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Abstract

Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum paretical physics in con-
nection with string theory and E-infinity space time theory. In this paper, we study the concepts of r-fuzzy semi-I-open,
r-fuzzy pre-I-open, r-fuzzy α-I-open and r-fuzzy β-I-open sets, which is properly placed between r-fuzzy openness and
r-fuzzy α-I-openness (r-fuzzy pre-I-openness) sets regardless the fuzzy ideal topological space in Ŝostak sense. Moreover,
we give a decomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal α-continuity, and obtain several char-
acterization and some properties of these functions. Also, we investigate their relationship with other types of function.

Key words : r-fuzzy semi-I-open, r-fuzzy pre-I-open, r-fuzzy α-I-open and r-fuzzy β-I-open sets, fuzzy ideal continuity
and fuzzy ideal α-continuity.

1. Introduction and Preliminaries

The concept of fuzzy topology was first defined in 1968
by Chang [1] and later redefined in a somewhat different
way by Lowen [21] and by Hutton and Reilly [18]. Ac-
cording to Ŝostak’s [27], in all these definitions, a fuzzy
topology is a crisp subfamily of fuzzy sets and fuzziness in
the concept of openness of a fuzzy set has not been con-
sidered, which seems to be a drawback in the process of
fuzzification of the concept of topological spaces. There-
fore Ŝostak’s introduced a new definition of fuzzy topol-
ogy in 1985 [28]. Later on, he developed the theory of
fuzzy topological spaces in [29]. After that several au-
thors [2,3,5,19,20,23,25] have introduced the smooth def-
inition and studied smooth fuzzy topological spaces being
unaware of Ŝostak’s works. In fuzzy topology, by intro-
ducing the notion of ideal, [27], and several other authors
[17,22] carried out such analysis.

The notion of continuity is an important concept in
fuzzy topology and fuzzy topology in Ŝostak sense as well
as in all branches of mathematics and quantum physics (see
[6,7,10,11,13,14]). We must state that this subject has been
researched by physicists [7,1013] as well as by others. El-
Naschie has shown that the notion of fuzzy topology in
Ŝostak sense has very important applications in quantum
particle physics especially in relation to both string theory
and ε(∞) theory [8,9,12,15,16]. In this paper, we give a de-
composition of fuzzy continuity, fuzzy ideal continuity and
fuzzy ideal α-continuity, and we obtain several character-

izations of fuzzy α-I-continuous functions. Moreover, we
introduce the concept of fuzzy α-I-open functions in fuzzy
ideal topological spaces and obtain their properties

Throughout this paper, let X be a nonempty set
I = [0, 1] and I0 = (0, 1]. For α ∈ I, α(x) = α for
all x ∈ X. The family of all fuzzy sets on X denoted by
IX . For two fuzzy sets we write λqμ to mean that λ is
quasi-coincident (q-coincident, for short) with μ, i.e, there
exists at least one point x ∈ X such that λ(x) + μ(x) > 1.
Negation of such a statement is denoted as λqμ.

Definition 1.1 [27]. A mapping τ : IX → I is called
a fuzzy topology on X if it satisfies the following condi-
tions:

(O1) τ(0) = τ(1) = 1.

(O2) τ(
∨

i∈Γ μi) ≥
∧

i∈Γ τ(μi), for {μi}i∈Γ ∈ IX .

(O3) τ(μ1 ∧ μ2) ≥ τ(μ1) ∧ τ(μ2), for μ1, μ2 ∈ IX .

Definition 1.2 [26]. A mapping I : IX → I is called
fuzzy ideal on X iff:

(I1) I(0) = 1, I(1) = 0.

(I2) If λ ≤ μ, then I(λ) ≥ I(μ), for each λ, μ ∈ IX .

(I3) For each λ, μ ∈ IX , I(λ ∨ μ) ≥ I(λ) ∧ I(μ).

The pair (X, τ, I) is called fuzzy ideal topological space
(fits, for short)

Corollary 1.1. Let (X, τ, I) be a fits. The simplest fuzzy
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ideal on X are I0, I1 : IX → I where

I0(λ) =
{

1, if λ = 0,
0, otherwise.

I1(λ) =
{

0, if λ = 1,
1, otherwise.

If I = I0, for each μ ∈ IX we have μ∗
r = Cτ (μ, r).

If I = I1, for each μ ∈ Θ
′

we have μ∗
r = 0, where, 1 �∈ Θ

′

be a subset of IX .

Definition 1.4 [4]. Let (X, τ, I) be a fits. Let μ, λ ∈ IX ,
the r-fuzzy open local function μ∗

r of μ is the union
of all fuzzy points xt such that if ρ ∈ Q(xt, r) and
I(λ) ≥ r then there is at least one y ∈ X for which
ρ(y) + μ(y) − 1 > λ(y).

Theorem 1.1[3]. Let (X, τ) be a fts. Then for each
r ∈ I0, λ ∈ IX we define an operator Cτ : IX ×I0 → IX

as follows:

Cτ (λ, r) =
∧

{μ ∈ IX : λ ≤ μ, τ(1 − μ) ≥ r}.

For λ, μ ∈ IX and r, s ∈ I0, the operator Cτ satisfies the
following conditions:

(1) Cτ (0, r) = 0.
(2) λ ≤ Cτ (λ, r).
(3) Cτ (λ, r) ∨ Cτ (μ, r) = Cτ (λ ∨ μ, r).
(4) Cτ (λ, r) ≤ Cτ (λ, s) if r ≤ s.
(5) Cτ (Cτ (λ, r), r) = Cτ (λ, r).

Theorem 1.2[24]. Let (X, τ) be a fts. Then for each
r ∈ I0, λ ∈ IX we define an operator Iτ : IX × I0 → IX

as follows:

Iτ (λ, r) =
∨

{μ ∈ IX : λ ≥ μ, τ(μ) ≥ r}.

For λ, μ ∈ IX and r, s ∈ I0, the operator Iτ satisfies the
following conditions:

(1) Iτ (1 − λ, r) = 1 − Cτ (λ, r)
(2) Iτ (1, r) = 1.
(3) λ ≥ Iτ (λ, r).
(4) Iτ (λ, r) ∧ Iτ (μ, r) = Iτ (λ ∧ μ, r).
(5) Iτ (λ, r) ≤ Iτ (λ, s) if r ≥ s.
(6) Iτ (Iτ (λ, r), r) = Iτ (λ, r).

Theorem 1.3[4]. Let (X, τ) be a fts and I1, I2 be two
fuzzy ideals of X. Then for each r ∈ I0 and μ, η, ρ ∈ IX .

(1) μ ≤ η, then μ∗
r ≤ η∗

r .
(2) I1 ≤ I2, ⇒ μ∗

r(I1, τ) ≤ η∗
r (I2, τ).

(3) μ∗
r = Cτ (μ∗

r , r) ≤ Cτ (μ, r).
(4) (μ∗

r)
∗ ≤ μ∗

r .
(5) (μ∗

r ∨ η∗
r ) = (μ ∨ η)∗r .

(6) If I(ρ) ≥ r then (μ ∨ ρ)∗r = μ∗
r ∨ ρ∗r = μ∗

r .
(7) If τ(ρ) ≥ r, then (ρ ∧ μ∗

r) ≤ (ρ ∧ μ)∗r .
(8) (μ∗

r ∧ η∗
r ) ≥ (μ ∧ η)∗r .

