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Summary

The elastic stiffness or compliance is a fourth-order tensor that can be expressed in terms of
two second-order symmetric tensors A and B and a fourth-order completely symmetric and
traceless tensor Z (or z). It is shown that the parts associated with A, B and Z (or z) are all
structurally invariant under a three-dimensional transformation. Thus a linear combination
of the three parts gives a general expression for three-dimensional structural invariants. All
three-dimensional structural invariants available in the literature are shown to be special cases
of this general expression. Invariants that are inherited by each structural invariant are presented.

1. Introduction

In a fixed rectangular coordinate system x; (i = 1, 2, 3), the stress—strain relation for an anisotropic
linear elastic material can be written as

oij = Cijkséks, (1.1a)
Cijks = Cjiks = Cksij = Cijsks (1.1b)

where oij and &jj are the stress and strain and Cijks is the elastic stiffness. The Cjjs is positive
definite and possesses the full symmetry shown in (1.1b). The third equality in (1.1b) is redundant
because the first two imply the third (1, p. 32). Introducing the contracted notation (1 to 3),

01 =011, 02 =022, 03 =033, 04 = 023, 05 =031, 06 = 012,
(1.2)
£1 = €11, €2 = €22, €3 = £33, &4 = 2623, &5 = 2631, &p = 2612,
equations (1.1a,b) can be written as

oo = Cupep, Cup=Cgpq (1.3)
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324 T.C. T.TING AND Q.-C. HE

or, in matrix notation,
6=Cs C=C. (1.4)

In the above, the superscript T stands for the transpose and C is a 6 x 6 matrix

[C11 Ci2 Ci3 Cuu Cis Cis
Cx Cyz Cy Cypz Cype
Csz3 Csz Cg5 Cg

C= . 1.5
Cas Cy5  Cye (15)

Css  Csg

Ces

Only the upper triangle of the matrix is shown because C is symmetric. It has twenty-one independ-
ent elastic constants. The transformation between Cjjxs and C,z is accomplished by replacing the
subscripts ij (or ks) by a (or ) using the following rules.

ij(orks) <« a(orp)

11 “ 1

22 “ 2
33 © 3 (1.6)

230r32 4

3lorl3 5

120r21 < 6

In a new coordinate system x* that is related to x; by
X = QjjXj, (1.7)
where Qjj is the rotation tensor satisfying the orthogonality relation

QikQjk = dij = Qsi Qsj, (1.8)
with d;j being the Kronecker delta, the elastic stiffness Cj,; referred to the X" coordinate system is
Ci]fks = Qinijkr Qsthqrt- (1-9)

In the contracted notation C;; y is in general different from the C,4 shown in (1.5) except for isotropic
materials.

Consider now the possibility of an anisotropic elastic material for which a uniform pressure
produces a uniform contraction. This means that if

[
oij = —Pdij,  &ij = =7, (1.10)
where p and v are the pressure and the volume change, respectively, we must have, from (1.1a) (4),

Cijkk = 3xdij, (1.11)
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DECOMPOSITION OF ELASTICITY TENSORS 325

where k = p/o is the bulk modulus. Equation (1.11) provides the condition on the elastic stiff-
ness of the material for a uniform pressure to produce a uniform contraction. Using the contracted
notation, (1.11) can be written in full as

Cor + Cup +Caz =3k for a =1,2,3, (1.12a)
Cy1 +Cuz +Cyz =0 for a =4,5,6. (1.12b)
The elastic stiffness matrix C that satisfies (1.12) has the structure
[3x — C12 — Cu3 Cr2 Cis —C—Cs  Cgs Cis |
3k — C12 — Co3 Ca3 Ca  —Ci5—C3s  Cy
co 3k —C13—Co3  Cas Css  —Ci16—Co .
Caa Cas Cas
Css Cse
L Ces

(1.13)

There are sixteen independent elastic constants. In a new coordinate system x;* we obtain from (1.9),
(1.11) and (1.8),

Ci*j kk = 3}(5”' . (114)

This is identical to (1.11) so that (1.12), and hence (1.13), applies to C;ﬂ. Thus even though C;‘ﬂ is
different from C,g, the structure of C;ﬂ is identical to the C,z shown in (1.13). Hence the elastic
stiffness C shown in (1.13) is structurally invariant under a three-dimensional transformation. It is
seen from (1.11) and (1.14) that « is an invariant.

There are several three-dimensional structural invariants available in the literature (4 to 6). Like
the example shown above, they were all motivated by a physical consideration. In contrast, pure
mathematical interests motivated the two-dimensional structural invariants presented by Ting (7)
and Ahmad (8), though the results find some useful physical applications. It is not feasible to extend
the mathematical approach employed in (7, 8) for two-dimensional structural invariants to the three-
dimensional cases because the algebra would be too complex. The purpose of this paper is to show
a different approach that provides a general expression for three-dimensional structural invariants.

