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Decom~osition of Domains 
Extended Abstract 

Achim Jung Leonid Libkin Herrnann Puhlmann * 

Abstract 

The problem of decomposing domains into sensible factors is addressed and solved for the 
case of dI-domains. A decomposition theorem is proved which allows to represent an arbitrary 
dI-domain as a set of records with variants. The special case of direct product decompositions 
of Scott-domains is studied separately. 

1 Introduction 

Domain Theory is still a field which many computer scientists find hard to penetrate. In his last 
expository paper on the subject [18], Dana Scott confesses: "When I think of the number of 
headaches I have caused people in Computer Science who have tried to figure out the mathematical 
details of the Theory of Domains, I have to cringe." Indeed, the newcomer is usually confronted 
with a host of definitions almost none of which he can readily relate to concrete problems, although 
the concepts may appear 'plausible' to him. In the (in our opinion) best introduction to the field, 
the 'Pisa Lecture Notes' [16], Gordon Plotkin chose a rather more gentle approach. The 'domains' 
he considers are very primitive at the beginning, just sets, and step by step new constructs and 
properties are added to them: A bottom element transforms sets into flat domains, and thus the 
information order is introduced; next come slightly more complicated orders created by forming 
finite products of flat domains; function spaces call for the definition of dcpo and Scott-continuous 
function and via bilimits and powerdomains he finally arrives at bifinite domains. Furthermore, 
along the way he develops a syntax which allows to denote (most of) the elements of the domains, 
making them available for computation: The product appears as a set of arrays, the function space 
as a set of A-terms, etc. (This aspect is also described elegantly and comprehensively in [I].) In this 
way, Plotkin creates the impression that all (bifinite) domains are built up from flat domains using 
various domain constructors. This may be reassuring for the novice but of course it is not explicitly 
confumed in the text. Plotkin is just very carefully expanding his definitions and motivating each 
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University of Pennsylvania, Philadelphia, PA 19104, U.S.A. L.Libkin was supported in part by NSF Grants IRI-86- 
10617 and CCR-90-57570. 



new concept. But we may still ask to what extend this first impression could be transformed into 
a rigorous proof. To be more precise, we may ask: "Is it true, that every bifinite domain can be 
derived from flat domains using only lifting, product, coalesced sum, function space and convex 
powerdomain as constructors?" (A similar question was in fact asked - and found difficult - by 
Carl Gunter for the universal bifinite domain.) 

How would one attack such a problem? We think the natural way to do it is to work backwards 
and to try to decompose domains into pieces that decompose no further. If we can show that the 
only irreducible domains are the flat domains then we are done. 

At this point the informed reader may already have become nervous because he may know small 
finite counterexamples to the above question. But there are many variations of it which are equally 
interesting. We can restrict (or augment) the number of allowed constructions, we can change the 
class of domains we want to analyze, we can allow more (or fewer) primitive (i.e. irreducible) 
building blocks. The choice we have made for this paper is to consider Scott and dI-domains 
(cf. [4, 31) and a single, albeit rather general, constructor, and instead of prescribing the irreducible 
factors we are curious what they will turn out to be. The advantage of a decomposition theorem 
of this kind is apparent: Instead of proving a property for general domains we can prove that it 
holds for the irreducible factors and that it is preserved under the constructions. We allow ourselves 
to compare this endeavor with the similar (and only recently completed) project of decomposing 
Finite Groups into finite simple groups, although the comparison is somewhat flattering: we cannot 
expect to find so much mathematically intriguing structure in domains. 

What are the practical implications of our decomposition theorem? Well, in our particular 
setting we derive a very concrete representation of dI-domains as a set of 'tuples' which should 
simplify the implementation of dI-domains as abstract data types. Of course, there is a well- 
developed theory of effective representations (see [19, 13, 21, 14]), where one enumerates the set 
of compact elements and represents (a subset of) the infinite elements by recursively enumerable 
sets of compact approximations. However, this is more theoretical work and no one expects that 
we really ever use domains as dat types represented this way. Instead, our representation is much 
more concrete. To give an example, consider a domain which is the product of two flat domains. 
The traditional effective domain theory simply enumerates all elements, and, if enumerations of 
the elements of the two factors are already given, then these are combined with the help of pairing 
functions. We work rather in the opposite direction. For a given domain we seek to decompose it 
as far as possible and we will only enumerate the bases of the (irreducible) factors in the traditional 
way. The representation of the original domain is then put together as a set of 'tuples'. 

