Decomposition of fuzzy ideal continuity via fuzzy idealization

Ahmed M. Zahran^{*}, S. A. Abd El-Baki^{**}, Yaser M. Saber^{*}

* Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt ** Department of Mathematics, Faculty of Science, Assiut University, Assiut 71524, Egypt

Abstract

Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum paretical physics in connection with string theory and *E-infinity* space time theory. In this paper, we study the concepts of r-fuzzy semi-I-open, r-fuzzy pre-I-open, r-fuzzy α -I-open and r-fuzzy β -I-open sets, which is properly placed between r-fuzzy openness and r-fuzzy α -I-openness (r-fuzzy pre-I-openness) sets regardless the fuzzy ideal topological space in \hat{S} ostak sense. Moreover, we give a decomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal α -continuity, and obtain several characterization and some properties of these functions. Also, we investigate their relationship with other types of function.

Key words : r-fuzzy semi-I-open, r-fuzzy pre-I-open, r-fuzzy α -I-open and r-fuzzy β -I-open sets, fuzzy ideal continuity and fuzzy ideal α -continuity.

1. Introduction and Preliminaries

The concept of fuzzy topology was first defined in 1968 by Chang [1] and later redefined in a somewhat different way by Lowen [21] and by Hutton and Reilly [18]. According to \hat{S} ostak's [27], in all these definitions, a fuzzy topology is a crisp subfamily of fuzzy sets and fuzziness in the concept of openness of a fuzzy set has not been considered, which seems to be a drawback in the process of fuzzification of the concept of topological spaces. Therefore \hat{S} ostak's introduced a new definition of fuzzy topology in 1985 [28]. Later on, he developed the theory of fuzzy topological spaces in [29]. After that several authors [2,3,5,19,20,23,25] have introduced the smooth definition and studied smooth fuzzy topological spaces being unaware of \hat{S} ostak's works. In fuzzy topology, by introducing the notion of ideal, [27], and several other authors [17,22] carried out such analysis.

The notion of continuity is an important concept in fuzzy topology and fuzzy topology in \hat{S} ostak sense as well as in all branches of mathematics and quantum physics (see [6,7,10,11,13,14]). We must state that this subject has been researched by physicists [7,1013] as well as by others. El-Naschie has shown that the notion of fuzzy topology in \hat{S} ostak sense has very important applications in quantum particle physics especially in relation to both string theory and $\varepsilon^{(\infty)}$ theory [8,9,12,15,16]. In this paper, we give a decomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal α -continuity, and we obtain several character-

Manuscript received Dec. 28. 2008; revised May. 16. 2009.

izations of fuzzy α -I-continuous functions. Moreover, we introduce the concept of fuzzy α -I-open functions in fuzzy ideal topological spaces and obtain their properties

Throughout this paper, let X be a nonempty set I = [0,1] and $I_0 = (0,1]$. For $\alpha \in I$, $\overline{\alpha}(x) = \alpha$ for all $x \in X$. The family of all fuzzy sets on X denoted by I^X . For two fuzzy sets we write $\lambda q\mu$ to mean that λ is quasi-coincident (q-coincident, for short) with μ , i.e, there exists at least one point $x \in X$ such that $\lambda(x) + \mu(x) > 1$. Negation of such a statement is denoted as $\lambda \overline{q}\mu$.

Definition 1.1 [27]. A mapping $\tau : I^X \to I$ is called a fuzzy topology on X if it satisfies the following conditions:

$$\begin{aligned} & (\text{O1}) \ \tau(\overline{0}) = \tau(\overline{1}) = 1. \\ & (\text{O2}) \ \tau(\bigvee_{i \in \Gamma} \mu_i) \geq \bigwedge_{i \in \Gamma} \tau(\mu_i), \text{ for } \{\mu_i\}_{i \in \Gamma} \in I^X. \\ & (\text{O3}) \ \tau(\mu_1 \land \mu_2) \geq \tau(\mu_1) \land \tau(\mu_2), \text{ for } \mu_1, \mu_2 \in I^X. \end{aligned}$$

Definition 1.2 [26]. A mapping $\mathbf{I} : I^X \to I$ is called fuzzy ideal on X iff:

- $(I_1) \mathbf{I}(\underline{0}) = 1, \mathbf{I}(\underline{1}) = 0.$
- (I_2) If $\lambda \leq \mu$, then $\mathbf{I}(\lambda) \geq \mathbf{I}(\mu)$, for each $\lambda, \mu \in I^X$.
- $(I_3) \text{ For each } \lambda, \mu \in I^X, \quad \mathbf{I}(\lambda \lor \mu) \geq \mathbf{I}(\lambda) \land \mathbf{I}(\mu).$

The pair (X,τ,\mathbf{I}) is called fuzzy ideal topological space (fits, for short)

Corollary 1.1. Let (X, τ, \mathcal{I}) be a fits. The simplest fuzzy

ideal on X are $\mathcal{I}^0, \mathcal{I}^1: I^X \to I$ where

$$\mathbf{I}^{0}(\lambda) = \begin{cases} 1, \text{ if } \lambda = \underline{0}, \\ 0, \text{ otherwise.} \end{cases} \quad \mathbf{I}^{1}(\lambda) = \begin{cases} 0, \text{ if } \lambda = \underline{1}, \\ 1, \text{ otherwise.} \end{cases}$$

If $\mathbf{I} = \mathbf{I}^0$, for each $\mu \in I^X$ we have $\mu_r^* = C_\tau(\mu, r)$. If $\mathbf{I} = \mathbf{I}^1$, for each $\mu \in \Theta'$ we have $\mu_r^* = \underline{0}$, where, $\underline{1} \notin \Theta'$ be a subset of I^X .

Definition 1.4 [4]. Let (X, τ, \mathbf{I}) be a fits. Let $\mu, \lambda \in I^X$, the r-fuzzy open local function μ_r^* of μ is the union of all fuzzy points x_t such that if $\rho \in Q(x_t, r)$ and $\mathbf{I}(\lambda) \geq r$ then there is at least one $y \in X$ for which $\rho(y) + \mu(y) - 1 > \lambda(y)$.

Theorem 1.1[3]. Let (X, τ) be a fts. Then for each $r \in I_0, \lambda \in I^X$ we define an operator $C_\tau : I^X \times I_0 \to I^X$ as follows:

$$C_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X : \lambda \le \mu, \ \tau(\overline{1} - \mu) \ge r \}.$$

For $\lambda, \mu \in I^X$ and $r, s \in I_0$, the operator C_{τ} satisfies the following conditions:

(1) $C_{\tau}(\overline{0}, r) = \overline{0}$. (2) $\lambda \leq C_{\tau}(\lambda, r)$. (3) $C_{\tau}(\lambda, r) \vee C_{\tau}(\mu, r) = C_{\tau}(\lambda \vee \mu, r)$. (4) $C_{\tau}(\lambda, r) \leq C_{\tau}(\lambda, s)$ if $r \leq s$. (5) $C_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(\lambda, r)$.

Theorem 1.2[24]. Let (X, τ) be a fts. Then for each $r \in I_0, \ \lambda \in I^X$ we define an operator $I_\tau : I^X \times I_0 \to I^X$ as follows:

$$I_{\tau}(\lambda, r) = \bigvee \{ \mu \in I^X : \lambda \ge \mu, \ \tau(\mu) \ge r \}.$$

For $\lambda, \mu \in I^X$ and $r, s \in I_0$, the operator I_{τ} satisfies the following conditions:

(1)
$$I_{\tau}(\overline{1} - \lambda, r) = \overline{1} - C_{\tau}(\lambda, r)$$

(2) $I_{\tau}(\overline{1}, r) = \overline{1}$.
(3) $\lambda \ge I_{\tau}(\lambda, r)$.
(4) $I_{\tau}(\lambda, r) \land I_{\tau}(\mu, r) = I_{\tau}(\lambda \land \mu, r)$.
(5) $I_{\tau}(\lambda, r) \le I_{\tau}(\lambda, s)$ if $r \ge s$.
(6) $I_{\tau}(I_{\tau}(\lambda, r), r) = I_{\tau}(\lambda, r)$.

Theorem 1.3[4]. Let (X, τ) be a fts and \mathbf{I}_1 , \mathbf{I}_2 be two fuzzy ideals of X. Then for each $r \in I_0$ and $\mu, \eta, \rho \in I^X$.

(1) $\mu \leq \eta$, then $\mu_r^* \leq \eta_r^*$. (2) $\mathbf{I}_1 \leq \mathbf{I}_2$, $\Rightarrow \ \mu_r^*(\mathbf{I}_1, \tau) \leq \eta_r^*(\mathbf{I}_2, \tau)$. (3) $\mu_r^* = C_\tau(\mu_r^*, r) \leq C_\tau(\mu, r)$. (4) $(\mu_r^*)^* \leq \mu_r^*$. (5) $(\mu_r^* \lor \eta_r^*) = (\mu \lor \eta)_r^*$. (6) If $\mathbf{I}(\rho) \geq r$ then $(\mu \lor \rho)_r^* = \mu_r^* \lor \rho_r^* = \mu_r^*$. (7) If $\tau(\rho) \geq r$, then $(\rho \land \mu_r^*) \leq (\rho \land \mu)_r^*$. (8) $(\mu_r^* \land \eta_r^*) \geq (\mu \land \eta)_r^*$. **Theorem 1.4**[4]. Let (X, τ, \mathbf{I}) be a fits. Then for each $r \in I_0, \ \mu \in I^X$ we define $C^* : I^X \times I_0 \to I^X$ as follows:

$$Cl^*(\mu, r) = \mu \lor \mu_r^*$$

For $\mu, \eta \in I^X$, the Cl^* satisfies the following conditions: (1) If $\mu \leq \eta$, then $Cl^*(\mu, r) \leq Cl^*(\eta, r)$. (2) $Cl^*(Cl^*(\mu, r), r) = Cl^*(\mu, r)$. (3) $Cl^*(\mu \lor \eta, r) = Cl^*(\mu, r) \lor Cl^*(\eta, r)$. (4) $Cl^*(\mu \land \eta, r) \leq Cl^*(\mu, r) \land Cl^*(\eta, r)$.

