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Summary

The elastic stiffness or compliance is a fourth-order tensor that can be expressed in terms of
two second-order symmetric tensors A and B and a fourth-order completely symmetric and
traceless tensor Z (or z). It is shown that the parts associated with A, B and Z (or z) are all
structurally invariant under a three-dimensional transformation. Thus a linear combination
of the three parts gives a general expression for three-dimensional structural invariants. All
three-dimensional structural invariants available in the literature are shown to be special cases
of this general expression. Invariants that are inherited by each structural invariant are presented.

1. Introduction

In a fixed rectangular coordinate system xi (i = 1, 2, 3), the stress–strain relation for an anisotropic
linear elastic material can be written as

σi j = Ci jksεks, (1.1a)

Ci jks = C jiks = Cksi j = Ci jsk, (1.1b)

where σi j and εi j are the stress and strain and Ci jks is the elastic stiffness. The Ci jks is positive
definite and possesses the full symmetry shown in (1.1b). The third equality in (1.1b) is redundant
because the first two imply the third (1, p. 32). Introducing the contracted notation (1 to 3),

σ1 = σ11, σ2 = σ22, σ3 = σ33, σ4 = σ23, σ5 = σ31, σ6 = σ12,

ε1 = ε11, ε2 = ε22, ε3 = ε33, ε4 = 2ε23, ε5 = 2ε31, ε6 = 2ε12,
(1.2)

equations (1.1a,b) can be written as

σα = Cαβεβ, Cαβ = Cβα (1.3)
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324 T. C. T. TING AND Q.-C. HE

or, in matrix notation,

σσσ = Cε, C = CT . (1.4)

In the above, the superscript T stands for the transpose and C is a 6 × 6 matrix

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1.5)

Only the upper triangle of the matrix is shown because C is symmetric. It has twenty-one independ-
ent elastic constants. The transformation between Cijks and Cαβ is accomplished by replacing the
subscripts ij (or ks) by α (or β) using the following rules.

ij (or ks) ↔ α (or β )

11 ↔ 1

22 ↔ 2

33 ↔ 3

23 or 32 ↔ 4

31 or 13 ↔ 5

12 or 21 ↔ 6

(1.6)

In a new coordinate system x∗
i that is related to xi by

x∗
i = Qijx j , (1.7)

where Qij is the rotation tensor satisfying the orthogonality relation

Qik Qjk = δi j = Qsi Qsj , (1.8)

with δij being the Kronecker delta, the elastic stiffness C∗
ijkt referred to the x∗

i coordinate system is

C∗
ijks = QipQjqQkr QstCpqrt. (1.9)

In the contracted notation C∗
αβ is in general different from the Cαβ shown in (1.5) except for isotropic

materials.
Consider now the possibility of an anisotropic elastic material for which a uniform pressure

produces a uniform contraction. This means that if

σij = −pδij, εij = −υ

3
δij, (1.10)

where p and υ are the pressure and the volume change, respectively, we must have, from (1.1a) (4),

Ci jkk = 3κδi j , (1.11)
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DECOMPOSITION OF ELASTICITY TENSORS 325

where κ = p/υ is the bulk modulus. Equation (1.11) provides the condition on the elastic stiff-
ness of the material for a uniform pressure to produce a uniform contraction. Using the contracted
notation, (1.11) can be written in full as

Cα1 + Cα2 + Cα3 = 3κ for α = 1, 2, 3, (1.12a)

Cα1 + Cα2 + Cα3 = 0 for α = 4, 5, 6. (1.12b)

The elastic stiffness matrix C that satisfies (1.12) has the structure

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3κ − C12 − C13 C12 C13 −C24 − C34 C15 C16

3κ − C12 − C23 C23 C24 −C15 − C35 C26

3κ − C13 − C23 C34 C35 −C16 − C26

C44 C45 C46

C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(1.13)

There are sixteen independent elastic constants. In a new coordinate system x∗
i we obtain from (1.9),

(1.11) and (1.8),

C∗
i jkk = 3κδij. (1.14)

This is identical to (1.11) so that (1.12), and hence (1.13), applies to C∗
αβ . Thus even though C∗

αβ is
different from Cαβ , the structure of C∗

αβ is identical to the Cαβ shown in (1.13). Hence the elastic
stiffness C shown in (1.13) is structurally invariant under a three-dimensional transformation. It is
seen from (1.11) and (1.14) that κ is an invariant.

There are several three-dimensional structural invariants available in the literature (4 to 6). Like
the example shown above, they were all motivated by a physical consideration. In contrast, pure
mathematical interests motivated the two-dimensional structural invariants presented by Ting (7)
and Ahmad (8), though the results find some useful physical applications. It is not feasible to extend
the mathematical approach employed in (7, 8) for two-dimensional structural invariants to the three-
dimensional cases because the algebra would be too complex. The purpose of this paper is to show
a different approach that provides a general expression for three-dimensional structural invariants.

