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Abstract. We establish a duality for two factorization questions, one for general positive
definite (p.d.) kernels K, and the other for Gaussian processes, say V . The latter notion,
for Gaussian processes is stated via Ito-integration. Our approach to factorization for p.d.
kernels is intuitively motivated by matrix factorizations, but in infinite dimensions, subtle
measure theoretic issues must be addressed. Consider a given p.d. kernel K, presented as
a covariance kernel for a Gaussian process V . We then give an explicit duality for these two
seemingly different notions of factorization, for p.d. kernel K, vs for Gaussian process V . Our
result is in the form of an explicit correspondence. It states that the analytic data which
determine the variety of factorizations for K is the exact same as that which yield factorizations
for V . Examples and applications are included: point-processes, sampling schemes, constructive
discretization, graph-Laplacians, and boundary-value problems.
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1. INTRODUCTION

We give an integrated approach to positive definite (p.d.) kernels and Gaussian
processes, with an emphasis on factorizations, and their applications. Positive definite
kernels serve as powerful tools in such diverse areas as Fourier analysis, probability
theory, stochastic processes, boundary theory, potential theory, approximation theory,
interpolation, signal/image analysis, operator theory, spectral theory, mathematical
physics, representation theory, complex function-theory, moment problems, integral
equations, numerical analysis, boundary-value problems for partial differential
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equations, machine learning, geometric embedding problems, and information theory.
While there is no single book which covers all these applications, the reference [65]
goes some of the way. As for the use of RKHS analysis in machine learning, we refer
to [72] and [74].

Here, we give a new and explicit duality for positive definite functions (kernels) on
the one hand, and Gaussian processes on the other. A covariance kernel for a general
stochastic process is positive definite. In general, the stochastic process in question
is not determined by its covariance kernel. But in the special case when the process
is Gaussian, it is. In fact (Theorem 3.1), every p.d. kernel K is indeed the covariance
kernel of a Gaussian process. The construction is natural; starting with the p.d.
kernel K, there is a canonical inductive limit construction leading to the Gaussian
process for this problem, following a realization of Gaussian processes dating back
to Kolmogorov. The interplay between analytic properties of p.d. kernels and their
associated Gaussian processes is the focus of our present study.

We formulate two different factorization questions, one for general p.d. kernels K,
and the other for Gaussian processes, say V . The latter notion, for Gaussian processes,
is a subordination approach. Our approach to factorization for p.d. kernels is directly
motivated by matrix factorizations, but in infinite dimensions, there are subtle measure
theoretic issues involved. If the given p.d. kernel K is already presented as a covariance
kernel for a Gaussian process V , we then give an explicit duality for these two seemingly
different notions of factorization. Our main result, Theorem 5.1, states that the analytic
data which determine the variety of factorizations for K is the exact same as that
which yield factorizations for V .

2. POSITIVE DEFINITE KERNELS
AND THEIR REPRODUCING KERNEL HILBERT SPACES

The notion of a positive definite (p.d.) kernel has come to serve as a versatile tool in
a host of problems in pure and applied mathematics. The abstract notion of a p.d. kernel
is in fact a generalization of that of a positive definite function, or a positive-definite
matrix. Indeed, the matrix-point of view lends itself naturally to the particular
factorization question which we shall address in Section 5 below. The general idea
of p.d. kernels arose first in various special cases in the first half of 20th century:
It occurs in work by J. Mercer in the context of solving integral operator equations;
in the work of G. Szegő and S. Bergmann in the study of harmonic analysis and
the theory of complex domains; and in the work by N. Aronszajn in boundary value
problems for PDEs. It was Aronszajn who introduced the natural notion of reproducing
kernel Hilbert space (RKHS) which will play a central role here; see especially (2.5)
below. References covering the areas mentioned above include: [9, 15, 29, 32, 34, 35, 51],
and [46].

Right up to the present, p.d. kernels have arisen as powerful tools in many
and diverse areas of mathematics. A partial list includes the areas listed above
in the Introduction. An important new area of application of RKHS theory includes
the following [1–6,11,12].
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Let X be a set and let K be a complex valued function on X ×X. We say that K
is positive definite (p.d.) iff (Def.) for all finite subset F (⊂ X) and complex numbers
(ξx)x∈F , we have

∑

x∈F

∑

y∈F

ξxξyK(x, y) ≥ 0. (2.1)

In other words, the |F | × |F | matrix (K(x, y))F ×F is positive definite in the usual
sense of linear algebra. We refer to the rich literature regarding theory and applications
of p.d. functions [7, 19,24,27,44,68,71].

We shall also need the Aronszajn [15] reproducing kernel Hilbert spaces (R.K.H.S.),
denoted H (K).

Let F , and (ξ)x∈F , are as above, and consider all functions on X of the form

∑

x∈F

ξxK (·, x) . (2.2)

If F (finite) is fixed, and (ξx)x∈F , (ηx)x∈F are vectors in C
|F |, we set

〈∑
x∈F

ξxK (·, x) ,
∑

y∈F
ηyK (·, y)

〉

H (K)
:=
∑∑

F ×F
ξxηyK(x, y), (2.3)

and
∥∥∥
∑

x∈F
ξxK (·, x)

∥∥∥
2

H (K)
:=
∑∑

F ×F
ξxξyK(x, y). (2.4)

Then H (K) is the Hilbert completion of all functions as in (2.2) with respect to
the ‖·‖

H (K) -norm; see (2.3)–(2.4).

With the definition of the R.K.H.S. H (K), we get directly that the functions
{K (·, x)}x∈X are automatically in H (K); and that, for all h ∈ H (K), we have

〈K (·, x) , h〉
H (K) = h (x) ; (2.5)

i.e., the reproducing property holds.
Further recall (see e.g. [65]) that, given K, then the R.K.H.S. H (K) is determined

uniquely, up to isometric isomorphism in Hilbert space.

Remark 2.1. In general, when a positive definite kernel K is given, and
the reproducing kernel Hilbert space (RKHS) H (K) is constructed, one only specifies
a generating (dense span) system of elements in H (K). As outlined, this subspace
(in H (K)) may be specified as in (2.2), and the ‖·‖

H (K)-norm is then specified

as in (2.4). With this point of view, H (K) arises as a Hilbert-completion.
However, in many applications (see especially Sections 7–10 below), it is possible

to give an explicit formula for all the elements ψ in H (K), and their Hilbert
norms ‖ψ‖

H (K).
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Lemma 2.2. Let X ×X
K−−→ C be a p.d. kernel, and let H (K) be the corresponding

RKHS (see (2.3)–(2.5)). Let h be a function defined on X. Then the following conditions

are equivalent:

(i) h ∈ H (K);

(ii) there is a constant C = Ch < ∞ such that, for all finite subset F ⊂ X, and all

(ξx)x∈F , ξx ∈ C, the following a priori estimate holds:

∣∣∣
∑

x∈F
ξxh (x)

∣∣∣
2

≤ Ch

∑
x∈F

∑
y∈F

ξxξyK(x, y). (2.6)

Proof. The implication (i)⇒(ii) is immediate, and in this case, we may take

Ch = ‖h‖2
H (K).

Now for the converse, assume (ii) holds for some finite constant. On
the H (K)-dense span in (2.2), define a linear functional

Lh

(∑
x∈F

ξxK (·, x)
)

:=
∑

x∈F
ξxh (x) . (2.7)

From the assumption (2.6) in (ii), we conclude that Lh (in (2.7)) is a well defined
bounded linear functional on H (K). Initially, Lh is only defined on the span (2.2),
but by (2.6), it is bounded, and so extends uniquely by H (K)-norm limits. We may
therefore apply Riesz’ lemma to the Hilbert space H (K), and conclude that there is
a unique H ∈ H (K) such that

Lh (ψ) = 〈ψ,H〉
H (K) (2.8)

for all ψ ∈ H (K). Now, setting ψ (·) := K (·, x), for x ∈ X, we conclude from
(2.8) that h (x) = H (x); and so h ∈ H (K), proving (i).

3. GAUSSIAN PROCESSES

The interest in positive definite (p.d.) functions has at least three roots: (i) Fourier
analysis, and harmonic analysis more generally; (ii) Optimization and approximation
problems, involving for example spline approximations as envisioned by I. Schöenberg;
and (iii) Stochastic processes. See [62,69].

Below, we sketch a few details regarding (iii). A stochastic process is an indexed
family of random variables based on a fixed probability space. In some cases,
the processes will be indexed by some group G, or by a subset of G. For example,
G = R, or G = Z, correspond to processes indexed by real time, respectively discrete
time. A main tool in the analysis of stochastic processes is an associated covariance

function.
A process {Xg | g ∈ G} is called Gaussian if each random variable Xg is Gaussian,

i.e., its distribution is Gaussian. For Gaussian processes, we only need two moments.
So if we normalize, setting the mean equal to 0, then the process is determined by
its covariance function. In general, the covariance function is a function on G × G,
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or on a subset, but if the process is stationary, the covariance function will in fact
be a p.d. function defined on G, or a subset of G. For a systematic study of positive
definite functions on groups G, on subsets of groups, and the variety of the extensions
to p.d. functions on G, see e.g. [41].

By a theorem of Kolmogorov [53], every Hilbert space may be realized as
a (Gaussian) reproducing kernel Hilbert space (RKHS), see Theorem 3.1 below,
and also [32,64,73].

Now every positive definite kernel is also the covariance kernel of a Gaussian
process; a fact which is a point of departure in our present analysis: Given a positive
definite kernel, we shall explore its use in the analysis of the associated Gaussian
process; and vice versa.

This point of view is especially fruitful when one is dealing with problems from
stochastic analysis. Even restricting to stochastic analysis, we have the exciting area
of applications to statistical learning theory [72,74].

Let (Ω,F ,P) be a probability space, i.e., Ω is a fixed set (sample space), F is
a specified sigma-algebra (events) of subsets in Ω, and P is a probability measure
on F .