This work was initiated by Peter Buneman's interest in generalizing relational databases, see [6]. 
He - quite radically - dismissed the idea that a database should be forced into the format of an 
n-ary relation and instead he allowed it to be an arbitrary anti-chain in a Scott-domain. The reason 
for this was that advanced concepts in database theory, such as 'null values', 'nested relations', 
'complex objects' force one to augment relations and values with a notion of information order. 
Following Buneman's general approach, the question arises how to define basic database theoretic 
concepts such as 'functional dependency' for anti-chains in Scott-domains. For this one needs a 
way to speak about 'relational schemes' which are nothing but factors of the product from which 
the relation is a subset of. Buneman successfully defined a notion of 'scheme' for Scott-domains 
and it is this definition which at the heart of our results. So, we may view this paper as saying: 
Even generalized databases are relations. 

The definition of scheme was discussed in [15] and an alternative definition was proposed. The 



idea of both definitions is that the elements of a domain are treated as objects, and projecting an 
element into a scheme corresponds to loosing some information about this object. The definition 
of [15] is based on the assumption that the same piece of information is lost for every object. For 
example, if objects are records, it means that we loose information about some attributes' values. 
The idea of [6] is that every scheme has a sort of complement, and if we project one object to 
a scheme and the other to its complement, then there exists a join of two projections, i.e. every 
object consists of two independent "pieces of information". Intuitively it means that the domain 
itself could be decomposed into two comsponding domains. 

The definition of [6] is stronger than the definition of [15]. It is the first definition that is 
used in our decomposition theory while the second definition serves as a tool to describe direct 
product decompositions of domains. Combining the decomposition theorems, we will prove a 
formal statement that clarifies the informal reasonings from the previous paragraph. 

The paper is organized as follows. In the next section we.shall quickly review some basic 
definitions from Domain Theory, mostly to fix notation and to remind the reader of a few less 
common concepts. In Section 3 we introduce semi-factors and prove basic properties of them. 
We apply these ideas and get a first decomposition theorem. This representation still contains a 
lot of redundancy and in Section 4 we show how to 'factor away' this redundancy. The resulting 
decomposition theorem yields a representation of dI-domains which is very tight. 

A direct product decomposition is a particular and interesting instance of our general goal and 
deserves more detailed study. In the last section we do this by establishing a relationship between 
these decompositions and particular instances of congruence relations and neutral ideals. The 
idea to describe direct product decomposition via neutral ideals is borrowed from Lattice Theory 
where neutral ideals describe decompositions of bounded lattices. For domains we will obtain a 
more general kind of decomposition including direct product and coalesced sum as limit cases. 
These decompositions are given by families of subsets of a domain such that every element of 
domain has unique representation as the join of suitably chosen representatives of these sets. Pairs 
of permutable complemented congruences also describe direct product decomposition as well as 
they describe decompositions of algebras. Having proved characterizations of decompositions, we 
establish the result showing the relationship between the two notions of scheme. 

2 Definitions 

We are using the standard definitions such as they can be found in [12] and in [I]. In particular, 
dcpo's are directed-complete partial orders and they have suprema for all directed sets. Most of 
the time they have a least element which we denote by I. Compact elements in a domain are such 
that they cannot be below a supremum of a directed set without being below some element of that 
set already and if there are enough compact elements such that every element is the supremum of 
a directed collection of them, we call the dcpo algebraic. More suprema than just those of directed 
sets can exist: If every bounded set has a join then we call the dcpo bounded-complete, if every set 
has a join then we have a complete lattice. In case a bounded-complete dcpo is also algebraic we 
call it a Scott-domain. The expression 'algebraic complete lattice' is shortened to algebraic lattice. 
We will mostly study distributive Scott-domains for which it is sufficient to require the distributive 
law to hold in the principal ideals. (The standard textbook on distributive lattices is [2]). Even 
more restrictive is the definition of &-domains (cf. [4, 31): They are distributive Scott-domains 



in which every principal ideal generated by a compact element is finite. Because of this strong 
finiteness property we can usally derive theorems about dIdomains very quickly from the same 
theorems stated for finite distributive Scottdomains. 