2. Decomposition of Cijks and a general three-dimensional structural invariant

Backus (9) and Spencer (10) independently showed that the elastic stiffness Cijks can be uniquely
decomposed as

Cijks = aδijδks + b(δikδjs + δisδjk) + δij Âks + Âijδks

+ δik B̂js + B̂ikδ js + δis B̂jk + B̂isδjk + Zijks, (2.1)

where a and b are scalars, Â and B̂ are second-order symmetric traceless tensors and Z is a fourth-
order totally symmetric traceless tensor that satisfies

Zijks = Zjiks = Zksij = Zi jsk, Zijks = Zikjs, Zijkk = 0. (2.2)
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326 T. C. T. TING AND Q.-C. HE

Setting

Aij = Âi j + a

2
δij, Bij = B̂ij + b

2
δij, (2.3)

(2.1) can be written as

Cijks = Cijks(A) + Cijks(B) + Zijks, (2.4)

where

Cijks(A) = δij Aks + Aijδks,

Cijks(B) = δik Bjs + Bikδjs + δis Bjk + Bisδ jk .
(2.5)

The second-order tensors A and B are symmetric but no longer traceless. Substitution of (2.1) into
(1.9) yields

C∗
ijks = Cijks(A∗) + Cijks(B∗) + Z∗

ijks, (2.6)

where

A∗ = QAQT , B∗ = QBQT , (2.7)

Z∗
ijks = QipQjqQkr Qst Zpqrt. (2.8)

It is clear that Cijks(A) and Cijks(B) are structurally invariant. In fact Zijks is also structurally in-
variant because the decomposition (2.1) applies to any coordinate system so that Z∗

ijks also enjoys
the totally symmetric traceless property (2.2). In conclusion, the Cijks shown in (2.4) is structurally
invariant in terms of A, B and Z.

In the contracted notation we write (2.4) as

Cαβ = Cαβ(A) + Cαβ(B) + Zαβ, (2.9)

where

C(A) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2A11 A11 + A22 A11 + A33 A23 A13 A12

2A22 A22 + A33 A23 A13 A12

2A33 A23 A13 A12

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.10)

C(B) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4B11 0 0 0 2B13 2B12

4B22 0 2B23 0 2B12

4B33 2B23 2B13 0

B22 + B33 B12 B13

B33 + B11 B23

B11 + B22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.11)
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DECOMPOSITION OF ELASTICITY TENSORS 327

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−z2 − z3 z3 z2 2z4 −z8 − z5 z9 − z6

−z3 − z1 z1 z7 − z4 2z5 −z9 − z6

−z1 − z2 −z7 − z4 z8 − z5 2z6

z1 2z6 2z5

z2 2z4

z3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.12)

The C(A) and C(B) are obtained from (2.5) by applying the contracted notation. As to Zαβ , the
first set of three equalities in (2.2) suggests that Zαβ is symmetric. The second equation in (2.2)
implies that

Z44 = Z23, Z55 = Z13, Z66 = Z12, Z45 = Z36, Z46 = Z25, Z56 = Z14. (2.13)

The last equation in (2.2) means that

Zα1 + Zα2 + Zα3 = 0 for α = 1, 2, . . . , 6. (2.14)

It is then readily shown that (2.13) and (2.14) lead to the Zαβ shown in (2.12). Equation (2.12),

including the z-notation, was first obtained by Cowin (11).
The tensors A and B in Cαβ(A) and Cαβ(B) have six independent constants each. There are nine

independent constants zk(k = 1, 2, . . . , 9) for Zαβ . Thus the total number of independent constants
in (2.9) is twenty-one, as with the Cαβ in (1.5). Since C(A), C(B) and Z are structurally invariant,
(2.9) to (2.12) apply to C∗, C(A∗), C(B∗) and Z∗.

To obtain A, B and Z in terms of Cαβ , we introduce the tensors

Uij = Cijkk, Vik = Cijkj. (2.15)

It is readily shown from (2.4) that

U = (tr A)I + 3A + 4B, V = (tr B)I + 2A + 5B. (2.16)

Taking the trace on both sides of the equations in (2.16) yields

tr A = (2tr U − tr V)/10, tr B = (3tr V − tr U)/20. (2.17)

Equation (2.16) now provides the solution

A = 1
7 (5U − 4V) + 1

70 (11 tr V − 12 tr U)I,

B = 1
7 (3V − 2U) + 1

140 (11 tr U − 13 tr V)I.
(2.18)

The tensor Zijks is computed from (2.4). It can be shown that this is equivalent to the solution first
obtained by Cowin (11); see also (12).