Theorem 1.4[4]. Let (X, τ, I) be a fits. Then for each
r ∈ I0, μ ∈ IX we define C∗ : IX × I0 → IX as follows:

Cl∗(μ, r) = μ ∨ μ∗
r

For μ, η ∈ IX , the Cl∗ satisfies the following conditions:
(1) If μ ≤ η, then Cl∗(μ, r) ≤ Cl∗(η, r).
(2) Cl∗(Cl∗(μ, r), r) = Cl∗(μ, r).
(3) Cl∗(μ ∨ η, r) = Cl∗(μ, r) ∨ Cl∗(η, r).
(4) Cl∗(μ ∧ η, r) ≤ Cl∗(μ, r) ∧ Cl∗(η, r).

Definition 1.5 [24]. Let (X, τ) be a fts. For λ ∈ IX

and r ∈ I0.
(1) λ is called r-fuzzy semiopen (r-FSO, for short) iff

λ ≤ Cτ (Iτ (λ, r), r).
(2) λ is called r-fuzzy semiclosed (r-FSC, for short) iff

1 − λ is r-fuzzy semiopen set of X .
(3) λ is called r-fuzzy β-closed (r-FβC, for short) iff

λ ≤ Cτ (Iτ (Cτ (λ, r), r), r).

Definition 1.6[4]. Let (X, τ, I) be a fuzzy ideal topo-
logical space. For each μ ∈ IX and r ∈ I0.

(1) μ is called r-fuzzy ideal open (r-FIO, for short) iff
μ ≤ Iτ (μ∗

r , r).
(2) μ is called r-fuzzy ideal closed (r-FIC, for short) iff

1 − μ is r-FIO.

Lemma 1.1[4]. Let (X, τ, I) be a fits.
(1) Any union of r-FIO sets is r-FIO.
(2) Any intersection of r-FIC sets is r-FIC

Definition 1.7 [27]. Let (X, τ) and (X, η) be fts’s. Let
f : X → Y be a mapping.

(1) f is called fuzzy continuous iff η(μ) ≤ τ(f−1(μ))
for each μ ∈ IX .

(2) f is called fuzzy open iff τ(μ) ≤ η(f(μ)) for each
μ ∈ IX .

(3) f is called fuzzy closed iff τ(1−μ) ≤ η(f(1−μ))
for each μ ∈ IX .

2. r-fuzzy semi-I-open and r-fuzzy α-I-open
sets

Definition 2.1. Let (X, τ, I) be a fuzzy ideal topologi-
cal space, for each μ ∈ IX and r ∈ I0.

(1) μ is called r-fuzzy semi-I-open (r-FSIO, for short)
iff μ ≤ Cl∗(Iτ (μ, r), r).

(2) μ is called r-fuzzy pre-ideal open (r-FPIO, for
short) iff μ ≤ Iτ (Cl∗(μ, r), r). The complement of a r-
fuzzy pre-ideal open set is said to be r-fuzzy pre-ideal
closed (r-FPIC, for short.)

(3) μ is called r-fuzzy α-ideal open (r-FαIO, for short)
iff μ ≤ Iτ (Cl∗(Iτ (μ, r), r), ). The complement of a r-
fuzzy α-ideal open set is said to be r-fuzzy α-ideal closed
(r-FαIC, for short.)
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(4) μ is called r-fuzzy β-ideal open (r-FβIC, for short)
iff μ ≤ Cτ (Iτ (Cl∗(μ, r), r), r). The complement of a r-
fuzzy β-ideal open set is said to be r-fuzzy β-ideal closed
(r-FβIC, for short.)

Theorem 2.1. Let (X, τ, I) be a fits.
(1) Every r-fuzzy open set is r-FαIO
(2) Every r-FαIO set is r-FSIO.
(3) Every r-FSIO set is r-FβIO.
(4) Every r-FαIO set is r-FPIO.
(5) Every r-FPIO set is r-FβIO.
(6) Every r-FPIO set is r-FPO.
(7) Every r-fuzzy open set is r-FSIO.
(8) Every r-FSIO set is r-FSO.
(9) Every r-fuzzy open set is r-FPIO .
(10) Every r-FIO set is r-FPIO.
(11) Every r-FβIO set is r-FβO.

Proof. (1) Let μ be r-fuzzy open set. Then

μ = Iτ (μ, r)
≤ Iτ (μ, r) ∨ (Iτ (μ, r))∗

= Cl∗(Iτ (μ, r), r).

Therefore, μ = Iτ (μ, r) ≤ Iτ (Cl∗(Iτ (μ, r), r), r). Im-
plies that μ is r-FαIO.

(2) Let μ be r-FαIO. Then by Theorem 1.4(1),

μ ≤ Iτ (Cl∗(Iτ (μ, r), r) ≤ Cl∗(Iτ (μ, r), r).

(3) Let μ be r-FSIO. Then

μ ≤ Cl∗(Iτ (μ, r), r)
≤ Iτ (μ, r) ∨ (Iτ (μ, r))∗

≤ μ ∨ μ∗
r

≤ Cl∗(Iτ (μ ∨ μ∗
r , r)

≤ Cl∗(Iτ (Cl∗(μ, r), r), r)
≤ Cτ (Iτ (Cl∗(μ, r), r), r).

(4) Let μ be r-FαIO set. Then

μ ≤ Iτ (Cl∗(Iτ (μ, r), r))
= Iτ (Iτ (μ, r) ∨ (Iτ (μ, r))∗)
≤ Iτ (μ ∨ μ∗

r)
= Iτ (Cl∗(μ, r), r).

(5-10) This proof is obvious.

Remark 2.1. By Theorem 2.1, we obtain the diagram
for a r-fuzzy ideal topological space:

r-fuzzy open ⇒ r − FαIO ⇒ r − FSIO ⇒ r-FSO

⇓ ⇓ ⇓
r − FIO ⇒ r − FPIO ⇒ r − FβIO ⇒ r-FβO

Remark 2.2. r-FPIO and r-FSIO are independent notions
as show by the following Examples 2.1. and 2.2.

Example 2.1. Define two fuzzy topologies and fuzzy ideal
τ, I : IX → I as follows:

τ(λ) =

⎧⎨
⎩

1, if λ = 1, 0,
1
2 , if λ = 0.4,
0, Otherwise.

If we take I = I0 for all r ∈ I0, and let μ = 0.3, then μ is
1
2 -FPIO, but μ is not 1

2 -FSIO.

Example 2.2. Let X = {a, b, c} be a set and at ∈ Pt(X).
Define μ1μ2 ∈ IX as follows:

μ1(a) = 0.2, μ1(b) = 0.3, μ1(c) = 0.7;
μ2(a) = 0.1, μ2(b) = 0.2, μ2(c) = 0.2.

We define τ, I : IX → I as follows:

τ(λ) =

⎧⎨
⎩

1, if λ = 1, 0,
1
2 , if λ = μ2,
0, otherwise.

If we take I = I0 for all r ∈ I0, then μ1 is 1
2 -FSIO, but μ

is not 1
2 -FPIO.

Remark 2.3. r-FIO and r-FSIO are independent notions
as show by the following Examples 2.1. and 2.3.

Example 2.3. Define two fuzzy topologies and fuzzy ideal
τ, I : IX → I as follows:

τ(λ) =

⎧⎪⎪⎨
⎪⎪⎩

1, if λ = 1, 0,
1
2 , if λ = 0.4,
2
3 , if λ = 0.6,
0, otherwise.