All our functions are Scott-continuous, which means they carry the supremum of a directed set 
to the supremum of the image of the set. We do not make much use of them in this generality but 
mostly consider projections which are in addition idempotent and below the identity. Recall that 
projections always preserve existing infima and are completely determined by their image. Even 
the order between projections can be read off their image: it is simply inclusion. For more detailed 
information we refer to [8]. 

An element x in a lattice is join- (meet-) irreducible if from the equation y V z = x (y A z = x) 
we can deduce that x equals y or z. (In the presence of distributivity this is equivalent to the 
stronger property of join- (meet-) primeness but we will not make much use of this.) 

Domain Theory also knows the concept of ideal which is a directed and downward closed 
subset. This is a generalization of 'ideal' as it is known in Lattice Theory, where these are sets 
which are downward closed and closed under finite suprema. We need a generalization which goes 
in a different direction: 

Definition. A quasi-factor in a Scott-domain D is a downward closed subset which is closed under 
all existing joins. 

In Section 4 we shall try to justify the word 'quasi-factor'. Factors of products of dcpo's with 
bottom have the property that there is always a canonical projection onto them. This is also true 
for quasi-factors in Scott-domains: 

Lemma 1 Let A be a quasi-factor of the Scott-domain D.  Then PA:  D + D, defined by 

is a projection on D with image A. 

Our first decomposition has the form of a general categorical limit. Their concrete description 
is given in terms of certain elements of the product of the dcpo's involved. 

Definition. Let V be a set of dcpo's and let F be a set of Scott-continuous functions between 
elements of V (in the language of Category Theory: A diagram in DCPO). Furthermore, let a: = 
( x ~ ) ~ , ~  be an element (a tuple) of the cartesian product of all elements of V. We say that a: is 
commuting if the equation XE = f (xD) holds for all functions f :  D t E and all elements D, E 
in V. Similarly, it is called hyper-commuting (hypo-commuting) if the inequation XE > f (xD)  
(ZE I ~ ( x D ) )  holds. 

The set of all commuting tuples forms the categorical limit of the diagram (V, F )  and we 
denote it by lim 3 V .  The set of hyper-commuting (hypo-commuting) tuples we call the hyper- 
limit (hypo-limit) and we reserve the notation h yperli m , V ( h ypoli m , V) for it. (We admit that 
so far we have not explored the categorical significance of these two constructions.) It is easy to 
see that DCPO is closed under limits and the two kinds of 'quasi limits'. Whether any of the other 
properties generally associated with domains is preserved depends on the structure of the diagram. 
For more detailed information consult [20]. 



3 Quasi-factors, semi-factors, and the First Decomposition The- 

orem 

We begin by recalling from [6] and 1171 some of the properties of quasi-factors. 

Proposition 2 Let D be a Scott-domain. Then the following holds: 

(i) { I D )  and D are quasi-factors of D. 

(ii) If x is an element of a quasi-factor A of D and i f p ~ ( y )  is less than x then P A ( Y )  = x A y. 

(iii) If D is distributive then p~ preserves existing suprema. 

(iv) The set QD of all quasi-factors of D ordered by inclusion is an algebraic lattice. 

(v) If D is distributive then QD is distributive. 

(vi) In QD,  the finite meet of quasi-factors is given by their intersection and PAnB = pA o p~ = 
PB 0 PA. 