Definition 1.5 [24]. Let (X, τ) be a fts. For $\lambda \in I^X$ and $r \in I_0$.

(1) λ is called r-fuzzy semiopen (**r-FSO**, for short) iff $\lambda \leq C_{\tau}(I_{\tau}(\lambda, r), r)$.

(2) λ is called r-fuzzy semiclosed (**r-FSC**, for short) iff $\overline{1} - \lambda$ is r-fuzzy semiopen set of X.

(3) λ is called r-fuzzy β -closed (**r-F** β **C**, for short) iff $\lambda \leq C_{\tau}(I_{\tau}(C_{\tau}(\lambda, r), r), r)$.

Definition 1.6[4]. Let (X, τ, I) be a fuzzy ideal topological space. For each $\mu \in I^X$ and $r \in I_0$.

(1) μ is called r-fuzzy ideal open (r-FIO, for short) iff $\mu \leq I_{\tau}(\mu_r^*, r)$.

(2) μ is called r-fuzzy ideal closed (r-FIC, for short) iff $\overline{1} - \mu$ is r-FIO.

Lemma 1.1[4]. Let (X, τ, \mathbf{I}) be a fits.

(1) Any union of r-FIO sets is r-FIO.

(2) Any intersection of r-FIC sets is r-FIC

Definition 1.7 [27]. Let (X, τ) and (X, η) be fts's. Let $f: X \to Y$ be a mapping.

(1) f is called fuzzy continuous iff $\eta(\mu) \leq \tau(f^{-1}(\mu))$ for each $\mu \in I^X.$

(2) f is called fuzzy open iff $\tau(\mu) \leq \eta(f(\mu))$ for each $\mu \in I^X.$

(3) f is called fuzzy closed iff $\tau(\overline{1} - \mu) \leq \eta(f(\overline{1} - \mu))$ for each $\mu \in I^X$.

2. r-fuzzy semi-I-open and r-fuzzy α -I-open sets

Definition 2.1. Let (X, τ, I) be a fuzzy ideal topological space, for each $\mu \in I^X$ and $r \in I_0$.

(1) μ is called r-fuzzy semi-I-open (r-**FSIO**, for short) iff $\mu \leq Cl^*(I_\tau(\mu, r), r)$.

(2) μ is called r-fuzzy pre-ideal open (r-**FPIO**, for short) iff $\mu \leq I_{\tau}(Cl^*(\mu, r), r)$. The complement of a r-fuzzy pre-ideal open set is said to be r-fuzzy pre-ideal closed (r-**FPIC**, for short.)

(3) μ is called r-fuzzy α -ideal open (r-F α IO, for short) iff $\mu \leq I_{\tau}(Cl^*(I_{\tau}(\mu, r), r),)$. The complement of a r-fuzzy α -ideal open set is said to be r-fuzzy α -ideal closed (r-F α IC, for short.)

(4) μ is called r-fuzzy β -ideal open (r-**F** β **IC**, for short) iff $\mu \leq C_{\tau}(I_{\tau}(Cl^*(\mu, r), r), r)$. The complement of a r-fuzzy β -ideal open set is said to be r-fuzzy β -ideal closed (r-**F** β **IC**, for short.)

Theorem 2.1. Let (X, τ, \mathbf{I}) be a fits. (1) Every r-fuzzy open set is r-F α IO (2) Every r-F α IO set is r-FSIO. (3) Every r-FSIO set is r-F β IO. (4) Every r-F α IO set is r-F β IO. (5) Every r-FPIO set is r-F β IO. (6) Every r-FPIO set is r-F β IO. (7) Every r-fuzzy open set is r-FSIO. (8) Every r-FSIO set is r-FSO. (9) Every r-fuzzy open set is r-FPIO. (10) Every r-F β IO set is r-F β O.

Proof. (1) Let μ be r-fuzzy open set. Then

$$\mu = I_{\tau}(\mu, r)$$

$$\leq I_{\tau}(\mu, r) \lor (I_{\tau}(\mu, r))^*$$

$$= Cl^*(I_{\tau}(\mu, r), r).$$

Therefore, $\mu = I_{\tau}(\mu, r) \leq I_{\tau}(Cl^*(I_{\tau}(\mu, r), r), r)$. Implies that μ is r-F α IO.

(2) Let μ be r-**F** α **IO**. Then by Theorem 1.4(1),

$$\mu \le I_{\tau}(Cl^*(I_{\tau}(\mu, r), r)) \le Cl^*(I_{\tau}(\mu, r), r).$$

(3) Let μ be r-**FSIO**. Then

$$\mu \leq Cl^*(I_\tau(\mu, r), r) \leq I_\tau(\mu, r) \lor (I_\tau(\mu, r))^* \leq \mu \lor \mu_r^* \leq Cl^*(I_\tau(\mu \lor \mu_r^*, r) \leq Cl^*(I_\tau(Cl^*(\mu, r), r), r), r) \leq C_\tau(I_\tau(Cl^*(\mu, r), r), r).$$

(4) Let μ be r-**F** α **IO** set. Then

$$\mu \leq I_{\tau}(Cl^*(I_{\tau}(\mu, r), r))$$

= $I_{\tau}(I_{\tau}(\mu, r) \lor (I_{\tau}(\mu, r))^*)$
 $\leq I_{\tau}(\mu \lor \mu_r^*)$
= $I_{\tau}(Cl^*(\mu, r), r).$

(5-10) This proof is obvious.

Remark 2.1. By Theorem 2.1, we obtain the diagram for a r-fuzzy ideal topological space:

Remark 2.2. r-**FPIO** and r-**FSIO** are independent notions as show by the following Examples 2.1. and 2.2.

Example 2.1. Define two fuzzy topologies and fuzzy ideal τ , $\mathbf{I} : I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1, \text{if } \lambda = \overline{1}, \overline{0}, \\ \frac{1}{2}, \text{if } \lambda = \overline{0.4}, \\ 0, \text{Otherwise.} \end{cases}$$

If we take $\mathbf{I} = \mathbf{I}^0$ for all $r \in I_0$, and let $\mu = \overline{0.3}$, then μ is $\frac{1}{2}$ -**FPIO**, but μ is not $\frac{1}{2}$ -**FSIO**.

Example 2.2. Let $X = \{a, b, c\}$ be a set and $a_t \in P_t(X)$. Define $\mu_1 \mu_2 \in I^X$ as follows: $\mu_1(a) = 0.2, \ \mu_1(b) = 0.3, \ \mu_1(c) = 0.7;$ $\mu_2(a) = 0.1, \ \mu_2(b) = 0.2, \ \mu_2(c) = 0.2.$

We define τ , **I** : $I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1, \text{if} \quad \lambda = \overline{1}, \overline{0}, \\ \frac{1}{2}, \text{if} \quad \lambda = \mu_2, \\ 0, \quad \text{otherwise.} \end{cases}$$

If we take $\mathbf{I} = \mathbf{I}^0$ for all $r \in I_0$, then μ_1 is $\frac{1}{2}$ -FSIO, but μ is not $\frac{1}{2}$ -FPIO.

Remark 2.3. r-FIO and r-FSIO are independent notions as show by the following Examples 2.1. and 2.3.

Example 2.3. Define two fuzzy topologies and fuzzy ideal τ , $\mathbf{I} : I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1, \text{if} \quad \lambda = \overline{1}, \overline{0}, \\ \frac{1}{2}, \text{if} \quad \lambda = \overline{0.4}, \\ \frac{2}{3}, \text{if} \quad \lambda = \overline{0.6}, \\ 0, \quad \text{otherwise.} \end{cases}$$

If we take $\mathbf{I} = \mathbf{I}^0$ for all $r \in I_0$, and let $\mu = \overline{0.5}$, then μ is $\frac{1}{2}$ -FIO, but μ is not $\frac{1}{2}$ -FSIO.

On the other hand, **In Example 2.1.** If we take $\mathbf{I} = \mathbf{I}^0$ for all $r \in I_0$, and let $\mu = \overline{0.6}$, then μ is $\frac{1}{2}$ -**FSIO** but μ is not $\frac{1}{2}$ -**FIO**.

Remark 2.4. r-fuzzy open set and r-**FIO** are independent notions as show by the following Example 2.1. and 2.4.

Example 2.4. Define two fuzzy topologies and fuzzy ideal τ , $\mathbf{I} : I^X \to I$ as follows:

$$\tau(\lambda) = \begin{cases} 1, \text{if} \quad \lambda = \overline{1}, \overline{0}, \\ \frac{1}{2}, \text{if} \quad \lambda = \overline{0.4}, \\ \frac{1}{3}, \text{if} \quad \lambda = \overline{0.3}, \\ 0, & \text{otherwise.} \end{cases}$$

International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, no. 2, June 2009

If we take $\mathbf{I} = \mathbf{I}^1$, for all $r \in I_0$, and let $\mu = \overline{0.3}$, then $\tau(\mu) \geq \frac{1}{3}$, but μ is not $\frac{1}{3}$ -FIO.

