International Journal of Fuzzy Logic and Intelligent Systems, vol. 9, no. 2, June 2009 pp. 83—93

Decomposition of fuzzy ideal continuity via fuzzy idealization

Ahmed M. Zahran*, S. A. Abd El-Baki**,
Yaser M. Saber*

" Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
" Department of Mathematics, Faculty of Science, Assiut University, Assiut 71524, Egypt

Abstract

Recently, El-Naschie has shown that the notion of fuzzy topology may be relevant to quantum paretical physicsin con-
nection with string theory and E-infinity space time theory. In this paper, we study the concepts of r-fuzzy semi-I1-open,
r-fuzzy pre-1-open, r-fuzzy a-l-open and r-fuzzy g-1-open sets, which is properly placed between r-fuzzy openness and
r-fuzzy o-1-openness (r-fuzzy pre-I-openness) sets regardlessthe fuzzy ideal topological spacein Sostak sense. Moreover,
we give adecomposition of fuzzy continuity, fuzzy ideal continuity and fuzzy ideal a-continuity, and obtain several char-
acterization and some properties of these functions. Also, we investigate their relationship with other types of function.
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1. Introduction and Preliminaries

The concept of fuzzy topology wasfirst defined in 1968
by Chang [1] and later redefined in a somewhat different
way by Lowen [21] and by Hutton and Reilly [18]. Ac-
cording to Sostak’s [27], in all these definitions, a fuzzy
topology is a crisp subfamily of fuzzy sets and fuzzinessin
the concept of openness of a fuzzy set has not been con-
sidered, which seems to be a drawback in the process of
fuzzification of the concept of topological spaces. There-
fore Sostak’s introduced a new definition of fuzzy topol-
ogy in 1985 [28]. Later on, he developed the theory of
fuzzy topological spaces in [29]. After that severa au-
thors [2,3,5,19,20,23,25] have introduced the smooth def-
inition and studied smooth fuzzy topological spaces being
unaware of Sostak’s works. In fuzzy topology, by intro-
ducing the notion of ideal, [27], and severa other authors
[17,22] carried out such analysis.

The notion of continuity is an important concept in
fuzzy topology and fuzzy topology in Sostak sense as well
asin all branches of mathematics and quantum physics (see
[6,7,10,11,13,14]). We must state that this subject has been
researched by physicists [7,1013] as well as by others. El-
Naschie has shown that the notion of fuzzy topology in
Sostak sense has very important applications in quantum
particle physics especialy in relation to both string theory
and (> theory [8,9,12,15,16]. In this paper, we give ade-
composition of fuzzy continuity, fuzzy ideal continuity and
fuzzy ideal «-continuity, and we obtain several character-
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izations of fuzzy a-l-continuous functions. Moreover, we
introduce the concept of fuzzy «-1-open functions in fuzzy
ideal topological spaces and obtain their properties

Throughout this paper, let X be a nonempty set
I =[0,1]and Iy = (0,1]. For a € I, @(z) = « for
al x € X. The family of all fuzzy sets on X denoted by
IX. For two fuzzy sets we write A\gu to mean that ) is
guasi-coincident (g-coincident, for short) with p, i.e, there
exists at least one point « € X suchthat A(z) + p(x) > 1.
Negation of such a statement is denoted as Ag.

Definition 1.1 [27]. A mapping 7 : IX — I iscaled
a fuzzy topology on X if it satisfies the following condi-
tions:

(01) 7(0) = ~(T) = 1.
(02) 7(Vep 1) = Nier 7(1), for {piyier € I
(03) T(p1 A p2) > 7(p1) A T(p2), for pa, po € IX.

Definition 1.2 [26]. A mapping | : IX — T iscaled
fuzzy ideal on X iff:

(I;) 1(0) = 1,1(1) = 0.

(I3) If X < p, then1(\) > 1(u), foreach A\, u € IX.

(I3) Foreach A\, p € IX, 1(AV ) > 1(A) Al ().

Thepair (X, 7,1) iscalled fuzzy ideal topological space
(fits, for short)

Corollary 1.1. Let (X, 7,7) be afits. The simplest fuzzy
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ideal on X areZ°, 7! : IX — I where

IO(A):{ II(A):{

If I =1°, for each yu € IX wehave u* = C (i, 7).
IfI =1, foreach u € © wehave i = 0, where, 1 ¢ ©
be a subset of 1.

1, if A =0,
0, otherwise.

0,if x=1,
1, otherwise.

Definition 1.4 [4]. Let (X, 7,1) be afits. Let u, A € IX,
the r-fuzzy open loca function u) of p is the union
of al fuzzy points z; such that if p € Q(x¢,r) and
[(\) > r then there is at least one y € X for which

p(y) + u(y) — 1> Ay).

Theorem 1.1[3]. Let (X,7) be a fts. Then for each
r € Iy, A € I* wedefinean operator C,. : IX x Iy — IX
asfollows:

CrAr) = N{pel™: Xx<p, 7(T—p) =1}

For \,;u € IX and r, s € I, the operator C, satisfies the
following conditions:

(1) C.(0,7) =0.

@ A< Cr(\ ).

) C-(A\, 1)V Cr(p,r) =Cr(AV p, 7).

@) Cr (A1) <Cr (N, 8) ifr <s.

(5) C+(Cr (A7), 1) = Cr(\, 7).

Theorem 1.2[24]. Let (X,7) be a fts. Then for each
r € Iy, A\ € I* wedefinean operator I, : IX x Iy — IX
asfollows:

L(\r)= \/{u eI A>u, 7(u) >}

For A\, € I* and r,s € I, the operator I, satisfies the
following conditions:
WD LA=-X\r)=1-Cr(\7)

Theorem 1.3[4]. Let (X,7) beaftsand I, |5 be two
fuzzy ideas of X. Then for eachr € Iy and ju,n, p € IX.

(1) <, then py <.

(2) I <lg, = /’L;k'(ll’T) < n:(|277—)'

@) py = Cr(py, ) < Cr(p, 7).

(4 ()" < .

5) (ur Vi) = (uVn);.

(6) If 1(p) = rthen (uV p)y = py V pi = py.