A Gaussian random variable is a function V : Ω → R (in the real case), or
V : Ω → C, such that V is measurable with respect to the sigma-algebra F on Ω,
and the corresponding sigma-algebra of Borel subsets in R (or in C). Let E denote
the expectation defined from P, i.e.,

E (·) =

∫

Ω

(·) dP. (3.1)

The requirement on V is that its distribution is Gaussian. If g denotes a Gaussian
on R (or on C), the requirement is that

E (f ◦ V ) =

∫

R(or C)

f dg; (3.2)

or equivalently

P (V ∈ B) =

∫

B

dg = g (B) (3.3)

for all Borel sets B; see Figure 1.
If N ∈ N, and V1, . . . , VN are random variables, the Gaussian requirement is (see

Figure 2) that the joint distribution of (V1, . . . , VN ) is an N -dimensional Gaussian,
say gN , so if B ⊂ R

N then

P ((V1, . . . , VN ) ∈ B) = gN (B) . (3.4)

For our present purpose we may restrict to the case where the mean (of the
respective Gaussians) is assumed zero. In that case, a finite joint distribution is
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determined by its covariance matrix. In the R
N case, it is specified as follows

(the extension to C
N is immediate) (GN (j1, j2))

N
j1,j2=1,

GN (j1, j2) =

∫

RN

xj1
xj2

gN (x1, . . . , xN ) dx1 . . . dxN (3.5)

where dx1 . . . dxN = λN denotes the standard Lebesgue measure on R
N .

Fig. 1. A Gaussian random variable and its distribution, see (3.3)

Fig. 2. A Gaussian system and its joint distribution, see (3.4)

The following is known:

Theorem 3.1 (Kolmogorov [54], see also [29,30]). A kernel K : X×X → C is positive

definite if and only if there is a (mean zero) Gaussian process (Vx)x∈X indexed by X
such that

E
(
V xVy

)
= K(x, y), (3.6)

where V x denotes complex conjugation. Moreover (see Hida [28, 30]), the process

in (3.6) is uniquely determined by the kernel K in question. If F ⊂ X is finite, then

the covariance kernel for (Vx)x∈F is KF given by

KF (x, y) = GF (x, y), (3.7)

for all x, y ∈ F , see (3.5) above.

In the subsequent sections, we shall address a number of properties of
Gaussian processes important for their stochastic calculus. Our analysis deals
with both the general case, and particular examples from applications. We begin
in Section 4 with certain Wiener processes which are indexed by sigma-finite
measures. For this class, the corresponding p.d. kernel has a special form; see (4.1) in
Definition 4.1. (The case of fractal measures is part of Section 6 below.) In Section 5,
we address the general case: We prove our duality result for factorization, Theorem 5.1.
The remaining sections are devoted to examples and applications.
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4. SIGMA-FINITE MEASURE SPACES AND GAUSSIAN PROCESSES

We shall consider functions of σ-finite measure space (M,FM , µ), where M is
a set, FM a σ-algebra of subsets in M , and µ is a positive measure defined on
FM . It is further assumed that there is a countably indexed (Ai)i∈N

such that
0 < µ (Ai) < ∞, M = ∪iAi; and further that the measure space (M,FM , µ) is
complete; so the Radon-Nikodym theorem holds. We shall also restrict to the case
when µ is assumed non-atomic. The case when µ is atomic is different, and is addressed
in Section 7 below.

Definition 4.1. Set

Ffin = {A ∈ FM | 0 < µ (A) < ∞} .

Note then
K(µ) (A,B) = µ (A ∩B) A,B ∈ Ffin (4.1)

is positive definite. The corresponding Gaussian process (W
(µ)
A )A∈Ffin

is called
the Wiener process [28,30]. In particular, we have

E

(
W

(µ)
A W

(µ)
B

)
= µ (A ∩B) , (4.2)

and

lim
(Ai)

∑

i

(
W

(µ)
Ai

)2

= µ (A) . (4.3)

The precise limit in (4.3), quadratic variation, is as follows: Given µ as above, and
A ∈ Ffin, we then take limit over the filter of all partitions of A (see (4.4)) relative
to the standard notation of refinement:

A = ∪iAi, Ai ∩Aj = ∅ if i 6= j, and limµ (Ai) = 0. (4.4)

Details: Let (Ω, Cyl,P), P = P
(µ) be the probability space which realizes W (µ)

as a Gaussian process (or generalized Wiener process), i.e., such that (4.2) holds for

all pairs in Ffin. In particular, we have that W
(µ)
A ∼

(dist)
N (0, µ (A)), i.e., mean zero,

Gaussian, and variance = µ (A). Then the following result holds.

Lemma 4.2 (see e.g., [9]). With the assumptions as above, we have

lim
(Ai)

E

(∣∣µ (A)✶ −
∑

i
(W

(µ)
Ai

)2
∣∣∣
2
)

= 0 (4.5)

where (in (4.5)) the limit is taken over the filter of all partitions (Ai) of A,

and ✶ denotes the constant function “one” on Ω.

As a result, we get the following Ito-integral

W (µ) (f) :=

∫

M

f (s) dW (µ)
s , (4.6)
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defined for all f ∈ L2 (M,F , µ), and

E

(∣∣∣∣
∫

M

f (s) dW (µ)
s

∣∣∣∣
2
)

=

∫

M

|f (s)|2 dµ (s) . (4.7)

We note that the following operator,

L2 (M,µ) ∋ f 7−→ W (µ) (f) ∈ L2 (Ω,P) (4.8)

is isometric.
In our subsequent considerations, we shall need the following precise formula

(see Lemma 4.3) for the RKHS associated with the p.d. kernel

K(µ) (A,B) := µ (A ∩B) , (4.9)

defined on Ffin × Ffin. We denote the RKHS by H (K(µ)).

Lemma 4.3. Let µ be as above, and let K(µ) be the p.d. kernel on Ffin defined

in (4.9). Then the corresponding RKHS H (K(µ)) is as follows: A function Φ on Ffin

is in H (K(µ)) if and only if there is a ϕ ∈ L2 (M,FM , µ)
(
=: L2 (µ)

)
such that

Φ (A) =

∫

A

ϕdµ, (4.10)

for all A ∈ Ffin. Then

‖Φ‖
H (K(µ)) = ‖ϕ‖L2(µ) . (4.11)

Proof. To show that Φ in (4.10) is in H (K(µ)), we must choose a finite constant CΦ

such that, for all finite subset (Ai)
N
i=1, Ai ∈ Ffin, {ξi}N

i=1, ξi ∈ R, we get the following
a priori estimate:

∣∣∣∣
∑N

i=1
ξiΦ (Ai)

∣∣∣∣
2

≤ CΦ

∑
i

∑
j
ξiξjK

(µ) (Ai, Aj) . (4.12)

But a direct application of Schwarz to L2 (µ) shows that (4.12) holds, and for a finite

CΦ, we may take CΦ = ‖ϕ‖2
L2(µ), where ϕ is the L2 (µ)-function in (4.10). The desired

conclusion now follows from an application of Lemma 2.2.
We have proved one implication from the statement of the lemma: Functions Φ

on Ffin of the formula (4.10) are in the RKHS H
(
K(µ)

)
, and the norm ‖·‖

H (K(µ))
is as stated in (4.11). In the below, we shall denote these elements in H

(
K(µ)

)

as pairs (Φ, ϕ). We shall also restrict attention to the case of real valued functions.
For the converse implication, let H be a function on Ffin, and

assume H ∈ H
(
K(µ)

)
. Then by the Schwarz inequality applied to 〈·, ·〉

H (K(µ))
we get ∣∣∣〈H,Φ〉

H (K(µ))

∣∣∣ ≤ ‖H‖
H (K(µ)) ‖ϕ‖L2(µ) , (4.13)
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where we used (4.11). Hence when Schwarz is applied to L2 (µ), we get a unique
h ∈ L2 (µ) such that

〈H,Φ〉
H (K(µ)) =

∫

M

hϕdµ (4.14)

for all (Φ, ϕ) as in (4.10). Now specialize to ϕ = χA, A ∈ Ffin, in (4.14) and
we conclude that

H (A) =

∫

A

h dµ; (4.15)

which translates into the assertion that the pair (H,h) has the desired form (4.10).
And hence by (4.11) we have ‖H‖

H (K(µ)) = ‖h‖L2(µ) as stated. This concludes

the proof of the converse inclusion.

5. FACTORIZATIONS AND STOCHASTIC INTEGRALS

In Sections 2 and 3, we introduced the related notions of positive definite (p.d.)
functions (kernels) on the one hand, and Gaussian processes on the other. One
notes the immediate fact that a covariance kernel for a general stochastic process is
positive definite. In general, the stochastic process in question is not determined by
its covariance kernel. But in the special case when the process is Gaussian, it is.

In Theorem 3.1, we stated that every p.d. kernel K is indeed the covariance kernel
of a Gaussian process. The construction is natural; starting with the p.d. kernel K,
there is a canonical inductive limit construction leading to the Gaussian process for this
problem. The basic idea for this particular construction of Gaussian processes dates
back to pioneering work by Kolmogorov [29,53].

In the present section, we formulate two different factorization questions, one for
general p.d. kernels K, and the other for Gaussian processes, say V . For details, see
the respective definitions in (5.2) and (5.3) below. If K is indeed the covariance kernel
for a Gaussian process V , it is natural to try to relate these two seemingly different
notions of factorization. (In the case of Gaussian processes, a better name is perhaps
“subordination” (see (5.10) below), but our theorem justifies the use of factorization in
both of these contexts.) Our main result, Theorem 5.1, states that the data determining
factorization for K is the exact same as that which yields factorization for V .

Let K be a positive definite kernel X × X
K−−→ C; and let V = VK be

the corresponding Gaussian (mean zero) process, indexed by X, i.e., Vx ∈ L2 (Ω,P),
for all x ∈ X, and

E
(
V xVy

)
= K(x, y), ∀(x, y) ∈ X ×X. (5.1)
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We set

F (K) :=
{

(M,FM , µ) | s.t. K (·, x) 7−→ kx ∈ L2 (M,µ)

extends to an isometry, i.e.,

K(x, y) =

∫

M

kx (s)ky (s) dµ (s) = 〈kx, ky〉L2(µ) for all x, y ∈ X
}
.