On the other hand, **In Example 2.1.** If we take $\mathbf{I} = \mathbf{I}^0$ for all $r \in I_0$, and let $\mu = \overline{0.3}$, then μ is $\frac{1}{2}$ -FIO, but $\tau(\mu) < \frac{1}{2}$.

Corollary 2.1. Let (X, τ, \mathbf{I}) be a fits. For each $\mu \in I^X$. (1) If $\mathbf{I} = \mathbf{I}^0$ for all $r \in I_0$, then,

(i) r-FIO, r-FPIO and r-FPO are equivalent,
(ii) μ r-FSIO if and only if r-FSO,

(iii) μ r-**F** β **IO** if and only if μ is r-**F** β **O**.

(2) If $\mathbf{I} = \mathbf{I}^1$ for all $r \in I_0$, then, μ is r-F β IO if and only if μ is r-FSO.

Proof. (1) If $I = \mathbf{I}^0$ for all $r \in I_0$, then, $\mu_r^* = C_\tau(\mu, r)$ for any $\mu \in I^X$ and hence $Cl^*(\mu, r) = \mu \lor \mu_r^* = C_\tau(\mu, r)$. Therefore, we have $\mu_r^* = C_\tau(\mu, r) = Cl^*(\mu, r)$. Thus, (i), (ii), and (iii) follow immediately.

(2) If $\mathbf{I} = \mathbf{I}^1$ for all $r \in I_0$, then, $\mu_r^* = \overline{0}$. Therefore, we have $C_{\tau}(I_{\tau}(Cl^*(\mu, r), r), r) = C_{\tau}(I_{\tau}(\mu_r^* \lor \mu, r), r) = C_{\tau}(I_{\tau}(\mu, r), r)$. Thus, r-F β IO and r-FSO are equivalent.

Definition 2.2. Let (X, τ, \mathbf{I}) be a fits. For $\mu, \lambda \in I^X$ and $r \in I_0$.

- (1) μ is called r-fuzzy t-I-set if
 - $I_{\tau}(Cl^*(\mu, r), r) = I_{\tau}(\mu, r).$
- (2) μ is called r-fuzzy B-I-set if μ = ν ∧ λ, where τ(ν) ≥ r and λ is r-fuzzy t-I-set of X.
 (3) μ is called r-fuzzy *-dense-in-itself if μ ≤ μ_r*.

Corollary 2.2. Let (X, τ, \mathbf{I}) be a fits and $\lambda \in I^X$, the following properties are holds

(1) Every r-fuzzy t-I-set is r-fuzzy B-I-set.

(2) Every r-fuzzy *-dense-in-itself set is r-fuzzy t-I-set.

- **Proof.** (1) Let μ is r-fuzzy t-I-set. Since $\mu = \overline{1} \wedge \mu$ then μ is a r-fuzzy B-I-set.
 - (2) Let μ is r-fuzzy *-dense-in-itself set. Then $I_{\tau}(Cl^*(\mu, r), r) = I_{\tau}((\mu_r^* \lor \mu, r) = I_{\tau}(\mu, r).$

Lemma 2.1. Let (X, τ, \mathbf{I}) be a fits, for $\mu \in I^X$. The following statements are equivalent.

(1) μ is r-**F** α **IO**.

(2) μ r-FSIO and r-FPIO.

Proof. Necessity. This is obvious.

Sufficiency. Let μ be r-FSIO and r-FPIO. Then, we have

$$\mu \leq I_{\tau}(Cl^{*}(\mu, r), r) \leq I_{\tau}(Cl^{*}(Cl^{*}(I_{\tau}(\mu, r), r), r), r) = I_{\tau}(Cl^{*}(I_{\tau}(\mu, r), r), r).$$

This show that μ is r-F α IO.

Lemma 2.2. Let (X, τ, \mathbf{I}) be a fits, for $\mu \in I^X$, the following statements are equivalent.

(1) μ is r-**FIO**.

(2) μ are r-**FIPO** and r-fuzzy *-dense-in-itself.

Proof. $(1\Rightarrow 2)$: by Theorem 2.1, every r-**FIO** is r-**FPIO**. On the other hand, $\mu \leq I_{\tau}(\mu_r^*, r) \leq \mu_r^*$, which show that μ is r-fuzzy *-dense-in-itself.

 $(2\Rightarrow1)$: by the hypothesis, $\mu \leq I_{\tau}(Cl^*(\mu, r), r) \leq I_{\tau}(\mu \lor \mu_r^*, r) = I_{\tau}(\mu_r^*, r)$, then, μ is r-FIO.

Lemma 2.3. Let (X, τ, \mathbf{I}) be a fits, for $\mu \in I^X$, the following statements are equivalent.

(1) $\tau(\mu) \ge r$.

(2) μ are r-FIPO and r-fuzzy B-I-set.

Proof. Let $\tau(\mu) \geq r$. Then $\mu \wedge \overline{1}$ follows that μ is a r-fuzzy B-I-set. μ is also r-**FPIO** by Theorem 2.1(9). Conversely, Let μ be both r-fuzzy B-I-set and r-**FPIO**. Then, $\mu \leq I_{\tau}(Cl^*(\mu, r), r)$ and $\mu = \lambda \wedge \omega$ where $\tau(\lambda) \geq r$ and ω is r-fuzzy t-I-set. Therefore,

$$\begin{split} \lambda \wedge \omega &\leq I_{\tau}(Cl^*(\lambda \wedge \omega, r), r) \\ &\leq I_{\tau}(Cl^*(\lambda, r), r) \wedge I_{\tau}(Cl^*(\omega, r), r) \\ &= I_{\tau}(Cl^*(\lambda, r), r) \wedge I_{\tau}(\omega, r). \end{split}$$

Hence,

ω

$$\begin{split} \lambda \wedge \omega &\leq (\lambda \wedge \omega) \wedge \lambda \\ &= I_{\tau}(Cl^*(\lambda, r), r) \wedge I_{\tau}(\omega, r) \wedge \lambda \\ &= \lambda \wedge I_{\tau}(\omega, r). \end{split}$$

Thus, we obtain $\lambda \wedge \omega = \lambda \wedge I_{\tau}(\nu, r)$, implies $\tau(\mu) \geq r$.

Lemma 2.4. Let (X, τ, \mathbf{I}) be a fuzzy ideal topological space and $\mu, \omega \in I^X$. If $\tau(\omega) \geq r$, then $\omega \wedge Cl^*(\mu, r) \leq Cl^*(\mu \wedge \omega, r)$.

Proof. Let $\tau(\omega) \geq r$, by Theorem 1.3, then we have $(\omega \wedge \mu_r^*) \leq (\omega \wedge \mu)_r^*$ for any $\mu \in I^X$. Thus, we have

$$\begin{aligned} \mathbf{v} \wedge Cl^*(\mu, r) &= \omega \wedge (\mu \lor \mu_r^*) \\ &= (\omega \land \mu) \lor (\omega \land \mu_r^*) \\ &\leq (\omega \land \mu) \lor (\omega \land \mu)_r^* \\ &= Cl^*(\omega \land \mu, r). \end{aligned}$$

Theorem 2.2. Let (X, τ, \mathbf{I}) be a fits and $\mu, \omega \in I^X$. Then the following properties hold:

(1) If μ is r-FSIO and ω is r-F α IO, then $\mu \wedge \omega$ is r-FSIO.

(2) If μ is r-FPIO and ω is r-F α IO, then $\mu \wedge \omega$ is r-FPIO.

(3) If $\tau(\mu) \ge r$ and ω is r-FPIO, then $\mu \land \omega$ is r-FPIO. (4) If $\tau(\mu) \ge r$ and ω is r-FSIO, then $\mu \land \omega$ is r-FSIO **Proof.** (1) Let μ be r-FSIO and ω be r-F α IO. By using Lemma 2.4, we have

$$\mu \wedge \omega \leq Cl^*(I_{\tau}(\mu, r), r) \wedge I_{\tau}(Cl^*(I_{\tau}(\omega, r), r), r)$$

$$\leq Cl^*(I_{\tau}(\mu, r) \wedge Cl^*(I_{\tau}(\omega, r), r), r)$$

$$\leq Cl^*(Cl^*(I_{\tau}(\mu, r), r) \wedge I_{\tau}(\omega, r), r)$$

$$\leq Cl^*(I_{\tau}(\mu, r), r).$$

This show that $\mu \wedge \omega$ is r-FSIO. (2-4) Similarly.

Corollary 2.3. Let (X, τ, \mathbf{I}) be a fits and $\mu, \omega \in I^X$. Then the following properties hold:

(1) If μ is r-FSIO and $\tau(\omega) \ge r$, then $\mu \wedge \omega$ is r-FSIO. (2) If μ is r-FPIO and $\tau(\omega) \ge r$, then $\mu \wedge \omega$ is r-FPIO.

Theorem 2.3. Let (X, τ, \mathbf{I}) be a fits and $\mu, \omega \in I^X$. Then the following properties hold:

(1) If μ and ω are r-F α IO, then $\mu \wedge \omega$ is r-F α IO.

(2) If μ_{γ} is r-F α IO for $\gamma \in \sigma$, then $\bigvee_{\gamma \in \sigma} \mu_{\gamma}$ is r-F α IO. (3) If μ_{γ} is r-FPIO for $\gamma \in \sigma$, then $\bigvee_{\gamma \in \sigma} \mu_{\gamma}$ is r-FPIO.

Proof. (1) Let μ and ω , be r-F α IO, by Lemma 2.1, μ is r-FSIO and r-FPIO and by Theorem 2.2(1,2), $\mu \wedge \omega$ is r-FSIO and r-FPIO. Therefore, by Lemma 2.1, $\mu \wedge \omega$ is r- $F\alpha IO$.