If we take I = I0 for all r ∈ I0, and let μ = 0.5, then μ is
1
2 -FIO, but μ is not 1

2 -FSIO.
On the other hand, In Example 2.1. If we take I = I0 for
all r ∈ I0, and let μ = 0.6, then μ is 1

2 -FSIO but μ is not
1
2 -FIO.

Remark 2.4. r-fuzzy open set and r-FIO are indepen-
dent notions as show by the following Example 2.1. and
2.4.

Example 2.4. Define two fuzzy topologies and fuzzy ideal
τ, I : IX → I as follows:

τ(λ) =

⎧⎪⎪⎨
⎪⎪⎩

1, if λ = 1, 0,
1
2 , if λ = 0.4,
1
3 , if λ = 0.3,
0, otherwise.
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If we take I = I1, for all r ∈ I0, and let μ = 0.3, then
τ(μ) ≥ 1

3 , but μ is not 1
3 -FIO.

On the other hand, In Example 2.1. If we take I = I0 for
all r ∈ I0, and let μ = 0.3, then μ is 1

2 -FIO, but τ(μ) < 1
2 .

Corollary 2.1. Let (X, τ, I) be a fits. For each μ ∈ IX .
(1) If I = I0 for all r ∈ I0, then,

(i) r-FIO, r-FPIO and r-FPO are equivalent,
(ii) μ r-FSIO if and only if r-FSO,
(iii) μ r-FβIO if and only if μ is r-FβO.

(2) If I = I1 for all r ∈ I0, then, μ is r-FβIO if and only if
μ is r-FSO.

Proof. (1) If I = I0 for all r ∈ I0, then, μ∗
r = Cτ (μ, r) for

any μ ∈ IX and hence Cl∗(μ, r) = μ ∨ μ∗
r = Cτ (μ, r).

Therefore, we have μ∗
r = Cτ (μ, r) = Cl∗(μ, r). Thus, (i),

(ii), and (iii) follow immediately.
(2) If I = I1 for all r ∈ I0, then, μ∗

r = 0. Therefore,
we have Cτ (Iτ (Cl∗(μ, r), r), r) = Cτ (Iτ (μ∗

r ∨μ, r), r) =
Cτ (Iτ (μ, r), r). Thus, r-FβIO and r-FSO are equivalent.

Definition 2.2. Let (X, τ, I) be a fits. For μ, λ ∈ IX

and r ∈ I0.
(1) μ is called r-fuzzy t-I-set if

Iτ (Cl∗(μ, r), r) = Iτ (μ, r).
(2) μ is called r-fuzzy B-I-set if μ = ν ∧ λ, where

τ(ν) ≥ r and λ is r-fuzzy t-I-set of X.
(3) μ is called r-fuzzy ∗-dense-in-itself if μ ≤ μ∗

r .

Corollary 2.2. Let (X, τ, I) be a fits and λ ∈ IX , the
following properties are holds

(1) Every r-fuzzy t-I-set is r-fuzzy B-I-set.
(2) Every r-fuzzy ∗-dense-in-itself set is r-fuzzy t-I-set.

Proof. (1) Let μ is r-fuzzy t-I-set. Since μ = 1 ∧ μ
then μ is a r-fuzzy B-I-set.

(2) Let μ is r-fuzzy ∗-dense-in-itself set. Then
Iτ (Cl∗(μ, r), r) = Iτ ((μ∗

r ∨ μ, r) = Iτ (μ, r).

Lemma 2.1. Let (X, τ, I) be a fits, for μ ∈ IX . The
following statements are equivalent.

(1) μ is r-FαIO.
(2) μ r-FSIO and r-FPIO.

Proof. Necessity. This is obvious.
Sufficiency. Let μ be r-FSIO and r-FPIO. Then, we

have

μ ≤ Iτ (Cl∗(μ, r), r)
≤ Iτ (Cl∗(Cl∗(Iτ (μ, r), r), r), r)
= Iτ (Cl∗(Iτ (μ, r), r), r).

This show that μ is r-FαIO.

Lemma 2.2. Let (X, τ, I) be a fits, for μ ∈ IX , the
following statements are equivalent.

(1) μ is r-FIO.
(2) μ are r-FIPO and r-fuzzy ∗-dense-in-itself.

Proof. (1⇒2): by Theorem 2.1, every r-FIO is r-FPIO.
On the other hand, μ ≤ Iτ (μ∗

r , r) ≤ μ∗
r , which show that

μ is r-fuzzy ∗-dense-in-itself.
(2⇒1): by the hypothesis, μ ≤ Iτ (Cl∗(μ, r), r) ≤

Iτ (μ ∨ μ∗
r , r) = Iτ (μ∗

r , r), then, μ is r-FIO.

Lemma 2.3. Let (X, τ, I) be a fits, for μ ∈ IX , the
following statements are equivalent.

(1) τ(μ) ≥ r.
(2) μ are r-FIPO and r-fuzzy B-I-set.

Proof. Let τ(μ) ≥ r. Then μ ∧ 1 follows that μ is a
r-fuzzy B-I-set. μ is also r-FPIO by Theorem 2.1(9). Con-
versely, Let μ be both r-fuzzy B-I-set and r-FPIO. Then,
μ ≤ Iτ (Cl∗(μ, r), r) and μ = λ ∧ ω where τ(λ) ≥ r and
ω is r-fuzzy t-I-set. Therefore,

λ ∧ ω ≤ Iτ (Cl∗(λ ∧ ω, r), r)
≤ Iτ (Cl∗(λ, r), r) ∧ Iτ (Cl∗(ω, r), r)
= Iτ (Cl∗(λ, r), r) ∧ Iτ (ω, r).

Hence,

λ ∧ ω ≤ (λ ∧ ω) ∧ λ

= Iτ (Cl∗(λ, r), r) ∧ Iτ (ω, r) ∧ λ

= λ ∧ Iτ (ω, r).

Thus, we obtain λ ∧ ω = λ ∧ Iτ (ν, r), implies τ(μ) ≥ r.

Lemma 2.4. Let (X, τ, I) be a fuzzy ideal topological
space and μ, ω ∈ IX . If τ(ω) ≥ r, then ω ∧ Cl∗(μ, r) ≤
Cl∗(μ ∧ ω, r).

Proof. Let τ(ω) ≥ r, by Theorem 1.3, then we have
(ω ∧ μ∗

r) ≤ (ω ∧ μ)∗r for any μ ∈ IX . Thus, we have

ω ∧ Cl∗(μ, r) = ω ∧ (μ ∨ μ∗
r)

= (ω ∧ μ) ∨ (ω ∧ μ∗
r)

≤ (ω ∧ μ) ∨ (ω ∧ μ)∗r
= Cl∗(ω ∧ μ, r).

Theorem 2.2. Let (X, τ, I) be a fits and μ, ω ∈ IX . Then
the following properties hold:

(1) If μ is r-FSIO and ω is r-FαIO, then μ ∧ ω is r-
FSIO.

(2) If μ is r-FPIO and ω is r-FαIO, then μ ∧ ω is r-
FPIO.

(3) If τ(μ) ≥ r and ω is r-FPIO, then μ∧ω is r-FPIO.
(4) If τ(μ) ≥ r and ω is r-FSIO, then μ ∧ ω is r-FSIO
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Proof. (1) Let μ be r-FSIO and ω be r-FαIO. By using
Lemma 2.4, we have

μ ∧ ω ≤ Cl∗(Iτ (μ, r), r) ∧ Iτ (Cl∗(Iτ (ω, r), r), r)
≤ Cl∗(Iτ (μ, r) ∧ Cl∗(Iτ (ω, r), r), r)
≤ Cl∗(Cl∗(Iτ (μ, r), r) ∧ Iτ (ω, r), r)
≤ Cl∗(Iτ (μ, r), r).