2. Decomposition of Cjjks and a general three-dimensional structural invariant

Backus (9) and Spencer (10) independently showed that the elastic stiffness Cijks can be uniquely
decomposed as

Cijks = adijdks + b(Jikdjs + disdik) + dij Aks + Ajjdis
+ ikBis + Bikdjs + disBik + Bisdik + Zijks, (2.1)

where a and b are scalars, A and B are second-order symmetric traceless tensors and Z is a fourth-
order totally symmetric traceless tensor that satisfies

Ziiks = Zjiks = Zksj = Zijsk»  Zijks = Zikjs,  Zijkk = 0. (2.2)
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326 T.C. T. TING AND Q.-C. HE

Setting
. a n b
Aj = Aj + 50 Bj = Bj + - dij, (2.3)
(2.1) can be written as
Cijks = Cijks(A) + Cijks(B) + Zijks, (2.4)

where
Cijks(A) = dij Aks + Ajjdks, 25)
Cijks(B) = 6ikBjs + Bikdjs + disBjk + Bisdjk. '

The second-order tensors A and B are symmetric but no longer traceless. Substitution of (2.1) into
(1.9) yields

Cijks = Cilks(A”) + Cijks(B") + Zijis; (2.6)

where
A*=QAQT, B'=QBQ', 2.7)
Zis = QipQigQur Qs Zpgrt. 2.8)

It is clear that Cjjks(A) and Cijks(B) are structurally invariant. In fact Zjs is also structurally in-
variant because the decomposition (2.1) applies to any coordinate system so that Zi”Jka also enjoys
the totally symmetric traceless property (2.2). In conclusion, the Cijks shown in (2.4) is structurally
invariant in terms of A, B and Z.

In the contracted notation we write (2.4) as

Cop = Cup(A) +Cup(B) + Zyp, (2.9)
where
[2A11 At + A2 A+ Az Ax A A
2”2 A+ Az Axs Az A
CA) = 2As3 Az Az A ’ (2.10)
0 0 0
0
L 0 J
[4B1; O 0 0 2By3 2By ]
4Bo) 0 2By3 0 2B12
C(B) = 4B33 2By 2Bi3 0 ’ 2.11)
B22 + Bss B12 Bis
B33 + Bu1 B2s
L B11 + By |
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DECOMPOSITION OF ELASTICITY TENSORS 327

[—2>— 23 z3 Y2 224 —28—25 Z9—25 ]|
-3—7 ¥4 77— 24 275 —29 — Zs
-21—2 —Z1—24 23— 274
zZ= L (212
V4] 27 275
V) 274
L z3 i

The C(A) and C(B) are obtained from (2.5) by applying the contracted notation. As to Z,g, the
first set of three equalities in (2.2) suggests that Z,s is symmetric. The second equation in (2.2)
implies that

Zyy =223, Zss = 213, Zee = Z12, Zas = Z3s, Zae = Zos, Zsg = Z14. (2.13)
The last equation in (2.2) means that
Zon+ Zyp+2Zy3=0 fora=1,2,...,6. (2.14)

It is then readily shown that (2.13) and (2.14) lead to the Z,4 shown in (2.12). Equation (2.12),

including the z-notation, was first obtained by Cowin (11).

The tensors A and B in C,4(A) and C,z(B) have six independent constants each. There are nine
independent constants zx(k = 1, 2, ..., 9) for Z,4. Thus the total number of independent constants
in (2.9) is twenty-one, as with the Cz in (1.5). Since C(A), C(B) and Z are structurally invariant,
(2.9) to (2.12) apply to C*, C(A*), C(B*) and Z*.

To obtain A, B and Z in terms of C,4, we introduce the tensors

Uij = Ciji»  Vik = Cijy.- (2.15)
It is readily shown from (2.4) that

U= ({trA)l +3A+4B, V = (irB)l +2A +5B. (2.16)
Taking the trace on both sides of the equations in (2.16) yields

trA = (2rU—trVv)/10, trB = (3trV —trU)/20. (2.17)
Equation (2.16) now provides the solution
A =1(U-4V)+ 511tV —12trU)l,
(2.18)
B= %(SV —-2U) + ﬁ(lltru —13trV)l.