(2) Let μ_{γ} be a class of r-F α IO. Then for any $\gamma \in \sigma$,

$$egin{aligned} &\mu_\gamma &\leq I_ au(Cl^*(I_ au(\mu_\gamma,r),r),r)\ &\leq I_ au(Cl^*(I_ au(\bigvee_{\gamma\in\sigma}\mu_\gamma,r),r),r),r). \end{aligned}$$

Hence $\bigvee_{\gamma \in \sigma} \mu_{\gamma} \leq I_{\tau}(Cl^*(I_{\tau}(\bigvee_{\gamma \in \sigma} \mu_{\gamma}, r), r), r))$. This show that $\bigvee_{\gamma \in \sigma} \mu_{\gamma}$ is r-**F** α **IO**.

(3) Similarly.

Theorem 2.4. Let (X, τ, \mathbf{I}) be a fits, if μ is r-FPIC then $Cl^*(I_\tau(\mu, r), r) \leq \mu$, for each $\mu \in I^X$.

Proof. Let μ be r-**FPIC**. Then $\overline{1} - \mu$ is r-**FPIO**. Hence

$$\begin{split} \overline{1} - \mu &\leq I_{\tau}(Cl^*(\overline{1} - \mu, r), r) \\ &\leq I_{\tau}(C_{\tau}(\overline{1} - \mu, r), r) \\ &= \overline{1} - C_{\tau}(I_{\tau}(\mu, r), r) \\ &\leq \overline{1} - Cl^*(I_{\tau}(\mu, r), r). \end{split}$$

Therefore, we option $Cl^*(I_\tau(\mu, r), r) \leq \mu$.

Remark 2.5. Let (X, τ, \mathbf{I}) be a fits. For each $\mu \in I^X$, we have $I_{\tau}(Cl^{*}(\bar{1}-\mu,r),r) \neq \bar{1} - Cl^{*}(I_{\tau}(\mu,r),r)$ as show by the following example.

Example 2.5. In Example 2.4, If we take $\mathbf{I} = \mathbf{I}^0$ for all $r \in I_0$, and let $\mu = \overline{0.7}$, then μ satisfies the above properties.

Corollary 2.4. Let (X, τ, \mathbf{I}) be a fuzzy ideal topological space, such that $I_{\tau}(Cl^*(\overline{1} - \mu, r), r) \neq \overline{1} - \mu$ $Cl^*(I_\tau(\mu, r), r)$. Then μ is r-**FPIC** iff $Cl^*(I_\tau(\mu, r), r) \leq$ μ . for each $\mu \in I^X$ and $r \in I_0$.

Theorem 2.5. Let (X, τ, \mathbf{I}) be a fuzzy ideal topological space. For each $\lambda \in I^X$, we define an operator $\mathbf{I}C_{\tau}: I^X \to I$ as follows:

 $\mathbf{I}C_{\tau}(\lambda, r) = \bigwedge \{ \mu \in I^X : \lambda \leq \mu, \ \mu \text{ is r-FIC} \}.$ For each $\lambda, \mu \in I^X$, the following properties are holds: (1) $\mathbf{I}C_{\tau}(\overline{0}, r) = \overline{0}.$ (2) $\lambda \leq \mathbf{I}C_{\tau}(\lambda, r).$ (3) $\mathbf{I}C_{\tau}(\lambda, r) \vee \mathbf{I}C_{\tau}(\mu, r) \leq \mathbf{I}C_{\tau}(\lambda \vee \mu, r).$ (4) $\mathbf{I}C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r) = \mathbf{I}C_{\tau}(\lambda, r).$ (5) If λ is r-**FIC**, iff $\lambda = \mathbf{I}C_{\tau}(\lambda, r)$. (6) If $C_{\tau}(\lambda, r)$ is r-FIC, then $C_{\tau}(IC_{\tau}(\lambda, r), r) =$ $\mathbf{I}C_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(\lambda, r).$

Proof. (1), (2) and (5) are easily proved from the definition of $\mathbf{I}C_{\tau}$ and Lemma 1.1.

(3) Since $\lambda, \mu \leq \lambda \lor \mu$, we have

$$\mathbf{I}C_{\tau}(\lambda, r) \vee \mathbf{I}C_{\tau}(\mu, r) \leq \mathbf{I}C_{\tau}(\lambda \vee \mu, r)$$

(4) From (2) we have $\mathbf{I}C_{\tau}(\lambda, r) \leq \mathbf{I}C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r)$. Now we show that $\mathbf{I}C_{\tau}(\lambda, r) \geq \mathbf{I}C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r)$. Suppose that

$$\mathbf{I}C_{\tau}(\lambda, r) \not\geq \mathbf{I}C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r).$$

There exist $x \in X$ and $t \in (0, 1)$ such that

$$\mathbf{I}C_{\tau}(\lambda, r)(x) < t < \mathbf{I}C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r)(x).$$
 (**B**)

Since $IC_{\tau}(\lambda, r)(x) < t$, by the definition IC_{τ} , there exists r-**FIC**, λ_1 with $\lambda \leq \lambda_1$ such that

$$\mathbf{I}C_{\tau}(\lambda, r)(x) \le \lambda_1(x) < t.$$

Since $\lambda \leq \lambda_1$, we have $\mathbf{I}C_{\tau}(\lambda, r) \leq \lambda_1$. Again, by the definition $\mathbf{I}C_{\tau}$, we have $\mathbf{I}C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r) \leq \lambda_1$. Hence $\mathbf{I}C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r)(x) \leq \lambda_1(x) < t$. It is a contradiction for (**B**). Thus

$$\mathbf{I}C_{\tau}(\lambda, r) \geq \mathbf{I}C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r).$$

(6) From (2) and $C_{\tau}(\lambda, r)$ is a r-FIC we have $\mathbf{I}C_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(\lambda, r).$ we only show that

$$C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r) = C_{\tau}(\lambda, r).$$

Since $\lambda \leq \mathbf{I} C_{\tau}(\lambda, r)$

$$C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r) \ge C_{\tau}(\lambda, r).$$

Suppose that

$$C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r)C_{\tau}(\lambda, r).$$

There exist $x \in X$ and $r \in I_0$ such that

$$C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r)(x) > C_{\tau}(\lambda, r)(x)$$

By the definition C_{τ} , there exists $\nu \in I^X$, with $\lambda \leq \nu$ and $\tau(\overline{1} - \nu) \geq r$ such that

$$C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r)(x) > \nu(x) \ge C_{\tau}(\lambda, r)(x).$$

On the other hand, since $\nu = C_{\tau}(\nu, r), \ \lambda \leq \nu$, then

$$\mathbf{I}C_{\mathbf{I}}(\lambda,r) \leq \mathbf{I}C_{\tau}(\nu,r) = \mathbf{I}C_{\tau}(C_{\tau}(\nu,r),r) = C_{\tau}(\nu,r) = \nu.$$

Thus $C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r) \leq \nu$. It is a contradiction. Hence $C_{\tau}(\mathbf{I}C_{\tau}(\lambda, r), r) \leq C_{\tau}(\lambda, r)$.

Theorem 2.6. Let (X, τ, \mathbf{I}) be a fits. For each $\lambda \in I^X$, we define an operator $\mathbf{I}I_{\tau} : I^X \to I$ as follows: $\mathbf{I}I_{\tau}(\lambda, r) = \bigvee \{ \mu \in I^X : \mu \leq \lambda, \mu \text{ is } r - \mathbf{FIO} \}.$

 $\mathbf{I}_{\tau}(\lambda, r) = \bigvee \{ \mu \in I^X : \mu \leq \lambda, \mu \text{ is } r - \mathbf{FIO} \}$ Foreach $\mu \in I^X$, it holds the following properties: (1) $\mathbf{II}_{\tau}(\overline{1} - \mu, r) = \overline{1} - (\mathbf{I}C_{\tau}(\mu, r)).$ (2) $\mathbf{II}_{\tau}(\mu, r) \leq \mu \leq \mathbf{I}C_{\tau}(\mu, r).$ (3) If μ is r-FIO iff $\mathbf{II}_{\tau}(\mu, r) = \mu.$

Proof. (1) It is easily proved form the following:

$$1 - (\mathbf{I}C_{\tau}(\lambda, r))$$

= $\overline{1} - \bigwedge \{ \mu \in I^X : \lambda \leq \mu, \ \mu \text{ is } r - \mathbf{FIC} \}$
= $\bigvee \{ \mu \in I^X : \overline{1} - \lambda \geq \overline{1} - \mu, \ \overline{1} - \mu \text{ is } r - \mathbf{FIO} \}$
= $\mathbf{I}I_{\tau}(\overline{1} - \lambda, r).$

(2) and (3) are easily proved form the definition of $\mathbf{I}I_{\tau}$ and Lemma 1.1.

3. Decompositions of fuzzy continuity and fuzzy I-continuity

Definition 3.1. A mapping $f : (X, \tau, \mathbf{I}) \to (Y, \eta)$ is called fuzzy I-continuous (resp. fuzzy pre-I-continuous, fuzzy *-I-continuous, fuzzy B-I-continuous, fuzzy semi-I-continuous, fuzzy α -I-continuous) if $f^{-1}(\mu)$ is r-FIO (resp. r-FPIO, r-fuzzy *-denes-in-itself, r-fuzzy B-I-set, r-FSIO, r-F α IO) for each $\eta(\mu) \geq r$ and $r \in I_0$.