This show that μ ∧ ω is r-FSIO.
(2-4) Similarly.

Corollary 2.3. Let (X, τ, I) be a fits and μ, ω ∈ IX .
Then the following properties hold:

(1) If μ is r-FSIO and τ(ω) ≥ r, then μ ∧ ω is r-FSIO.
(2) If μ is r-FPIO and τ(ω) ≥ r, then μ∧ω is r-FPIO.

Theorem 2.3. Let (X, τ, I) be a fits and μ, ω ∈ IX . Then
the following properties hold:
(1) If μ and ω are r-FαIO, then μ ∧ ω is r-FαIO.
(2) If μγ is r-FαIO for γ ∈ σ, then

∨
γ∈σ μγ is r-FαIO.

(3) If μγ is r-FPIO for γ ∈ σ, then
∨

γ∈σ μγ is r-FPIO.

Proof. (1) Let μ and ω, be r-FαIO, by Lemma 2.1, μ
is r-FSIO and r-FPIO and by Theorem 2.2(1,2), μ ∧ ω is
r-FSIO and r-FPIO. Therefore, by Lemma 2.1, μ ∧ ω is
r-FαIO.

(2) Let μγ be a class of r-FαIO. Then for any γ ∈ σ,

μγ ≤ Iτ (Cl∗(Iτ (μγ , r), r), r)

≤ Iτ (Cl∗(Iτ (
∨
γ∈σ

μγ , r), r), r).

Hence
∨

γ∈σ μγ ≤ Iτ (Cl∗(Iτ (
∨

γ∈σ μγ , r), r), r). This
show that

∨
γ∈σ μγ is r-FαIO.

(3) Similarly.

Theorem 2.4. Let (X, τ, I) be a fits, if μ is r-FPIC then
Cl∗(Iτ (μ, r), r) ≤ μ, for each μ ∈ IX .

Proof. Let μ be r-FPIC. Then 1 − μ is r-FPIO. Hence

1 − μ ≤ Iτ (Cl∗(1 − μ, r), r)
≤ Iτ (Cτ (1 − μ, r), r)
= 1 − Cτ (Iτ (μ, r), r)
≤ 1 − Cl∗(Iτ (μ, r), r).

Therefore, we option Cl∗(Iτ (μ, r), r) ≤ μ.

Remark 2.5. Let (X, τ, I) be a fits. For each μ ∈ IX ,
we have Iτ (Cl∗(1 − μ, r), r) �= 1 − Cl∗(Iτ (μ, r), r) as
show by the following example.

Example 2.5. In Example 2.4, If we take I = I0 for
all r ∈ I0, and let μ = 0.7, then μ satisfies the above

properties.

Corollary 2.4. Let (X, τ, I) be a fuzzy ideal topo-
logical space, such that Iτ (Cl∗(1 − μ, r), r) �= 1 −
Cl∗(Iτ (μ, r), r). Then μ is r-FPIC iff Cl∗(Iτ (μ, r), r) ≤
μ. for each μ ∈ IX and r ∈ I0.

Theorem 2.5. Let (X, τ, I) be a fuzzy ideal topolog-
ical space. For each λ ∈ IX , we define an operator
ICτ : IX → I as follows:

ICτ (λ, r) =
∧{μ ∈ IX : λ ≤ μ, μ is r-FIC}.

For each λ, μ ∈ IX , the following properties are holds:
(1) ICτ (0, r) = 0.
(2) λ ≤ ICτ (λ, r).
(3) ICτ (λ, r) ∨ ICτ (μ, r) ≤ ICτ (λ ∨ μ, r).
(4) ICτ (ICτ (λ, r), r) = ICτ (λ, r).
(5) If λ is r-FIC, iff λ = ICτ (λ, r).
(6) If Cτ (λ, r) is r-FIC, then Cτ (ICτ (λ, r), r) =

ICτ (Cτ (λ, r), r) = Cτ (λ, r).

Proof. (1), (2) and (5) are easily proved from the defi-
nition of ICτ and Lemma 1.1.

(3) Since λ, μ ≤ λ ∨ μ, we have

ICτ (λ, r) ∨ ICτ (μ, r) ≤ ICτ (λ ∨ μ, r)

(4) From (2) we have ICτ (λ, r) ≤ ICτ (ICτ (λ, r), r).
Now we show that ICτ (λ, r) ≥ ICτ (ICτ (λ, r), r). Sup-
pose that

ICτ (λ, r) �≥ ICτ (ICτ (λ, r), r).

There exist x ∈ X and t ∈ (0, 1) such that

ICτ (λ, r)(x) < t < ICτ (ICτ (λ, r), r)(x). (B)

Since ICτ (λ, r)(x) < t, by the definition ICτ , there exists
r-FIC, λ1 with λ ≤ λ1 such that

ICτ (λ, r)(x) ≤ λ1(x) < t.

Since λ ≤ λ1, we have ICτ (λ, r) ≤ λ1. Again, by the
definition ICτ , we have ICτ (ICτ (λ, r), r) ≤ λ1. Hence
ICτ (ICτ (λ, r), r)(x) ≤ λ1(x) < t. It is a contradiction
for (B). Thus

ICτ (λ, r) ≥ ICτ (ICτ (λ, r), r).

(6) From (2) and Cτ (λ, r) is a r-FIC we have
ICτ (Cτ (λ, r), r) = Cτ (λ, r).
we only show that

Cτ (ICτ (λ, r), r) = Cτ (λ, r).

Since λ ≤ ICτ (λ, r)

Cτ (ICτ (λ, r), r) ≥ Cτ (λ, r).
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Suppose that

Cτ (ICτ (λ, r), r)Cτ (λ, r).

There exist x ∈ X and r ∈ I0 such that

Cτ (ICτ (λ, r), r)(x) > Cτ (λ, r)(x).

By the definition Cτ , there exists ν ∈ IX , with λ ≤ ν and
τ(1 − ν) ≥ r such that

Cτ (ICτ (λ, r), r)(x) > ν(x) ≥ Cτ (λ, r)(x).

On the other hand, since ν = Cτ (ν, r), λ ≤ ν, then

ICI(λ, r) ≤ ICτ (ν, r) = ICτ (Cτ (ν, r), r) = Cτ (ν, r) = ν.

Thus Cτ (ICτ (λ, r), r) ≤ ν.
It is a contradiction. Hence Cτ (ICτ (λ, r), r) ≤ Cτ (λ, r).

Theorem 2.6. Let (X, τ, I) be a fits. For each λ ∈ IX , we
define an operator IIτ : IX → I as follows:

IIτ (λ, r) =
∨{μ ∈ IX : μ ≤ λ, μ is r − FIO}.

Foreachμ ∈ IX , it holds the following properties:
(1) IIτ (1 − μ, r) = 1 − (ICτ (μ, r)).
(2) IIτ (μ, r) ≤ μ ≤ ICτ (μ, r).
(3) If μ is r-FIO iff IIτ (μ, r) = μ.

Proof. (1) It is easily proved form the following:
1 − (ICτ (λ, r))
= 1 − ∧{μ ∈ IX : λ ≤ μ, μ is r − FIC}
=

∨{μ ∈ IX : 1 − λ ≥ 1 − μ, 1 − μ is r − FIO}
= IIτ (1 − λ, r).

(2) and (3) are easily proved form the definition of IIτ and
Lemma 1.1.