(N 1f7(p) = r, then (p A7) < (p A )y

) (ur Amgt) = (mAm);.
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Theorem 1.4[4]. Let (X,7,1) be afits. Then for each
rely, pelIXwedeineC* : IX x Iy — IX asfollows:

CU(pym) = vV piy.
For u,m € IX, the Cl* satisfies the following conditions:
(1) 1f 1 < 17, then CI* (u,7) < CI* (1, 7).
(2 Cr*(Cl*(p,r),r) = ClU*(p, 7).
) Cl*(uVn,r)=Cl*(u,r) vV Cl*(n,r).
@) Cl*(uAm,r) < CU(py 1) ACU (7).

Definition 1.5 [24]. Let
andr € Ij.

(1) X iscaled r-fuzzy semiopen (r-FSO, for short) iff
A< C (I (N r),r).

(2) A iscalled r-fuzzy semiclosed (r-FSC, for short) iff
1 — Misr-fuzzy semiopen set of X.

(3) A is cdled r-fuzzy g-closed (r-FSC, for short) iff
A< Cr(I(Cr(A, ), 1), 7).

(X,7) beafts For A € IX

Definition 1.6[4]. Let (X,7,I) be a fuzzy idea topo-
logical space. For each ;s € IX and r € I.

(1) p iscaled r-fuzzy ideal open (r-FIO, for short) iff
< I (s, ).

(2) piscalled r-fuzzy ideal closed (r-FIC, for short) iff
1— pisr-FIO.

Lemma 1.1[4]. Let (X, 7,1) be afits.
(1) Any union of r-FIO setsisr-FIO.
(2) Any intersection of r-FIC setsisr-FIC

Definition 1.7 [27]. Let (X, 7) and (X,n) be fts's. Let
f:+ X — Y beamapping.

(1) f iscaled fuzzy continuous iff () < 7(f (1))
for each yu € I°%.

(2) f iscalled fuzzy openiff 7(u) < n(f(w)) for each
peIX.

(3) fiscaled fuzzy closed iff 7(1 — ) < n(f(1—p))
for each pu € I°X.

2. r-fuzzy semi-I-open and r-fuzzy a-l-open
sets

Definition 2.1. Let (X, 7, I) be afuzzy idea topologi-
cal space, foreach € IX andr € I.

(1) p is called r-fuzzy semi-l-open (r-FSI O, for short)
iff p < CU (L (py7), 7).

(2) v is called r-fuzzy pre-idea open (r-FPIO, for
short) iff p < I.(Cl*(p,7),7). The complement of ar-
fuzzy pre-ideal open set is said to be r-fuzzy pre-ideal
closed (r-FPI C, for short.)

(3) piscaled r-fuzzy a-ideal open (r-Fal O, for short)
iff o < L. (CI*(I-(u,r),r),). The complement of ar-
fuzzy «-ideal open set is said to be r-fuzzy «-ideal closed
(r-Fal C, for short.)
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(4) p iscaled r-fuzzy s-ideal open (r-F31C, for short)
iff o < C(L-(Cl*(u,r),r),7). The complement of ar-
fuzzy (3-ideal open set is said to be r-fuzzy (-ideal closed
(r-FBI1C, for short.)

Theorem 2.1. Let (X, 7,1) be afits.
(2) Every r-fuzzy open setisr-FalO
(2) Every r-Fal O setisr-FSIO.
(3) Every r-FSIO setisr-FgI 0.
(4) Every r-Fal O setisr-FPIO.
(5) Every r-FPI1O setisr-Fg10.
(6) Every r-FPIO setisr-FPO.
(7) Every r-fuzzy open set isr-FSI O.
(8) Every r-FSIO setisr-FSO.
(9) Every r-fuzzy open setisr-FPIO .
(10) Every r-FIO setisr-FPIO.
(11) Every r-F510 setisr-F50.

Proof. (1) Let 1 be r-fuzzy open set. Then

n = I.,_(,u,’l")
< () V (I (p, 7))
= CU* (I (p,7),7).

Therefore, p = I (u,r) < L (CU*(I-(u,r),r),r). Im-
pliesthat i isr-Fal O.
(2) Let u ber-FalO. Then by Theorem 1.4(1),

2 S IT(CZ*(IT(/“’L7T)’T) S Cl*(I‘F(M’T)’T)'
(3) Let 1 ber-FSIO. Then
o < Cl*(IT(M,T),T)

< Le(por) V (I (p,1))*

S pVopy

S CU (I (e V paysr)

< CU (I (CT (py ), ), 7)

< Cr(I(CT (p, ), ), 7).

(4) Let u ber-FalO set. Then

(5-10) This proof is obvious.

Remark 2.1. By Theorem 2.1, we obtain the diagram
for ar-fuzzy ideal topological space:
r-fuzzy open = r — FalO = r—FSIO = r-FSO

3 3 3
r—FIO = r—FPIO = r—FBIO = r-FB0

Remark 2.2. r-FPIO and r-FSI O are independent notions
as show by the following Examples 2.1. and 2.2.

Example 2.1. Define two fuzzy topologies and fuzzy ideal
7,1 : I* — I asfollows:

If wetakel = 1 foral r € Iy, and let » = 0.3, then p is
1-FPIO, but ¢ isnot 1-FSIO.

Example2.2. Let X = {a,b,c} beasetand a; € P,(X).
Define o € IX asfollows:
w1(a) = 0.2, py(b) =0.3, pi(c) =0.7;
=0.2.

pz(a) = 0.1, pz(b) = 0.2, pa(c)
Wedefiner,1 : IX — I asfollows:

1L,if A=1,0,
T(A) = %,if A= g,

0, otherwise.

If wetakel = 1° for all r € Iy, then p; is 2-FSIO, but x
isnot -FPIO.

Remark 2.3. r-FIO and r-FSIO are independent notions
as show by the following Examples 2.1. and 2.3.

Example 2.3. Define two fuzzy topologies and fuzzy ideal
7,1 : I*X — I asfollows:

1L,if A=1,0,
Lif A=04,
TW=9 i a=0s,
0, otherwise

If wetake| = 1° for al r € Iy, and let . = 0.5, then i is
L-FI0, but zzisnot 1-FSIO.