The tensor Zijks is computed from (2.4). It can be shown that this is equivalent to the solution first
obtained by Cowin (11); see also (12).
There are two linear invariants for the elastic stiffness Cijks (13 to 15). They are

Ciikk = C11 + C22 + Ca3 + 2(C12 + Co3 + C31) = 6(tr A) + 4(tr B), (2.19a)

Cijij = C11 4+ C22 + C33 + 2(Cusg + Css5 + Cgp) = 2(ir A) + 8(tr B). (2.19b)
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328 T.C. T. TING AND Q.-C. HE

The second equalities are obtained by inserting C,4 from (2.9). Since (tr A) and (tr B) are invariants,
(2.19) provides an alternative proof that Cjjx and Cjjjj are invariants. It should be noted that Z,g
does not appear in (2.19).

3. Elastic stiffnesses C,,4 that are structurally invariant

There are anisotropic elastic materials that behave like isotropic elastic materials for a certain
physical property. The uniform contraction under a uniform pressure discussed in section 1 is an ex-
ample. Constant Young’s modulus or constant shear modulus is another example. All these isotropic-
like behaviours seem to demand that the elastic stiffness or compliance be structurally invariant. In
this section we specialize (2.9) to (2.12) to obtain the elastic stiffness that has isotropic-like behav-
iour for a certain physical property. It should be emphasized that (2.9) to (2.12) apply not only to
the x;-coordinate system, but to any rotated coordinate system x;*.

Case C1. Consgtant Cq1

In an isotropic elastic material, a longitudinal wave can propagate in any direction with the wave
speed /C11/p, where p is the mass density. Can a longitudinal wave propagate in any direction in
an anisotropic elastic material? If it can, the elastic stiffness Cj; referred to any coordinate system
must be identical to Cq3. This means that CJ; must be an invariant. This problem was investigated
by Ting (6) who showed that a longitudinal wave with wave speed ./C11/p can propagate in any
direction if the elastic stiffness has the structure

[C11 Ci11 —2Cs Ci11—2Cs5 —2Csp 0 0 7
Cu C11 —2Cyq 0 —2Cy 0
Cu 0 0 —2Cy5
C= . (3.1)
Cas Cus Cus
Css Cse
| Ces |

We will deduce (3.1) from (2.9) to (2.12). First, the C;; obtained from (2.9) to (2.12) is

Since z5 and z3 depend on nine zx(k = 1,2, ..., 9) and (A}, + 2Bj,) depend on (A + 2B) that has
six independent components, C7; depends on 15, not 21, independent constants. Explicit expression
of the 15 independent constants in terms of C, is given in (6, (3.6)). Next, if Cj; is an invariant,
independent of the choice of coordinate system, it is necessary that Cj; = C5, = C3;. From (2.9)
to (2.12) we must have

A+2B=3yl, Z=0, (3.3)
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where y is an invariant. Equation (2.9) now has the expression

329

[y 7 —2(Bur+Bg2) y —2(Bii+Bss) —2Bps 0 0
V4 y — 2(Ba2 + Bs3) 0 —2B13 0
y 0 0 —2B1,
C= (3.4)
B2 + Bss B2 Bis
B33z + Bu1 Bo3
L B11 + Bo2 |

It is easily seen that (3.4) and (3.1) are equivalent. Since (3.4) is structurally invariant, so is (3.1).
From (3.4) we have

C12 +Co3+C31 =3y —4(trB), Cas + Cs5 + Cps = 2(tr B). (3.5)

They are invariants as reported in (6) using a different derivation.
There are seven independent elastic constants in (3.1) and (3.4). Comparison between (3.1) and
(3.4) shows that

Cas —Cy5 —Cy
(trB)l =B = Cs5 —Cs6| =M, say. (3.6)
Ces

Since B is a second-order symmetric tensor, so is M. If we choose the coordinate axes x* along
the eigenvectors of M, the off-diagonal elements of M can be made to vanish. Thus the number
of independent constants can be reduced to four. With C45 = Css = Cs6 = 0, it is easily seen
that the material represented by (3.1) is orthotropic if Cy4, Cs5, Cgg are distinct, hexagonal if two
of the Cy4, Css, Cgg are identical, and isotropic if C44 = Cs5 = Cgg. This recovers the results ob-
tained in (6).

It should be noted that, using a different approach, Rychlewski (16) also studied anisotropic
elastic mateirals for which a longitudinal wave can propagate in any direction.