3. Decompositions of fuzzy continuity and
fuzzy I-continuity

Definition 3.1. A mapping f : (X, τ, I) → (Y, η) is
called fuzzy I-continuous (resp. fuzzy pre-I-continuous,
fuzzy ∗-I-continuous, fuzzy B-I-continuous, fuzzy semi-
I-continuous, fuzzy α-I-continuous) if f−1(μ) is r-FIO
(resp. r-FPIO, r-fuzzy ∗-denes-in-itself, r-fuzzy B-I-set,
r-FSIO, r-FαIO) for each η(μ) ≥ r and r ∈ I0.

According to Lemma 2.1–3 we have the following
decomposition of fuzzy continuity and decomposition of
fuzzy I-continuity.
Theorem 3.1. (1) A mapping f : (X, τ, I) → (Y, η) is
called fuzzy continuous if and only if it is both fuzzy pre-
I-continuous and fuzzy B-I-continuous.

(2) A mapping f : (X, τ, I) → (Y, η) is called fuzzy
I-continuous if and only if it is both fuzzy pre-I-continuous
and fuzzy ∗-I-continuous.

(3) A mapping f : (X, τ, I) → (Y, η) is called fuzzy α-
I-continuous if and only if it is both fuzzy pre-I-continuous
and fuzzy semi-I-continuous.

Theorem 3.2. Let f : (X, τ, I) → (Y, η) be a function,
then following statements are equivalent.

(1) A map f is fuzzy α-I-continuous.
(2) The inverse image of each r-fuzzy closed set in Y is

r-FαIO.
(3) Cτ (Int∗τ (Cτ (f−1(λ), r), r), r) ≤ f−1(Cη(λ), r),

for each λ ∈ IY and r ∈ I0.
(4) f(Cτ (Int∗τ (Cτ (μ, r), r), r)) ≤ Cη(f(μ), r), for

each μ ∈ IX and r ∈ I0.

Proof. (1)⇔(2): It easily proved form Definition 3.1,
and f−1(1 − μ) = 1 − f−1(μ).

(2)⇔(3): For each λ ∈ IY and r ∈ I0. Since Cη(λ, r)
is r-fuzzy closed set in Y, by (2) f−1(Cη(λ, r) is r-FαIC
and 1 − f−1(Cη(λ, r) is r-FαIO. Therefore,

1− f−1(Cη(λ, r)
≤ Iτ (Cl∗(Iτ (1 − f−1(Cτ (λ, r)), r), r)
= 1 − Cτ (Int∗τ (Cτ (f−1(Cτ (λ, r)), r), r), r).

Hence, we obtain
f−1(Cη(λ, r) ≥ Cτ (Int∗τ (Cτ (f−1(λ), r), r), r).

(3)⇔(4): For each μ ∈ IX and r ∈ I0. By (3), we have

Cτ (Int∗τ (Cτ (μ, r), r) ≤ Cτ (Int∗τ (Cτ (f−1f(μ), r), r)
≤ f−1(Cη(f(μ), r)),

and hence
f(Cτ (Int∗τ (Cτ (μ, r), r), r)) ≤ Cη(f(μ), r).

(4)⇔(1): Let η(ν) ≥ r. Then by (4),

f(Cτ (Int∗τ (Cτ (f−1(1 − ν)), r), r), r)
≤ Cη(ff−1(1 − ν), r)
≤ Cη(1 − ν), r) = 1 − ν.

Thus,

Cτ (Int∗τ (Cτ (f−1(1 − ν), r), r), r) ≤ f−1(1 − ν)
≤ 1 − f−1(ν).

Consequently, we have

f−1(ν) ≤ Iτ (Cl∗(Iτ (f−1(ν), r), r), r).

This show that f−1(ν) is r-FαIO. Thus, f is fuzzy α-I-
continuous.

Theorem 3.3. Let f : (X, τ, I) → (Y, η) be fuzzy α-I-
continuous, then

(1) f(Cl∗(μ, r)) ≤ Cη(f(μ), r), for each μ ∈ IX is
r-FPIO.

(2) Cl∗(f−1(λ), r) ≤ f−1(Cτ (λ, r)), for each λ ∈ IY

is r-FPIO.
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Proof. (1) If μ ∈ IX is r-FPIO, then μ ≤ Iτ (Cl∗(μ, r), r).
Thus, by Theorem 3.2 we have

f(Cl∗(μ, r)) ≤ f(Cτ (μ, r))
≤ f(Cτ (Iτ (Cl∗(μ, r), r), r))
≤ f(Cτ (Int∗τ (Cτ (μ, r), r), r))
≤ Cτ (f(μ), r).

(2) If λ ∈ IY is r-FPIO, then λ ≤ Iτ (Cl∗(λ, r), r).
Therefore, by Theorem 3.2, we have

Cl∗(f−1(λ), r) ≤ Cτ (f−1(λ), r)
≤ Cτ (f−1(Iτ (Cl∗(λ, r), r), r))
≤ Cτ (Iτ (Cl∗(Iτ (f−1(Iτ (Cl∗(λ, r), r)), r), r), r), r)
≤ Cτ (Int∗τ (Cτ (f−1(Iτ (Cl∗(λ, r), r)), r), r), r)
≤ f−1(Cτ (Iτ (Cl∗(λ, r), r), r))
≤ f−1(Cτ (λ, r)).

Definition 3.2. A mapping f : (X, τ) → (Y, η, I) is called
fuzzy α-I-open (resp. fuzzy semi-I-open, fuzzy pre-I-open,
fuzzy β-I-open) if image of each μ ∈ IX with τ(μ) ≥ r is
r-FαIO (resp. r-FSIO, r-FPIO, r-FβIO) set of Y.

Remark 3.1. By Definition 2.2, and Remark 2.1 we obtain
the following diagram:

fuzzy open ⇒ fuzzy α− I-open ⇒ fuzzy pre-I-open

⇓ ⇓
fuzzy semi-I-open ⇒ fuzzy β-I-open

Theorem 3.4. A mapping f : (X, τ) → (Y, η, I) is called
fuzzy α-I-open if and only if it is fuzzy semi-I-open and
fuzzy pre-I-open.

Proof. Form Lemma 2.1, the proof straightforward.

Theorem 3.5. A mapping f : (X, τ) → (Y, η, I) is
fuzzy α-I-open if and only if for each μ ∈ IY and each
τ(1 − λ) ≥ r, containing f−1(μ), there exists ν ∈ IY

r-FαIC containing μ such that f−1(ν) ≤ λ.

Proof. Necessity. Let ν = 1−f(1−λ). Since f−1(μ) ≤ λ,
we have f(1−λ) ≤ 1−μ. Since f is fuzzy α-I-open, then
ν is r-FαIC and

f−1(ν) = 1 − f−1(f(1 − λ)) ≤ 1 − (1 − λ) = λ.
Sufficiency. Obvious.

Corollary 3.1. Let f : (X, τ, I) → (Y, η) be fuzzy α-
I-open. For each μ ∈ IY , then

(1) f−1(Cτ (I∗τ (Cτ (μ, r), r), r)) ≤ Cη(f−1(μ), r).
(2) f−1(Cl∗(λ, r)) ≤ Cτ (f−1(λ), r).