On the other hand, In Example 2.1. If wetake | = 1° for
?II r € Iy, and let 1 = 0.6, then p is 3-FSIO but 1 is not
1-FI0.

Remark 2.4. r-fuzzy open set and r-FIO are indepen-
dent notions as show by the following Example 2.1. and
2.4,

Example 2.4. Define two fuzzy topologies and fuzzy ideal
7,1 : IX — I asfollows:

Lif A=1,0,

Lif A=04,
"W=9 it a=03

0, otherwise.
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If wetake| = I, foral r € Iy, and let , = 0.3, then
7(p) > %, but pisnot $-FIO.

On the other hand, In Example 2.1. If wetake | = I for
al r € Iy, and let . = 0.3, then pis 3-FIO, but (1) < 1.

Corollary 2.1. Let (X, 7,1) beafits. For each i € 1.
(D) If1 = 1% foral r € Iy, then,

(i) r-FI1 O, r-FP1O and r-FPO are equivalent,

(i) p r-FSIO if and only if r-FSO,

(iii) p r-FBIO if and only if p isr-FGO.
(2) If I = I foral r € I, then, p isr-FA10 if and only if
wisr-FSO.

Proof. (1) If I = 1° for al r € Iy, then, u* = C,(u, r) for
any u € I and hence Cl* (pu,r) = pu Vv ' = Cr(u,7).
Therefore, we have . = C, (u, ) = CI*(p, 7). Thus, (i),
(ii), and (iii) follow immediately.

@ 1f1 = 1*foral r € I, then, u* = 0. Therefore,
wehave C (I (Cl*(u,r),r),r) = Co (L (i NV p,r),r) =
C-(I:(p,7), 7). Thus, r-FG10 and r-FSO are equivalent.

Definition 2.2. Let (X,7,1) be afits. For u,A € I
andr € I.
(1) piscaled r-fuzzy t-1-set if
L(CU*(p,7),r) = I (u, 7).
(2) piscaled r-fuzzy B-l-set if = v A A\, where
7(v) > r and X isr-fuzzy t-1-set of X.
(3) p iscaled r-fuzzy x-dense-in-itself if p < pf.

Corollary 2.2. Let (X,7,1) be afitsand A\ € I¥, the
following properties are holds

(2) Every r-fuzzy t-1-set is r-fuzzy B-1-set.

(2) Every r-fuzzy =-dense-in-itself set isr-fuzzy t-1-set.

Proof. (1) Let p isr-fuzzy t-1-set. Since p = 1 A p
then p isar-fuzzy B-l-set.
(2) Let p isr-fuzzy x-dense-in-itself set. Then
L(CU (), r) = I (3 Vg ) = I (s ).

Lemma 2.1. Let (X,7,1) be afits, for u € I*. The
following statements are equivalent.

(1) pisr-FalO.

(2) pr-FSIO and r-FPI O.

Proof. Necessity. Thisis obvious.
Sufficiency. Let u be r-FSIO and r-FPIO. Then, we
have

L(CU(p,r),7)
L (C1 (C (I (7)), 7). 7)
IT *

(CT (I (p,),7), 7).

This show that 1. isr-Fal O.
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Lemma 22. Let (X,7,1) be afits, for p € IX, the
following statements are equivalent.

(1) pisr-FIO.

(2) p arer-FIPO and r-fuzzy «-dense-in-itself.

Proof. (1=2): by Theorem 2.1, every r-FIO is r-FPIO.
On the other hand, p < I (pk, ) < p, which show that
u isr-fuzzy x-dense-in-itself.

(2=1): by the hypothesis, p < I.(Cl*(u,r),r) <
L(uVut,r)=IL(u:r), then, pisr-FIO.

Lemma 2.3. Let (X,7,1) be afits, for p € I*, the
following statements are equival ent.

) (u) > 7.

(2) p arer-FIPO and r-fuzzy B-I-set.

Proof. Let 7(u) > 7. Then pu A 1 follows that u is a
r-fuzzy B-1-set. p isaso r-FPIO by Theorem 2.1(9). Con-
versely, Let 1 be both r-fuzzy B-I-set and r-FPIO. Then,
w < L (Cl*(u,r),r)and p = A A w wherer(A) > r and
w isr-fuzzy t-1-set. Therefore,

AMw < L(CUr(AAw,r),7)
< L(Crr(\r),r) AN (Cl*(w,r),7)
=L (CUI*(\,r),r) A L (w, 7).

Hence,

ANw < (AAwW)AA
=L(CU*(A\,r),r) AN (w,r) A A
= AN (w, 7).

Thus, weaobtain A\ Aw = AA I (v,r), impliesT(p) > r.

Lemma 24. Let (X,7,1) be a fuzzy idea topological
space and p,w € IX. If 7(w) > 7, thenw A CI* (p, 1) <
Cl*(p A w,r).

Proof. Let 7(w) > r, by Theorem 1.3, then we have
(wA pk) < (wAp)kforany u € IX. Thus, we have

wACH(pr) =wA(pV )

= (WA RV (wAp)
S (WA V(WA p);
=Cl"(w A p, 7).

Theorem 2.2. Let (X, 7,1) beafitsand j,w € IX. Then
the following properties hold:

(D) If pisr-FSIO and w isr-FalO, then u A w isT-
FSIO.

(2) If pisr-FPIO and w isr-FalO, then u A w isr-
FPIO.

() If 7(p) > randw isr-FPIO, then u A w isr-FPIO.

D If7(p) >randwisr-FSIO, then u A w isr-FSIO
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Proof. (1) Let 1 ber-FSIO and w be r-FalO. By using
Lemma 2.4, we have

pAw < CU(L(pr),m) N(CU (L (w,r),7),7)
< CU (L (p,r) NCU (I (w, 1), 7),7)
< CU(CU (L (psr)ym) A Lr(w, ), 7)
(

< CU (I (p,r),r).

This show that 4 A w isr-FSIO.
(2-4) Similarly.