According to Lemma 2.1–3 we have the following decomposition of fuzzy continuity and decomposition of fuzzy I-continuity.

Theorem 3.1. (1) A mapping $f : (X, \tau, \mathbf{I}) \to (Y, \eta)$ is called fuzzy continuous if and only if it is both fuzzy pre-I-continuous and fuzzy B-I-continuous.

(2) A mapping $f : (X, \tau, \mathbf{I}) \to (Y, \eta)$ is called fuzzy I-continuous if and only if it is both fuzzy pre-I-continuous and fuzzy *-I-continuous.

(3) A mapping $f : (X, \tau, \mathbf{I}) \to (Y, \eta)$ is called fuzzy α -I-continuous if and only if it is both fuzzy pre-I-continuous and fuzzy semi-I-continuous.

Theorem 3.2. Let $f : (X, \tau, \mathbf{I}) \to (Y, \eta)$ be a function, then following statements are equivalent.

(1) A map f is fuzzy α -I-continuous.

(2) The inverse image of each r-fuzzy closed set in Y is r-F α IO.

(3) $C_{\tau}(Int^*_{\tau}(C_{\tau}(f^{-1}(\lambda), r), r), r) \leq f^{-1}(C_{\eta}(\lambda), r),$ for each $\lambda \in I^Y$ and $r \in I_0$.

(4) $f(C_{\tau}(Int^*_{\tau}(C_{\tau}(\mu, r), r), r)) \leq C_{\eta}(f(\mu), r)$, for each $\mu \in I^X$ and $r \in I_0$.

Proof. (1) \Leftrightarrow (2): It easily proved form Definition 3.1, and $f^{-1}(\overline{1} - \mu) = \overline{1} - f^{-1}(\mu)$.

(2) \Leftrightarrow (3): For each $\lambda \in I^Y$ and $r \in I_0$. Since $C_\eta(\lambda, r)$ is r-fuzzy closed set in Y, by (2) $f^{-1}(C_\eta(\lambda, r))$ is r-F α IC and $\overline{1} - f^{-1}(C_\eta(\lambda, r))$ is r-F α IO. Therefore,

$$\overline{1} - f^{-1}(C_{\eta}(\lambda, r) \leq I_{\tau}(Cl^{*}(I_{\tau}(\overline{1} - f^{-1}(C_{\tau}(\lambda, r)), r), r) = \overline{1} - C_{\tau}(Int_{\tau}^{*}(C_{\tau}(f^{-1}(C_{\tau}(\lambda, r)), r), r), r).$$

Hence, we obtain

 $f^{-1}(C_{\eta}(\lambda, r) \ge C_{\tau}(Int_{\tau}^{*}(C_{\tau}(f^{-1}(\lambda), r), r), r).$ (3) \Leftrightarrow (4): For each $\mu \in I^{X}$ and $r \in I_{0}$. By (3), we have

$$C_{\tau}(Int_{\tau}^{*}(C_{\tau}(\mu, r), r) \leq C_{\tau}(Int_{\tau}^{*}(C_{\tau}(f^{-1}f(\mu), r), r))$$

$$\leq f^{-1}(C_{\eta}(f(\mu), r)),$$

and hence

$$f(C_{\tau}(Int_{\tau}^{*}(C_{\tau}(\mu, r), r), r)) \leq C_{\eta}(f(\mu), r).$$
(4) \Leftrightarrow (1): Let $\eta(\nu) \geq r$. Then by (4),

$$f(C_{\tau}(Int_{\tau}^{*}(C_{\tau} \quad (f^{-1}(\overline{1}-\nu)),r),r),r))$$

$$\leq C_{\eta}(ff^{-1}(\overline{1}-\nu),r))$$

$$\leq C_{\eta}(\overline{1}-\nu),r) = \overline{1}-\nu.$$

Thus,

$$C_{\tau}(Int_{\tau}^{*}(C_{\tau}(f^{-1}(\overline{1}-\nu),r),r),r)) \leq f^{-1}(\overline{1}-\nu) < \overline{1}-f^{-1}(\nu).$$

Consequently, we have

$$f^{-1}(\nu) \leq I_{\tau}(Cl^*(I_{\tau}(f^{-1}(\nu), r), r), r).$$

This show that $f^{-1}(\nu)$ is r-F α IO. Thus, f is fuzzy α -I-continuous.

Theorem 3.3. Let $f : (X, \tau, \mathbf{I}) \to (Y, \eta)$ be fuzzy α -I-continuous, then

(1) $f(Cl^*(\mu, r)) \leq C_{\eta}(f(\mu), r)$, for each $\mu \in I^X$ is r-FPIO.

(2) $Cl^*(f^{-1}(\lambda), r) \leq f^{-1}(C_\tau(\lambda, r))$, for each $\lambda \in I^Y$ is r-FPIO.

Proof. (1) If $\mu \in I^X$ is r-**FPIO**, then $\mu \leq I_{\tau}(Cl^*(\mu, r), r)$. Thus, by Theorem 3.2 we have

$$\begin{aligned} f(Cl^*(\mu, r)) &\leq f(C_\tau(\mu, r)) \\ &\leq f(C_\tau(I_\tau(Cl^*(\mu, r), r), r)) \\ &\leq f(C_\tau(Int^*_\tau(C_\tau(\mu, r), r), r)) \\ &\leq C_\tau(f(\mu), r). \end{aligned}$$

(2) If $\lambda \in I^Y$ is r-**FPIO**, then $\lambda \leq I_{\tau}(Cl^*(\lambda, r), r)$. Therefore, by Theorem 3.2, we have

$$\begin{aligned} Cl^*(f^{-1}(\lambda), r) &\leq C_{\tau}(f^{-1}(\lambda), r) \\ &\leq C_{\tau}(f^{-1}(I_{\tau}(Cl^*(\lambda, r), r), r)) \\ &\leq C_{\tau}(I_{\tau}(Cl^*(I_{\tau}(f^{-1}(I_{\tau}(Cl^*(\lambda, r), r)), r), r), r), r), r)) \\ &\leq C_{\tau}(Int^*_{\tau}(C_{\tau}(f^{-1}(I_{\tau}(Cl^*(\lambda, r), r)), r), r), r)) \\ &\leq f^{-1}(C_{\tau}(I_{\tau}(Cl^*(\lambda, r), r), r)) \\ &\leq f^{-1}(C_{\tau}(\lambda, r)). \end{aligned}$$

Definition 3.2. A mapping $f : (X, \tau) \to (Y, \eta, \mathbf{I})$ is called fuzzy α -I-open (resp. fuzzy semi-I-open, fuzzy pre-I-open, fuzzy β -I-open) if image of each $\mu \in I^X$ with $\tau(\mu) \ge r$ is r-F α IO (resp. r-FSIO, r-F β IO) set of Y.

Remark 3.1. By Definition 2.2, and Remark 2.1 we obtain the following diagram:

fuzzy open \Rightarrow fuzzy α - I-open \Rightarrow fuzzy pre-I-open $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ fuzzy semi-I-open \Rightarrow fuzzy β -I-open

Theorem 3.4. A mapping $f : (X, \tau) \to (Y, \eta, \mathbf{I})$ is called fuzzy α -I-open if and only if it is fuzzy semi-I-open and fuzzy pre-I-open.

Proof. Form Lemma 2.1, the proof straightforward.

Theorem 3.5. A mapping $f : (X, \tau) \to (Y, \eta, \mathbf{I})$ is fuzzy α -I-open if and only if for each $\mu \in I^Y$ and each $\tau(\overline{1} - \lambda) \geq r$, containing $f^{-1}(\mu)$, there exists $\nu \in I^Y$ **r**-**F** α **IC** containing μ such that $f^{-1}(\nu) \leq \lambda$.

Proof. Necessity. Let $\nu = \overline{1} - f(\overline{1} - \lambda)$. Since $f^{-1}(\mu) \leq \lambda$, we have $f(\overline{1} - \lambda) \leq \overline{1} - \mu$. Since f is fuzzy α -I-open, then ν is r-F α IC and $f^{-1}(\nu) = \overline{1} - f^{-1}(f(\overline{1} - \lambda)) \leq \overline{1} - (\overline{1} - \lambda) = \lambda$. Sufficiency. Obvious.

Corollary 3.1. Let $f : (X, \tau, \mathbf{I}) \to (Y, \eta)$ be fuzzy α -I-open. For each $\mu \in I^Y$, then

(1)
$$f^{-1}(C_{\tau}(I_{\tau}^{*}(C_{\tau}(\mu, r), r), r)) \leq C_{\eta}(f^{-1}(\mu), r).$$

(2) $f^{-1}(Cl^{*}(\lambda, r)) \leq C_{\tau}(f^{-1}(\lambda), r).$

Proof. For each $\mu \in I^Y$, then $C_{\tau}(f^{-1}(\mu), r)$ is f-fuzzy

closed. By Theorem 3.5, there exists $\nu \in I^Y$ r-F α IC containing μ such that $f^{-1}(\nu) \leq C_{\tau}(f^{-1}(\mu), r)$. Since $\overline{1} - \nu$ is r-F α IO, $f^{-1}(\overline{1} - \nu) \leq f^{-1}(I_{\tau}(Cl^*(I_{\tau}(\overline{1} - \nu, r), r), r))$ and

$$\overline{1} - f^{-1}(\nu) \leq f^{-1}(\overline{1} - C_{\tau}(Int_{\tau}^{*}(C_{\tau}(\nu, r), r), r)) \\ \leq \overline{1} - f^{-1}(C_{\tau}(Int_{\tau}^{*}(C_{\tau}(\nu, r), r), r)).$$

Therefore,

$$f^{-1}(C_{\tau}(Int_{\tau}^{*}(C_{\tau}(\nu, r), r), r)) \leq f^{-1}(\nu) \leq C_{\eta}(f^{-1}(\mu), r).$$

Thus, $f^{-1}(C_{\tau}(I_{\tau}^{*}(C_{\tau}(\mu, r), r), r)) \leq C_{\eta}(f^{-1}(\mu), r).$
(2) Similarly.