(5.2)

Further, if V is the Gaussian process (from (5.1)), we set

M (V ) :=
{

(M,FM , µ) | V admits an Ito-integral representation

Vx =

∫

M

kx (s) dW (µ)
s , ∀x ∈ X, where {kx}x∈X is

an indexed system in L2 (M,µ)
}
.

(5.3)

Following parallel terminology from measure theory, we say that a Gaussian process
V admits a disintegration, via suitable Ito-integrals, when there is a measure space
with measure µ such that the corresponding Wiener process W (µ) satisfies (5.3).
Our theorem below (Theorem 5.1) shows that this disintegration question may be
decided instead by the answer to an equivalent spectral decomposition question;
the latter of course formulated for the covariance kernel for V . As is shown in the
examples/applications below, given a Gaussian process, it is not at all clear what
disintegrations hold; see for example Corollary 6.7.

Theorem 5.1. Let K : X × X → C be given positive definite, and let {Vx}x∈X be

the corresponding Gaussian (mean zero) process, then

F (K) = M (V ) . (5.4)

We shall need the following lemma.

Lemma 5.2. From the definition of F (K), with K fixed and assumed p.d., we get

to every
(
(kx)x∈X , µ

)
∈ F (K) a natural isometry Tµ : H (K) −→ L2 (M,µ). It is

denoted by

Tµ(K (·, x)︸ ︷︷ ︸
∈H (K)

) := kx ∈ L2 (µ) ; (5.5)

and the adjoint operator T ∗
µ : L2 (M,µ) −→ H (K) is as follows: For all f ∈ L2 (M,µ)

we have (
T ∗

µf
)

(x) =

∫

M

f (s) kx (s)dµ (s) . (5.6)

Moreover, we also have

T ∗
µ (kx) = K (·, x) for all x ∈ X. (5.7)
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Proof. Since (kx, µ) ∈ F (K), we have the factorization property (5.2), and so it
follows from (5.5) that this extends by linearity and norm-completion to an isometry

H (K)
Tµ−−→ L2 (µ) as stated.

By the definition of the adjoint operator L2 (µ)
T ∗

µ−−→ H (K), we have for
f ∈ L2 (µ):

(
T ∗

µf
)

(x) =
〈
K (·, x) , T ∗

µf
〉

H (K)
= 〈kx, f〉L2(µ) =

∫

M

f (s) kx (s)dµ (s) ,

which is the assertion in the lemma.
From the properties of H (K) (see Section 2), it follows that (5.7) holds iff

〈
K (·, y) , T ∗

µ (kx)
〉

H (K)
= 〈K (·, y) ,K (·, x)〉

H (K) (5.8)

for all y ∈ X. But we may compute both sides in eq. (5.8) as follows:

LHS(5.8) = 〈TµK (·, y) , kx〉L2(µ)

=
by (5.5)

〈ky, kx〉L2(µ)

=
by (5.2)

K (y, x)

=
by (2.3)

RHS(5.8).

Proof of Theorem 5.1. The proof is divided into two parts, one for each of
the inclusions ⊆ and ⊇ in (5.4).

Part 1 “⊆”. Assume a pair
(
(kx)x∈X , µ

)
is in F (K); see (5.2). Then by definition,

the factorization (5.3) holds on X × X. Now let W (µ) denote the Wiener process
associated with µ, i.e., W (µ) is a Gaussian process indexed by Ffin, and

E

(
W

(µ)
A W

(µ)
B

)
= µ (A ∩B) , (5.9)

for all A,B ∈ Ffin; see (4.1) above. Now form the Ito-integral

Vx :=

∫

M

kx (s) dW (µ)
s , x ∈ X. (5.10)

We stress that then Vx, as defined by (5.10), is a Gaussian process indexed by X.
To see this, use the general theory of Ito-integration, see also [28, 29, 45–48, 51].
The approximation in (5.10) is over the filter of all partitions

{Ai}i∈N
s.t. Ai ∩Aj = ∅, i 6= j, ∪i∈NAi = M, and 0 < µ (Ai) < ∞; (5.11)

see (4.4). From the property of W
(µ)
Ai

, i ∈ N, we conclude that, for all si ∈ Ai, we have
that ∑

i∈N

kx (si)W
(µ)
Ai

(5.12)
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is Gaussian (mean zero) with

E

∣∣∣
∑

i
kx (si)W

(µ)
Ai

∣∣∣
2

=
∑

i

∑
j
kx (si)kx (sj)µ (Ai ∩Aj)

=
∑

i
|kx (si)|2 µ (Ai) , (5.13)

where we used (5.11). Passing to the limit over the filter of all partitions of M
(as in (5.11)), we then get

E



∫

M

kx (s)dW (µ)
s

∫

M

ky (t) dW
(µ)
t


 =

∫

M

kx (s)ky (s) dµ (s) ;

and with definition (5.10), therefore:

E
(
V xVy

)
= 〈kx, ky〉L2(µ) = K(x, y), ∀(x, y) ∈ X ×X, (5.14)

where the last step in the derivation (5.14) uses the assumption that
(
(kx)x∈X , µ

)
∈

F (K); see (5.2).
Part 2 “⊇”. Assume now that some pair

(
(kx)x∈X , µ

)
is in M (V ) where K is

given assumed p.d.; and where (Vx)x∈X is “the” associated (mean zero) Gaussian
process; i.e., with K as its covariance kernel; see (5.1).

We claim that
(
(kx)x∈X , µ

)
must then be in F (K), i.e., that the factorization

(5.3) holds. This in turn follows from the following chain of identities:

〈kx, ky〉L2(µ) = E
(
V xVy

) (
since Vx =

∫

M

kx (s) dW (µ)
s

)

= K(x, y)
(
since K is the covariance kernel (5.15)

of the Gaussian process (Vx)x∈X

)

valid for all (x, y) ∈ X × X, and the conclusion follows. Note that the first step
in the derivation of (5.15) uses the Ito-isometry. Hence, initially K may possibly
be the covariance kernel for a mean zero Gaussian process, say (V ′

x), different from

Vx :=
∫

M
kx (s) dW

(µ)
s . But we proved that the two Gaussian processes Vx, and V ′

x,
have the same covariance kernel. It follows then the two processes must be equivalent.
This is by general theory; see e.g. [9, 33,34].

The last uniqueness is only valid since we can consider Gaussian processes.
Other stochastic processes are typically not determined uniquely from the respective
covariance kernels.

Remark 5.3. In the statement of Theorem 5.1 there are two isometries: Starting with(
(kx)x∈X , µ

)
∈ F (K) we get the canonical isometry Tµ : H (K) → L2 (µ) given by

Tµ (K (·, x)) = kx; (5.16)
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see (5.5) of Lemma 5.2. But with µ, we then also get the Wiener process W (µ)

and the Ito-integral

L2 (M,µ) ∋ f 7−→
∫

M

f dW (µ) ∈ L2 (Ω, Cyl,P) (5.17)

as an isometry. Here (Ω, Cyl,P) denotes the standard probability space, with Cyl
abbreviation for the cylinder sigma-algebra of subsets of Ω := R

M . For finite subsets
(s1, s2, . . . , sk) in M , and Borel subsets Bk in R

k, the corresponding cylinder set

Cyl
(

(si)
k
i=1

)
:=
{
ω ∈ R

M ; (ω (s1) , . . . , ω (sk)) ∈ Bk

}
.

In summary, we get the following diagram of isometries (see Figure 3), corresponding
to a fixed

(
(kx)x∈X , µ

)
∈ F (K), where K is a fixed p.d. function on X ×X.

H (K)

Tµ

))

composition ,,

L2 (M,µ)

Ito-isometry for W (µ)rrL2 (Ω,P)

Fig. 3. The two isometries. Factorizations by isometries

6. EXAMPLES AND APPLICATIONS

Below we present four examples in order to illustrate the technical points
in Theorem 5.1. In the first example X = [0, 1], the unit interval, and in the next two
examples X = D = {z ∈ C ; |z| < 1} the open complex disk. In the fourth example,
the Drury-Arveson kernel, we have X = C

k.
We begin with a note on identifications. For t ∈ [0, 1], we set

e (t) := ei2πt.

We write λ1 for the Lebesgue measure restricted to [0, 1]; and we make the identification:

[0, 1] ∼= R/Z ∼= T
1 = {z ∈ C ; |z| = 1} . (6.1)
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Hence, for L2 ([0, 1], λ1) we have the following familiar Fourier expansion. With

f ∈ L2 (λ1) and cn :=

∫

[0,1]

e (nt)f (t) dλ1 (t) , n ∈ Z, (6.2)

we get

f (t) =
∑

n∈Z

cne (nt) and

1∫

0

|f (t)|2 dλ1 (t) =
∑

n∈Z

|cn|2 . (6.3)

On [0, 1], we shall also consider the Cantor measure µ4 with support equal
to the Cantor set

C4 =
{
x ; x =

∑∞

k=1
bk/4k, bk ∈ {0, 2}

}
⊆ [0, 1];

see Figure 4 and [35,39].

Fig. 4. The 4-Cantor set with double gaps as an iterated function system. This is
an iterated-function system construction: Cantor-set and measure; see (6.4) below

It is known that µ4 is the unique probability measure such that

1

2

1∫

0

(
f
(x

4

)
+ f

(
x+ 2

4

))
dµ4 (x) =

1∫

0

f dµ4. (6.4)

For the Fourier transform µ̂4 we have

µ̂4 (t) =
∞∏

k=1

1

2

(
1 + eiπt/4k

)
, t ∈ R. (6.5)
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In Table 1, we summarize the three examples with the data from Theorem 5.1.

Table 1. Three p.d. kernels and their respective Gaussian realizations

X K
kx, M = [0, 1] ∼= T

1,
F (K) = {(kx, µ)}

µ

Ex. 6.1 [0, 1] x ∧ y kx (s) = χ[0,x] (s) λ1

Ex. 6.2 D
1

1 − zw
kz (t) =

1

1 − ze (t)
λ1 on T

1

Ex. 6.3 D
∏

∞

n=0

(
1 + z4n

w4n)
kz (t) =

∏
∞

n=0

(
1 + z

4n

e (4nt)
)

µ4

We now turn to the details of the respective examples.