(vii) If D is distributive then (arbitrary) suprema in QD can be calculated pointwise and for A, B E 
Q D ,  x E D : P A ~ B ( X )  = PA( X )  V PB (3)-  

The concept of 'quasi-factor' is still too general to serve as a definition of 'distinguished piece 
of a domain'. For example, every element x of a domain generates a quasi-factor J x ,  but in general 
such a principal ideal cannot be hoped to lead to a sensible decomposition. In [6] a more restrictive 
definition is introduced, that of a scheme and it is motivated by the database applications we had 
in mind there. Here we can give a new motivation based on the desired decomposition result. 
Consider the following theorem: 

Theorem 3 Let D be a finite distributive Scott-domain and let A be a set of quasi-factors which 
forms a sup-basis in QD. Let F be the set of projections pA I B  : B + A where A C B are two 
elements of A. Furthemre, let D consist of those commuting tuples 5 = ( x ~ ) ~ , ~  for which the 
set { x A  I A E A) is bounded in D. Then D is isomorphic to D with the isomorphisms 

The proof of this theorem is straightforward, one only has to bear in mind that the quasi-factor 
D C D must be a supremum of elements of A and that suprema in QD are calculated pointwise. 
The theorem is unsatisfying, however, because in order to represent D through a set of quasi-factors, 
we need to include information that can only be gained by looking at D itself: the boundedness 
of the coordinates of 5. We shall now give a definition of a semi-factor, such that boundedness 
comes for free if only the tuple commutes. 

Definition. A quasi-factor A of a Scott-domain D is called semi-factor if for all x E D, y E A 
such that p A ( x )  5 y ,  it follows that x and y are bounded. 



In [6] and in [17] it is shown that this definition works well in the test case of direct product 
decompositions: The semi-factors of a direct product D x E are in 1-1 correspondence to products 
of semi-factors of D and E. In particular, D x { lE} and {ID} x E are semi-factors in D x E. 

We collect the basic properties of semi-factors in a similar fashion as for quasi-factors: 

Proposition 4 Let D be a distributive Scott-domain. Then the following holds: 

(i) {ID} and D are semi-factors of D. 

(ii) The set SD of all semi-factors of D ordered by inclusion is a distributive complete lattice. 

(iii) If S and T are semi-factors of D then so are S n T and S V T where again the join is taken 
pointwise. (The latter also holdr for arbitrary joins.) SD is a sublattice of QD. 

The following lemma states that our definition yields the desired extension property: 

Lemma 5 Let S be a family of semi-factors of a finite distributive Scott-domain D and let F consist 
of all connecting projections. Let S be such that with S, T E S we also have S n T E S .  If 
a: = (xs)sEs is a commuting tuple then the set {xs I S E S) is bounded in D. 

In our decomposition theorem we want to use as few semi-factors as possible which in turn 
should be as primitive as possible. As a first approximation we choose the set J(SD) of semi- 
factors which are join-irreducible in QD. This set has two properties which make it attractive: 
Every semi-factor is a join of irreducibles (in the finite case, but it will generalize to dI-domains) 
and a join-irreducible cannot be reached by a join of strictly smaller semi-factors, so it is in a 
sense unavoidable. But in order to apply the previous lemma we need a set closed under finite 
intersections, and in general J(QD) will not do us this favor. We need another preparatory lemma: 

Lemma 6 Let D be a finite distributive Scott-domain and let J(QD) be the set of join-irreducible 
semi-factors of D. Let a: = ( x ~ ) ~ ~ ~ ( ~ ~ ~  be a commuting tuple for J(SD) and the connecting 
projections F. Let D be the set offinite nun-empty intersections of elements of J(SD) and let F' 
be the appropriately extended set of connecting projections. Then a: can be extended uniquely to a 
commuting element 5' for D, F'. 

We can now state 

Theorem 7 (The First Decomposition Theorem) Let J(SD) be the set of all join-irreducible 
semi-factors of the finite distributive Scott-domain D and let F be the set of connecting projections. 
Then D is isomorphic to the limit of J(SD) over F. The isomorphisms are given by 

s: D + lim J(SD) 
3 

and 

a: lim J(SD) t D 
3 



For D not finite we have to deal with the following complication: The intersection of an infinite 
family of semi-factors is not necessarily a semi-factor again. We therefore do not know whether SD 
is algebraic in general. In the case of dI-domains we are fine: 

Proposition 8 Let D be a &-domain. Then SD is algebraic and co-algebraic (i.e. Sz is algebraic). 