Case C2. Constant Cgg

Related to the longitudinal wave is the question of whether there are anisotropic elastic materials
for which a transverse wave with wave speed /Cgg/p can propagate in any direction. This means
that the elastic stiffness Cgg is an invariant, independent of the choice of the coordinate system.
This problem was also investigated by Ting (6) who showed that a transverse wave with wave speed
/Css/p could propagate in any direction if the elastic stiffness has the structure

[C11 3(C11+C2) —2Cg6 5(Ci1+Cas) —2Ces Cis Cis Cis |
C22 3(Co2+Ca3) —2Ces C1sa Ci5 Cus
o Css Cu Ci5 Cis a7)
Ces O 0
Ces O
Cee
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330 T.C. T. TING AND Q.-C. HE

From (2.9) to (2.12),
Ces = B11 + By + 7. (3.8)

Since z; depends on nine z«(k = 1, 2, ..., 9), and Bj;, B, depend on six independent components
of B, Cg;; depends on 15, not 21, independent constants. Explicit expression of the 15 independent
constants in terms of C,y is given in (6, (4.2)). Next, if Cgg is an invariant, it is necessary that
Cjs = Cg5 = Cgg. From (2.9) to (2.12) we must have

B=3yl, Z=0, (3.9)
where y is an invariant. Equation (2.9) then gives

[2(y + A11) A+ Ax Aun+As A Az Ap
200 + An) An+ Az Az Az Ap
2(y + Asz) Az Az Ap

C= . 3.10
.0 0 (3.10)

y 0

Y

Itis easily seen that (3.7) and (3.10) are equivalent. Since (3.10) is structurally invariant, so is (3.7).
From (3.10) we obtain the invariants (6)

Ci1 4+ Coo + Caz = 6y +2(trA), Cip + Cos + Ca1 = 2(tr A). (3.11)

There are seven independent elastic constants in (3.7) and (3.10). Comparison between (3.7) and
(3.10) shows that

Cui1 2Ci 2Cys

2(y1 +A) = Coz 2Cu| =M, say. (3.12)
Css3

Since A is a second-order symmetric tensor, so is M. If we choose the coordinate axes x;* along
the eigenvectors of M, the off-diagonal elements of M can be made to vanish. Thus the number
of independent constants can be reduced to four. With C14 = Ci5 = Ci5 = 0, it is easily seen
that the material represented by (3.7) is orthotropic if C11, Cop, Ca3 are distinct, hexagonal if two of
the C11, Cy2, Cs3 are identical, and isotropic if C1; = Cy2 = Css. This recovers the results obtained
in (6).

Again, Rychlewski (16) studied the same problem using a different derivation.

Case C3. Uniform contraction due to uniform pressure

The elastic stiffness shown in (1.13) can be deduced from (2.9) to (2.12). The condition (1.12)
demands that

3A+4B =1, (3.13)
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where y is an invariant. Equation (2.9) then becomes

(v — A1 An+Axn A+ Ags A3 —%Ala —%Alz 1
?— A AxptAsg —%Azs A13 —%Alz
7 — Ag3 —%Azs —% A13 A12
C=z+ 1,3 3 3
57 — 7(A2 + Ag3) —7A12 —z1M13
%y - %(A33 + A11) —%Azs
L 37 - %(An + A2)d
(3.14)

There are sixteen independent constants, six from A, nine from Z and one from y . Thus the number
of independent constants for the C shown in (3.14) and (1.13) is the same. Moreover, (3.14) satisfies
the conditions listed in (1.12). Hence, (3.14) and (1.13) are equivalent. Since (3.14) is structurally
invariant, so is (1.13).

It should be noted that the three equations in (1.12a) are invariants while the three equations in
(1.12b) are structural invariants. Addition of the three equations in (1.12a) leads to the invariant in
(2.19a). Thus the invariant in (2.19a) breaks up into three invariants shown in (1.12a).

4. Decomposition of Sjks and a general three-dimensional structural invariant

The stress—strain relation can be written in terms of the elastic compliance Sjks as

&jj = SjksOks: (4.1a)
Sijks = Sjiks = Sksij = Sjsk- (4.1b)

In the contracted notation we have
€o = Sup0p, Sup = Spa- (4.2)

Being a fourth-order tensor like Cijks, Sjks can also be uniquely decomposed in terms of A, B and
Z shown in (2.1). All equations presented in section 2 for Cjjks apply to Sjks except those equa-
tions that are expressed in terms of the contracted notation C,. This is so because the conversions
between Cijks and C,p, and between Sjks and s,z, are different. While (1.2) and (1.6) remain
valid, s,s = Sjks When both o and § are less than 4, s, = 2Sjs if either « or £ is less than 4,
and s,5 = 4Sjks when both o and £ are larger than 3. Because of this difference, we denote the
contracted notation of Sjjks by S,4, not §,5. The 6x6 symmetric matrix s,z is