There are two linear invariants for the elastic stiffness Cijks (13 to 15). They are

Ciikk = C11 + C22 + C33 + 2(C12 + C23 + C31) = 6(tr A) + 4(tr B), (2.19a)

Cijij = C11 + C22 + C33 + 2(C44 + C55 + C66) = 2(tr A) + 8(tr B). (2.19b)
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328 T. C. T. TING AND Q.-C. HE

The second equalities are obtained by inserting Cαβ from (2.9). Since (tr A) and (tr B) are invariants,
(2.19) provides an alternative proof that Ciikk and Cijij are invariants. It should be noted that Zαβ

does not appear in (2.19).

3. Elastic stiffnesses Cαβ that are structurally invariant

There are anisotropic elastic materials that behave like isotropic elastic materials for a certain
physical property. The uniform contraction under a uniform pressure discussed in section 1 is an ex-
ample. Constant Young’s modulus or constant shear modulus is another example. All these isotropic-
like behaviours seem to demand that the elastic stiffness or compliance be structurally invariant. In
this section we specialize (2.9) to (2.12) to obtain the elastic stiffness that has isotropic-like behav-
iour for a certain physical property. It should be emphasized that (2.9) to (2.12) apply not only to
the xi -coordinate system, but to any rotated coordinate system x∗

i .

Case C1. Constant C11

In an isotropic elastic material, a longitudinal wave can propagate in any direction with the wave
speed

√
C11/ρ, where ρ is the mass density. Can a longitudinal wave propagate in any direction in

an anisotropic elastic material? If it can, the elastic stiffness C∗
11 referred to any coordinate system

must be identical to C11. This means that C∗
11 must be an invariant. This problem was investigated

by Ting (6) who showed that a longitudinal wave with wave speed
√

C11/ρ can propagate in any
direction if the elastic stiffness has the structure

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C11 − 2C66 C11 − 2C55 −2C56 0 0

C11 C11 − 2C44 0 −2C46 0

C11 0 0 −2C45

C44 C45 C46

C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.1)

We will deduce (3.1) from (2.9) to (2.12). First, the C∗
11 obtained from (2.9) to (2.12) is

C∗
11 = 2(A∗

11 + 2B∗
11) − (z∗

2 + z∗
3). (3.2)

Since z∗
2 and z∗

3 depend on nine zk(k = 1, 2, . . . , 9) and (A∗
11 + 2B∗

11) depend on (A + 2B) that has
six independent components, C∗

11 depends on 15, not 21, independent constants. Explicit expression
of the 15 independent constants in terms of Cαβ is given in (6, (3.6)). Next, if C∗

11 is an invariant,
independent of the choice of coordinate system, it is necessary that C∗

11 = C∗
22 = C∗

33. From (2.9)
to (2.12) we must have

A + 2B = 1
2γ I, Z = 0, (3.3)
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DECOMPOSITION OF ELASTICITY TENSORS 329

where γ is an invariant. Equation (2.9) now has the expression

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ γ − 2(B11 + B22) γ − 2(B11 + B33) −2B23 0 0

γ γ − 2(B22 + B33) 0 −2B13 0

γ 0 0 −2B12

B22 + B33 B12 B13

B33 + B11 B23

B11 + B22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.4)

It is easily seen that (3.4) and (3.1) are equivalent. Since (3.4) is structurally invariant, so is (3.1).
From (3.4) we have

C12 + C23 + C31 = 3γ − 4(tr B), C44 + C55 + C66 = 2(tr B). (3.5)

They are invariants as reported in (6) using a different derivation.
There are seven independent elastic constants in (3.1) and (3.4). Comparison between (3.1) and

(3.4) shows that

(tr B)I − B =
⎡
⎢⎣

C44 −C45 −C46

C55 −C56

C66

⎤
⎥⎦ = M, say. (3.6)

Since B is a second-order symmetric tensor, so is M. If we choose the coordinate axes x∗
i along

the eigenvectors of M, the off-diagonal elements of M can be made to vanish. Thus the number
of independent constants can be reduced to four. With C45 = C46 = C56 = 0, it is easily seen
that the material represented by (3.1) is orthotropic if C44, C55, C66 are distinct, hexagonal if two
of the C44, C55, C66 are identical, and isotropic if C44 = C55 = C66. This recovers the results ob-
tained in (6).

It should be noted that, using a different approach, Rychlewski (16) also studied anisotropic
elastic mateirals for which a longitudinal wave can propagate in any direction.

Case C2. Constant C66

Related to the longitudinal wave is the question of whether there are anisotropic elastic materials
for which a transverse wave with wave speed

√
C66/ρ can propagate in any direction. This means

that the elastic stiffness C∗
66 is an invariant, independent of the choice of the coordinate system.