Example 6.1. If K(x, y) := x ∧ y is considered a kernel on [0, 1] × [0, 1], then
the corresponding RKHS H (K) is the Hilbert space of functions f on [0, 1] such
that the distribution derivative f ′ = df/dx is in L2 ([0, 1], λ1), λ1 = dx, f (0) = 0, and

‖f‖2
H (K) :=

1∫

0

|f ′ (x)|2 dx; (6.6)

and it is immediate that (kx, λ1) ∈ F (K), where kx (s) := χ[0,x] (s), the indicator
function; see Figure 5.

0 1x

0 1x

Fig. 5. The generators of the Cameron-Martin RKHS

The process W (λ1) is of course the standard Brownian motion on [0, 1], pinned
at x = 0; see Figure 6, and compare with the W (µ4)-process in Figure 7. For Monte
Carlo simulation, see e.g. [56, 58].
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0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.2

0.4

0.6

Fig. 6. Brownian motion on [0, 1]. Sample-paths by Monte Carlo. See Example 6.1

0.2 0.4 0.6 0.8 1.0

-0.5

0.5

1.0

1.5

Fig. 7. A Wiener process with holding patterns in the gaps of the Cantor set C4

in Figure 4: The W (µ4) process on [0, 1]. Sample-paths by Monte Carlo

The Hilbert space characterized by (6.6) is called the Cameron-Martin space, see
e.g., [29]. Moreover, to see that (6.6) is indeed the precise characterization of the RKHS
for this kernel, one again applies Lemma 2.2.

It immediately follows from Theorem 5.1 that the Gaussian processes corresponding
to the data in Table 1 are as follows:

Example 6.2. z ∈ D:

Vz =

1∫

0

1

1 − ze (t)
dW

(λ1)
t (6.7)

realized as an Ito-integral.
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As an application of Theorem 5.1, we get

E
(
V zVw

)
=

1

1 − zw
, ∀ (z, w) ∈ D × D.

Example 6.3. z ∈ D:

Vz =

1∫

0

∞∏

n=0

(
1 + z4n

e (4nt)
)
dW

(µ4)
t , (6.8)

where the W (µ4)-Ito integral is supported on the Cantor set C4 ⊂ [0, 1], see Figure 4.
As an application of Theorem 5.1, we get:

E
(
V zVw

)
=

∞∏

n=0

(
1 + (zw)

4n
)
.

The reasoning of Example 6.3 is based on a theorem of the paper [39] (see also [35]).
Set

Λ4 = {0, 1, 4, 5, 16, 17, 20, 21, 64, 65, . . .}

=

{∑finite

k=0
αk4k | αk ∈ {0, 1} , fintie summations

}
. (6.9)

Then the Fourier functions {e (λt) ; λ ∈ Λ4} forms an orthonormal basis in L2 (C4, µ4),
i.e., every f ∈ L2 (C4, µ4) has its Fourier expansion

f̂ (λ) =

∫

C4

e (λt)f (t) dµ4 (t) ;

f (t) =
∑

λ∈Λ4

f̂ (λ) e (λt) ;

and ∫

C4

|f |2 dµ4 =
∑

λ∈Λ4

∣∣∣f̂ (λ)
∣∣∣
2

.

Lemma 6.4. Consider the set Λ4 in (6.9), and, for s ∈ D, let

F (s) :=
∑

λ∈Λ4

sλ (6.10)

be the corresponding generating function. Then we have the following infinite-product

representation

F (s) =

∞∏

n=0

(
1 + s4n

)
. (6.11)
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Proof. From (6.9) we have the following self-similarity for Λ4: It is the following
identity of sets

Λ4 = {0, 1} + 4Λ4. (6.12)

Note that (6.12) is an algorithm for generating points in Λ4. Hence,

F (s) =
∑

λ∈Λ4

sλ =
∑

{0,1}+4Λ4

sλ

=
∑

4Λ4

sλ + s
∑

4Λ4

sλ

= (1 + s)F
(
s4
)

=
(
1 + s

)(
1 + s4

)
. . .
(
1 + s4n−1)

F
(
s4n)

and by induction.
Hence, if s ∈ D, the infinite-product is absolutely convergent, and the desired

product formula (6.11) follows.

Remark 6.5. Note that, in combination with the theorem from [39] (see also [35]), this
property of the generating function F = FΛ4

from Lemma 6.4 is used in the derivation
of the assertions made about the factorization properties in Example 6.3; this includes
the two formulas (Ex 3) as stated in Table 1; as well as of the verification that
(kz, µ4) ∈ F (K), where kz, µ4, and K are as stated.

A direct computation of the two cases, Example 6.1 and Example 6.3, is of interest.
Our result, Lemma 4.3, is useful in the construction: When computing the two Wiener
processes W (λ1) and W (µ) one notes that the covariance computed on intervals [0, x]
as 0 < x < 1 are as follows:

E

((
W

(λ1)
[0,x]

)2
)

= λ1 ([0, x]) = x, (6.13)

and

E

((
W

(µ4)
[0,x]

)2
)

= µ4 ([0, x]) . (6.14)

So the two functions have the representations as in Figure 8.
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0 0.5 1

0.5

1

0.5 1

0.5

1

The variance formula in (6.13) The Devil’s staircase.
The variance formula in (6.14)

Fig. 8. The two cumulative distributions

Example 6.6. The following example illustrates the need for a distinction
between X, and families of choices M in Theorem 5.1. A priori, one might expect

that if X × X
K−−→ C is given and p.d., it would be natural to try to equip X with

a σ-algebra FX of subsets, and a measure µ such that the condition in (5.2) holds
for (X,FX , µ), i.e.,

K(x, y) =

∫

X

kxkydµ, (x, y) ∈ X ×X (6.15)

with {kx}x∈X a system in L2 (X,FX , µ). It turns out that there are interesting
examples where this is known to not be feasible. The best known such example is
perhaps the Drury–Arveson kernel; see [16] and [13,14].

Specifics. Consider C
k for k ≥ 2, and Bk ⊂ C

k the complex ball defined for
z = (z1, . . . , zk) ∈ C

k,

Bk :=
{
z ∈ C

k ;
∑k

j=1
|zj |2

︸ ︷︷ ︸
‖z‖2

2

< 1
}
. (6.16)

For z, w ∈ C
k, set

〈z, w〉 :=
k∑

j=1

zjwj

and

KDA (z, w) :=
1

1 − 〈z, w〉 , (z, w) ∈ Bk ×Bk.
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Corollary 6.7 ([16, Corollary 2]). Let k ≥ 2, and let H (KDA) be the RKHS of

the Drury–Arveson kernel in (6.6). Then there is no Borel measure on C
k such that(

C
k,Bk, µ

)
∈ F (KDA); i.e., there is no solution to the formula

‖f‖2
H (KDA) =

∫

Ck

|f (z)|2 dµ (z) ,

for all f (z) k-polynomials.

Remark 6.8. It is natural to ask about disintegration properties for the Gaussian
process VDA corresponding to the Drury–Arveson kernel (6.6). Combining our
Theorem 5.1 above with the corollary (Corollary 6.7), we conclude that, in two
or more complex dimensions k, the question of finding the admissible disintegrations
this Gaussian process VDA is subtle. It must necessarily involve measure spaces going
beyond C

k.

7. THE CASE OF (kx, µ) ∈ F (K) WHEN µ IS ATOMIC

Below we present a case where µ from pairs in F (K) may be chosen to be atomic.
The construction is general, but for the sake of simplicity we shall assume that
a given p.d. K is such that the RKHS H (K) is separable, i.e., when it has an (all)
orthonormal basis (ONB) indexed by N.

Definition 7.1. Let H be a Hilbert space (separable), and let {gn}n∈N
be a system

of vectors in H such that
∑

n∈N

|〈ψ, gn〉
H

|2 = ‖ψ‖2
H

(7.1)

holds for all ψ ∈ H . We then say that {gn}n∈N
is a Parseval frame for H . (Also see

Definition 10.1.)
An equivalent assumption is that the mapping

H ∋ ψ
T7−−−−→ (〈ψ, gn〉

H
) ∈ l2 (N) (7.2)

is isometric. One checks that then the adjoint T ∗ : l2 → H is

T ∗ ((ξn)) =
∑

n∈N

ξngn ∈ H .

For general background references on frames in Hilbert space, we refer to [20,22,
25,26,47,52,57,66,70], and also see [17,50,57,63,75].

Lemma 7.2. Let K be given p.d. on X ×X, and assume that {gn}n∈N
is a Parseval

frame in H (K); then

K(x, y) =
∑

n∈N

gn (x) gn (y) (7.3)

with the sum on the RHS in (7.3) absolutely convergent.
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Proof. By the reproducing property of H (K), see Section 2, we get, for all
(x, y) ∈ X ×X:

K(x, y) = 〈K (·, x) ,K (·, y)〉
H (K)

=
by (7.1)

∑

n∈N

〈K (·, x) , gn〉
H (K) 〈gn,K (·, y)〉

H (K)

=
by (2.5)

∑

n∈N

gn (x) gn (y).

Now a direct application of the argument in the proof of Theorem 5.1 yields
the following:

Corollary 7.3. Let K be given p.d. on X ×X such that H (K) is separable, and let

{gn}n∈N
be a Parseval frame, for example an ONB in H (K). Let {ζn}n∈N

be a chosen

system of i.i.d. (independent identically distributed) system of standard Gaussians,

i.e., with N (0, 1)-distribution 1/
√

2πe−s2/2, s ∈ R. Then the following sum defines

a Gaussian process,

Vx (·) :=
∑

n∈N

gn (x) ζn (·) , (7.4)

i.e., {Vx}x∈X is well-defined in L2 (Ω, Cyl,P), as stated, where Ω = R
N as a realization

in an infinite Cartesian product with the usual cylinder σ-algebra, and {Vx}x∈X has

K as covariance kernel, i.e.,

E
(
V xVy

)
= K(x, y), ∀(x, y) ∈ X ×X;

see (5.15).