From [8] we recall that algebraic lattices have an inf-basis of meet-irreducible elements, and 
so for a dI-domain D the distributive lattice SD has both a sup-basis of join-irreducibles and an 
inf-basis of meet-irreducibles. We can therefore state: 

Corollary 9 The First Decomposition Theorem holds for &-domains. 

4 Factoring by quasi - factors and the Second Decomposition 

Theorem 

In Group Theory and in Ring Theory we are familiar with the following technique. For a given 
strong substructure (normal subgroup, ideal, respectively) one studies the equivalence relation which 
identifies those elements which differ only by an amount contained in the substructure. A similar 
notion works for ideals in distributive lattices: If A is an ideal in L then we can set x - y if there 
is an a E A such that x v a = y V a. (for details see [2].) Since domains lack arbitrary suprema 
we have to rework this definition a little bit: 

Definition. Let A be a quasi-factor in a distributive Scott-domain D. On D define a binary 
relation dA by setting x dA y if there is a E A such that y = x V a and a > pA(x). Let OA be the 
symmetric and transitive hull of 8, that is, the smallest equivalence relation containing dA. 

This definition proves to be extremely fruitful. Without proof we list the following properties: 

Proposition 10 Let D be a finite distributive Scott-domain and let A be a quasi-factor in D. Then 
the following holds: 

(i) x 8~ y * x I y. 
(ii) x dA y y = x v pA(y) and for all a E A with y = x V a, a = p~(y). 

(iii) Each equivalence class of OA is connected and convex. 

(iv) OA is a congruence relation on D with respect to finite infima and existing suprema. 

(v) Each equivalence class of OA contains a least element. 

(vi) o dA. 

We denote the function which maps each element onto the smallest element in its equivalence 
class by q ~ .  With this notation we can add to the previous proposition the following clauses: 

(vii) q~ is a projection on D. 



(viii) p~ is injective on every equivalence class of OA. 

(ix) If A is a semi-factor then the image of an equivalence class under pA is upward closed in A. 

(x) If A is a semi-factor and if Vx E D : p~ o qA(x) = ID then A is a direct factor of D. 

(The last clause justifies the wording 'semi-' and 'quasi-factor'.) 
Every homomorphism f :  D + E induces a canonical congruence relation on D ,  called the 

kernel o f f  (ker f ) ,  which identifies exactly those elements of D which are mapped to the same 
element. Obviously, ker qA =OA. Let Con(D) be the complete lattice of all congruences (with 
respect to finite infima and existing suprema) on D. 

Proposition 11 Let D be a finite distributive Scott-domain and let A be a quasi-factor in D. Then 
the following is true: 

(i) ker p~ is a congruence with respect to arbitrary infima and arbitrary (existing) suprema. 

(ii) ker pAn OA= ADxD = Ocon(Dl. 

(iii) ker pAv OA= D x D = 

Also without proof we assure the reader that extending these results to dI-domains is possible. 
(cf. ~ 7 1 )  

Corollary 12 Proposition I 0  and Proposition I 1  hold for dl-domains, in particular, equivalence 
classes of OA and ker p~ are closed under directed suprema and q~ is Scott-continuous. 

Since this section lacks all proofs we offer the reader a picture as compensation. If S is a 
semi-factor in a dI-domain D then we may visualize D as composed of its Os-equivalence classes 
as follows: 

Knowing S, im qs and the action of p s  on the image of qs we can reconstruct the domain: 

Proposition 13 Let D be a finite distributive domain and let S be a semi-factor in D. Then D is 
isomorphic to the set D = {(s, a) E S x im qA 1 ps(a) 5 s} ordered pointwise. The isomorphism 
is given by ps x qs: D + D and by the supremum function for the other direction. 



We denote the image of qs by D l s  because it may also be seen as a set of representatives for 
the equivalence classes of Os. Also, in an ordered set let j z  be the principal ideal generated by x 
without x itself. With this notation we are now ready to formulate: 

Theorem 14 Let D be a finite distributive Scott-domain (a dl-domain) and let J(SD) be the set of 
all join-irreducible semi-factors of D.  Define 

and 

.F = {qVxs 0 PS ~ T / V  I S C T E J(SD)}. 