Corollary 2.3. Let (X,7,1) be afitsand y,w € I¥.
Then the following properties hold:
(D) If pisr-FSIO and 7(w) > r, then u A w isr-FSIO.
(2) If wisr-FPIO and 7(w) > r, then u Aw isr-FPIO.

Theorem 2.3. Let (X, 7,1) beafitsand u,w € IX. Then
the following properties hold:

(1) If pand w arer-Fal O, then u A w isr-Fal O.

(2 If puy isr-FalO fory € o, then\/_ ., py isr-FalO.
(3) If p1y isr-FPIO for v € o, then \/WGU p isr-FPIO.

Proof. (1) Let p and w, be r-FalO, by Lemma 2.1,
isr-FSIO and r-FPIO and by Theorem 2.2(1,2), 1 A w is
r-FSIO and r-FPIO. Therefore, by Lemma 2.1, p A w is
r-Fal O.

(2) Let u, beaclassof r-FalO. Thenfor any v € o,

py < Ir (Cl (I (ks 1), ),r)

LU\ pyyr

yET

Hence \/ ., py < L (CU(1:(V, ey Bys7),7), 7). This
show that \/_ ., pi ist-FalO.

(3) Similarly.

IA

Theorem 2.4. Let (X, 7,1) be afits, if x isr-FPIC then
Cl*(I(u,7),7) < p, foreach pu € IX.

Proof. Let u ber-FPIC. Then1 — p isr-FPIO. Hence

Therefore, we option C1*(

IT(/L7T)7T

Remark 2.5. Let (X,7,1) be afits. For each u € IX,

we have I, (Cl*(1 — p,7),r) # 1 — Cl*(I;(u,7),7) as
show by the following example.
Example 2.5. In Example 2.4, If we take | = 1 for

alr € Iy, and let 4 = 0.7, then u satisfies the above

properties.

Corollary 2.4. Let (X,7,1) be a fuzzy idea topo-
logical space, such that I.(CI*(1 — p,r),r) # 1 —
Cl*(I:(p,r),7). Then pisr-FPIC iff C1*(I-(p,r),r) <
p. foreach € I and r € I,.

Theorem 25. Let (X,7,1) be a fuzzy idea topolog-
ical space. For each A € IX, we define an operator
IC, : IX — I asfollows:

1IC, (N )= AN{pelX: X<pu, pisr-FIC}.
For each \, u € I, the following properties are holds:
D 1C-(0,r) =0.
2 A <IC-(A, 7).
) I1C (A7) VIC (1) <I1C-(AV p, 7).
D I1C(1C(A,r),7) =1C7(A, 7).
(5) If Xisr-FIC,iff A= 1C; ()\ r).

6 If C-(A\,7) is r-FIC, then C.(1C-(A,7),r) =
|CT(CT()\7T)’T) = C-,—()\,’I“).

Proof. (1), (2) and (5) are easily proved from the defi-
nition of 1C; and Lemma 1.1.
(3) Since A\, p < AV pu, we have

1Cr(A, ) VIC (, 1) <TCH(AV py 1)

(4) From (2) wehave | C- (A, ) < 1C-(1C-(A, 1), 7).
Now we show that |C, (A, ) > IC(IC (A, r),r). Sup-
pose that

1C-(\r) Z21C(1C- (A, r),r).

Thereexist z € X and t € (0, 1) such that

r)(x).  (B)

Since | C, (A, 7)(z) < t, by the definition | C-, there exists
r-FIC, A1 with A < )\; such that

1C-(\,r)(x) <t <IC-(1C-(\, 1),

1C-(A,r)(x) < A\i(z) < t.

Since A < A\, we have IC.(\,r) < A;. Again, by the
definition 1C-, we have |C(IC-(\,7),r) < A;. Hence
1C(1C-(\,r),r)(z) < M\i(z) < t. Itisacontradiction
for (B). Thus

1C-(\,r) > 1C-(1C-(A,7), 7).
(6) From (2) and C,(A

ICT(OT()\7 T)a ’/‘) = O‘r()‘v ’I“).
we only show that

,r) is a r-FIC we have
C‘r(lcr(/\vr)7r) = CT(>HT>'
Since A < I1C-(\, 1)

C(1C (A7), r) > Cr(A 7).
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Suppose that
C-(1C- (A7), r)Cr(A, 7).
Thereexist z € X and r € I such that

r)(xz) > Cr(A\, 1) ().

By the definition C,, there exists v € IX, with A < v and
7(1 — v) > r such that

C.(1C, (A7),

C-(1C (A, r),r)(x) > v(z) > C- (A7) ().

On the other hand, sincev = C, (v, 1), A < v, then

ICy (A7) <1C-(v,7) =
ThusC(1C-(\,7),7) < .
Itisacontradiction. Hence C-(1C- (A, r),r) < C-(A, 7).
Theorem 2.6. Let (X, 7,1) beafits. For each A € X, we
define an operator | I, : X — I asfollows:
IL\7)=\V{pel*: u<\ pisr—FIO}.

Foreachyu € IX, it holds the following properties:

) IIT(l - M,’I“) =1- ('CT(/JJ"))

) 1 (p,7) < pu <1Cr(pa, ).

() If wisr-FIOiff 1 1. (u,r) = p.

Proof. (1) Itis easily proved form the following:
I-(1C (A1)
=T-A{pel*: X<u, pisr—FIC}
=\{pel*: T-A>T—pu, 1—pisr—FIO}
=1L (T—\7).
(2) and (3) are easily proved form the definition of 17,- and
Lemmal.l.

3. Decompositions of fuzzy continuity and
fuzzy I-continuity

Definition 3.1. A mapping f : (X,7,1) — (Y,n) is
called fuzzy I-continuous (resp. fuzzy pre-1-continuous,
fuzzy *-l-continuous, fuzzy B-l-continuous, fuzzy semi-
I-continuous, fuzzy a-I-continuous) if f~1(u) is r-FIO
(resp. r-FPIO, r-fuzzy x-denes-in-itself, r-fuzzy B-I-set,
r-FSIO, r-Fal O) for each n(p) > rand r € I,.