Proof. This is a direct application of Lemma 7.2, and we leave the remaining
verifications to the reader.

8. POINT PROCESSES: THE CASE WHEN {δx} ⊂ H (K)

Let X ×X
K−−→ R be a fixed positive definite kernel. We know that the RKHS H (K)

consists of functions h on X subject to the a priori estimate in Lemma 2.2. For recent
work on point-processes over infinite networks [18, 23, 37, 38, 43, 45, 49, 61, 67], the case
when the Dirac measures δx are in H (K) is of special significance. In this case there
is an abstract Laplace operator ∆, defined as follows:

(∆h) (x) = 〈δx, h〉
H (K) , ∀h ∈ H (K) . (8.1)

For the ‖·‖
H (K)-norm of δx, we have

(∆δx) (x) = ‖δx‖2
H (K) ; (8.2)

immediate from (8.1).



518 Palle Jorgensen and Feng Tian

For every finite subset F ⊂ X, we consider the induced |F | × |F | matrix

KF (x, y) = (K(x, y))x,y∈F . (8.3)

Note that KF is a positive definite square matrix. Its spectrum consists of
eigenvalues λs (F ).

If (K,X) is as described, i.e., X ×X
K−−→ R (or C) p.d., and if

{δx}x∈X ⊂ H (K) , (8.4)

we shall see that X must then be discrete. (In interesting cases, also countable.)
If (8.4) holds, we shall say that (K,X) is a point process. We shall further show that
point processes arise by restriction as follows:

Let (K,X) be given with K a p.d. kernel. If a countable subset S ⊂ X is such
that K(S) := K

∣∣
S×S

has

{δx}x∈S ∈ H (K(S)), (8.5)

then we shall say that
(
K(S), S

)
is an induced point process.

8.1. NETS OF FINITE SUBMATRICES, AND THEIR LIMITS

Given (K,X) as above with K p.d. and defined on X×X. Then the finite submatrices
in the subsection header are indexed by the net of all finite subsets F of X as follows:
Given F , then the corresponding |F | × |F | square matrix KF is simply the restriction
of K to F × F . Of course, each matrix KF is positive definite, and so it has a finite
list of eigenvalues. These eigenvalue lists figure in the discussion below.

Lemma 8.1. Let K, F , and KF be as above, with λs (F ) denoting the numbers in

the list of eigenvalues for the matrix KF . Then

1 ≤ λs (F )
∑

x∈F

‖δx‖2
H (K) . (8.6)

Proof. Consider the eigenvalue equation

(ξx)x∈F ,
∑

x∈F

|ξx|2 = ‖ξ‖2
2 = 1, KF ξ = λs (F ) ξ. (8.7)

From Lemma 2.2 and for x ∈ F , we then get

|ξx|2 ≤ ‖δx‖2
H (K) 〈ξ,KF ξ〉l2(F )

= ‖δx‖2
H (K) λs (F ) . (8.8)

Now apply
∑

x∈F to both sides in (8.8), and the desired conclusion (8.6) follows.

Remark 8.2. A consequence of the lemma is that the matrices K−1
F and K

−1/2
F

automatically are well defined (by the spectral theorem) with associated spectral
bounds.
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Definition 8.3. Let K, F , and KF be as above; and with the condition δx ∈ H (K)
in force. Set

HK (F ) := spanx∈F {K (·, x)} . (8.9)

It is a finite-dimensional (and therefore closed) subspace in H (K). The orthogonal
projection onto HK (F ) will be denoted PF : H (K) → HK (F ).

Lemma 8.4. Let K, F , KF , and HK (F ) be as above. Then the orthogonal projection

PF is as follows: For h ∈ H (K), set hF = h
∣∣
F

, restriction:

(PFh) (·) =
∑

y∈F

(
K−1

F hF

)
(y)K (·, y) . (8.10)

Proof. It is immediate from the definition that PFh has the form

PFh =
∑

y∈F

ξyK (·, y) (8.11)

with (ξy)y∈F ∈ C
|F |. Since PF is the orthogonal projection,

(h− PFh) ⊥H (K) {K (·, y)}y∈F (8.12)

(orthogonality in the H (K)-inner product) which yields

h (x) = (KF ξ) (x)
(

=
∑

y∈F
K(x, y)ξy

)
, ∀x ∈ F ;

and therefore, ξ = K−1
F hF , which is the desired formula (8.10).

Corollary 8.5. Let X, K, H (K) be as above, and assume δx ∈ H (K) for some

x ∈ X. Then a function h on X is in H (K) if and only if

sup
F

∥∥∥K−1/2
F hF

∥∥∥
l2(F )

< ∞, (8.13)

where the supremum is over all finite subsets F of X. If h is finite energy, then

‖h‖2
H (K) = sup

F

∥∥∥K−1/2
F hF

∥∥∥
2

l2(F )
. (8.14)

Proof. The proof follows from an application of Hilbert space geometry to the RKHS
H (K), on the family of orthogonal projections PF indexed by the finite subsets F in X.
With the standard lattice operations, applied to projections, we have supF PF = IH (K).
The conclusions (8.13)–(8.14) follow from this since, by the lemma,

‖PFh‖2
H (K) =

by (2.3)

〈
K−1

F hF ,KFK
−1
F hF

〉
l2(F )

=
〈
hF ,K

−1
F hF

〉
l2(F )

=
∥∥∥K−1/2

F hF

∥∥∥
2

l2(F )
.

(8.15)
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Remark 8.6. The advantage with the use of this system of orthogonal projections
PF , indexed by the finite subsets F of X, is that we may then take advantage of
the known lattice operations for orthogonal projections in Hilbert space. But it is
important that we get approximation with respect to the canonical norm in the RKHS
H (K). This works because by our construction, the orthogonality properties for
the projections PF refers precisely to the inner product in H (K). Naturally
we get the best H (K)-approximation properties when X is further assumed countable.
But the formula for the H (K)-norm holds in general.

Corollary 8.7. Let X × X
K−−→ C be fixed, assumed p.d., and let H (K) be

the corresponding RKHS. Let x ∈ X be given. Then δx ∈ H (K) if and only if

sup
F ⊂X, F is finite, x ∈ F

(
K−1

F

)
x,x

< ∞. (8.16)

In this case, we have

‖δx‖2
H (K) = the supremum in (8.16) .

Proof. The result is immediate from Corollary 8.5 applied to h := δx, where x is fixed.
Here the terms in (8.14) are, for F finite, x ∈ F :

〈
δx

∣∣
F
,K−1

F

(
δx

∣∣
F

)〉
l2(F )

=
(
K−1

F

)
x,x

, (8.17)

and the stated conclusion is now immediate.

Corollary 8.8. Let X, K, and H (K) be as above, but assume now that X is

countable, with a monotone net of finite sets:

F1 ⊂ F2 ⊂ F3 . . . , and X = ∪i∈NFi; (8.18)

then a function h on X is in H (K) iff supi

∥∥∥K−1/2
Fi

h
∣∣
Fi

∥∥∥
l2(Fi)

< ∞.

Moreover,

‖h‖2
HE

= lim
i→∞

∥∥∥K−1/2
Fi

h
∣∣
Fi

∥∥∥
2

l2(Fi)
, (8.19)

where, the convergence in (8.19) is monotone.

Proof. From the definition of the order of orthogonal projections, we have

PF1 ≤ PF2 ≤ PF3 ≤ . . . , (8.20)

and therefore,

‖PF1h‖2
H (K) ≤ ‖PF2h‖2

H (K) ≤ ‖PF3h‖2
H (K) ≤ . . . , (8.21)

with limi→∞ ‖PFi
h‖2

H (K) = ‖h‖2
H (K). But by (8.15) and the proof of Corollary 8.5,

we have ∥∥∥K−1/2
Fi

h
∣∣
Fi

∥∥∥
2

l2(Fi)
= ‖PFi

h‖2
H (K)



Decomposition of Gaussian processes, and factorization of positive definite kernels 521

and, so, by (8.21), we get

∥∥∥K−1/2
F1

h
∣∣
F1

∥∥∥
2

l2(F1)
≤
∥∥∥K−1/2

F2
h
∣∣
F2

∥∥∥
2

l2(F2)
≤
∥∥∥K−1/2

F3
h
∣∣
F3

∥∥∥
2

l2(F3)
≤ . . .

The conclusion now follows.

8.2. RESTRICTIONS OF P.D. KERNELS

Below we shall be considering pairs (K,X) with K a fixed p.d. kernel
defined on X × X, and, as before, we denote by H (K) the corresponding
RKHS with its canonical inner product. In general, X is an arbitrary
set, typically of large cardinality, in particular uncountable: It may be
a complex domain, a generalized boundary, or it may be a manifold arising from
problems in physics, in signal processing, or in machine learning models. Moreover,
for such general pairs (K,X), with K a fixed p.d. kernel, the Dirac functions δx are
typically not in H (K).

Here we shall turn to induced systems, indexed by suitable countable discrete
subsets S of X. Indeed, for a number of sampling or interpolation problems, it is
possible to identify countable discrete subsets S of X, such that when K is restricted to
S×S, i.e., K(S) := K

∣∣
S×S

, then for x ∈ S, the Dirac functions δx will be in H
(
K(S)

)
;

i.e., we get induced point processes indexed by S. In fact, with Corollary 8.8, we will
be able to identify a variety of such subsets S.

Moreover, each such choice of subset S yields point-process, and an induced
graph, and graph Laplacian; see (8.1)–(8.2). These issues will be taken up in detail in
the two subsequent sections. In the following Example 8.9, for illustration, we identify
a particular instance of this, when X = R (the reals), and S = Z (the integers), and
where K is the covariance kernel of standard Brownian motion on R.