This problem was also investigated by Ting (6) who showed that a transverse wave with wave speed√
C66/ρ could propagate in any direction if the elastic stiffness has the structure

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11
1
2 (C11 + C22) − 2C66

1
2 (C11 + C33) − 2C66 C14 C15 C16

C22
1
2 (C22 + C33) − 2C66 C14 C15 C16

C33 C14 C15 C16

C66 0 0

C66 0

C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.7)
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330 T. C. T. TING AND Q.-C. HE

From (2.9) to (2.12),

C∗
66 = B∗

11 + B∗
22 + z∗

3. (3.8)

Since z∗
3 depends on nine zk(k = 1, 2, . . . , 9), and B∗

11, B∗
22 depend on six independent components

of B, C∗
66 depends on 15, not 21, independent constants. Explicit expression of the 15 independent

constants in terms of Cαβ is given in (6, (4.2)). Next, if C∗
66 is an invariant, it is necessary that

C∗
44 = C∗

55 = C∗
66. From (2.9) to (2.12) we must have

B = 1
2γ I, Z = 0, (3.9)

where γ is an invariant. Equation (2.9) then gives

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(γ + A11) A11 + A22 A11 + A33 A23 A13 A12

2(γ + A22) A22 + A33 A23 A13 A12

2(γ + A33) A23 A13 A12

γ 0 0

γ 0

γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.10)

It is easily seen that (3.7) and (3.10) are equivalent. Since (3.10) is structurally invariant, so is (3.7).
From (3.10) we obtain the invariants (6)

C11 + C22 + C33 = 6γ + 2(tr A), C12 + C23 + C31 = 2(tr A). (3.11)

There are seven independent elastic constants in (3.7) and (3.10). Comparison between (3.7) and
(3.10) shows that

2(γ I + A) =

⎡
⎢⎢⎣

C11 2C16 2C15

C22 2C14

C33

⎤
⎥⎥⎦ = M, say. (3.12)

Since A is a second-order symmetric tensor, so is M. If we choose the coordinate axes x∗
i along

the eigenvectors of M, the off-diagonal elements of M can be made to vanish. Thus the number
of independent constants can be reduced to four. With C14 = C15 = C16 = 0, it is easily seen
that the material represented by (3.7) is orthotropic if C11, C22, C33 are distinct, hexagonal if two of
the C11, C22, C33 are identical, and isotropic if C11 = C22 = C33. This recovers the results obtained
in (6).

Again, Rychlewski (16) studied the same problem using a different derivation.

Case C3. Uniform contraction due to uniform pressure

The elastic stiffness shown in (1.13) can be deduced from (2.9) to (2.12). The condition (1.12)
demands that

3A + 4B = γ I, (3.13)
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DECOMPOSITION OF ELASTICITY TENSORS 331

where γ is an invariant. Equation (2.9) then becomes

C = Z+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ − A11 A11 + A22 A11 + A33 A23 − 1
2 A13 − 1

2 A12

γ − A22 A22 + A33 − 1
2 A23 A13 − 1

2 A12

γ − A33 − 1
2 A23 − 1

2 A13 A12

1
2 γ − 3

4 (A22 + A33) − 3
4 A12 − 3

4 A13

1
2 γ − 3

4 (A33 + A11) − 3
4 A23

1
2 γ − 3

4 (A11 + A22)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.14)

There are sixteen independent constants, six from A, nine from Z and one from γ . Thus the number
of independent constants for the C shown in (3.14) and (1.13) is the same. Moreover, (3.14) satisfies
the conditions listed in (1.12). Hence, (3.14) and (1.13) are equivalent. Since (3.14) is structurally
invariant, so is (1.13).

It should be noted that the three equations in (1.12a) are invariants while the three equations in
(1.12b) are structural invariants. Addition of the three equations in (1.12a) leads to the invariant in
(2.19a). Thus the invariant in (2.19a) breaks up into three invariants shown in (1.12a).

4. Decomposition of Sijks and a general three-dimensional structural invariant

The stress–strain relation can be written in terms of the elastic compliance Sijks as

εij = Sijksσks, (4.1a)

Si jks = S jiks = Sksi j = Si jsk . (4.1b)

In the contracted notation we have

εα = sαβσβ, sαβ = sβα. (4.2)

Being a fourth-order tensor like Cijks, Sijks can also be uniquely decomposed in terms of A, B and
Z shown in (2.1). All equations presented in section 2 for Ci jks apply to Sijks except those equa-
tions that are expressed in terms of the contracted notation Cαβ . This is so because the conversions
between Ci jks and Cαβ , and between Si jks and sαβ , are different. While (1.2) and (1.6) remain
valid, sαβ = Si jks when both α and β are less than 4, sαβ = 2Si jks if either α or β is less than 4,
and sαβ = 4Si jks when both α and β are larger than 3. Because of this difference, we denote the
contracted notation of Sijks by sαβ , not Sαβ . The 6×6 symmetric matrix sαβ is

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11 s12 s13 s14 s15 s16

s22 s23 s24 s25 s26

s33 s34 s35 s36

s44 s45 s46

s55 s56

s66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.3)

Equations (2.9) to (2.12) are replaced by

sαβ = sαβ(A) + sαβ(B) + zαβ, (4.4)
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332 T. C. T. TING AND Q.-C. HE

where

s(A) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2A11 A11 + A22 A11 + A33 2A23 2A13 2A12