According to Lemma 2.1-3 we have the following
decomposition of fuzzy continuity and decomposition of
fuzzy I-continuity.

Theorem 3.1. (1) A mapping f : (X,7,1) — (Y,n) is
called fuzzy continuous if and only if it is both fuzzy pre-
I-continuous and fuzzy B-I-continuous.

(2) A mapping f : (X,7,1) — (Y,n) is caled fuzzy
I-continuousif and only if it is both fuzzy pre-1-continuous
and fuzzy =-I-continuous.
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1C(Cr(v,r), 1) = Cr(v,7) =V

(3) Amapping f : (X, T,1) — (Y,n) iscaled fuzzy a-
I-continuousif and only if it is both fuzzy pre-I-continuous
and fuzzy semi-1-continuous.

Theorem 3.2. Let f : (X,7,1) — (Y,n) be afunction,
then following statements are equivalent.

(1) A map f isfuzzy a-l-continuous.

(2) Theinverseimage of each r-fuzzy closed setin Y is

r-Fal O.

() C-(Inti(Cr(f~1(N),7),7),7) < fF7HC,(N),7),
foreach A € IY andr € I,.

@ f(C-(Int7(Cr(p,7),7),7m)) < Cy(f(w),r), for

eachp e IX andr € I.

Proof. (1)<(2): It easily proved form Definition 3.1,
and fH (1 —p) =T~ f1 ().

(2<(3): Foreach A € IV and r € I. Since C,,(\, )
is r-fuzzy closed set in Y, by (2) f=(C, (A, r) isr-FalC
and1 — f~(C, (A, r) isr-FalO. Therefore,

- fHC,(nr)
< L(CIH (I (1= f~HCr(\,7)),7),7)
T—Cr(Int3(C(fH(Cr (A7), 7),7), 7).

Hence, we obtain
fHC (A7) = Co(Inti (Co(f7H(N), ), 1), 7).
(3)=(4): Foreach i € IX andr € I,. By (3), we have

Cr(Int (Coluyr),7) < Cr(Int (Co(f 71 f (1), 1), 7)
< NG (f(p), 7)),
and hence
F(Cr(IntZ(Cx(p,7),7), 1)) < Cy(f(1), 7).
A<(): Letn(v) > r. Then by (4),

F(Cr(Inte(Cr (F7H T =v)),7),7),7)
Sc’r/(ffil(i_y)vr)
<C,(1-v),r)=1-v

Thus
Cr(Inty(Co(f A = v),r),r)r) < fHI—v)
<T-f"v)

Consequently, we have

7 ) S L(CP(I(fH(v), ), 1), ).

This show that f—!
continuous.

(v) isr-FalO. Thus, f is fuzzy a-I-

Theorem 3.3. Let f :
continuous, then

(1) F(CI* (1)) < Cylf(u),r), for each u € I¥ is
r-FPIO.

(2) CI*(f71(N),
isr-FPIO.

(X,7,1) — (Y,n) be fuzzy a-I-

r) < f~YCr(\, 1)), foreach A € TV
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Proof. (1) If u € IX isr-FPIO, thenyu < L. (Cl*(p,7), 7).
Thus, by Theorem 3.2 we have

fC (p, 7)) < f(Crlp,r))

F(CHL(CT (py 1), 7

(C‘r(]n T(C‘r( W), T
(

C-(f(w),r).

(@ If X € IY isr-FPIO, then A < I.(Cl*(\,7),7).
Therefore, by Theorem 3.2, we have

A)r) < Co(f7HA)T)

“HI(CI (A ), ),

(Cl*( (‘((
(( HI(C (A,
( “(Ar),r),m)
A1)

Definition 3.2. A mapping f : (X,7) — (Y,n,l) iscalled
fuzzy «a-1-open (resp. fuzzy semi-I-open, fuzzy pre-1-open,
fuzzy 3-1-open) if image of each p € IX with 7(u) > ris
r-Fal O (resp. r-FSIO, r-FPI O, r-F31 O) set of .

/—\

r))
“(A7) 7)), )5 7))

r),7)),1),r),r)

VAVANRVANRVAN I/\
S R00%
::’:’;\fo

Remark 3.1. By Definition 2.2, and Remark 2.1 we obtain
the following diagram:

fuzzy open = fuzzy a— I-open = fuzzy pre-l-open

I ¢

fuzzy semi-l-open = fuzzy (-1-open

Theorem 3.4. A mapping f : (X,7) — (Y,n,l) iscaled
fuzzy «o-1-open if and only if it is fuzzy semi-I-open and
fuzzy pre-1-open.

Proof. Form Lemma 2.1, the proof straightforward.

Theorem 35. A mapping [ : (X,7) — (Y,n,l) is
fuzzy a-l-open if and only if for each i € I and each
7(T — ) > r, containing f~!(u), there exists v € IV
r-Fal C containing ;2 such that f=1(v) < \.

Proof. Necessity. Letv = T—f(1—\). Since f ~(u) < ),
wehave f(1—)\) < 1— p. Since f isfuzzy a-1-open, then
visr-FalC and
) =T— A=) <T-(1-
Sufficiency. Obvious.

A) = A

Corolary 3.1. Let f : (X,7,1) —
I-open. For each i € I, then

(Y,n) be fuzzy a-

(1) fﬁl(CT(I:(CT(,uaT)?T)’ )) Oﬂ(.f (N)?T)
@ fHCr(Ar) < Cr(fH ), 7).
Proof. For each u € IV, then C.(f~Y(u),r) is f-fuzzy

closed. By Theorem 3.5, there exists v € IY r-FalC con-
taining p such that f=1(v) < C.(f~*(u),r). Sincel — v
isr-FalO, f~1(1—v) < f~YI.(Cl*(I;(1—v,7),7),7))
and

Therefore,
FHC(Int(Cr (v, 7),m), 7)) < fHv) < C

Thus, /=1 (Cr (T2 (Cr (1), 7), 7)) < Co(f 7
(2) Similarly.

Theorem 3.6. Let f : (X, 7,1) — (Y,n) be a mapping.
For each r € I, then following statements are equivalent.
(1) A map f iscaled fuzzy I-continuous function.