Proof. For each μ ∈ IY , then Cτ (f−1(μ), r) is f-fuzzy

closed. By Theorem 3.5, there exists ν ∈ IY r-FαIC con-
taining μ such that f−1(ν) ≤ Cτ (f−1(μ), r). Since 1 − ν
is r-FαIO, f−1(1− ν) ≤ f−1(Iτ (Cl∗(Iτ (1− ν, r), r), r))
and

1 − f−1(ν) ≤ f−1(1 − Cτ (Int∗τ (Cτ (ν, r), r), r))
≤ 1 − f−1(Cτ (Int∗τ (Cτ (ν, r), r), r)).

Therefore,

f−1(Cτ (Int∗τ (Cτ (ν, r), r), r)) ≤ f−1(ν) ≤ Cη(f−1(μ), r).

Thus, f−1(Cτ (I∗τ (Cτ (μ, r), r), r)) ≤ Cη(f−1(μ), r).
(2) Similarly.

Theorem 3.6. Let f : (X, τ, I) → (Y, η) be a mapping.
For each r ∈ I0, then following statements are equivalent.

(1) A map f is called fuzzy I-continuous function.
(2) f−1(μ) is r-FIC, in X for each μ ∈ IX , r ∈ I0,

With η(1 − μ) ≥ r.
(3) f(ICτ (λ, r)) ≤ Cη(f(λ), r), for each λ ∈ IX .
(4) ICτ (f−1(μ, r)) ≤ f−1(Cη(μ, r)), for μ ∈ IY .
(5) f−1(Iη(μ, r)) ≤ IIτ (f−1(μ, r)), for each μ ∈ IY .

Proof. (1)⇔(2): It easily proved form Definition 1.6(2),
and f−1(1 − μ) = 1 − f−1(μ).

(2)⇒(3): Suppose there exist λ ∈ IX and r ∈ I0 such
that

f(ICτ (λ, r)) �≤ Cτ (f(λ), r).

There exist y ∈ Y and t ∈ I0 such that

f(ICτ (λ, r))(y) > t > Cη(f(λ), r)(y).

If f−1({y}) = ∅, it is a contradiction because
f(ICτ (λ, r))(y) �= 0.
If f−1({y}) �= ∅, there exists x ∈ f−1({y}) such that

f(ICτ (λ, r))(y) ≥ ICτ (λ, r)(x) > t > Cη(f(λ), r)(f(x)). (A)

Since Cη(f(λ), r)(f(x)) ≤ t, there exists η(1 − μ) ≥ r
with f(λ) ≤ μ such that

Cη(f(λ), r)(f(x)) ≤ μ(f(x)) ≤ t.

Moreover, f(λ) ≤ μ implies λ ≤ f−1(μ). Form (2),
f−1(μ) is r-FIC. Thus,
ICτ (λ, r)(x) ≤ f−1(μ)(x) = μ(f(x)) < t. It is a contra-
diction for (A).

(3)⇒(4): For all μ ∈ IY , r ∈ I0, put λ = f−1(μ).
Form (3), we have

f(ICτ (f−1(μ), r)) ≤ Cη(f(f−1(μ)), r) ≤ Cη(μ, r).

It implies

ICτ (f−1(μ), r) ≤ f−1(f(Cη(f−1(μ)), r))
≤ f−1(Cη(μ, r)).
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(4)⇒(5): It easily proved form Theorems 2.6(1) and
Theorem 1.2(1).

(5)⇒(1): Let η(μ) ≥ r. Then we have by definition Iτ ,
μ = Iη(μ, r). By (5) we have

f−1(μ) ≤ IIτ (f−1(μ), r).

On the other hand, by Theorem 2.6(2),

f−1(μ) ≥ IIτ (f−1(μ), r).

Thus, f−1(μ) = IIτ (f−1(μ), r) that is f−1(μ) is r-FIO.

Analogous theorems to Theorem 3.6 can be given for the
types of continuity in Definition 3.1.

Definition 3.3. Let f : (X, τ, I) → (Y, η, I) be a map-
ping.

(1) f is called fuzzy I-irresolute if f−1(μ) is r-FIO set
of X for each r-FIO μ ∈ IY and r ∈ I0.

(2) f is called fuzzy I-irresolute open (resp. fuzzy I-
open) if f(μ) is r-FIO set of Y for each r-FIO μ ∈ IX

(resp. τ(μ) ≥ r).
(3) f is called fuzzy I-irresolute closed (resp. fuzzy

I-closed) if f(μ) is r-FIC set of Y for each r-FIC μ ∈ IX

(resp. τ(1 − μ) ≥ r.

The Following theorem is similarly proved as Theorem 3.6.

Theorem 3.7. Let f : (X, τ, I) → (Y, η, I) be a map-
ping. Then following statements are equivalent.

(1) A map f is fuzzy I-irresolute.
(2) For each r-FIC μ ∈ IY , f−1(μ) is r-FIC.
(3) f(ICτ (λ, r)) ≤ ICη(f(λ), r), for each λ ∈ IX and

r ∈ I0.
(4) ICτ (f−1(μ, r)) ≤ f−1(ICη(μ, r)), for each μ ∈

IY and r ∈ I0.
(5) f−1(IIη(μ, r)) ≤ IIτ (f−1(μ, r)), for each μ ∈ IY

and r ∈ I0.

Theorem 3.8. Let f : (X, τ, I) → (Y, η, I) be a bijec-
tive mapping. The following statements are equivalent.

(1) A map f is fuzzy I-irresolute.
(2) IIη(f(μ), r)) ≤ f(IIτ (μ), r), for each μ ∈ IX .

Proof. (1)⇒(2): Let f be fuzzy I-irresolute mapping and
μ ∈ IX . Then f−1(IIη(f(μ), r)) is r-FIO. Form Theorem
3.7(5), and the fact that f is one-to-one we have

f−1(IIη(f(μ), r)) ≤ IIτ (f−1(f(μ)), r) = IIτ (μ, r).

Again since f is onto we have

IIη(f(μ), r) = ff−1(IIη(f(μ), r)) ≤ f(IIτ (μ, r)).

(2)⇒(1): Let μ is r-FIO set of Y. Form Theorem 2.6(3),
μ = IIη(μ, r). By (2) we have

f(IIτ (f−1(μ), r)) ≥ IIη(ff−1(μ), r) = IIη(μ, r) = μ

and

IIτ (f−1(μ), r) = f−1f(IIτ (f−1(μ), r)) ≤ f−1(μ).

Thus, f−1(μ) = IIτ (f−1(μ), r). Thus, f is fuzzy I-
irresolute.

Theorem 3.9. Let f : (X, τ, I) → (Y, η, J) be fuzzy
ideal topological space f : X → Y be a mapping. Then
following statements are equivalent.

(1) f is fuzzy I-irresolute open.
(2) f(IIτ (λ, r)) ≤ IIη(f(λ), r), for each λ ∈ IX and

r ∈ I0.
(3) IIτ (f−1(μ), r) ≤ f−1(IIη(μ, r)), for each μ ∈ IY

and r ∈ I0.
(4) For any μ ∈ IY and any r-FIC λ ∈ IX with

f−1(μ) ≤ λ, there exists a r-FIC ρ ∈ IY with μ ≤ ρ such
that f−1(ρ) ≤ λ.

Proof.
(1)⇒(2): For each λ ∈ IX . Since IIτ (f(λ), r) ≤

λ form Theorem 2.6(2), we have f(IIτ (λ, r)) ≤ f(λ).
form (1), f(IIτ (λ, r)) is r-FIO. Therefore f(IIτ (λ, r)) ≤
IIη(f(λ), r).

(2)⇒(3): For all μ ∈ IY and r ∈ I0, put λ = f−1(μ)
form (2). Then

f(IIτ (f−1(μ), r)) ≤ IIη(f(f−1(μ)), r) ≤ IIη(μ, r).