2A22 A22 + A33 2A23 2A13 2A12

2A33 2A23 2A13 2A12

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.5)

s(B) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4B11 0 0 0 4B13 4B12

4B22 0 4B23 0 4B12

4B33 4B23 4B13 0

4(B22 + B33) 4B12 4B13

4(B33 + B11) 4B23

4(B11 + B22)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.6)

z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−z2 − z3 z3 z2 4z4 −2(z8 + z5) 2(z9 − z6)

−z3 − z1 z1 2(z7 − z4) 4z5 −2(z9 + z6)

−z1 − z2 −2(z7 + z4) 2(z8 − z5) 4z6

4z1 8z6 8z5

4z2 8z4

4z3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.7)

They are structurally invariant, and hence can be applied to any coordinate system. It should be
noted that the matrix z in (4.7) is different from the matrix Z in (2.12).

The two invariants in (2.19) are replaced by

Siikk = s11 + s22 + s33 + 2(s12 + s23 + s31) = 6(tr A) + 4(tr B), (4.8a)

Sijij = s11 + s22 + s33 + 1
2 (s44 + s55 + s66) = 2(tr A) + 8(tr B). (4.8b)

Again, zαβ does not appear in (4.8).

5. Elastic compliances sαβ that are structurally invariant

We now employ (4.4) to (4.7) to obtain the elastic compliance of materials that have isotropic-like
behaviour for a certain physical property.
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DECOMPOSITION OF ELASTICITY TENSORS 333

Case s1. Constant Young’s modulus E1

Young’s modulus E1 for uniaxial tension along the x1-axis is 1/s11. Young’s modulus E∗
1 along

the x∗
1 -axis is 1/s∗

11. Can s∗
11 be an invariant independent of the choice of coordinate system? This

problem is mathematically similar to case C1 studied in section 3 where C∗
11 is an invariant. He (17)

and Ting (5) have independently studied this problem. Ting (5) showed that s∗
11 is an invariant if the

elastic compliance has the structure

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11 s11 − 1
2 s66 s11 − 1

2 s55 −s56 0 0

s11 s11 − 1
2 s44 0 −s46 0

s11 0 0 −s45

s44 s45 s46

s55 s56

s66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.1)

As in case C1, we can deduce (5.1) from (4.4) to (4.7).
The s∗

11 obtained from (4.4) to (4.7) is

s∗
11 = 2(A∗

11 + 2B∗
11) − (z∗

2 + z∗
3). (5.2)

Hence s∗
11 depends on 15, not 21, independent constants. Explicit expression of the 15 independent

constants in terms of sαβ is given in (5, (2.6b)). If s∗
11 is an invariant, it is necessary that s∗

11 = s∗
22 =

s∗
33. From (4.4) to (4.7) we must have

A + 2B = 1
2γ I, z = 0, (5.3)

where γ is an invariant. Equation (4.4) now has the expression

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ γ − 2(B11 + B22) γ − 2(B11 + B33) −4B23 0 0

γ γ − 2(B22 + B33) 0 −4B13 0

γ 0 0 −4B12

4(B22 + B33) 4B12 4B13

4(B33 + B11) 4B23

4(B11 + B22)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.4)

It is easily seen that (5.1) and (5.4) are equivalent. Since (5.4) is structurally invariant, so is (5.1).
From (5.4) we obtain the invariants

s12 + s23 + s31 = 3γ − 4(tr B), s44 + s55 + s66 = 8(tr B), (5.5)

as reported in (6) using a different derivation.
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There are seven independent elastic constants in (5.1) and (5.4). Comparison between (5.1) and
(5.4) shows that

4[(tr B)I − B] =
⎡
⎢⎣

s44 −s45 −s46

s55 −s56

s66

⎤
⎥⎦ = N, say. (5.6)

Since B is a second-order symmetric tensor, so is N. If we choose the coordinate axes x∗
i along

the eigenvectors of N, the off-diagonal elements of N can be made to vanish. Thus the number
of independent constants can be reduced to four. With s45 = s46 = s56 = 0, it is easily seen
that the material represented by (5.1) is orthotropic if s44, s55, s66 are distinct, hexagonal if two of
the s44, s55, s66 are identical, and isotropic if s44 = s55 = s66. This recovers the results obtained in
(6, 17).