Theorem 3.6. Let $f : (X, \tau, \mathbf{I}) \to (Y, \eta)$ be a mapping. For each $r \in I_0$, then following statements are equivalent.

(1) A map f is called fuzzy I-continuous function.

(2) $f^{-1}(\mu)$ is r-FIC, in X for each $\mu \in I^X$, $r \in I_0$, With $\eta(\overline{1} - \mu) \ge r$. (3) $f(\mathbf{I}C_{\tau}(\lambda, r)) \le C_{\eta}(f(\lambda), r)$, for each $\lambda \in I^X$. (4) $\mathbf{I}C_{\tau}(f^{-1}(\mu, r)) \le f^{-1}(C_{\eta}(\mu, r))$, for $\mu \in I^Y$. (5) $f^{-1}(I_{\eta}(\mu, r)) \le \mathbf{I}I_{\tau}(f^{-1}(\mu, r))$, for each $\mu \in I^Y$.

Proof. (1) \Leftrightarrow (2): It easily proved form Definition 1.6(2), and $f^{-1}(\overline{1} - \mu) = \overline{1} - f^{-1}(\mu)$.

(2) \Rightarrow (3): Suppose there exist $\lambda \in I^X$ and $r \in I_0$ such that

$$f(\mathbf{I}C_{\tau}(\lambda, r)) \not\leq C_{\tau}(f(\lambda), r).$$

There exist $y \in Y$ and $t \in I_0$ such that

$$f(\mathbf{I}C_{\tau}(\lambda, r))(y) > t > C_{\eta}(f(\lambda), r)(y).$$

If $f^{-1}(\{y\}) = \emptyset$, it is a contradiction because $f(\mathbf{I}C_{\tau}(\lambda, r))(y) \neq 0.$

If $f^{-1}(\{y\}) \neq \emptyset$, there exists $x \in f^{-1}(\{y\})$ such that

$$f(\mathbf{I}C_{\tau}(\lambda, r))(y) \ge \mathbf{I}C_{\tau}(\lambda, r)(x) > t > C_{\eta}(f(\lambda), r)(f(x)).$$
(A)

Since $C_{\eta}(f(\lambda), r)(f(x)) \leq t$, there exists $\eta(\overline{1} - \mu) \geq r$ with $f(\lambda) \leq \mu$ such that

$$C_{\eta}(f(\lambda), r)(f(x)) \le \mu(f(x)) \le t.$$

Moreover, $f(\lambda) \leq \mu$ implies $\lambda \leq f^{-1}(\mu)$. Form (2), $f^{-1}(\mu)$ is r-FIC. Thus,

 $\mathbf{I}C_{\tau}(\lambda,r)(x) \leq f^{-1}(\mu)(x) = \mu(f(x)) < t$. It is a contradiction for (**A**).

(3) \Rightarrow (4): For all $\mu \in I^Y$, $r \in I_0$, put $\lambda = f^{-1}(\mu)$. Form (3), we have

$$f(\mathbf{I}C_{\tau}(f^{-1}(\mu), r)) \le C_{\eta}(f(f^{-1}(\mu)), r) \le C_{\eta}(\mu, r).$$

It implies

$$\mathbf{I} C_{\tau}(f^{-1}(\mu), r) \leq f^{-1}(f(C_{\eta}(f^{-1}(\mu)), r))$$

$$\leq f^{-1}(C_{\eta}(\mu, r)).$$

(4) \Rightarrow (5): It easily proved form Theorems 2.6(1) and Theorem 1.2(1).

(5) \Rightarrow (1): Let $\eta(\mu) \ge r$. Then we have by definition I_{τ} , $\mu = I_{\eta}(\mu, r)$. By (5) we have

$$f^{-1}(\mu) \leq \mathbf{I}I_{\tau}(f^{-1}(\mu), r).$$

On the other hand, by Theorem 2.6(2),

$$f^{-1}(\mu) \ge \mathbf{I}I_{\tau}(f^{-1}(\mu), r).$$

Thus, $f^{-1}(\mu) = \mathbf{I}I_{\tau}(f^{-1}(\mu), r)$ that is $f^{-1}(\mu)$ is r-**FIO**.

Analogous theorems to Theorem 3.6 can be given for the types of continuity in Definition 3.1.

Definition 3.3. Let $f : (X, \tau, \mathbf{I}) \to (Y, \eta, \mathbf{I})$ be a mapping.

(1) f is called fuzzy I-irresolute if $f^{-1}(\mu)$ is r-FIO set of X for each r-FIO $\mu \in I^Y$ and $r \in I_0$.

(2) f is called fuzzy I-irresolute open (resp. fuzzy I-open) if $f(\mu)$ is r-FIO set of Y for each r-FIO $\mu \in I^X$ (resp. $\tau(\mu) \ge r$).

(3) f is called fuzzy I-irresolute closed (resp. fuzzy I-closed) if $f(\mu)$ is r-FIC set of Y for each r-FIC $\mu \in I^X$ (resp. $\tau(\overline{1} - \mu) \ge r$.

The Following theorem is similarly proved as Theorem 3.6.

Theorem 3.7. Let $f : (X, \tau, \mathbf{I}) \to (Y, \eta, \mathbf{I})$ be a mapping. Then following statements are equivalent.

(1) A map f is fuzzy I-irresolute.

(2) For each r-FIC $\mu \in I^Y$, $f^{-1}(\mu)$ is r-FIC.

(3) $f(\mathbf{I}C_{\tau}(\lambda, r)) \leq \mathbf{I}C_{\eta}(f(\lambda), r)$, for each $\lambda \in I^X$ and $r \in I_0$.

(4) $\mathbf{I}C_{\tau}(f^{-1}(\mu, r)) \leq f^{-1}(\mathbf{I}C_{\eta}(\mu, r))$, for each $\mu \in I^{Y}$ and $r \in I_{0}$.

(5) $f^{-1}(\mathbf{H}_{\eta}(\mu, r)) \leq \mathbf{H}_{\tau}(f^{-1}(\mu, r))$, for each $\mu \in I^{Y}$ and $r \in I_{0}$.

Theorem 3.8. Let $f : (X, \tau, \mathbf{I}) \to (Y, \eta, \mathbf{I})$ be a bijective mapping. The following statements are equivalent.

(1) A map f is fuzzy I-irresolute.

(2)
$$\mathbf{I}I_{\eta}(f(\mu), r)) \leq f(\mathbf{I}I_{\tau}(\mu), r)$$
, for each $\mu \in I^X$.

Proof. (1) \Rightarrow (2): Let f be fuzzy I-irresolute mapping and $\mu \in I^X$. Then $f^{-1}(\mathbf{I}I_\eta(f(\mu), r))$ is r-**FIO**. Form Theorem 3.7(5), and the fact that f is one-to-one we have

$$f^{-1}(\mathbf{I}I_{\eta}(f(\mu), r)) \leq \mathbf{I}I_{\tau}(f^{-1}(f(\mu)), r) = \mathbf{I}I_{\tau}(\mu, r).$$

Again since f is onto we have

$$\mathbf{I}I_{\eta}(f(\mu), r) = ff^{-1}(\mathbf{I}I_{\eta}(f(\mu), r)) \le f(\mathbf{I}I_{\tau}(\mu, r)).$$

(2) \Rightarrow (1): Let μ is r-**FIO** set of Y. Form Theorem 2.6(3), $\mu = \mathbf{I}I_{\eta}(\mu, r)$. By (2) we have

$$f(\mathbf{I}I_{\tau}(f^{-1}(\mu), r)) \ge \mathbf{I}I_{\eta}(ff^{-1}(\mu), r) = \mathbf{I}I_{\eta}(\mu, r) = \mu$$

and

$$\mathbf{I}_{T_{\tau}}(f^{-1}(\mu), r) = f^{-1}f(\mathbf{I}_{\tau}(f^{-1}(\mu), r)) \le f^{-1}(\mu).$$

Thus, $f^{-1}(\mu) = \mathbf{I}I_{\tau}(f^{-1}(\mu), r)$. Thus, f is fuzzy I-irresolute.

Theorem 3.9. Let $f : (X, \tau, \mathbf{I}) \to (Y, \eta, \mathbf{J})$ be fuzzy ideal topological space $f : X \to Y$ be a mapping. Then following statements are equivalent.

(1) f is fuzzy I-irresolute open.

(2) $f(\mathbf{I}I_{\tau}(\lambda, r)) \leq \mathbf{I}I_{\eta}(f(\lambda), r)$, for each $\lambda \in I^X$ and $r \in I_0$.

(3) $\mathbf{I}I_{\tau}(f^{-1}(\mu), r) \leq f^{-1}(\mathbf{I}I_{\eta}(\mu, r))$, for each $\mu \in I^{Y}$ and $r \in I_{0}$.

(4) For any $\mu \in I^Y$ and any r-FIC $\lambda \in I^X$ with $f^{-1}(\mu) \leq \lambda$, there exists a r-FIC $\rho \in I^Y$ with $\mu \leq \rho$ such that $f^{-1}(\rho) \leq \lambda$.

Proof.