Example 8.9 (Discretizing the covariance function for Brownian motion on R). The
present example is a variant of Example 6.1, but with X = R (instead of the interval
[0, 1]). We now set

K(x, y) :=

{
|x| ∧ |y| , (x, y) ∈ R × R, xy ≥ 0;

0, xy < 0.
(8.22)

It is immediate that (6.6) in Example 6.1 carries over, but now with R in place
of [0, 1]. The normalization f (0) = 0 is carried over. We get that: A function f (x)
on R is in H (K) iff it has distribution-derivative f ′ = df/dx in L2 (R), see (8.23).
As before, we conclude that the H (K)-norm is

‖f‖2
H (K) =

∫

R

|f ′|2 dx; (8.23)

see also Lemma 4.3.
Set

K(Z) = K
∣∣
Z×Z

, (8.24)
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and consider the corresponding RKHS H
(
K(Z)

)
. Using [42, 44], we conclude that

functions Φ on Z are in H
(
K(Z)

)
iff Φ (0) = 0, and

∑

n∈Z

|Φ (n) − Φ (n+ 1)|2 < ∞.

In that case,

‖Φ‖2
H (K(Z)) =

∑

n∈Z

|Φ (n) − Φ (n+ 1)|2 . (8.25)

For the Z-kernel, we have: {δn}n∈Z
⊂ H

(
K(Z)

)
, and

δn (·) = 2K (·, n) −K (·, n+ 1) −K (·, n− 1) , ∀n ∈ Z. (8.26)

Moreover, the corresponding Laplacian ∆ from (8.1) is

(∆Φ) (n) = 2Φ (n) − Φ (n+ 1) − Φ (n− 1) , (8.27)

i.e., the standard discretized Laplacian.

From the matrices K
(Z)
F , F ⊂ Z, we have the following; illustrated with

F = FN = {1, 2, . . . , N}.

K
(Z)
FN

=




1 1 1 1 . . . . . . 1
1 2 2 2 . . . . . . 2
1 2 3 3 . . . . . . 3
1 2 3 4 . . . . . . 4
...

...
...

...
. . .

. . .
...

...
...

...
...

. . . N − 1 N − 1
1 2 3 4 . . . N − 1 N




, (8.28)

and

(
K

(Z)
FN

)−1

=




2 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . . −1 2 −1 0

0 0 . . . 0 −1 2 −1
0 0 . . . 0 0 −1 1




. (8.29)

In particular, for n,m ∈ Z, we have

〈δn, δm〉
H (K(Z)) =





2 if n = m,

−1 if |n−m|=1,

0 otherwise.
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Remark 8.10. The determinant of K
(Z)
FN

is 1 for all N . Proof. By eliminating the first

column, and then the first row, det(K
(Z)
FN

) is reduced to det(K
(Z)
FN−1

) . So by induction,
the determinant is 1.

Note that ∑

k∈Z

χ[1,n] (k)χ[1,m] (k) = n ∧m

which yields the factorization

K
(Z)
FN

= ANA
∗
N , (8.30)

i.e.,

K
(Z)
FN

(n,m) = (ANA
∗
N )n,m =

∑
AN (n, k)A∗

N (k,m) ,

where AN is the N ×N lower triangular matrix given by

AN =




1 0 . . . . . . 0
1 1 0 . . . 0
...

...
. . .

. . .
...

...
...

...
. . . 0

1 1 . . . . . . 1



.

In particular, we get that det(K
(Z)
FN

) = 1 immediately. This is a special case
of Theorem 5.1.

For the general case, let FN = {xj}N
j=1 be a finite subset of R, assuming

x1 < x2 < . . . < xN . Then the factorization (8.30) holds with

AN =




√
x1 0 0 . . . 0

√
x1

√
x2 − x1 0 . . .

...
√
x1

√
x2 − x1

√
x3 − x2

. . .
...

...
...

...
. . . 0√

x1
√
x2 − x1

√
x3 − x2 . . .

√
xN − xN−1




. (8.31)

Thus,

det(K
(Z)
FN

) = x1 (x2 − x1) . . . (xN − xN−1) . (8.32)

In the setting of Section 5 (finite sums of standard Gaussians), we have the following:

Let {xi}N
i=1 be as in (8.31), and let 1 ≤ n,m ≤ N . Let {Zi}N

i=1 be a system i.i.d.
standard Gaussians N (0, 1), i.e., independent identically distributed. Set

Vn = Z1
√
x1 + Z2

√
x2 − x1 + . . .+ Zn

√
xn − xn−1. (8.33)

Then one checks that

E (VnVm) = xn ∧ xm = K (xn, xm) (8.34)

which is the desired Gaussian realization of K.
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Alternatively, K
(Z)
FN

assumes the following factorization via non-square matrices:
Assume FN ⊂ Z+, then

K
(Z)
FN

= AA∗, (8.35)

where A is the N × xN matrix such that

An,k =

{
1 if 1 ≤ k ≤ xn,

0 otherwise.

That is, A takes the form:

A =




1 . . . 1 0 . . . . . . . . . . . . . . . 0

1 . . . . . . . . . 1 0 . . . . . . . . . 0

1 . . . . . . . . . . . . . . . 1 0 . . . 0

...
...

...
...

...
...

...
...

...
...

...
...

... 0
1 1 . . . . . . . . . . . . . . . . . . 1 1




. (8.36)

x1

x2

x3

xN

Remark 8.11 (Spectrum of the matrices KF ; see also [31]). It is known that
the factorization as in (8.30) can be used to obtain the spectrum of positive definite
matrices. The algorithm is as follows: Let K be a given p.d. matrix.

Initialization: B := K;
Iterations: k = 1, 2, . . . , n− 1,

(i) B = AA∗,

(ii) B = A∗A.

Here A in step (i) denotes the lower triangular matrix in the Cholesky decomposition
of B (see (8.30)). Then limn→∞ B converges to a diagonal matrix consisting of
the eigenvalues of K.

We now resume consideration of the general case of p.d. kernels K on X ×X and
their restrictions: a setting for harmonic functions.

Remark 8.12. In the general case of (8.2) and Lemma 8.1, we still have a Laplace
operator ∆. It is a densely defined symmetric operator on H (K). Moreover (general
case),

∆·K (·, x) = δx (·) , ∀x ∈ X (8.37)

(assuming that δx ∈ H (K)). The dot “·” in (8.37) refers to the action variable for
the operator ∆. In other words, K (·, ·) is a generalized Greens kernel.
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Definition 8.13. Let X ×X
K−−→ C be given p.d., and assume

{δx}x∈X ⊂ H (K) . (8.38)

Let ∆ denote the induced Laplace operator. A function h (in H (K)) is said to be
harmonic iff ∆h = 0.

Corollary 8.14. Let (X,K,H (K)) be as above. Assume (8.38), and let ∆ be

the induced Laplace operator. Then we have the following orthogonal decomposition

for H (K):

H (K) = {h ; ∆h = 0} ⊕ clospanH (K)
(
{δx}x∈X

)
(8.39)

where “clospan” in (8.39) refers to the norm in H (K).

Proof. It is immediate from (8.1) that

{h ∈ H (K) ; ∆h = 0} =
(
{δx}x∈X

)⊥
(8.40)

where the orthogonality “⊥” in (8.40) refers to the inner product 〈·, ·〉
H (K). Since,

by Hilbert space geometry,
(
{δx}x∈X

)⊥⊥
= clospanH (K)

(
{δx}x∈X

)
, we only need

to observe that {h ∈ H (K) ; ∆h = 0} is closed in H (K). But this is immediate
from (8.1).

Corollary 8.15 (Duality). Let X ×X
K−−→ R be given, assumed p.d., and let S ⊂ X

be a countable subset such that

D (S) := {δx}x∈S ⊂ H (K(S)). (8.41)

(i) Then the following duality holds for the two induced kernels:

K(S) := K
∣∣
S×S

,

and

D(S)(x, y) := 〈δx, δy〉
H (K(S)) , ∀(x, y) ∈ S × S;

both p.d. kernels on S × S.

For every pair x, y ∈ S, we have the following matrix-inversion formula:

∑

z∈S

D(S) (x, z)K(S) (z, y) = δx,y, (8.42)

where the summation on the LHS in (8.42) is a limit over a net of finite subsets

{Fi}i∈N
, F1 ⊂ F2 ⊂ . . ., such that ∪iFi = S; and the result is independent of

choice of net.

(ii) We get an induced graph with S as the set of vertices, and edge set E as follows:

E ⊂ (S × S) \ (diagonal).
An edge is a pair (x, y) ∈ (S × S) \ (diagonal) such that

〈δx, δy〉
H (K(S)) 6= 0.
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Proof. The result follows from an application of Corollaries 8.7 and 8.8, and
Remark 8.12.

Let X, K, and S be as stated, S countable infinite, with assumptions as in
the previous two results. We showed that then the subset S acquires the structure
of a vertex set in an induced infinite graph (Corollary 8.15 (ii)). If ∆ denotes
the corresponding graph Laplacian, then the following boundary value problem is
of great interest: Make precise the boundary conditions at “infinity” for this graph
Laplacian ∆. An answer to this will require identification of Hilbert space, and limit at
“infinity”. The result below is such an answer, and the limit notion will be, limit over
the filter of all finite subsets in S; see Corollary 8.7. Another key tool in the arguments
below will again be the net of orthogonal projections {PF } from Lemma 8.4, and the
convergence results from Corollaries 8.5 and 8.7.

Corollary 8.16. Let X × X
K−−→ R, and S ⊂ X be as in the statement of

Corollary 8.15. Let Ffin (S) denote the filter of finite subsets F ⊂ S. Let ∆ = ∆S be

the graph Laplacian defined in (8.2), i.e.,

(∆h) (x) := 〈δx, h〉
H (K(S)) ,

for all x ∈ S, h ∈ H (K(S)). Then the following equivalent conditions hold:

(i) For all h ∈ H (K(S)),

‖h‖2
H (K(S)) = sup

F ∈Ffin(S)

〈
h
∣∣
F
,∆PFh

〉
l2(F )

= sup
F ∈Ffin(S)

〈
h
∣∣
F
,K−1

F

(
h
∣∣
F

)〉
l2(F )

.
(8.43)

(ii) For ∀F ∈ Ffin (S), x ∈ F , h ∈ H (K(S)),

(∆ (PFh)) (x) =
(
K−1

F

(
h
∣∣
F

))
(x) . (8.44)

(iii) KF ∆PFh = h
∣∣
F

.