Case s2. Constant shear modulus G12

An analogue to constant Young’s modulus is the question of constant shear modulus in an aniso-
tropic elastic material. The question of whether there are anisotropic elastic materials for which the
shear modulus G∗

12 = 1/s∗
66 is an invariant was studied independently by He (16) and Ting (5). Ting

(5) showed that s∗
66 is an invariant if

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11
1
2 (s11 + s22 − s66)

1
2 (s11 + s33 − s66) s14 s15 s16

s22
1
2 (s22 + s33 − s66) s14 s15 s16

s33 s14 s15 s16

s66 0 0

s66 0

s66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.7)

From (4.4) to (4.7),

s∗
66 = 4(B∗

11 + B∗
22) + 4z∗

3. (5.8)

Hence s∗
66 depends on 15, not 21, independent constants. Explicit expression of the 15 independent

constants in terms of sαβ is given in (5, (2.7b)). Next, if s∗
66 is an invariant, it is necessary that

s∗
44 = s∗

55 = s∗
66. From (4.4) to (4.7) we must have

B = 1
8γ I, z = 0, (5.9)

where γ is an invariant. Equation (4.4) then gives

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2γ + 2A11 A11 + A22 A11 + A33 2A23 2A13 2A12

1
2γ + 2A22 A22 + A33 2A23 2A13 2A12

1
2γ + 2A33 2A23 2A13 2A12

γ 0 0
γ 0

γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.10)
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DECOMPOSITION OF ELASTICITY TENSORS 335

It is easily seen that (5.7) and (5.10) are equivalent. Since (5.10) is structurally invariant, so is (5.7).
From (5.10) we have the invariants (5)

s11 + s22 + s33 = 3
2γ + 2(tr A), s12 + s23 + s31 = 2(tr A). (5.11)

There are seven independent elastic constants in (5.7) and (5.10). Comparison between (5.7) and
(5.10) shows that

1
2γ I + 2A =

⎡
⎢⎢⎢⎣

s11 s16 s15

s22 s14

s33

⎤
⎥⎥⎥⎦ = N, say. (5.12)

Since A is a second-order symmetric tensor, so is N. If we choose the coordinate axes x∗
i along

the eigenvectors of N, the off-diagonal elements of N can be made to vanish. Thus the number of
independent constants can be reduced to four. With s14 = s15 = s16 = 0, it is easily seen that
the material represented by (5.7) is orthotropic if s11, s22, s33 are distinct, hexagonal if two of the
s11, s22, s33 are identical, and isotropic if s11 = s22 = s33. This recovers the results obtained in (5).

Case s3. Constant area modulus

Intermediate between Young’s modulus and bulk modulus is the area modulus η(n) introduced by
Scott (18). It is the ratio of an equibiaxial stress to the area change in the plane with the unit normal
n in which the stress acts. Thus

1

η(n)
= Sijks(δij − ni n j )(δks − nkns). (5.13)

He (16) has shown that there are anisotropic elastic materials for which η(n) is an invariant, inde-
pendent of n. We will deduce from (4.4) to (4.7) that this is indeed the case.

When n is along the x3-axis, (5.13) simplifies to

1

η(n)
= s11 + s22 + 2s12. (5.14)

If n is along the x∗
3 -axis we have

1

η(n)
= s∗

11 + s∗
22 + 2s∗

12 = 4[(A∗
11 + B∗

11) + (A∗
22 + B∗

22)] − (z∗
1 + z∗

2), (5.15)

where the second equality follows from (4.4) to (4.7). Since (A∗
i j + B∗

i j ) depends on six components
of (A + B) and z∗

k depends on nine zk , η(n) depends on 15 independent constants. In order that η(n)
be independent of n, it is necessary that

s11 + s22 + 2s12 = s22 + s33 + 2s23 = s11 + s33 + 2s13 = γ, (5.16)

where γ is an invariant. From (4.4) to (4.7), (5.16) holds if

A + B = 1
8γ I, z = 0. (5.17)
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Equation (4.4) then yields

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4 γ + 2B11

1
4 γ − (B11 + B22) 1

4 γ − (B11 + B33) −2B23 2B13 2B12

1
4 γ + 2B22

1
4 γ − (B22 + B33) 2B23 −2B13 2B12

1
4 γ + 2B33 2B23 2B13 −2B12

4(B22 + B33) 4B12 4B13

4(B33 + B11) 4B23

4(B11 + B22)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5.18)

or

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11
1
2 (γ − s11 − s22) 1

2 (γ − s11 − s33) − 1
2 s56

1
2 s46

1
2 s45

s22
1
2 (γ − s22 − s33) 1

2 s56 − 1
2 s46

1
2 s45

s33
1
2 s56

1
2 s46 − 1

2 s45

2(s22 + s33) − γ s45 s46

2(s33 + s11) − γ s56

2(s11 + s22) − γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.19)

It has seven independent elastic constants. Equation (5.19) is structurally invariant because
(5.18) is.

There are three invariants shown in (5.16). Additional invariants obtained from (5.18) are

s11 + s22 + s33 = 3
4γ + 2(tr B),

s12 + s23 + s31 = 3
4γ − 2(tr B),

s44 + s55 + s66 = 8(tr B),

s44 + 4s23 = s55 + 4s31 = s66 + 4s12 = γ,

s11 − 2s23 = s22 − 2s31 = s33 − 2s12 = − 1
4γ + 2(tr B),

2s11 + s44 = 2s22 + s55 = 2s33 + s66 = 1
2γ + 4(tr B).