(1) \Rightarrow (2): For each $\lambda \in I^X$. Since $II_{\tau}(f(\lambda), r) \leq \lambda$ form Theorem 2.6(2), we have $f(II_{\tau}(\lambda, r)) \leq f(\lambda)$. form (1), $f(II_{\tau}(\lambda, r))$ is r-FIO. Therefore $f(II_{\tau}(\lambda, r)) \leq II_{\eta}(f(\lambda), r)$.

(2) \Rightarrow (3): For all $\mu \in I^Y$ and $r \in I_0$, put $\lambda = f^{-1}(\mu)$ form (2). Then

$$f(\mathbf{I}I_{\tau}(f^{-1}(\mu), r)) \leq \mathbf{I}I_{\eta}(f(f^{-1}(\mu)), r) \leq \mathbf{I}I_{\eta}(\mu, r).$$

It implies $II_{\tau}(f^{-1}(\mu), r) \le f^{-1}(II_{\eta}(\mu, r)).$

(3) \Rightarrow (4): Let λ be r-FIC set of X such that $f^{-1}(\mu) \leq \lambda$. Since $\overline{1} - \lambda \leq f^{-1}(\overline{1} - \mu)$ and $II_{\tau}(\overline{1} - \lambda, r) = \overline{1} - \lambda$,

$$\mathbf{I}I_{\tau}(\overline{1}-\lambda,r)=\overline{1}-\lambda\leq\mathbf{I}I_{\tau}(f^{-1}(\overline{1}-\mu),r).$$

From (3),

$$\overline{1} - \lambda \leq \mathbf{I} I_{\tau} (f^{-1}(\overline{1} - \mu), r) \leq f^{-1} (\mathbf{I} I_{\eta}(\overline{1} - \mu, r)).$$

It implies

)

$$\begin{split} \Lambda &\geq \overline{1} - f^{-1}(\mathbf{I}I_{\eta}(\overline{1} - \mu), r) \\ &= f^{-1}(\overline{1} - \mathbf{I}I_{\eta}(\overline{1} - \mu, r)) \\ &= f^{-1}(\mathbf{I}C_{\eta}(\mu, r)). \end{split}$$

Hence there exists a r-FIC $IC_{\eta}(\mu, r)$ with $\mu \leq IC_{\eta}(\mu, r)$ such that $f^{-1}(IC_{\eta}(\mu, r)) \leq \lambda$.

(4) \Rightarrow (1) Let ω be r-FIO of X. Put $\mu = \overline{1} - f(\omega)$ and $\lambda = \overline{1} - \omega$ such that λ is r-FIC. We obtain

$$f^{-1}(\mu) = f^{-1}(\overline{1} - f(\omega))$$
$$= \overline{1} - f^{-1}(f(\omega))$$
$$\leq \overline{1} - \omega = \lambda.$$

Form (4) there exists a r-FIC set ρ with $\mu \leq \rho$ such that $f^{-1}(\rho) \leq \lambda = \overline{1} - \omega$. It implies $\omega \leq \overline{1} - f^{-1}(\rho) = f^{-1}(\overline{1} - \rho)$. Thus, $f(\omega) \leq f(f^{-1}(\overline{1} - \rho)) = \overline{1} - \rho$. On the other hand, since $\mu \leq \rho$,

$$f(\omega) = \overline{1} - \mu \ge \overline{1} - \rho.$$

Hence $f(\omega) = \overline{1} - \rho$, that is, $f(\omega)$ is r-FIO.

Theorem 3.10 is similarly proved from Theorem 3.9.

Theorem 3.10. Let (X, τ, \mathbf{I}) and (Y, η, \mathbf{I}) be fuzzy ideal topological spaces $f : X \to Y$ be a mapping. Then following statements are equivalent.

(1) f is fuzzy I-irresolute closed.

(2) $f(\mathbf{I}C_{\tau}(\lambda, r)) \leq \mathbf{I}C_{\eta}(f(\lambda), r)$, for each $\lambda \in I^X$ and $r \in I_0$.

(3) For any $\mu \in I^Y$ and any r-**FIO** $\lambda \in I^X$ with $f^{-1}(\mu) \leq \lambda$, there exists a r-**FIO** $\rho \in I^Y$ with $\mu \leq \rho$ such that $f^{-1}(\rho) \leq \lambda$.

Theorem 3.11. Let (X, τ, \mathbf{I}) and (Y, η) be fuzzy ideal topological space. A mapping $f : X \to Y$ be a fuzzy I-open. Then the following statements are holed.

(1) $f(I_{\tau}(\lambda, r)) \leq \mathbf{I}I_{\eta}(f(\lambda), r)$, for each $\lambda \in I^X$ and $r \in I_0$.

(2) $I_{\tau}(f^{-1}(\mu), r) \leq f^{-1}(\mathbf{I}I_{\eta}(\mu, r))$, for each $\mu \in I^{Y}$ and $r \in I_{0}$.

(3) For any $\mu \in I^Y$ and $\tau(\overline{1} - \lambda) \ge r$ such that $f^{-1}(\mu) \le \lambda$, there exists a r-FIC set $\rho \in I^Y$ with $\mu \le \rho$ such that $f^{-1}(\rho) \le \lambda$.

Proof. (1) For each $\lambda \in I^X$ since $I_{\tau}(\lambda, r) \leq \lambda$, by Theorem 1.2(3). Then $f(I_{\tau}(\lambda, r)) \leq f(\lambda)$. From (1), $f(I_{\tau}(\lambda, r))$ is r-**FIO**. Therefore

$$f(I_{\tau}(\lambda, r)) \leq \mathbf{I}I_{\eta}(f(\lambda), r)$$

(2) For all $\mu \in I^Y$ and $r \in I_0$, put $\lambda = f^{-1}(\mu)$ form (2). Then

$$f(I_{\tau}(f^{-1}(\mu), r)) \leq \mathbf{I}I_{\eta}(f(f^{-1}(\mu)), r) = \mathbf{I}I_{\eta}(\mu, r).$$

It implies $I_{\tau}(f^{-1}(\mu), r) \leq f^{-1}(\mathbf{I}I_{\eta}(\mu, r))$. (3) Let $\tau(\overline{1} - \lambda) \geq r$ set of X such that $f^{-1}(\mu) \leq \lambda$. Since $\underline{1} - \lambda \leq f^{-1}(\underline{1} - \mu)$ and $I_{\tau}(\underline{1} - \lambda, r) = \underline{1} - \lambda$.

$$I_{\tau}(\underline{1}-\lambda,r) = \underline{1}-\lambda \le I_{\tau}(f^{-1}(\underline{1}-\mu),r).$$

Form (2), we have

 $\underline{1}-\lambda \leq I_\tau(f^{-1}(\underline{1}-\mu),r) \leq f^{-1}(\mathbf{I} I_\eta(\underline{1}-\mu,r)).$ It implies

$$\begin{split} \lambda &\geq \underline{1} - f^{-1}(\mathbf{I}I_{\eta}(\underline{1} - \mu), r) \\ &= f^{-1}(\underline{1} - \mathbf{I}I_{\eta}(\underline{1} - \mu, r)) \\ &= f^{-1}(\mathbf{I}C_{\eta}(\mu, r)). \end{split}$$

Hence there exists a r-FIC $IC_{\eta}(\mu, r) \in I^{Y}$ with $\mu \leq IC_{\eta}(\mu, r)$ such that $f^{-1}(IC_{\eta}(\mu, r)) \leq \lambda$.

Theorem 3.12 is similarly proved from Theorem 3.11.

Theorem 3.12. Let (X, τ) and (Y, η, \mathbf{I}) be fuzzy ideal topological spaces. A mapping $f : X \to Y$ be a fuzzy I-closed. Then following statements are holed.

(1) $f(C_{\tau}(\lambda, r)) \leq \mathbf{I}C_{\eta}(f(\lambda), r)$, for $\lambda \in I^{X}$, $r \in I_{0}$. (2) For any $\lambda \in I^{Y}$ and $\tau(\mu) \geq r$ such that $f^{-1}(\lambda) \leq \mu$, there exists a r-**FIO** with $\lambda \leq \rho$ such that $f^{-1}(\rho) \leq \mu$.

Theorem 3.13. Let (X, τ, \mathbf{I}) and (Y, η, \mathbf{J}) be fuzzy ideal topological space and $f : X \to Y$ be a bijective mapping

(1) f is a fuzzy I-irresolute closed iff $f^{-1}(\mathbf{I}C_{\eta}(\mu, r)) \ge \mathbf{I}C_{\tau}(f^{-1}(\mu), r)$, for each $\mu \in I^{Y}$.

(2) f is a fuzzy I-irresolute closed iff fuzzy I-irresolute open for each $\mu \in I^X$ and $r \in I_0$.