[s11 si2 s13 sS4 S5 Si6
2 3 4 5 K6

B3 B4 SB5 SBe

S= . (4.3)
SM4 S5 M6
S5 S56

$66 |

Equations (2.9) to (2.12) are replaced by
Sup = Sup(A) + Sup(B) + Zop, (4.4)
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where
[2A11 An+An A+ Az 2A3 2A13 2A17]
2A2 A2+ Az 2A3 2A13 2A1
2A33 2A23 2A13 2A1
S(A) = 0 K (4.5)
0
0
[4B11 0 0 0 4Bs3 4Bs1o 1
4By 0 4By3 0 4B12
4Bgs3 4By3 4Bs13 0
s(B) = 4(B22 + Bsg) 4By, 4B13 ’ (4.6)
4(Bgz3 + Bu1) 4B23
4(B11 + Bpo)
(-2 — 23 z3 2 4z4 ~2(z8+725) 2(z9 —25) |
—23—271 7 2(z1 — z4) 4z5 —2(z9 + 25)
-21—2 —2Z71+z) 2(z8— z5) 4z5
z= 4z, 82 825 . @4
4z 824
4z3

They are structurally invariant, and hence can be applied to any coordinate system. It should be
noted that the matrix z in (4.7) is different from the matrix Z in (2.12).
The two invariants in (2.19) are replaced by

Sikk = S11 + S22 + S33 + 2(S12 + S23 + S81) = 6(trA) + 4(tr B), (4.83)
Sjij = St1 + S22 + S33 + 2 (S + S5 + Se6) = 2(trA) + 8(trB). (4.8b)

Again, z,4 does not appear in (4.8).

5. Elastic compliances s, that are structurally invariant

We now employ (4.4) to (4.7) to obtain the elastic compliance of materials that have isotropic-like
behaviour for a certain physical property.
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DECOMPOSITION OF ELASTICITY TENSORS 333

Casesl. Constant Young's modulus E;

Young’s modulus E; for uniaxial tension along the x;-axis is 1/s11. Young’s modulus Ej along
the x;-axis is 1/sj;. Can s{; be an invariant independent of the choice of coordinate system? This
problem is mathematically similar to case C1 studied in section 3 where CJ, is an invariant. He (17)
and Ting (5) have independently studied this problem. Ting (5) showed that s;; is an invariant if the
elastic compliance has the structure

[S11 St — 36 S11— 385 —S6 0 0 ]
S11 si—354 0 —s¢ O

S11 0 0 —$45
S= (5.2)

S44 S5 S46

S55 S56

S66

As in case C1, we can deduce (5.1) from (4.4) to (4.7).
The sy, obtained from (4.4) to (4.7) is

si1 = 2(A11 +2Bj) — (% + %) (5.2)

Hence sy; depends on 15, not 21, independent constants. Explicit expression of the 15 independent
constants in terms of s, is given in (5, (2.6b)). If s, is an invariant, it is necessary that sj; = s, =
S34. From (4.4) to (4.7) we must have

A+2B=3yl, z=0, (5.3)

where y is an invariant. Equation (4.4) now has the expression

[7 7 —2(Bur+ Bz) y —2(Bur + Bgg)  —4Bp3 0 0
g 7 — 2(B22 + Bga) 0 —4Bi3 0
y 0 0 —4B1)
. 4(B22 + Bs3) 4By, 4By3
4(Bsz + Bu1) 4By
L 4(B11 + B2) |

(5.4)

It is easily seen that (5.1) and (5.4) are equivalent. Since (5.4) is structurally invariant, so is (5.1).

From (5.4) we obtain the invariants

S12 + 3 + 31 = 3y —4(irB),

as reported in (6) using a different derivation.

S44 + S5 + Se6 = 8(tr B),

(5.5)
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334 T.C. T. TING AND Q.-C. HE

There are seven independent elastic constants in (5.1) and (5.4). Comparison between (5.1) and
(5.4) shows that

SM4 =S5 —S46
4[(trB)I — B] = S5 —Ss6| =N, say. (5.6)
S66

Since B is a second-order symmetric tensor, so is N. If we choose the coordinate axes x;* along
the eigenvectors of N, the off-diagonal elements of N can be made to vanish. Thus the number
of independent constants can be reduced to four. With s45 = s456 = Ss6 = 0, it is easily seen
that the material represented by (5.1) is orthotropic if su4, Ss5, See are distinct, hexagonal if two of
the s44, S5, See are identical, and isotropic if s44 = S5 = Sgg. This recovers the results obtained in
(6, 17).