(5.20)

Of course, not all of them are independent of each other.
Comparison between (5.18) and (5.19) suggests that

4[(tr B)I − B] =
⎡
⎢⎣

4(B22 + B33) −4B12 −4B13

4(B33 + B11) −4B23

4(B11 + B22)

⎤
⎥⎦

=
⎡
⎢⎣

s44 −s45 −s46

s55 −s56

s66

⎤
⎥⎦ = N, say. (5.21)

Since B is a second-order symmetric tensor, so is N. If we choose the coordinate axes x∗
i along

the eigenvectors of N, the off-diagonal elements of N can be made to vanish. Thus the number of
independent constants can be reduced to four. With s45 = s46 = s56 = 0, it is easily seen that
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DECOMPOSITION OF ELASTICITY TENSORS 337

the material represented by (5.19) is orthotropic if s44, s55, s66 are distinct, hexagonal if two of the
s44, s55, s66 are identical, and isotropic if s44 = s55 = s66. This recovers the results obtained in (17).

Case s4. Constant traction-associated bulk modulus

When the material is under a uniaxial stress σ in the direction of a unit vector n, the volume change
εi i is

εi i = Siiksnknsσ. (5.22)

He (17) defined the traction-associated bulk modulus κ̂(n) as

1

κ̂(n)
= εi i

σ
= Siiksnkns . (5.23)

Written in full using the contracted notation we have

[κ̂(n)]−1 = t1n2
1 + t2n2

2 + t3n2
3 + 2(t4n2n3 + t5n3n1 + t6n1n2), (5.24)

where

tα = sα1 + sα2 + sα3 (α = 1, 2, . . . , 6). (5.25)

Thus κ̂(n) depends on the six constants t1, t2,. . . ,t6. It is independent of n if t1 = t2 = t3 and
t4 = t5 = t6 = 0, which means that

sα1 + sα2 + sα3 = κ̂−1 for α = 1, 2, 3, (5.26a)

sα1 + sα2 + sα3 = 0 for α = 4, 5, 6, (5.26b)

where κ̂ is an invariant. The elastic compliance that satisfies (5.26) has the structure

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

κ̂−1 − s12 − s13 s12 s13 −s24 − s34 s15 s16

κ̂−1 − s12 − s23 s23 s24 −s15 − s35 s26

κ̂−1 − s13 − s23 s34 s35 −s16 − s36

s44 s45 s46

s55 s56

s66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.27)

It has sixteen independent elastic constants.
Equation (5.27) can be deduced from (4.4) to (4.7). When n is in the x1-direction (5.24) gives

[κ̂(n)]−1 = t1 = s11 + s21 + s31 (5.28)

or, using (4.4) to (4.7),

[κ̂(n)]−1 = 3A11 + 4B11 + tr A. (5.29)
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Similar expression can be obtained when n is in the x2- or the x3-direction. If κ̂(n) is independent
of n, we must have

3A + 4B = γ I, (5.30)

where γ is an invariant. Thus the s obtained from (4.4) to (4.7) is

s = z+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ − A11 A11 + A22 A11 + A33 2A23 −A13 −A12

γ − A22 A22 + A33 −A23 2A13 −A12

γ − A33 −A23 −A13 2A12

2γ − 3(A22 + A33) −3A12 −3A13

2γ − 3(A33 + A11) −3A23

2γ − 3(A11 + A22)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.31)

There are sixteen independent constants, six from A, nine from z and one from γ . It is easily
shown that (5.26) is satisfied so that (5.31) and (5.27) are equivalent. Moreover, (5.27) is structurally
invariant because (5.31) is.

The two invariants given in (4.8a,b) apply here. However, invariant (4.8a) breaks up into three
invariants given in (5.26a).

It is interesting to note that (1.13) and (5.27) are similar; so are (3.14) and (5.31). The problem
of uniform pressure leading to uniform contraction discussed in section 1 can be expressed in terms
of the elastic compliance. If we insert (1.10) into (4.1a) we have

Si jkk = (3κ)−1δi j , (5.32)

where κ = p/υ. This is (5.26) if we let 3κ = κ̂ . Thus anisotropic elastic materials for which a
uniform pressure leads to a uniform contraction also have the property that the traction-associated
bulk modulus is independent of the choice of coordinate system, and vice versa. Since (1.13) and
(5.27) apply to the same physical problem of a uniform contraction under a uniform pressure, the
matrix C in (1.13) and the matrix s in (5.27) must be the inverse of each other.