Then D is isomorphic to the hyper-limit of RJ(SD) over .F with the isomorghisms 

: D + hyperlim RJ(SD) 
3 

and 

cp: hyperlim RJ(SD) + D 
3 

Due to the limitations that the organizers of MFPS91 set us we have to stop here with our 
theory of decompositions. Of course, what we have described so far are only the very first steps 
and much more could be done (quite a bit more has been done already). A full version of this 
paper will contain (besides proofs) a decomposition theorem which works 'from above' by factoring 
with very large semi-factors, the relationship between our representation and the usual inverse limit 
representation will be examined, the action of domain constructors in terms of this representation 
will be described and much more. In the last section of this extended abstract we do a little more 
basic theory, we study the particular role of direct product decompositions by looking at the lattice 
of congruences and the lattice of quasi-factors. 

5 Characterization of direct product decompositions 

There exist several nice characterizations of the direct product decompositions of arbitrary algebras, 
see [5, 101. In this section we will find the analogies of two of them for domains. We will 
characterize direct product decompositions via complemented permutable congruences and neutral 
complemented ideals. Using our characterization, we will prove a result which explains the notion 
of scheme proposed in [6] in order to develop a domain-theoretic model of generalized databases. 
In fact, the definition of schemes of [6] (here we call them semi-factors) works for domains which 
are similar to domains of flat records. An alternative definition of scheme was introduced in [15]. 
According to this definition, a scheme is a quasi-factor such that the associated projection maps 
the maximal elements of the domain to the maximal elements of the quasi-factor. This definition 
emphasizes the fact that schemes are significant parts of domains. It is more general than the 



original definition of semi-factor which, in turn, is based on properties that schemes of domains 
of flat records should satisfy. We will prove that in a certain class of domains the condition that 
every scheme is a semi-factor implies that the domain is very similar to a domain of flat records. 
Thus, our decomposition results are helpful in understanding the domain-theoretic generalization 
of databases. 

This section contains six short subsections. In the first we recall two well-known results from 
universal algebra. The second demonstrates how domains can be treated as partial algebras with 
operations of infinite arity, and introduces the concepts of ideal and congruence for them, the first 
one being identical to the quasi-factors. In the third subsection we give our basic lemma which 
reduces direct product decompositions of domains to those of principal ideals generated by maximal 
elements. Neutral ideal are studied in the fourth subsection. They give rise to so-called general 
decompositions which have coalesced sum and direct product decompositions as two limit cases. 
The fifth subsection deals with characterizations of direct product and general decompositions via 
congruences. Finally we apply the previous results in order to characterize domains in which two 
notions of scheme coincide. 

From now on all domains are Scott-domains, and we will write domain instead of Scott-domain. 
We will denote the sets of maximal elements of a domain D and of a quasi-factor A by Dm"" 
and Am"", respectively. 

5.1 Algebraic preliminaries 

Given an algebra ( A ,  R) ,  a congruence O on it is an equivalence relation on A such that for any w E 
R of arity n and for any x ; ,  y; E A, i E [ I ,  n], Vi E [ I ,  n] : x;Oyi implies w ( x l , .  . . , x,)Ow(yl , .  . . , y,). 
Congruences considered as binary relations form an algebraic lattice Con((A,  R ) )  in which the bot- 
tom element is the equality and the top element is the total equivalence relation. Then direct product 
decompositions of ( A ,  R)  (i.e. decompositions ( A ,  R)  21 ( A l ,  R) x ( A 2 ,  R ) )  are in one-to-one cone- 
spondence with pairs (01, 0,) such that O2 is a complement of O1 in Con( ( A ,  0 ) )  and 0 1 ,  0 2  are 
permutable, i.e. O1 002 = O2 0 0 1 ,  see [5] .  In fact, ( A 1 ,  R)  - ( A ,  R ) / O 1  and (A2,  R )  11 ( A ,  R ) / 0 2  
or vice versa. 