(2) f~Y(u) isr-FIC, in X for each u € IX, r € I,
Withn(1 — p) > r.

3) fuc; (/\ 7)) < Cy(f(N),r), foreach A € I¥.

@1C-(fH(n, ))Sf HCy(p,m)), forpe IV

5) f7H Iy () < VL (f~Y(u, 7)), foreach p e IV
Proof. (1)<(2): It easily proved form Definition 1.6(2),
and f~1 (T —p) =1~ f~' ().

(2=(3): Suppose thereexist A € IX andr € I such
that

FAC (A1) £ C-(f(A),7).
Thereexisty € Y and ¢ € I such that

FAC(Am)(y) > > Cy(F(N),7)(y)-
If f~'({y}) = 0, it is a contradiction because
FAC(A ) (y) # 0.
If f~1({y}) # 0, thereexists z € f~1({y}) such that
FAC(Ar)(y) 210 (A ) (@) >t > Cp(f(A),r)(f(2)). (A)

(x
Since Cy,(f(A\),r)(f(z)) < t, there exists n(1 — p) > r
with f(\) < w such that

Co(f(N),r)(f(2)) < p(f(x) <t

Moreover, f(\) < u implies A < f~1(u). Form (2),
f~Y(u)isr-FIC. Thus,
1IC- (A, r)(z) < f~H(p)(z) = u(f(z)) < t. Itisacontra
diction for (A).

R=@: Foral uc IV, r € Iy, put A\ = f~(p).
Form (3), we have

FACH(FH () m)) < Cy(F(fH (1)) 1) < Colp, ).

Itimplies

1C,(f~ HAC ()5 )

f
FHCy(p,m))-

Hw)r) <
<
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(4=-(5): It easily proved form Theorems 2.6(1) and
Theorem 1.2(1).

(5)=(1): Let n(p) > r. Thenwe have by definition .,
pw=1I,(p,r). By (5) wehave

F7Hw) S V(FH (), r).
On the other hand, by Theorem 2.6(2),

F7H ) 2 (7))
Thus, f~Y(p) = 1 L-(f~1(u),r) thatis f~1(u) isr-FI10.

Analogous theorems to Theorem 3.6 can be given for the
types of continuity in Definition 3.1.

Definition 3.3. Let f : (X,7,1) — (Y,n,1) be a map-
ping.

(1) f iscalled fuzzy l-irresoluteif f=1(u) isr-FIO set
of X foreach r-FIO p € IY and r € .

(2) f iscalled fuzzy I-irresolute open (resp. fuzzy |-
open) if f(u) isr-FIO set of Y for each -FIO p € IX
(resp. 7(p) > 7).

(3) f is cdled fuzzy I-irresolute closed (resp. fuzzy
I-closed) if f(u)isr-FIC set of Y for each r-FIC p € I

(resp. (1 —p) >r.
The Following theoremissimilarly proved as Theorem 3.6.

Theorem 3.7. Let f : (X,7,1) — (Y,n,1) be a map-
ping. Then following statements are equivalent.

(1) A map f isfuzzy l-irresolute.

(2) Foreachr-FIC p € IY, f=*(p) isr-FIC.

) fF(IC-(\, 1)) <1C,(f(N),r), foreach A € IX and
r € Iy.

@ 1C-(f (7)) < F71(1Cy (7)), for each i €
IY andr € Iy.

() /(1 Ly (1

andr € I.

) < VL (f~Y(p,r)), foreach u € 1V

Theorem 38. Let f : (X,7,1) — (Y,n,]) be a bijec-
tive mapping. The following statements are equivalent.

(1) A map f isfuzzy l-irresolute.

@ 11,(f (1), 7)) < F(L (), ), for each p € I¥.

Proof. (1)=(2): Let f be fuzzy I-irresolute mapping and
p € IX. Then f=1(11,(f(p),r)) isr-FIO. Form Theorem
3.7(5), and the fact that f is one-to-one we have

FHL(f () 7)) SVL(FHF() ) = Ve ().
Againsince f isonto we have

L, (f(1),r) = £ 1 (f (1), ) < F(H(p, 7).

(2)=(1): Let yisr-FIO set of Y. Form Theorem 2.6(3),
w=1I,(p, 7). By (2) we have

FAL(F M ) m)) 2 (£ (), ) = Uy(pyr) = po
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and
(M (), r) = fHFOL(F (), ) < F ().

Thus, f~*(u) = IL.(f~Y(n),r). Thus, f is fuzzy I-
irresolute.

Theorem 39. Let f : (X,7,1) — (Y,n,J) be fuzzy
ideal topological space f : X — Y be amapping. Then
following statements are equivalent.

() f isfuzzy I-irresolute open.

@ fUL-(A\ 7)) < 1L, (f(N),r), foreach A € I* and
r € Iy.

G L (w),r) < fH (1 g (p
andr € Ij.

(4) Forany € IY and any r-FIC A € I¥ with
F1(u) < A\ thereexistsar-FIC p € IY with . < p such
that f=1(p) < A

,r)), foreach u € IV

Proof.

()=(2): For each A € IX. Since II(f(\),r)
A form Theorem 2.6(2), we have f(II.(\, 7)) < f(A
form (1), f(I1L-(A, 7)) isr-FIO. Therefore f(11,(\, 7))
LI, (f(N), 7).

(Q=@Q): Foral p e IY andr € Iy, put A = f~(p)
form (2). Then

IN

Nag

IN

f(II'r(fil(:u)vT)) S IITI(f(fil(M))/r) S IIT](NHT)'

Itimplies |17 (f~1 (), ) < £ (1, (11,7)-
(3)=(4): Let \ ber-FIC set of X such that f~1(u) <
A.Sincel - A< f T —pandI L. (1T—X\r)=1—\,

IL(T—=MNr) =T A<IL(f (T —p),r).

From (3),

T-A<IL(fT A= p)r) < FHLA = ).

It implies
A ZT—f_l(IIn(T_:u)vr)
= YT =1L, = p,r)
= f7H1Cy (1 7)).

Hence there existsar-FIC | C,, (i, ) with g < 1C, (e, 1)
suchthat =1 (10, (p, 7)) < A.