6. General structural invariants when Z = 0 or z = 0

The elastic stiffness C for a constant C11 (or C66) presented in (3.4) (or (3.10)) is obtained from
(2.9) by setting Z = 0 and imposing a relation between A and B. A general stiffness matrix C with
Z = 0 but with A and B being arbitrary is

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(A11 + 2B11) A11 + A22 A11 + A33 A23 A13 + 2B13 A12 + 2B12

2(A22 + 2B22) A22 + A33 A23 + 2B23 A13 A12 + 2B12

2(A33 + 2B33) A23 + 2B23 A13 + 2B13 A12

B22 + B33 B12 B13

B33 + B11 B23

B11 + B22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6.1)
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or

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11
1
2 (C11 + C22) − 2C66

1
2 (C11 + C33) − 2C55 C14 C25 + 2C46 C36 + 2C45

C22
1
2 (C22 + C33) − 2C44 C14 + 2C56 C25 C36 + 2C45

C33 C14 + 2C56 C25 + 2C46 C36

C44 C45 C46

C55 C56

C66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6.2)

The C in (6.2) is structurally invariant because (6.1) is. It has the property that

C11 + C22 + C33, C12 + C23 + C31 and C44 + C55 + C66

are invariants. The C in (3.1) and (3.7) are special cases of (6.2). In reducing (3.1) or (3.7) from
(6.2) it is not sufficient to simply set C11 = C22 = C33 or C44 = C55 = C66. The reason is that
(6.2) with C11 = C22 = C33 or C44 = C55 = C66 is not structurally invariant so that C11 or C66
changes its value when referred to a rotated coordinate system.

Similarly, a general compliance matrix s with z = 0 but with A and B being arbitrary is

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(A11 + 2B11) A11 + A22 A11 + A33 2A23 2(A13 + 2B13) 2(A12 + 2B12)

2(A22 + 2B22) A22 + A33 2(A23 + 2B23) 2A13 2(A12 + 2B12)

2(A33 + 2B33) 2(A23 + 2B23) 2(A13 + 2B13) 2A12

4(B22 + B33) 4B12 4B13

4(B33 + B11) 4B23

4(B11 + B22)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(6.3)

or

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s11
1
2 (s11 + s22 − s66)

1
2 (s11 + s33 − s55) s14 s25 + s46 s36 + s45

s22
1
2 (s22 + s33 − s44) s14 + s56 s25 s36 + s45

s33 s14 + s56 s25 + s46 s36

s44 s45 s46

s55 s56

s66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6.4)

Again, (6.4) is structurally invariant because (6.3) is. It has the property that

s11 + s22 + s33, s12 + s23 + s31 and s44 + s55 + s66

are invariants. The s in (5.1) and (5.7) are special cases of (6.4). Although not obvious by inspection,
it can be shown that (5.19) is also a special case of (6.4). As before, it is not sufficient to recover
(5.1) or (5.7) by simply setting s11 = s22 = s33 or s44 = s55 = s66.
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7. Concluding remarks

The decomposition of the elasticity tensor presented by Backus (9) and Spencer (10) is rewritten
in the form (2.9) to (2.12) for the elastic stiffness Cαβ and in the form (4.4) to (4.7) for the elastic
compliance sαβ . It is shown that, in these forms, they are structurally invariant in three dimensions.
There are anisotropic elastic materials that behave like isotropic materials for a certain physical
property such as Young’s modulus, shear modulus, area modulus or traction-associated modulus.
For these isotropic-like materials the physical property concerned is an invariant, independent of
the choice of the coordinate system. Several such isotropic-like materials have been found in the
literature (5 to 7, 17), and the elastic stiffness or compliance was proved to be structurally invariant.
We show here that all of them can be deduced from (2.9) to (2.12) or (4.4) to (4.7) with very little
effort. Moreover, invariants inherited by the structural invariants are easily obtained. In most cases
it is easily identified if the material deduced belongs to certain symmetry groups.

While the structural invariance of the elastic stiffness or compliance is a sufficient condition for
a certain physical property to be independent of the choice of coordinate system, it might not be a
necessary condition. For instance, the elastic stiffness C given in (3.7) is structurally invariant for
which a transverse wave can propagate in any direction with the same wave speed. It is shown in
(20, 22) that there are other anisotropic elastic materials for which a transverse wave can propagate
in any direction with the same wave speed but the elastic stiffness C is not structurally invariant.
For the elastic stiffness C given in (3.1) for which a longitudinal wave can propagate in any direc-
tion with the wave speed

√
C11/ρ, the structural invariance of C is a necessary and sufficient

condition (21).
The three-dimensional structural invariants discussed here are all linear. There are nonlinear two-

dimensional structural invariants. For instance, for a two-dimensional deformation in which the
displacement ui and the stress σi j depend on x1 and x2 only, there are anisotropic elastic materials
for which the inplane stresses σ11, σ22 and σ12 can be non-zero when the inplane displacements
u1 and u2 vanish. For these materials the relations (19)

C15C44 = C46C55, (C14 + C56)C44 = 2C46C45,

C24C55 = C56C44, (C25 + C46)C55 = 2C56C45
(7.1)

hold and are structurally invariants under the rotation of the coordinate system about the x3-axis. It
remains to be seen if there are three-dimensional structural invariants that are nonlinear and, if they
exist, what they mean physically.
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