Let L be a lattice. An element a E L is called neutral if for every x, y E L the sublattice ( x ,  y ,  a )  
generated by x ,  y ,  a is distributive. If L is bounded, then every direct product decomposition 
L II L1 x L2 can be represented as L 21 (a]  x (El ,  where a is a neutral complemented element and 
E is its complement, see [lo]. Both ideals (a]  and (El are neutral elements of the ideal-lattice, i.e. 
so-called neutral ideals. It is also well-known that there is a one-to-one correspondence between 
direct product decompositions L - L1 x L2 and pairs ( I l ,  12) where 11, I2 are neutral ideals and I2 
is a complement of Il in the ideal-lattice. In fact, L1 - Il and L2 II I2 or vice versa. 

5.2 Domains as algebras. Congruences and ideals 

In order to transfer the previous characterizations to domains, we have to introduce algebraic 
structure on domains. Let D be a domain. We consider it as a partial algebra containing the 
operations of infinite arity, namely infima and existing suprema for all possible subsets X D. 
Thus, D becomes a partial algebra whose operations may be of arbitrary arity. It is well-known 
that the previous results about decompositions are not true for algebras with partial operations of 
infinite arity [5 ] .  



A subalgebra of this partial algebra we could call subdomain but in Semantics this notion has 
no generally accepted meaning. In Lattice Theory an ideal is a downward closed set which is 
closed under finite joins. In our algebraic interpretation the ideals are downward closed subsets of 
a domain which are closed under all existing joins, i.e. they are quasi-factors. A congruence is an 
equivalence relation O such that for any xi, yi E D, i E I ,  I an arbitrary set of indices, x i@ yi for all 
i E I implies A { x j  : i E I )OA{yi  : i E I ) ,  and if both x = V { X ;  : i E I )  and y = V { y ;  : i E I )  
exist, then xOy. 

If D is a lattice, our definition of congruence coincides with the definition of complete congru- 
ence of a lattice introduced recently in [ll, 71. These congruences form a complete lattice denoted 
Con(D). However, in contrast to the case of operations of finite arity, this lattice may fail to be 
algebraic. It was proved in [7] that for every complete lattice L there exists a lattice M such that 
L is isomorphic to the lattice of complete congruences of M. Moreover, M can be chosen among 
modular algebraic lattices. Therefore, we cannot guarantee algebraicity of Con(D). See [ll, 71 
for details. 

If x E D, then Ox is the restriction of O to Lx. The lattices of congruences of l x  will be 
denoted by Con(x) if D is understood. 

The one-to-one correspondence between ideals and congruences which is of great importance 
in ring and lattice theory also holds in our setting. In fact, if [ X I @  denotes the equivalence class 
containing x, then [I]@ is a quasi-factor. And, if A is a quasi-factor then OA (as defined in the 
previous section) is the corresponding congruence. 

We will also also need a concept of scheme. It was introduced in 1151 in order to generalize 
the analogous concept of [6] known in this paper as semi-factor. A quasi-factor A D is called 
a scheme if pA(x) is a maximal element of A for every x E Dmax. Any semi-factor is a scheme. 
Although all the factors we will decompose domains into, will be semi-factors, it is enough to 
require that they be schemes. 

5.3 The main lemma 

The following lemma generalizes the result of [lo] which describes direct product decompositions 
of bounded lattices. 

Lemma 15 The directproduct decompositions of a domain D are given by pairs of schemes ( A l ,  A2) 
such that Al n A2 = { I ) ,  and VX E A;Eax, IJ E ATax : x V y exists, x V y E Dmax, and x is a 
neutral element in the principal ideal L(x V y ) .  In fact, D -- Al x A2. Moreover, Al and A2 are 
neutral complemented elements of the lattice QD of quasi-factors. 

5.4 General decompositions of domains 

It is a natural question whether all pairs of neutral complemented elements of the lattice of quasi- 
factors give rise to a direct product decomposition as it is the case for lattices. The answer, as we 
are going to show, is "no". In fact, neutral complemented ideals describe a much more general 
kind of decomposition which, for example, also includes coalesced sum decomposition. 

Definition. A pair of quasi-factors A,, A, of a domain D is called a general decomposition of 
D, which is denoted by D = comp(Al, A2),  if every element x E D has unique representation as 
x = x 1  V x2  such that x1 E Al and x 2  E A2. 