Proof. $1(\Rightarrow)$ Let f be a fuzzy I-irresolute closed. Form Theorem 3.10(2), for each $\mu \in I^X$ and $r \in I_0$.

$$f(\mathbf{I}C_{\tau}(\lambda, r)) \leq \mathbf{I}C_{\eta}(f(\lambda), r).$$

For all $\mu \in I^Y$ and $r \in I_0$ put $\lambda = f^{-1}(\mu)$. Since f is onto, $ff^{-1}(\mu) = \mu$. Thus

$$f(\mathbf{I}C_{\tau}(f^{-1}(\mu), r)) \leq \mathbf{I}C_{\eta}(f(f^{-1}(\mu)), r) \\ = \mathbf{I}C_{\eta}(\mu, r).$$

It implies

$$\mathbf{I} C_{\tau}(f^{-1}(\mu), r) = f^{-1}(f(\mathbf{I} C_{\tau}(f^{-1}(\mu), r))) \\ \leq f^{-1}(\mathbf{I} C_{\eta}(\mu, r)).$$

1(\Leftarrow) Put $\mu = f(\lambda)$. Since f is injective

$$f^{-1}(\mathbf{I}C_{\eta}(f(\lambda), r)) \leq \mathbf{I}C_{\tau}(f^{-1}(f(\lambda)), r) = \mathbf{I}C_{\tau}(\lambda, r)$$

Since f is onto $\mathbf{I}C_{\eta}(f(\lambda), r) \leq f(\mathbf{I}C_{\tau}(\lambda, r)).$ (2) It easily proved from: $f^{-1}(\mathbf{I}C_{\eta}(\mu, r)) \leq \mathbf{I}C_{\tau}(f^{-1}(\mu), r)$ $\Leftrightarrow \overline{1} - f^{-1}(\mathbf{I}I_{\eta}(\overline{1} - \mu, r)) \leq \overline{1} - \mathbf{I}I_{\tau}(\overline{1} - f^{-1}(\mu), r).$ $\Leftrightarrow f^{-1}(\mathbf{I}I_{\eta}(\overline{1} - \mu, r)) \geq \mathbf{I}I_{\tau}(f^{-1}(\overline{1} - \mu), r).$ Form above theorems we have the following theorem.

Theorem 3.14. Let (X, τ, \mathbf{I}) and (Y, η, \mathbf{I}) be fuzzy ideal topological spaces and $f : X \to Y$ be mappings. Then following statements are equivalent.

(1) f is fuzzy I-irresolute and fuzzy I-irresolute open.

(2) f is fuzzy I-irresolute and fuzzy I-irresolute closed. (3) $f(\mathbf{I}_{\tau}(\lambda, r)) \leq \mathbf{I}_{\eta}(f(\lambda), r)$, for each $\lambda \in I^X$ and $r \in I_0$. (4) $f(\mathbf{I}C_{\tau}(\lambda, r)) \leq \mathbf{I}C_{\eta}(f(\lambda), r)$, for each $\lambda \in I^X$, $r \in I_0$.

(5) $\mathbf{I}I_{\tau}(f^{-1}(\mu), r) \leq f^{-1}(\mathbf{I}I_{\eta}(\mu, r))$, for each $\mu \in I^{Y}$ and $r \in I_{0}$.

 $\begin{array}{lll} \mbox{(6)} & \mathbf{I} C_\tau(f^{-1}(\mu),r) & \leq & f^{-1}(\mathbf{I} C_\eta(\mu,r)), \mbox{ for each } \mu \in I^Y \mbox{ and } r \in I_0. \end{array}$

Theorem 3.15. Let $f : (X, \tau, \mathbf{I}) \to (Y, \eta, \mathbf{I})$ and $g : (Y, \eta, \mathbf{I}) \to (Z, \gamma)$ be a mapping. the following statements are hold.

(1) If f and g is fuzzy I-irresolute, then $g \circ f$ is fuzzy I-irresolute.

(2) If f is fuzzy I-irresolute and g is fuzzy I-continuous, then $g \circ f$ is is fuzzy I-continuous.

(3) If f and g is fuzzy I-irresolute open, then $g \circ f$ is fuzzy I-irresolute open.

Proof. Obvious.

References

- Chang C.L. "Fuzzy topological spaces." J. Math. Anal. Appl. vol. 24, pp. 182–190, 1968.
- [2] Chattopadhyay K.C, Hazra R.N, Samanta S.K. "Gradation of openness: fuzzy topology," *Fuzzy Sets and Systems*, vol. 49, pp. 237–42, 1992.
- [3] Chattopadhyay K.C, Samanta S.K. "Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness," *Fuzzy Sets and Systems*, vol. 54, pp. 207–12, 1993.
- [4] El-baki S.A, Zahran A.M, Abbas S.E, Saber Y.M. "On Fuzzy ideal topological spaces," to appear *in Applied Mathematical Sciences*, 2008.
- [5] El Gayyar M.K, Kerre E.E. Ramadan A.A. "Almost compactness and near compactness in smooth topological spaces," *Fuzzy Sets and Systems*, vol. 62, pp. 193–202, 1994.
- [6] EL Naschie M.S, Rossler Oed G. "Information and diffusion in quantum physics." *Chaos, Solitons & Fractals*, vol. 7, no.5, [special issue] 1996.
- [7] El Naschie M.S. "On the uncertainty of Cantorian geometry and the two-slit experiment." *Chaos, Solitons & Fractals*, vol. 9, pp. 517-29, 1998
- [8] El Naschie M.S. "On the unification of heterotic strings, M theory and $\varepsilon^{(\infty)}$ theory." *Chaos, Solitons & Fractals*, vol. 11, pp. 2397-2408, 2000.
- [9] El Naschie M.S. "A review of E-infinity theory and the mass spectrum of high energy particle physics." *Chaos, Solitons & Fractals*, vol. 19, pp. 209-236, 2004.

- [10] El Naschie M.S. "Quantum gravity from descriptive set theory." *Chaos, Solitons & Fractals*, vol. 19, pp. 1339-1344, 2004.
- [11] El Naschie M.S. "Quantum gravity, Clifford algebras, fuzzy set theory and the fundamental constants of nature." *Chaos, Solitons & Fractals*, vol. 20, pp. 437-450, 2004.
- [12] El Naschie M.S. "The simplistic vacuum, exotic quasiparticles and gravitational instanton." *Chaos, Solitons & Fractals*, vol. 22, pp. 1-11, 2004.
- [13] El Naschie M.S. "On a fuzzy Kahler-like manifold which is consistent with the two slit experiment." *Int J Nonlinear Sci Numer Simulat*, vol. 6, pp. 95-98, 2005.
- [14] El Naschie M.S. "Topics in the mathematical physics of E-infinity theory." *Chaos, Solitons & Fractals*, vol. 30, pp. 656-663, 2006.
- [15] El Naschie M.S. "Elementary prerequisite for E-infinity (recommended background readings in nonlinear dynamics, geometry and topology)." *Chaos, Solitons & Fractals*, vol. 30, no.3, pp. 579-605, 2006.
- [16] El Naschie M.S. "Advanced prerequisite for E-infinity theory." *Chaos, Solitons & Fractals*, vol. 30, pp. 636-641, 2006.
- [17] Hatir H, Jafari S. "Fuzzy semi-I-open and Fuzzy semi-I-continuity via fuzzy idealization," *Chaos, Solitons & Fractals*, vol. 34, no.4, pp. 1220–1224, 2007.
- [18] Hutton B, Reilly I. "Separation axioms in fuzzy topological spaces," *Fuzzy Sets and Systems*, vol. 3, pp. 93-104, 1980.
- [19] Kim Y.C. Ko J.M. "r-generalized fuzzy closed sets." J Fuzzy Math, vol. 12, no.1, pp. 7–21, 2004.
- [20] Kim Y.C. "r-fuzzy semi-open sets in fuzzy bitopolgical space," *Far East J. Math. Sic Spiecial*, FJMS vol. 11, pp. 221–236, 2000.
- [21] Lowen R. "Fuzzy topological spaces and fuzzy compactness," J. Math. Anal. Appl, vol. 56, pp. 621-633, 1976.
- [22] Nasef A.A, Mahmoud R.A. "Some topological applications via fuzzy ideals." *Chaos, Solitons* & *Fractals*, vol. 13, pp. 825–831, 2002.
- [23] Ramadan A.A. "Smooth topological spaces," *Fuzzy Sets and Systems*, vol. 48, pp. 371-375, 1992.
- [24] Ramadan A.A, Abbas S.E, Kim Y.C. "Fuzzy irresolute functions in smooth fuzzy topological space." *J Fuzzy Math*, vol.9, no.4, pp. 865–877, 2001.
- [25] Ramadan A.A, Abbas S.E, Kim Y.C. "On weaker forms of continuity is Ŝostak's fuzzy topology," *Indian J. Pure and Appl*, vol. 34, no.2, pp. 311-333, 2003.

- [26] Ramadan A.A, Abde-Sattar M.A, El Gayyar M.K. Al-Azhar University, Assuit, Egypt Smooth L-ideal, Quaestiones Mathematicae 2000. Research Area: Fuzzy topology, Ge
- [27] Sarkar D. "Fuzzy ideal theory, fuzzy local function and generated fuzzy topology, fuzzy topology." *Fuzzy Sets and Systems*, vol. 87, pp. 117–123, 2001.
- [28] Sostak A.P. "On a fuzzy topological structure." Suppl. Rend. Circ. Mat Palermo Ser II, vol. 11, pp. 89-103, 1985.
- [29] Sostak A.P. "On some modifications of fuzzy topologies." *Mat Vesnik*, vol. 41, pp. 51-64, 1989.

Ahmed M. Zahran

M.Sc: 1986 Ph.D: 1990 Assoc. Professor: 1996 Professor: 2002 Department of Mathematics, Faculty of Science (Assuit) Al-Azhar University, Assuit, Egypt Research Area: Fuzzy topology, General topology E-mail : zahran15@hotmail.com

S. Ahmed Abd El-Baki

M.Sc: 1986 Ph.D: 1991 Department of Mathematics, Faculty of Science Assuit University, Assuit, Egypt Research Area: Fuzzy topology E-mail : mazab57@yahoo.com

Yaser Mohammed Saber

M.Sc. : 2006

Department of Mathematics, Faculty of Science (Assuit) Al-Azhar University, Assuit, Egypt Research Area: Fuzzy topology, General topology E-mail : m.ah75@Yahoo.com