(4=(1) Letw ber-FIO of X. Put x = 1 — f(w) and
A =1—wsuchthat \isr-FIC. We obtain

FHw) (1-
— X

fa-f
1 fw))
1 A

IN

—w
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Form (4) there exists ar-FIC set p with i < p such that
Y p) <A =T1—w ltimplissw < I — f1(p) =
F~Y(T—p). Thus, f(w) < f(f~*(T—p)) =T~ p. Onthe
other hand, since i < p,

flwy=T-p>T1-p
Hence f(w) = 1 — p, thatis, f(w) isr-FIO.

Theorem 3.10 is similarly proved from Theorem 3.9.

Theorem 3.10. Let (X, 7,1) and (Y,n,1) be fuzzy idea
topological spaces f : X — Y be amapping. Then fol-
lowing statements are equivalent.

(1) f isfuzzy l-irresolute closed.

(2 f(1C-(\, 1)) <1C,(f(N),r), foreach A € IX and
r € Iy.

() For any i € IY and any r-FIO XA € I¥ with
F~Y(u) < )\ thereexistsar-FIO p € IY with p < p such
that f~1(p) < A

Theorem 3.11. Let (X,7,1) and (Y,n) be fuzzy idea
topological space. A mapping f : X — Y be afuzzy
I-open. Then the following statements are holed.

Q) f(I-(\, 7)) < 1L, (f(N),r), for each A € I¥ and
re Io.

@ L (f~ (u),7) < f=H( (s, 7)), for each p € 1V
andr € I.

(8 Forany u € IY and 7(1 — \) > r such that
F(u) < A\ thereexistsar-FIC setp € IV

with < psuchthat f=1(p) < .

) < A\ by

Proof. (1) For each A\ € I since I.(\,r
(A). From (1),

Theorem 1.2(3). Then f(I.(\,r)) <
f(I-(\, 7)) isr-FIO. Therefore

FI(A, 7)) S UL (F(A),7)

(@ Foral peI¥Yandr e I, put A\ = f~(u) form
(2). Then

), r)) <V (F(FH ), r) = Mg (s ).

Itimplies I (f " (u),7) < f=1 (11 (1, 7))
() Let 7(1—\) > rsetof X suchthat f~!(u) < A. Since
1-A<fA-pad(I-Ar)=1-A

LA-Ar)=1-XA<L(f'(1-p),r).

Form (2), we have

LA L(fT A= p)ir) < fHIL(L - 7).
Itimplies

Hence there exists a r-FIC |C,(u,7) € IV with p <
[C,(p,7) suchthat f=1(1C, (1, 7)) < A

Theorem 3.12 is similarly proved from Theorem 3.11.

Theorem 3.12. Let (X,7) and (Y,n,1) be fuzzy ided
topological spaces. A mapping f : X — Y be afuzzy
I-closed. Then following statements are holed.
(1) £(C- (A7) <1Cy(f(N),7), for X € I 7 € I.
(@ For any A € IY and 7(u) > r such that
F1(\) < u, there exists a r-F1O with A < p such that
f=1(p) < pe

Theorem 3.13. Let (X, 7,1) and (Y, n,J) be fuzzy ided
topological spaceand f : X — Y be abijective mapping
(1) f isafuzzy I-irresolute closed iff f=1(1C, (u, 7)) >
IC(f~1(n),r), foreach u € IV
(2) f isafuzzy I-irresolute closed iff fuzzy I-irresolute
openforeach . € IX andr € I,.

Proof. 1(=") Let f be a fuzzy I-irresolute closed. Form
Theorem 3.10(2), for each i € IX and r € .

FAC (A ) S1C(f(A), 7).

Foral u € IY andr € Iop put A\ = f~1(u). Since f is
onto, ff~'(u) = p. Thus

FAC(f M (1)) G (F(FH (), 7)
=1C,(p, 7).

Itimplies

= fHFACH(FH (),m))
S f_l(lcﬂ(/’tar))'

1(<) Put u = f(X). Since f isinjective

1C-(f~ (), 7)

FHAC(FN),m) S1C(FHFN),m) =102 (A7)

Since fisonto 1C,(f(A),7) < f(IC-(A,r)).
(2) It easily proved from:
FHC () <1CH(f7H (), 7)
e 1—fYLA—pr) <T-1LT—fYu),r).
g -f71(|I7I(T_ /L,T’)) Z IIT(.fil(T_ ,u),r).
Form above theorems we have the following theorem.

Theorem 3.14. Let (X, 7,1) and (Y, n,!) be fuzzy ided
topological spacesand f : X — Y be mappings. Then
following statements are equivalent.
(2) f isfuzzy I-irresolute and fuzzy I-irresolute open.
(2) f isfuzzy I-irresolute and fuzzy I-irresolute closed.
Q) fOI-(\, 7)) <IL,(f(\),r), foreach X € IX and
r € Iy.
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@) f(C- (A7) < 1Cy(f(N),7), for each X € I,
r € I.

G 1L/~ (0).7) < F~ (1 (s, 1), or each o € ¥
andr € 1.

6) 1C-(f~"(u),m)

peIY andr € I.

< fH1Cy(u,7)), for each

Theorem 3.15. Let f (X,7,1) (Y,n,1) and
g : (Y,n,1) — (Z,~) beamapping. the following state-
ments are hold.

(D) If f and g isfuzzy I-irresolute, then g o f isfuzzy
I-irresolute.

(2) If fisfuzzy l-irresoluteand g isfuzzy I-continuous,
then g o f isisfuzzy I-continuous.

(3) If f and g is fuzzy I-irresolute open, then g o f is
fuzzy I-irresolute open.

—

Proof. Obvious.

References

[1] Chang C.L. “Fuzzy topological spaces.” J. Math. Anal.
Appl. vol. 24, pp. 182-190, 1968.

Chattopadhyay K.C, Hazra R.N, Samanta S.K.
“Gradation of openness: fuzzy topology,” Fuzzy Sets
and Systems, vol. 49, pp. 237-42, 1992.