Obviously, if D = comp(Al , A2) then Al n A2 = { I } .  The examples of general decomposition 
are direct product decompositions D CY Al x A2 (we may suppose that Al, A2 are embedded in D) 
and coalesced sum decomposition D = Dl + D2. 

Theorem 16 The general decompositions of a domain D are in one-to-one correspondence to pairs 
of neutral complemented elements of the lattice QD. 

In the other words, if D = comp(Al, A2), then Al and A2 are neutral elements of QD comple- 
menting each other and vice versa. Direct product and coalesced sum decompositions appear now 
as two limit cases of general decompositions. 

Proposition 17 A general decomposition D = comp(Al, A2) is a direct product decomposition 
D z Al x A2 iffVx E A1, y E A2 : x V y exists. 

Proposition 18 A general decomposition D = comp( Al , AS) is a coalesced sum decomposition 
D = Al + A2 iffVx E Al, y E A2,x,y # I : x v y dOes not exist. 

5.5 Characterization via congruences 

In this subsection we show that the characterization of direct product decompositions via congru- 
ences works for domains, although we introduced domains as algebras with partial operations of 
infinite arity. We also show how to describe general decompositions via congruences. 

Theorem 19 Let D be a domain. There is one-to-one correspondence between general decompo- 
sitions D = cornp(Al, A2) and pairs of congruences (01, 0 2 )  such that for every x E Dm"" the 
congruences 0 y  and 0; are permutable, and 0; is a complement of 0: in Con(x). This correspon- 
dence is given by 

( @ 1 , 0 2 )  + (Al ,  A2) : A1 = [ 1 1 0 2 ,  A2 = [ 1 ] @ 1 ,  

(A,, 4)  + ( @ I , % )  : X@;Y iff  PA^ ( x )  = PA,(Y) ,  

i  = l ,2 .  

Theorem 20 The above described mappings (A1, A2) t, ( 0 1 ,  0 2 )  set up one-to-one corre- 
spondence between direct product decompositions D CY Al x A2 and pairs (01, 02) of congruences 
such that and e2 are permutable, and O2 is a complement of Ell in Con(D). 

A simpler result can be stated for qualitative domains. Recall that a domain D is called 
qualitative iff J x  is a Boolean lattice for every x E D [9]. 

Corollary 21 General decompositions of a qualitative domain are given by pairs of congruences 
(el, 0 2 )  such that for every x E Dmax 0; and 0: are complementary elements in Con(x). 



5.6 Schemes and semi-factors in qualitative domains 

In this subsection we show that those qualitative domains in which our two notions of scheme 
coincide (in fact, the above defined schemes and Buneman's schemes [6] known here as semi- 
factors) are very similar to the domains of flat records. Motivation of the two definitions of scheme 
was given in [15]. Database motivation for the definition of semi-factor makes use of the assumption 
that every element of a domain, which is a database object, can be represented as two subobjects, 
each carrying independent piece of information, while the motivation of the definition of scheme 
appeals only to our intuition about what a "significant part of a domain should be". We give a 
precise mathematical formulation of these informal reasonings. 

Let D be a domain. It is called simple if it has no proper scheme, i.e. if it has no scheme 
but {I) and itself. Since schemes appear as equivalence classes of congruences, this definition is 
motivated by the definition of simple lattices, i.e. lattices having no nontrivial congruences [5, 101. 

Every semi-factor is a scheme; the converse does not hold in general. The next theorem gives a 
characterization of those qualitative domains in which every scheme is a semi-factor, i.e. in which 
the two notions of scheme ( [6] and [15]) coincide. 

Theorem 22 Let D be a qualitative domain. Then every scheme in D is a semi-factor ifand only 
if D is isomorphic to a direct product of simple domains. 

Corollary 23 Let D be a qualitative domain in which every scheme is a semi-factor. Then SD is 
an atomistic Boolean lattice and the schemes of D are in 1-1 correspondence with subsets of the set 
of atoms of SD. 

This corollary gives a mathematical description of the assumption that every database object 
represented as an element of a domain can be decomposed into two "independent" subobjects, 
namely to its projection onto a scheme and its complement in SD. 

The proof of the above theorem is based on the decomposition theory developed in this section 
and algebraicity of SD for dI-domains proved in Section 3. 
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