2 m}$) except one is the centre of an m-star. Label the exception $w_{2 m}$.

For $j=1, \ldots, m$, attach to the star with centre w_{j}, the edge $e_{1 j}$ to form an $(m+1)$-star. Then form an ($m+1$)-star,
$v_{1}-v_{2}, w_{m+1}, \ldots, w_{2 m-1}, w_{2 m}$, exhausting the remaining edges through v_{1}.
For $j=m+1, \ldots, 2 m-1$, add $e_{2 j}$ to the m-star with centre w_{j}, forming an ($m+1$)-star. The remaining $(m+1)$-star has v_{2} as its centre and terminal vertices $w_{1}, \ldots, w_{m}, w_{2 m}$. We have a total of $2 m+1$ edge-disjoint ($m+1$)-stars.

So the result follows by induction.
THEOREM 1. If K_{x} is m-star decomposable then $K_{x+2 \alpha m}$ for all positive integral α, is m-star decomposable.

Proof. $K_{x+20 m}$ is $K_{x}+K_{2 m}+\ldots+K_{2 m}$.
Consider $K_{x}+K_{2 m}$.
Let v_{i} be the vertices of K_{x} for $i=1, \ldots, x$ and w_{j} be the vertices of $K_{2 m}$ for $j=1, \ldots, 2 m$. Let $e_{i j}$ be an edge between v_{i} and w_{j}.

Both K_{x} and $K_{2 m}$ are m-star decomposable by assumption and Lemma 2 respectively. For $i=1, \ldots, x$, the graph, E_{i}, containing the edges $e_{i j}$ where $j=1, \ldots, 2 m$, is decomposable into two m-stars, namely, $v_{i}-w_{1}, \ldots, w_{m}$ and $v_{i}-w_{m+1}, \ldots, w_{2 m}$. So $K_{x}+K_{2 m}$ is decomposable for K_{x} and every $K_{2 m}$.

The result follows by repeated application.
LEMMA 3. $K_{r m}$ and $K_{r m+1}$ are not m-star decomposable when r is odd and m is even.

Proof. Lemma 1 implies that m will divide $r m(r m-1) / 2$ and $(r m+1) r m / 2$ if $K_{r m}$ and $K_{r m+1}$ are m-star decomposable. This does not happen in the case in question.

LEMMA 4. $K_{3 m}$ is m-star decomposable when m is odd.
Proof. Write $m=2 n+1$. If $K_{3 m}$ is decomposable the number of
m-stars will be $3(2 n+1)(6 n+3-1) / 2(2 n+1)$ which is an integer, $3(3 n+1)$. So, for odd m it is conceivable that $K_{3 m}$ may be m-star decomposable.

$$
K_{3 m} \text { is } K_{m}+K_{m}+K_{m} ; \text { let us write these } K_{m} \text { with vertices } v_{i}
$$ $i=1, \ldots, m, w_{j}, j=1, \ldots, m$ and $x_{k}, k=1, \ldots, m$ respectively. (See Figure 4.)

Figure 4
For $1 \leq i \leq m-1$, form the m-star V_{i} with centre v_{i} and terminal vertices $w_{1}, \ldots, w_{i}, v_{i+1}, \ldots, w_{m}$;
for $2 \leq i \leq m$, form the m-star X_{i} with centre x_{i} and terminal vertices $x_{1}, \ldots, x_{i-1}, w_{i}, \ldots, w_{m}$;
for $1 \leq i \leq m$, form the m-star W_{i} with centre w_{i} and terminal vertices $v_{1}, \ldots, v_{i-1}, v_{m}, x_{i+1}, \ldots, x_{m}$;
for $1 \leq i \leq m$, form the m-star U_{i} with centre v_{i} and terminal vertices x_{1}, \ldots, x_{m}.