Case s2. Constant shear modulus G2

An analogue to constant Young’s modulus is the question of constant shear modulus in an aniso-
tropic elastic material. The question of whether there are anisotropic elastic materials for which the
shear modulus G3, = 1/s5 is an invariant was studied independently by He (16) and Ting (5). Ting
(5) showed that sgg is an invariant if

[s11 %(511 + S22 — Se6) %(811 + 33 —S6) S14 S15 Si6 |

S22 $(s2+ %3 —S6) Si4 S5 Sie

S83 S14  S15  Si6
5= o 0 o0 (5.7)

Ss6 0
S66
From (4.4) to (4.7),

S = 4(B{1 + B)y) +4z3. (5.8)

Hence sg; depends on 15, not 21, independent constants. Explicit expression of the 15 independent
constants in terms of s,z is given in (5, (2.7b)). Next, if s5; is an invariant, it is necessary that
Sy = Si5 = S5g- From (4.4) to (4.7) we must have

B=3%yl, z=0, (5.9)
where y is an invariant. Equation (4.4) then gives
(37 +2A11 A+ An A+ Az 2A3 2Aiz 2A1]
%V +2A2 A+ Az 2R3 2A13 2Ap

5= %V +2A33 2A3 2A13 2A12 | - (5.10)
Y 0 0
Y 0
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It is easily seen that (5.7) and (5.10) are equivalent. Since (5.10) is structurally invariant, so is (5.7).
From (5.10) we have the invariants (5)

S+ S22 +Sm =3y +2(rA),  Si2+ 3+ S = 2(tr A). (5.11)

There are seven independent elastic constants in (5.7) and (5.10). Comparison between (5.7) and
(5.10) shows that

S11 S16 S15

Fy1+2A = S22 S| =N, say. (5.12)
$33

Since A is a second-order symmetric tensor, so is N. If we choose the coordinate axes x* along
the eigenvectors of N, the off-diagonal elements of N can be made to vanish. Thus the number of
independent constants can be reduced to four. With s;4 = s15 = $15 = 0, it is easily seen that
the material represented by (5.7) is orthotropic if s11, S22, S33 are distinct, hexagonal if two of the
S11, S22, S33 are identical, and isotropic if s;1 = Sp» = sz3. This recovers the results obtained in (5).

Case s3. Constant area modulus

Intermediate between Young’s modulus and bulk modulus is the area modulus #(n) introduced by
Scott (18). It is the ratio of an equibiaxial stress to the area change in the plane with the unit normal
n in which the stress acts. Thus
1

—— = Sijks(dij — NiNj)(dks — NkNs). 5.13

’7(”) Sjks( ij i J)( ks k s) ( )
He (16) has shown that there are anisotropic elastic materials for which #(n) is an invariant, inde-
pendent of n. We will deduce from (4.4) to (4.7) that this is indeed the case.

When n is along the xsz-axis, (5.13) simplifies to

1
—— =s11 + 2 + 2512 514
n(n) (549
If nis along the x3-axis we have
1 * & * * * * * * *
gy ~ St 2sp, = 4[(A11 + Bi1) + (A + Bp)l = (21 + 2), (5.15)

where the second equality follows from (4.4) to (4.7). Since (Ai*j + Bi*j) depends on six components
of (A + B) and z; depends on nine z, #(n) depends on 15 independent constants. In order that »(n)
be independent of n, it is necessary that

S11 + 92 + 2512 = 2 + S33 + 283 = S11 + S33 + 28513 = 7, (5.16)
where y is an invariant. From (4.4) to (4.7), (5.16) holds if

A+B=3yl, z=0. (5.17)
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Equation (4.4) then yields

(37 +2Bu 47 —(Bu+Bn) 77 —(Bu+Bw)  —2By 2B13 2B12
37 +2Bp 37 — (B2 + Bg) 2By3 —2By3 2B1
s—= %y + 2833 2523 2513 -2 BlZ
4(Bgz + Bg3) 4By 4By3
4(Bg3 + Bi1) 4By3
L 4(B11 + Bpp) |
(5.18)
or
En %(V —S11 — $2) %(V —S11 — $33) —%Sse %546 %545 1
2 3 — 52— %53) $s56 —3s6 $s45
. S33 3556 346 —3s5
2(sp2 +s33) — 7 S5 S46
2(s33+s11) — 7 S56
L 2(s11 +92) — 7 |
(5.19)
It has seven independent elastic constants. Equation (5.19) is structurally invariant because
(5.18) is.
There are three invariants shown in (5.16). Additional invariants obtained from (5.18) are
S+ S22 +Ss3 = 3y +2(r B),
S12+ S5 + a1 = 3y — 2(irB),
S44 + S5 + Se6 = 8(trB),
(5.20)
Suq + 423 = S5 + 431 = Se6 + 4812 = 7,
S11— 253 = S — 2831 = Sg3 — 2512 = — 57 + 2(tr B),
2511 + Sa4 = 250 + S5 = 2533 + Se6 = 37 + 4(trB).
Of course, not all of them are independent of each other.
Comparison between (5.18) and (5.19) suggests that
4(Bp2 + Bs3) —4B12 —4Bi3
4[(trB)l —B] = 4(Bgs + Bi1) —4By3
4(B11 + Bp2)
S44 —S45 —S46
= S5 —S6| =N, say. (5.21)

S66

Since B is a second-order symmetric tensor, so is N. If we choose the coordinate axes x* along
the eigenvectors of N, the off-diagonal elements of N can be made to vanish. Thus the number of
independent constants can be reduced to four. With 55 = 45 = 56 = 0, it is easily seen that
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the material represented by (5.19) is orthotropic if su4, S55, Ss6 are distinct, hexagonal if two of the
Su4, S55, Sg6 are identical, and isotropic if s34 = S55 = Sse. This recovers the results obtained in (17).