(2]

[3] Chattopadhyay K.C, Samanta S.K. “Fuzzy topology:
fuzzy closure operator, fuzzy compactness and fuzzy
connectedness,” Fuzzy Sets and Systems, vol. 54, pp.
207-12, 1993.

[4] El-baki S.A, Zahran A.M, Abbas S.E, Saber Y.M. “On
Fuzzy ideal topological spaces,” to appear in Applied
Mathematical Sciences, 2008.

[5] El Gayyar M.K, Kerre E.E. Ramadan A.A. “Almost
compactness and near compactness in smooth
topological spaces,” Fuzzy Sets and Systems, vol. 62,

pp. 193-202, 1994.

EL Naschie M.S, Rossler Oed G. “Information and
diffusion in quantum physics.” Chaos, Solitons
& Fractals, vol. 7, no.5, [special issue] 1996.

(6]

[7] El Naschie M.S. “On the uncertainty of Cantorian
geometry and the two-slit experiment.” Chaos,

Solitons & Fractals, vol. 9, pp. 517-29, 1998

El Naschie M.S. “On the unification of heterotic
strings, M theory and & theory.” Chaos, Solitons
& Fractals, vol. 11, pp. 2397-2408, 2000.

(8]

[9] El Naschie M.S. “A review of E-infinity theory and the
mass spectrum of high energy particle physics.”
Chaos, Solitons & Fractals, vol. 19, pp. 209-236, 2004.

92

[10] EI Naschie M.S. “Quantum gravity from descriptive
set theory.” Chaos, Solitons & Fractals, vol. 19, pp.
1339-1344, 2004.

[11] EI Naschie M.S. “Quantum gravity, Clifford algebras,
fuzzy set theory and the fundamental constants of
nature.” Chaos, Solitons & Fractals, vol. 20, pp.
437-450, 2004.

[12] El Naschie M.S. “The simplistic vacuum, exotic
quasiparticles and gravitational instanton.” Chaos,
Solitons & Fractals, vol. 22, pp. 1-11, 2004.

[13] EI Naschie M.S. “On a fuzzy Kahler-like manifold
which is consistent with the two slit experiment.” Int J
Nonlinear Sci Numer Simulat, vol. 6, pp. 95-98, 2005.

[14] E1 Naschie M.S. “Topics in the mathematical
physics of E-infinity theory.” Chaos, Solitons &
Fractals, vol. 30, pp. 656-663, 2006.

[15] El Naschie M.S. “Elementary prerequisite for
E-infinity (recommended background readings in
nonlinear dynamics, geometry and topology).” Chaos,
Solitons & Fractals, vol. 30, no.3, pp. 579-605, 2006.

[16] El Naschie M.S. “Advanced prerequisite for
E-infinity theory.” Chaos, Solitons & Fractals, vol. 30,
pp. 636-641, 2006.

[17] Hatir H, Jafari S. “Fuzzy semi-I-open and Fuzzy
semi-I-continuity via fuzzy idealization,” Chaos,
Solitons & Fractals, vol. 34, no.4, pp. 1220-1224, 2007.

[18] Hutton B, Reilly I. “Separation axioms in fuzzy
topological spaces,” Fuzzy Sets and Systems, vol. 3,
pp. 93-104, 1980.

[19] Kim Y.C. Ko J.M. “r-generalized fuzzy closed sets.” J
Fuzzy Math, vol. 12, no.1, pp. 7-21, 2004.

[20] Kim Y.C. “r-fuzzy semi-open sets in fuzzy
bitopolgical space,” Far East J. Math. Sic Spiecial,
FIMS vol. 11, pp. 221-236, 2000.

[21] Lowen R. “Fuzzy topological spaces and fuzzy
compactness,” J. Math. Anal. Appl, vol. 56, pp.
621-633, 1976.

[22] Nasef A.A, Mahmoud R.A. “Some topological
applications via fuzzy ideals.” Chaos, Solitons
& Fractals, vol. 13, pp. 825-831, 2002.

[23] Ramadan A.A. “Smooth topological spaces,” Fuzzy
Sets and Systems, vol. 48, pp. 371-375, 1992.

[24] Ramadan A.A, Abbas S.E, Kim Y.C. “Fuzzy irresolute
functions in smooth fuzzy topological space.” J Fuzzy
Math, vol.9, no.4, pp. 865-877, 2001.

[25] Ramadan A.A, Abbas S.E, Kim Y.C. “On weaker forms
of continuity is Sostak’s fuzzy topology,” Indian J. Pure
and Appl, vol. 34, n0.2, pp. 311-333, 2003.



Decomposition of Fuzzy Ideal Continuity via Fuzzy Idealization

[26] Ramadan A.A, Abde-Sattar M.A, El Gayyar M.K.

Smooth L-ideal, Quaestiones Mathematicae 2000.

[27] Sarkar D. “Fuzzy ideal theory, fuzzy local function
and generated fuzzy topology, fuzzy topology.” Fuzzy
Sets and Systems, vol. 87, pp. 117-123, 2001.

[28] Sostak A.P. “On a fuzzy topological structure.” Suppl.

Rend. Circ. Mat Palermo Ser II, vol. 11, pp. 89-103,
1985.

[29] Sostak A.P. “On some modifications of fuzzy
topologies.” Mat Vesnik, vol. 41, pp. 51-64, 1989.

Ahmed M. Zahran

M.Sc: 1986

Ph.D: 1990

Assoc. Professor: 1996

Professor: 2002

Department of Mathematics, Faculty of Science (Assuit)

Al-Azhar University, Assuit, Egypt
Research Area: Fuzzy topology, General topology
E-mail : zahran15@hotmail.com

S. Ahmed Abd El-Baki

M.Sc: 1986

Ph.D: 1991

Department of Mathematics,
Faculty of Science

Assuit University, Assuit, Egypt
Research Area: Fuzzy topology
E-mail : mazab57@yahoo.com

Yaser Mohammed Saber

M.Sc. : 2006

Department of Mathematics, Faculty of Science (Assuit)
Al-Azhar University, Assuit, Egypt

Research Area: Fuzzy topology, General topology
E-mail : m.ah75@Yahoo.com

93