Proof. On account of Corollary 8.8, we only need to verify (8.44). Let F ∈ Ffin (S),
h ∈ H (K(S)), then we proved that

(PFh) (·) =
∑

y∈F

ξyK (·, y) with (8.45)

ξy =
(
K−1

F

(
h
∣∣
F

))
(y) . (8.46)

Now apply 〈δx, ·〉H (K(S)) to both sides in (8.45); and we get

(∆ (PFh)) (x) = ξx, (8.47)

where we used 〈δx,K (·, y)〉
H (K(S)) = δx,y. The desired conclusion (8.44) now follows

from (8.47). Also note that (∆ (PFh)) (x) = 0 if x ∈ X\F .
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8.3. CANONICAL ISOMETRIES COMPUTED FROM POINT PROCESSES

Below we consider p.d. kernels K defined initially on X ×X. Our present aim is to
consider restrictions to S × S when S is a suitable subset of X. Our first observation
is the identification of a canonical isometry TS between the respective reproducing
kernel Hilbert spaces; TS identifying H (K(S)) as an isometric subspace inside H (K).
This isometry TS exists in general. However, we shall show that, when the subset
S is further restricted, the respective RKHSs, and isometry TS will admit explicit
characterizations. For example, if S is countable, and is the Dirac functions δs, s ∈ S,
are in H (K(S)) we shall show that this setting leads to a point process. In this case,
we further identify an induced (infinite) graph with the set S as vertices, and with
associated edges defined by an induced δs kernel.

Theorem 8.17. Let X × X
K−−→ C be a p.d. kernel, and let S ⊂ X be a subset.

Set K(S) := K
∣∣
S×S

. Let H (K), and H (K(S)), be the respective RKHSs.

(i) Then there is a canonical isometric embedding

H (K(S))
T−−→ H (K) ,

given by the following formula: For s ∈ S, set

T (K(S) (·, s)) = K (·, s) . (8.48)

(Note that K(S) (·, s) on the LHS in (8.48) is a function on S, while K (·, s) on

the RHS is a function on X.)

(ii) The adjoint operator T ∗,

H (K)
T ∗

−−→ H (K(S)) (8.49)

is given by restriction, i.e., if f ∈ H (K), and s ∈ S, then (T ∗f) (s) = f (s);
or equivalently, for all f ∈ H (K),

T ∗f = f
∣∣
S
. (8.50)

Proof. To show that T in (8.48) is isometric, proceed as follows: Let {si}N
i=1 be a finite

subset of S, and {ξi}N
i=1 ∈ C

N , then
∥∥∥∥∥T
(
∑

i
ξiK

(S) (·, si)

)∥∥∥∥∥

2

H (K)

=
∥∥∥
∑

i
ξiT (K(S) (·, si))

∥∥∥
2

H (K)

=
by (8.48)

∥∥∥
∑

i
ξiK (·, si)

∥∥∥
2

H (K)

=
by (2.3)

∑
i

∑
j
ξiξjK (si, sj)

=
∑

i

∑
j
ξiξjK

(S) (si, sj)

=
∥∥∥
∑

i
ξiK

(S) (·, si)
∥∥∥

2

H (K(S))

which is the desired isometric property.



528 Palle Jorgensen and Feng Tian

We now turn to (8.50), the restriction formula: Let s ∈ S, and f ∈ H (K), then

〈
T (K(S) (·, s)), f

〉
H (K)

=
〈
K(S) (·, s) , T ∗f

〉
H (K(S))

(8.51)

=
by (2.5)

(T ∗f) (s) .

But, for the LHS in (8.51), we have

〈
T (K(S) (·, s)), f

〉
H (K)

=
by (8.48)

〈K (·, s) , f〉
H (K) =

by (2.5)
f (s) ;

and so the desired formula (8.50) follows.

Remark 8.18. The canonical isometry for Example 8.9 (Z-discretization of
the covariance function for Brownian motion on R). From Theorem 8.17, we
know that the canonical isometry T maps H (K(Z)) into H (K); see (8.22). But (8.23)
and (8.25) in the Example offer exact characterization of these two Hilbert spaces. So,
in the special case of Example 8.9, the canonical isometry T maps from functions Φ
on Z into functions on R. In view of (8.23), this assignment turns out to be a precise
spline realization of the point grids realized by these sequences Φ.

Below we present an explicit formula, and graphics, for the spline realizations.
By (8.26), the embedding of δn from H (K(Z)) into H (K) is given by

(Tδn) (x) = 2K (x, n) −K (x, n+ 1) −K (x, n− 1) , ∀x ∈ R.

See Figure 9. Therefore, for all h ∈ H (K), we get

(T ∗h) (m) =
∑

n∈Z

h (n) δn (m) , m ∈ Z,

and

(TT ∗h) (x) =
∑

n∈Z

h (n) (2K (x, n) −K (x, n+ 1) −K (x, n− 1)) , x ∈ R

which is the spline interpolation.

2 4 6 8 10

-1.0

-0.5

0.5

1.0

1.5

2.0

Fig. 9. Isometric extrapolation from functions on Z to functions on R. An illustration of
the isometric embedding of δn from H (K(Z)) into H (K), with n = 3
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Corollary 8.19. Let X × X
K−−→ C be a p.d. kernel, and let S ⊂ X be a subset.

Assume further that {δs}s∈S ⊂ H (K(S)). Then every finitely supported function h

on S is in H (K(S)), and we have the following generalized spline interpolation; i.e.,

isometrically extending h from S to X:

h̃ (x) = supF ⊃F0

∑
y∈F

(
K−1

F hF

)
(y)K (y, x) , x ∈ X, (8.52)

where F0 = suppt (h), and the sup is taken over the filter of all finite subsets of X
containing F0.

Proof. Assume h ∈ H (K(S)), supported on a finite subset F0 ⊂ S. Then,

h̃ (x) := Th (x) = T
(∑

s∈F0

h (s) δs

)
(x)

=
∑

s∈F0

h (s) (Tδs) (x)

=
∑

s∈F0

h (s) supF ⊃F0
(PF δs) (x)

= supF ⊃F0
PF

(∑
s∈F0

h (s) δs

)
(x)

= supF ⊃F0
(PFhF0) (x)

= supF ⊃F0

∑
y∈F

(
K−1

F hF

)
(y)K(x, y),

where the last step follows from (8.10), and PF is the orthogonal projection from
H (K) onto the subspace HK (F ).

Corollary 8.20. Let X × X
K−−→ C, p.d. be given, and let S ⊂ X be a subset.

Let T = TS, H (K(S))
T−−→ H (K), be the canonical isometry. Then a function f in

H (K) satisfies
〈
f, T (H (K(S)))

〉
H (K)

= 0 if and only if

f (s) = 0 for all s ∈ S. (8.53)

Proof. Immediate from part (ii) in Theorem 8.17.

Remark 8.21. Let (X,K, S) be as in Corollary 8.20, and let TS be the canonical
isometry. Let PS := TST

∗
S be the corresponding projection. Then IH (K) − PS is

the projection onto the subspace given in (8.53).

Corollary 8.22. Let X × X
K−−→ C be given p.d.; and let S ⊂ X be a subset with

induced kernel

K(S) := K
∣∣
S×S

. (8.54)

Consider the two sets F (S) and F (K(S)) from (5.2) and Theorem 5.1. Let

TS : H (K(S)) → H (K) be the canonical isometry (8.48) in Theorem 8.17. Then

the following implication holds:
(
{kx}x∈X , µ

)
∈ F (K) (8.55)

⇓(
{ks}s∈S , µ

)
∈ F (K(S)) (8.56)
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Proof. Assuming (8.55), we get the representation (5.2):

K(x, y) =

∫

M

kxkydµ, ∀(x, y) ∈ X ×X. (8.57)

But then, for all (s1, s2) ∈ S × S, we then have

K(S) (s1, s2) =
〈
TS(K(S) (·, s1)), TS(K(S) (·, s2))

〉
H (K)

=
by (8.54)

K (s1, s2)

=

∫

M

ks1ks2dµ,

which is the desired conclusion.

9. BOUNDARY VALUE PROBLEMS

Our setting in the present section is the discrete case, i.e., RKHSs of functions
defined on a prescribed countable infinite discrete set S. We are concerned with
a characterization of those RKHSs H which contain the Dirac masses δx for all points
x ∈ S. Of the examples and applications where this question plays an important role,
we emphasize two: (i) discrete Brownian motion-Hilbert spaces, i.e., discrete versions
of the Cameron-Martin Hilbert space; (ii) energy-Hilbert spaces corresponding to
graph-Laplacians.

The problems addressed here are motivated in part by applications to analysis on
infinite weighted graphs, to stochastic processes, and to numerical analysis (discrete
approximations), and to applications of RKHSs to machine learning. Readers are
referred to the following papers, and the references cited there, for details regarding
this: [7, 8, 10,21,36,37,40,55,59,60,76].

The discrete case can be understood as restrictions of analogous PDE-models.
In traditional numerical analysis, one builds discrete and algorithmic models (finite
element methods), each aiming at finding approximate solutions to PDE-boundary
value problems. They typically use multiresolution-subdivision schemes, applied to
the continuous domain, subdividing into simpler discretized parts, called finite elements.
And with variational methods, one then minimize various error-functions. In this paper,
we turn the tables: our object of study are the discrete models, and analysis of suitable
continuous PDE boundary problems serve as a tool for solutions in the discrete world.

Definition 9.1. Let X × X
K−−→ C be a given p.d. kernel on X. The RKHS

H = H (K) is said to have the discrete mass property (H is called a discrete

RKHS) if δx ∈ H , for all x ∈ X.

In fact, it is known ([44]) that every fundamental solution for a Dirichlet boundary
value problem on a bounded open domain Ω in R

ν , allows for discrete restrictions (i.e.,
vertices sampled in Ω), which have the desired “discrete mass” property.
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We recall the following result to stress the distinction of the discrete models vs
their continuous counterparts.