Case s4. Constant traction-associated bulk modulus

When the material is under a uniaxial stress ¢ in the direction of a unit vector n, the volume change
&ii 1S

&ii = SiksNkNso. (5.22)
He (17) defined the traction-associated bulk modulus % (n) as

1 &ii
= — =5 . 5.23
) . SiksNkNs ( )

Written in full using the contracted notation we have
[#(M]™" =t + t2n3 + tan3 + 2(taN2N3 + tsN3N1 + teN1Ny), (5.24)

where

th=S1+S2+s3 (@=12,...,6). (5.25)
Thus x(n) depends on the six constants ti, t2,...,ts. It is independent of n if t; = t; = t3 and
t4 = t5 = tg = 0, which means that

S1tSetss=r&"" fora=123, (5.26a)
Sl +S2+S3=0 fora=4,5,6, (5.26b)

where & is an invariant. The elastic compliance that satisfies (5.26) has the structure

(8=t — 515 — 513 S12 S13 —Sp4 — S34 S15 ST
R71— s — 53 3 S4 —S15 — S35 6

71— s13— 53 S34 S35 —S16 — S36
5= S44 S5 46
S55 S56
S66

(5_.27)

It has sixteen independent elastic constants.
Equation (5.27) can be deduced from (4.4) to (4.7). When n is in the x;-direction (5.24) gives

[R(M]™t =t = s+ s + 531 (5.28)

or, using (4.4) to (4.7),
[(M]™! = 3A11 + 4By +trA. (5.29)
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Similar expression can be obtained when n is in the x»- or the xs-direction. If x(n) is independent
of n, we must have

3A+4B =y, (5.30)
where y is an invariant. Thus the s obtained from (4.4) to (4.7) is
[7 = A11 Aar + Ao Agr + Ass 2A23 —A13 —A12
y — Az A+ Ags —Az3 2A13 —A
y — As3 —Az3 —A13 2A12
S=t 2 ~3(Ag2 + Az —3Ax ~3As
2y —3(Azz + A11) —3A23
2y —3(A11 + A22)

(5.31)

There are sixteen independent constants, six from A, nine from z and one from y. It is easily
shown that (5.26) is satisfied so that (5.31) and (5.27) are equivalent. Moreover, (5.27) is structurally
invariant because (5.31) is.

The two invariants given in (4.8a,b) apply here. However, invariant (4.8a) breaks up into three
invariants given in (5.26a).

It is interesting to note that (1.13) and (5.27) are similar; so are (3.14) and (5.31). The problem
of uniform pressure leading to uniform contraction discussed in section 1 can be expressed in terms
of the elastic compliance. If we insert (1.10) into (4.1a) we have

Sikk = (3x) 714, (5.32)

where k = p/ov. This is (5.26) if we let 3x = . Thus anisotropic elastic materials for which a
uniform pressure leads to a uniform contraction also have the property that the traction-associated
bulk modulus is independent of the choice of coordinate system, and vice versa. Since (1.13) and
(5.27) apply to the same physical problem of a uniform contraction under a uniform pressure, the
matrix C in (1.13) and the matrix sin (5.27) must be the inverse of each other.

6. General structural invariantswhenZ =0or z=0

The elastic stiffness C for a constant C11 (or Cgg) presented in (3.4) (or (3.10)) is obtained from
(2.9) by setting Z = 0 and imposing a relation between A and B. A general stiffness matrix C with
Z = 0but with A and B being arbitrary is

[2(A11 +2B11)  Aur+ A A11 + Ass Ax3 A13+2B13 Az + 2By
2(A2 +2Bp)  Ap+ Az Az +2By3 A3 A12 +2B12
2(Ag3 +2Bg3) Az +2Byz A1z +2By3 A2
C= B2 + Bg3 Bi2 Bis ’
B3z + Bn1 B23
Bi1 + B2