We have formed $4 m-2 m$-stars and we require a further $\frac{3}{2}(m+1)$ stars to be formed. We proceed as follows: for $l \leq i \leq m$, the star Y_{i} is centred at w_{i} and has terminal vertices $w_{i+1}, \ldots, w_{m}, x_{1}, y_{i}$ requires a further $i-1$ edges to become an m-star.
Y_{1} has centre w_{1} and terminal vertices $w_{2}, \ldots, w_{m}, x_{1}$. So y_{1}
is an m-star already.
In order to form a further $\frac{1}{2}(m-1)$-stars Y_{k} where
$k=2, \ldots, \frac{3}{2}(m+1)$, we may use the following procedure to modify the v_{i}, X_{i} and w_{i} :
(1) For $2 \leq k \leq \frac{1}{2}(m+1)$:
to Y_{k} add v_{k};
to v_{k} delete w_{k} and add w_{m-k+2};
to W_{m-k+2} delete v_{k} and add x_{1}.
y_{2} will now have m terminal vertices, namely, $w_{3}, \ldots, w_{m}, x_{1}, v_{2}$.
 and do the following for $3 \leq j \leq \frac{2}{2}(m+1)$ and $j \leq k \leq \frac{1}{2}(m+1)$: to Y_{k} add v_{θ};
to V_{θ} add w_{m-j+3} and delete w_{k};
to W_{m-j+3} delete v_{θ} and add ω_{m-k+2}.
(ii) If k is greater than or equal to $z_{2}(m+5-j)$, write
$j=m+5-2 k$ and $\theta=m-k+5-j$. Do the following for
$0 \leq Z \leq k-j:$
to Y_{k} add $x_{\theta-乙}$;
to $x_{\theta-2}$ add x_{m-2} and delete w_{k};
to $X_{m-\eta}$ add $w_{m-j+3-\eta}$ and delete $x_{\theta-\eta}$;
to $W_{m-j+3-2}$ delete x_{m-2} and add w_{m-k+2}.
Using this procedure y_{i} gains one edge from (I) and ($i-2$) edges from (2), thus forming an m-star Y_{i} for $i=2, \ldots, \frac{l_{2}}{2}(m+1) . V_{i}, X_{i}$ and W_{i} are still m-stars since an edge is always added when one is subtracted.

The following situations need to be considered to ensure that the
procedure does not break down for large m.
In (1) the procedure may break down if $m-k+2 \leq k$, but this implies that $m+2 \leq 2 k$. Since $2 \leq k \leq \frac{1}{2}(m+1)$, we have $m+2 \leq m+1$, which is false.

In (2) (i) the procedure may break down if $m-k+5-j \leq k$, that is $k \geq \frac{1}{2}(m+5-j)$, but this situation is corrected in (2) (ii). Moreover, we are in trouble if $m-j+3 \leq m-k+5-j$ (where $j \leq k \leq \frac{1}{2}(m+1)$ and $3 \leq j \leq \frac{1}{2}(m+1)$) but this implies $3 \leq 5-k \leq 5-j \leq 5-3=2$. Further trouble arises when $m-j+3=m-k+2$, but this implies $k=j-1 \leq k-1$.

Problems could occur in (2) (ii), if any of the following situations arise:
(a) $\theta-Z<1$;
(b) $\theta-l>m-Z$;
(c) $\theta-Z>k$;
(d) $m-j+3-2 \geq m-2$;
(e) $m-j+3 \geq m$; or
(f) $m-k+2=m-j+3-2$.

None of these ever occur.
It is obvious that K_{m} is not m-star decomposable, not having enough vertices. So the following theorem completely characterizes m-star decomposability of $K_{r m}$.

THEOREM 2. If $r \geq 2$ then $K_{r m}$ can be decomposed into m-stars if and only if r is even or m is odd.

Proof. The result follows from Lemmas 2, 3, and 4 and Theorem 1 .
We can use these results to determine when $K_{r m+1}$ is m-star decomposable.

LEMMA 5. If $K_{r m}$ is m-star decomposable then $K_{r m+1}$ is m-star decomposable.

Proof. $K_{r m+1}$ contains $K_{r m}$ and a vertex, say v, with all possible edges between v and $K_{\gamma m}$. These new edges form r edge-disjoint m-stars. Since $K_{r m}$ is m-star decomposable, $K_{r m+1}$ is m-star de composable.

COROLLARY. K_{m+1} is not m-star decomposable. When $r>1, K_{r m+1}$ is m-star decomposable if and only if r is even or m is odd:

Finally we shall decompose K_{21} into 7 -stars, as an example.

Reference

[1] Tadashi Ae, Seigo Yamamoto, Noriyoshi Yoshida, "Line-disjoint decomposition of complete graph into stars", J. Combinatomial Theory Ser. B (to appear).

Department of Mathematics,
University of Newcastle,
Newcastle,
New South Wales.