Let Ω be a bounded, open, and connected domain in R
ν with smooth boundary

∂Ω. Let K : Ω × Ω → R continuous, p.d., given as the Green’s function of ∆0, where

∆0 := −
ν∑

j=1

(
∂

∂xj

)2

,

dom (∆0) =
{
f ∈ L2 (Ω)

∣∣∆f ∈ L2 (Ω) , and f
∣∣
∂Ω

≡ 0
}
.

(9.1)

for the Dirichlet boundary condition. Thus, ∆0 is positive selfadjoint, and

∆0K = δ (x− y) on Ω × Ω, (9.2)

K (x, ·)
∣∣
∂Ω

≡ 0. (9.3)

Let HCM (Ω) be the corresponding Cameron-Martin RKHS.
For ν = 1, Ω = (0, 1), take

HCM (0, 1) =
{
f
∣∣ f ′ ∈ L2 (0, 1) , f (0) = f (1) = 0,

‖f‖2
CM :=

1∫

0

|f ′|2 dx < ∞
} (9.4)

For ν > 1, let

HCM (Ω) =



f

∣∣∇f ∈ L2 (Ω) , f
∣∣
∂Ω

≡ 0, ‖f‖2
CM :=

∫

Ω

|∇f |2 dx < ∞



 ,

where ∇ =

(
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xν

)
.

(9.5)

Theorem 9.2. Let Ω, and S ⊂ Ω, be given. Then

(i) Discrete case: Fix S ⊂ Ω, #S = ℵ0, where S = {xj}∞
j=1, xj ∈ Ω. Assume that

there exists ε > 0 such that ‖xi − xj‖ ≥ ε for all i, j, where i 6= j. Let

H (S) = RKHS of K(S) := K
∣∣
S×S

;

then δxj
∈ H (S).

(ii) Continuous case: By contrast, K
(S)
x ∈ HCM (S), but δx /∈ HCM (Ω), x ∈ Ω.

Proof. The result follows from an application of Corollaries 8.7 and 8.8. It extends
earlier results [42,44] by the co-authors.
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10. SAMPLING IN H (K)

In the present section, we study classes of reproducing kernels K on general domains
with the property that there are non-trivial restrictions to countable discrete sample
subsets S such that every function in H (K) has an S-sample representation. In this
general framework, we study properties of positive definite kernels K with respect to
sampling from “small” subsets, and applying to all functions in the associated Hilbert
space H (K).

We are motivated by concrete kernels which are used in a number of applications,
for example, on one extreme, the Shannon kernel for band-limited functions, which
admits many sampling realizations; and on the other, the covariance kernel of Brownian
motion which has no non-trivial countable discrete sample subsets.

Definition 10.1. Let X ×X
K−−→ C be a p.d. kernel, and H (K) be the associated

RKHS. We say that K has non-trivial sampling property, if there exists a countable
subset S ⊂ X, and a, b ∈ R+, such that

a
∑

s∈S

|f (s)|2 ≤ ‖f‖2
H (K) ≤ b

∑

s∈S

|f (s)|2 , ∀f ∈ H (K) . (10.1)

If equality holds in (10.1) with a = b = 1, then we say that {K (·, s)}s∈S is a Parseval
frame. (Also see Definition 7.1.)

It follows that sampling holds in the form

f (x) =
∑

s∈S

f (s)K (x, s) , ∀f ∈ H (K) , ∀x ∈ X

if and only if {K (·, s)}s∈S is a Parseval frame.

Lemma 10.2. Suppose K, X, a, b, and S satisfy the condition in (10.1), then

the linear span of {K (·, s)}s∈S is dense in H (K). Moreover, there is a positive

operator B in H (K) with bounded inverse such that

f (·) =
∑

s∈S

(Bf) (s)K (·, s)

is a convergent interpolation formula valid for all f ∈ H (K). Equivalently,

f (x) =
∑

s∈S

f (s)B (K (·, s)) (x) , ∀x ∈ X.

Proof. Define A : H (K) → l2 (S) by (Af) (s) = f (s), s ∈ S. Then the adjoint
operator A∗ : l2 (S) → H (K) is given by A∗ξ =

∑
s∈S ξsK (·, s), for all ξ ∈ l2 (S),

and
A∗Af =

∑

s∈S

f (s)K (·, s)

holds in H (K), with H (K)-norm convergence. Now set B = (A∗A)
−1

, and note
that ‖B‖

H (K)→H (K) ≤ a−1, where a is in the lower bound in (10.1).
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Theorem 10.3. Let K : X ×X → R be a p.d. kernel, and let S ⊂ X be a countable

discrete subset. For all s ∈ S, set Ks (·) = K (·, s). Then the following conditions are

equivalent:

(i) The family {Ks}s∈S is a Parseval frame in H (K);

(ii)

‖f‖2
H (K) =

∑

s∈S

|f (s)|2 , ∀f ∈ H (K) ;

(iii)

K (x, x) =
∑

s∈S

|K (x, s)|2 , ∀x ∈ X;

(iv)

f (x) =
∑

s∈S

f (s)K (x, s) , ∀f ∈ H (K) , ∀x ∈ X,

where the sum converges in the norm of H (K).

Proof. The proof is simple, and follows the steps in the proof of Lemma 7.2. Details
are left to the reader.

We now turn to dichotomy: Existence of countably discrete sampling sets vs
non-existence.

Example 10.4. Let X = R, and let K : R × R → R be the Shannon kernel, where

K(x, y) := sincπ (x− y)

=
sin π (x− y)

π (x− y)
, ∀x, y ∈ R. (10.2)

We may choose S = Z, and then {K (·, n)}n∈Z
is even an orthonormal basis (ONB)

in H (K), but there are many other examples of countable discrete subsets S ⊂ R

such that (10.1) holds for finite a, b ∈ R+.
The RKHS H (K) in (10.2) is the Hilbert space ⊂ L2 (R) consisting of all

f ∈ L2 (R) such that suppt(f̂) ⊂ [−π, π], where “suppt” stands for support of

the Fourier transform f̂ . Note H (K) consists of functions on R which have entire
analytic extensions to C. Using the above observations, we get

f (x) =
∑

n∈Z

f (n)K (x, n)

=
∑

n∈Z

f (n) sincπ (x− n) , ∀x ∈ R, ∀f ∈ H (K) .

Example 10.5. Let K be the covariant kernel of standard Brownian motion, with
X := [0,∞) or [0, 1), and

K(x, y) := x ∧ y = min(x, y), ∀(x, y) ∈ X ×X. (10.3)
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Theorem 10.6. Let K, X be as in (10.3); then there is no countable discrete subset

S ⊂ X such that {K (·, s)}s∈S is dense in H (K).

Proof. Suppose S = {xn}, where

0 < x1 < x2 < . . . < xn < xn+1 < . . . (10.4)

Then consider the function given in Figure 10.

x2 x3 x4 xn-1 xn xn+1

c1 c2 c3 cn-1 cn cn+1

Fig. 10. Example of a saw-tooth function vanishing on S

On the respective intervals [xn, xn+1], the function f is as follows:

f (x) =

{
cn (x− xn) if xn ≤ x ≤ xn+xn+1

2 ,

cn (xn+1 − x) if xn+xn+1

2 < x ≤ xn+1.

In particular, f (xn) = f (xn+1) = 0, and on the midpoints:

f

(
xn + xn+1

2

)
= cn

xn+1 − xn

2
,

see Figure 11.

xn xn+1

cn

xn+1 - xn

2

Fig. 11. The saw-tooth function

Choose {cn}n∈N
such that

∑

n∈N

|cn|2 (xn+1 − xn) < ∞. (10.5)

Admissible choices for the slope-values cn include

cn =
1

n
√
xn+1 − xn

, n ∈ N.

We will now show that f ∈ H (K). For the distribution derivative computed from
the function given in Figure 10, we get
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x1 x2 x3 x4 xn-1 xn xn+1

Fig. 12. The distribution derivative of the saw-tooth function

∞∫

0

|f ′ (x)|2 dx =
∑

n∈N

|cn|2 (xn+1 − xn) < ∞

which is the desired conclusion; see Figure 12.

Corollary 10.7. For the kernel K(x, y) = x ∧ y in (10.3), X = [0,∞), the following

holds: Given {xj}j∈N
⊂ R+, {yj}j∈N

⊂ R, then the interpolation problem

f (xj) = yj , f ∈ H (K) (10.6)

is solvable if
∑

j∈N

(yj+1 − yj)
2
/ (xj+1 − xj) < ∞. (10.7)

Proof. Let f be the piecewise linear spline (see Figure 13) for the problem (10.6).
Then the H (K)-norm is as follows:

∞∫

0

|f ′ (x)|2 dx =
∑

j∈N

(
yj+1 − yj

xj+1 − xj

)2

(xj+1 − xj) < ∞

when (10.7) holds.

x j-2 x j-1 x j x j+1

Fig. 13. Piecewise linear spline
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Remark 10.8. Let K be as in (10.3), X = [0,∞). For all 0 ≤ xj < xj+1 < ∞, let

fj (x) : =
2

xj+1 − xj

(
K

(
x− xj ,

xj+1 − xj

2

)
−K

(
x− xj + xj+1

2
,
xj+1 − xj

2

))

=
x j x j+1

1

.

Assuming (10.5) holds, then

f (x) =
∑

j

cjfj (x) ∈ H (K) .

Theorem 10.9. Let X be a set of cardinality c of the continuum, and let

K : X ×X → R be a positive definite kernel. Let S = {xj}j∈N
be a discrete subset

of X. Suppose there are weights {wj}j∈N
, wj ∈ R+, such that

(f (xj)) ∈ l2 (N, w) (10.8)

for all f ∈ H (K). Suppose further that there is a point t0 ∈ X\S, a y0 ∈ R\ {0},

and α ∈ R+ such that the infimum

inf
f∈H (K)

{∑
j
wj |f (xj)|2 + |f (t0) − y0|2 + α ‖f‖2

H (K)

}
(10.9)

is strictly positive. Then S is not a interpolation set for (K,X).

Proof. This results follows from Lemma 10.2 and Theorem 10.3 above. We also refer
readers to [45].
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