(6.1)
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or
[C11 3(C11+Cp) —2Ces  3(Cry + Cag) — 2Css Cia Cos5 +2Cs5  Cap + 2C4s |
Co 3(Cp2 +C33) —2Cas  Ci4 + 2Csg Cos Csp +2Cy5

c_ Css C1a +2Cs6  Cps + 2Cy6 Css
Cuy Css Cus
Css Cse
Ces

(6.2)

The Cin (6.2) is structurally invariant because (6.1) is. It has the property that
C11 +Co2 + Cg3, Cip2 + Co3 + Ca1 and Cug + Css + Ces

are invariants. The C in (3.1) and (3.7) are special cases of (6.2). In reducing (3.1) or (3.7) from
(6.2) it is not sufficient to simply set C11 = Cy = Caz or C44 = Cs5 = Cgg. The reason is that
(6.2) with C11 = Cyp = Cgz or Cqq4 = Cs5 = Cgg is not structurally invariant so that C11 or Cegg
changes its value when referred to a rotated coordinate system.
Similarly, a general compliance matrix swith z = 0 but with A and B being arbitrary is
[2(A11 +2B11) A1+ A A11 + Ag3 2A23 2(A13 +2B13) 2(A12 + 2By2) |
2(A2 +2B2p)  Ag2+ Agz  2(Ag3 + 2Bps) 2M13 2(A12 + 2B12)
2(A33 +2Bz3) 2(Ag3 + 2Bp3) 2(Ag3 +2By3) 2A12

4(B22 + Bg3) 4By 4Bi3
4(Bg3 + B11) 4Bp3
4(B11 + Bp2)
_ 6.3)
or
(s11 3(S11+ S22 — Se6) 3 (S11+ Se3 — Ss5) S14 S5+ 46 S36 + Su5 |
S22 Moo +ss—su) Su+S6 S5 S+ s
$33 S14 +S56 S5 + 46 S36
= Su4 S5 S5 | ©4)
S55 S56
S66

Again, (6.4) is structurally invariant because (6.3) is. It has the property that

S11+ 2+ %3, S12 + 3+ Ss1 and Sus + Ss5 + Se6

are invariants. The sin (5.1) and (5.7) are special cases of (6.4). Although not obvious by inspection,
it can be shown that (5.19) is also a special case of (6.4). As before, it is not sufficient to recover
(5.1) or (5.7) by simply setting ;1 = S2 = S33 OF Sy4 = S55 = Sg6-
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7. Concluding remarks

The decomposition of the elasticity tensor presented by Backus (9) and Spencer (10) is rewritten
in the form (2.9) to (2.12) for the elastic stiffness C,z and in the form (4.4) to (4.7) for the elastic
compliance s,. It is shown that, in these forms, they are structurally invariant in three dimensions.
There are anisotropic elastic materials that behave like isotropic materials for a certain physical
property such as Young’s modulus, shear modulus, area modulus or traction-associated modulus.
For these isotropic-like materials the physical property concerned is an invariant, independent of
the choice of the coordinate system. Several such isotropic-like materials have been found in the
literature (5to 7, 17), and the elastic stiffness or compliance was proved to be structurally invariant.
We show here that all of them can be deduced from (2.9) to (2.12) or (4.4) to (4.7) with very little
effort. Moreover, invariants inherited by the structural invariants are easily obtained. In most cases
it is easily identified if the material deduced belongs to certain symmetry groups.

While the structural invariance of the elastic stiffness or compliance is a sufficient condition for
a certain physical property to be independent of the choice of coordinate system, it might not be a
necessary condition. For instance, the elastic stiffness C given in (3.7) is structurally invariant for
which a transverse wave can propagate in any direction with the same wave speed. It is shown in
(20, 22) that there are other anisotropic elastic materials for which a transverse wave can propagate
in any direction with the same wave speed but the elastic stiffness C is not structurally invariant.
For the elastic stiffness C given in (3.1) for which a longitudinal wave can propagate in any direc-
tion with the wave speed /Ci1/p, the structural invariance of C is a necessary and sufficient
condition (21).

The three-dimensional structural invariants discussed here are all linear. There are nonlinear two-
dimensional structural invariants. For instance, for a two-dimensional deformation in which the
displacement u; and the stress ojj depend on x; and x, only, there are anisotropic elastic materials
for which the inplane stresses a11, 022 and o12 can be non-zero when the inplane displacements
uz and uy vanish. For these materials the relations (19)

C15C44 = Cy6Cs5, (Cag + Cs6)Cys = 2C46Cys,

(7.1)
C24Cs5 = C56Cas4, (Co5 + Cs6)Cs5 = 2C56Cys

hold and are structurally invariants under the rotation of the coordinate system about the xs-axis. It
remains to be seen if there are three-dimensional structural invariants that are nonlinear and, if they
exist, what they mean physically.
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