It implies IIτ (f−1(μ), r) ≤ f−1(IIη(μ, r)).
(3)⇒(4): Let λ be r-FIC set of X such that f−1(μ) ≤

λ. Since 1 − λ ≤ f−1(1 − μ) and IIτ (1 − λ, r) = 1 − λ,

IIτ (1 − λ, r) = 1 − λ ≤ IIτ (f−1(1 − μ), r).

From (3),

1 − λ ≤ IIτ (f−1(1 − μ), r) ≤ f−1(IIη(1 − μ, r)).

It implies

λ ≥ 1 − f−1(IIη(1 − μ), r)
= f−1(1 − IIη(1 − μ, r))
= f−1(ICη(μ, r)).

Hence there exists a r-FIC ICη(μ, r) with μ ≤ ICη(μ, r)
such that f−1(ICη(μ, r)) ≤ λ.

(4)⇒(1) Let ω be r-FIO of X. Put μ = 1 − f(ω) and
λ = 1 − ω such that λ is r-FIC. We obtain

f−1(μ) = f−1(1 − f(ω))
= 1 − f−1(f(ω))
≤ 1 − ω = λ.

90

International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, no. 2, June 2009



Form (4) there exists a r-FIC set ρ with μ ≤ ρ such that
f−1(ρ) ≤ λ = 1 − ω. It implies ω ≤ 1 − f−1(ρ) =
f−1(1− ρ). Thus, f(ω) ≤ f(f−1(1− ρ)) = 1− ρ. On the
other hand, since μ ≤ ρ,

f(ω) = 1 − μ ≥ 1 − ρ.

Hence f(ω) = 1 − ρ, that is, f(ω) is r-FIO.

Theorem 3.10 is similarly proved from Theorem 3.9.

Theorem 3.10. Let (X, τ, I) and (Y, η, I) be fuzzy ideal
topological spaces f : X → Y be a mapping. Then fol-
lowing statements are equivalent.

(1) f is fuzzy I-irresolute closed.
(2) f(ICτ (λ, r)) ≤ ICη(f(λ), r), for each λ ∈ IX and

r ∈ I0.
(3) For any μ ∈ IY and any r-FIO λ ∈ IX with

f−1(μ) ≤ λ, there exists a r-FIO ρ ∈ IY with μ ≤ ρ such
that f−1(ρ) ≤ λ.

Theorem 3.11. Let (X, τ, I) and (Y, η) be fuzzy ideal
topological space. A mapping f : X → Y be a fuzzy
I-open. Then the following statements are holed.

(1) f(Iτ (λ, r)) ≤ IIη(f(λ), r), for each λ ∈ IX and
r ∈ I0.

(2) Iτ (f−1(μ), r) ≤ f−1(IIη(μ, r)), for each μ ∈ IY

and r ∈ I0.
(3) For any μ ∈ IY and τ(1 − λ) ≥ r such that

f−1(μ) ≤ λ, there exists a r-FIC set ρ ∈ IY

with μ ≤ ρ such that f−1(ρ) ≤ λ.

Proof. (1) For each λ ∈ IX since Iτ (λ, r) ≤ λ, by
Theorem 1.2(3). Then f(Iτ (λ, r)) ≤ f(λ). From (1),
f(Iτ (λ, r)) is r-FIO. Therefore

f(Iτ (λ, r)) ≤ IIη(f(λ), r)

.
(2) For all μ ∈ IY and r ∈ I0, put λ = f−1(μ) form

(2). Then

f(Iτ (f−1(μ), r)) ≤ IIη(f(f−1(μ)), r) = IIη(μ, r).

It implies Iτ (f−1(μ), r) ≤ f−1(IIη(μ, r)).
(3) Let τ(1− λ) ≥ r set of X such that f−1(μ) ≤ λ. Since
1 − λ ≤ f−1(1 − μ) and Iτ (1 − λ, r) = 1 − λ.

Iτ (1 − λ, r) = 1 − λ ≤ Iτ (f−1(1 − μ), r).

Form (2), we have
1 − λ ≤ Iτ (f−1(1 − μ), r) ≤ f−1(IIη(1 − μ, r)).

It implies

λ ≥ 1 − f−1(IIη(1 − μ), r)
= f−1(1 − IIη(1 − μ, r))
= f−1(ICη(μ, r)).

Hence there exists a r-FIC ICη(μ, r) ∈ IY with μ ≤
ICη(μ, r) such that f−1(ICη(μ, r)) ≤ λ.

Theorem 3.12 is similarly proved from Theorem 3.11.

Theorem 3.12. Let (X, τ) and (Y, η, I) be fuzzy ideal
topological spaces. A mapping f : X → Y be a fuzzy
I-closed. Then following statements are holed.

(1) f(Cτ (λ, r)) ≤ ICη(f(λ), r), for λ ∈ IX, r ∈ I0.
(2) For any λ ∈ IY and τ(μ) ≥ r such that

f−1(λ) ≤ μ, there exists a r-FIO with λ ≤ ρ such that
f−1(ρ) ≤ μ.

Theorem 3.13. Let (X, τ, I) and (Y, η, J) be fuzzy ideal
topological space and f : X → Y be a bijective mapping

(1) f is a fuzzy I-irresolute closed iff f−1(ICη(μ, r)) ≥
ICτ (f−1(μ), r), for each μ ∈ IY .

(2) f is a fuzzy I-irresolute closed iff fuzzy I-irresolute
open for each μ ∈ IX and r ∈ I0.

Proof. 1(⇒) Let f be a fuzzy I-irresolute closed. Form
Theorem 3.10(2), for each μ ∈ IX and r ∈ I0.

f(ICτ (λ, r)) ≤ ICη(f(λ), r).

For all μ ∈ IY and r ∈ I0 put λ = f−1(μ). Since f is
onto, ff−1(μ) = μ. Thus

f(ICτ (f−1(μ), r)) ≤ ICη(f(f−1(μ)), r)
= ICη(μ, r).

It implies

ICτ (f−1(μ), r) = f−1(f(ICτ (f−1(μ), r)))
≤ f−1(ICη(μ, r)).

1(⇐) Put μ = f(λ). Since f is injective

f−1(ICη(f(λ), r)) ≤ ICτ (f−1(f(λ)), r) = ICτ (λ, r)

Since f is onto ICη(f(λ), r) ≤ f(ICτ (λ, r)).
(2) It easily proved from:

f−1(ICη(μ, r)) ≤ ICτ (f−1(μ), r)
⇔ 1−f−1(IIη(1−μ, r)) ≤ 1−IIτ (1−f−1(μ), r).
⇔ f−1(IIη(1 − μ, r)) ≥ IIτ (f−1(1 − μ), r).

Form above theorems we have the following theorem.

Theorem 3.14. Let (X, τ, I) and (Y, η, I) be fuzzy ideal
topological spaces and f : X → Y be mappings. Then
following statements are equivalent.

(1) f is fuzzy I-irresolute and fuzzy I-irresolute open.
(2) f is fuzzy I-irresolute and fuzzy I-irresolute closed.
(3) f(IIτ (λ, r)) ≤ IIη(f(λ), r), for each λ ∈ IX and

r ∈ I0.
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(4) f(ICτ (λ, r)) ≤ ICη(f(λ), r), for each λ ∈ IX ,
r ∈ I0.

(5) IIτ (f−1(μ), r) ≤ f−1(IIη(μ, r)), for each μ ∈ IY

and r ∈ I0.
(6) ICτ (f−1(μ), r) ≤ f−1(ICη(μ, r)), for each

μ ∈ IY and r ∈ I0.

Theorem 3.15. Let f : (X, τ, I) → (Y, η, I) and
g : (Y, η, I) → (Z, γ) be a mapping. the following state-
ments are hold.

(1) If f and g is fuzzy I-irresolute, then g ◦ f is fuzzy
I-irresolute.

(2) If f is fuzzy I-irresolute and g is fuzzy I-continuous,
then g ◦ f is is fuzzy I-continuous.

(3) If f and g is fuzzy I-irresolute open, then g ◦ f is
fuzzy I-irresolute open.

Proof. Obvious.

References

92

International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, no. 2, June 2009

[10] El Naschie M.S. “Quantum gravity from descriptive 
set theory.” Chaos, Solitons & Fractals, vol. 19, pp. 
1339-1344, 2004.  

[11] El Naschie M.S. “Quantum gravity, Clifford algebras, 
fuzzy set theory and the fundamental constants of 
nature.” Chaos, Solitons & Fractals, vol. 20, pp.  
437-450, 2004.  

[12] El Naschie M.S. “The simplistic vacuum, exotic 
quasiparticles and gravitational instanton.” Chaos, 
Solitons & Fractals, vol. 22, pp. 1-11, 2004.  

[13] El Naschie M.S. “On a fuzzy Kahler-like manifold 
which is consistent with the two slit experiment.” Int J 
Nonlinear Sci Numer Simulat, vol. 6, pp. 95-98, 2005.  

[14] El Naschie M.S. “Topics in the mathematical 
physics of E-infinity theory.” Chaos, Solitons &  
Fractals, vol. 30, pp. 656-663, 2006.  

[15] El Naschie M.S. “Elementary prerequisite for 
E-infinity (recommended background readings in 
nonlinear dynamics, geometry and topology).” Chaos, 
Solitons & Fractals, vol. 30, no.3, pp. 579-605, 2006.  

[16] El Naschie M.S. “Advanced prerequisite for 
E-infinity theory.” Chaos, Solitons & Fractals, vol. 30, 
pp. 636-641, 2006.  

[17] Hatir H, Jafari S. “Fuzzy semi-I-open and Fuzzy 
semi-I-continuity via fuzzy idealization,” Chaos, 
Solitons & Fractals, vol. 34, no.4, pp. 1220–1224, 2007.  

[18] Hutton B, Reilly I. “Separation axioms in fuzzy 
topological spaces,” Fuzzy Sets and Systems, vol. 3, 
pp. 93-104, 1980.  

[19] Kim Y.C. Ko J.M. “r-generalized fuzzy closed sets.” J 
Fuzzy Math, vol. 12, no.1, pp. 7–21, 2004.  

[20] Kim Y.C. “r-fuzzy semi-open sets in fuzzy 
bitopolgical space,” Far East J. Math. Sic Spiecial, 
FJMS vol. 11, pp. 221–236, 2000.  

[21] Lowen R. “Fuzzy topological spaces and fuzzy 
compactness,” J. Math. Anal. Appl, vol. 56, pp. 
621-633, 1976.  

[22] Nasef A.A, Mahmoud R.A. “Some topological 
applications via fuzzy ideals.” Chaos, Solitons 
& Fractals, vol. 13, pp. 825–831, 2002.  

[23] Ramadan A.A. “Smooth topological spaces,” Fuzzy 
Sets and Systems, vol. 48, pp. 371-375, 1992.  

[24] Ramadan A.A, Abbas S.E, Kim Y.C. “Fuzzy irresolute 
functions in smooth fuzzy topological space.” J Fuzzy 
Math, vol.9, no.4, pp. 865–877, 2001.  

[25] Ramadan A.A, Abbas S.E, Kim Y.C. “On weaker forms 
of continuity is Ŝostak’s fuzzy topology,” Indian J. Pure 
and Appl, vol. 34, no.2, pp. 311-333, 2003.  

[1] Chang C.L. “Fuzzy topological spaces.” J. Math. Anal. 
Appl. vol. 24, pp. 182–190, 1968.  

[2] Chattopadhyay K.C, Hazra  R.N,  Samanta  S.K.  
“Gradation of openness: fuzzy topology,” Fuzzy Sets 
and Systems, vol. 49, pp. 237–42, 1992.  

[3] Chattopadhyay K.C, Samanta S.K. “Fuzzy topology: 
fuzzy closure operator, fuzzy compactness and fuzzy 
connectedness,” Fuzzy Sets and Systems, vol. 54, pp. 
207–12, 1993. 

[4] El-baki S.A, Zahran A.M, Abbas S.E, Saber  Y.M.  “On  
Fuzzy ideal topological spaces,” to appear in Applied 
Mathematical Sciences, 2008.  

[5] El Gayyar M.K, Kerre E.E. Ramadan  A.A.  “Almost 
compactness and near compactness in smooth 
topological spaces,” Fuzzy Sets and Systems, vol. 62, 
pp. 193–202, 1994.  

[6] EL Naschie M.S, Rossler Oed G. “Information and 
diffusion in quantum physics.” Chaos, Solitons
& Fractals, vol. 7, no.5, [special issue] 1996.  

[7] El Naschie M.S. “On the uncertainty of Cantorian 
geometry and the two-slit experiment.” Chaos, 
Solitons & Fractals, vol. 9, pp. 517-29, 1998  

[8] El Naschie M.S. “On the unification of heterotic 
strings, M theory and ε

 ( )∞ theory.” Chaos, Solitons 
& Fractals, vol. 11, pp. 2397-2408, 2000.  

[9] El Naschie M.S. “A review of E-infinity theory and the 
mass spectrum of high energy particle physics.” 
Chaos, Solitons & Fractals, vol. 19, pp. 209-236, 2004.  



Ahmed M. Zahran
M.Sc: 1986
Ph.D: 1990
Assoc. Professor: 1996
Professor: 2002
Department of Mathematics, Faculty of Science (Assuit)

Al-Azhar University, Assuit, Egypt
Research Area: Fuzzy topology, General topology
E-mail : zahran15@hotmail.com

S. Ahmed Abd El-Baki

M.Sc: 1986
Ph.D: 1991
Department of Mathematics,
Faculty of Science
Assuit University, Assuit, Egypt
Research Area: Fuzzy topology
E-mail : mazab57@yahoo.com

Yaser Mohammed Saber

M.Sc. : 2006
Department of Mathematics, Faculty of Science (Assuit)
Al-Azhar University, Assuit, Egypt
Research Area: Fuzzy topology, General topology
E-mail : m.ah75@Yahoo.com

93

Decomposition of Fuzzy Ideal Continuity via Fuzzy Idealization

[26] Ramadan A.A, Abde-Sattar M.A, El Gayyar M.K. 
Smooth L-ideal, Quaestiones Mathematicae 2000.  

[27] Sarkar D. “Fuzzy ideal theory, fuzzy local function 
and generated fuzzy topology, fuzzy topology.” Fuzzy 
Sets and Systems, vol. 87, pp. 117–123, 2001.  

[28] Sostak A.P. “On a fuzzy topological structure.” Suppl. 
Rend. Circ. Mat Palermo Ser II, vol. 11, pp. 89-103, 
1985.  

[29] Sostak A.P. “On some modifications of fuzzy 
topologies.” Mat Vesnik, vol. 41, pp. 51-64, 1989.  

  


