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A decomposition of a graph � is a collection � of edge-disjoint subgraphs�1, �2, . . . , �� of � such that every edge of � belongs to
exactly one ��. If each �� is a path or a cycle in �, then � is called a path decomposition of �. If each �� is a path in �, then � is
called an acyclic path decomposition of �. 	e minimum cardinality of a path decomposition (acyclic path decomposition) of � is
called the path decomposition number (acyclic path decomposition number) of � and is denoted by �(�) (��(�)). In this paper we
initiate a study of the parameter � and determine the value of � for some standard graphs. Further, we obtain some bounds for
� and characterize graphs attaining the bounds. We also prove that the di
erence between the parameters � and �� can be made
arbitrarily large.

1. Introduction

Graph decomposition problems rank among themost promi-
nent areas of research in graph theory and combinatorics and
further it has numerous applications in various �elds such as
networking, block designs, and bioinformatics.

A decomposition of a graph � is a collection of edge-
disjoint subgraphs �1, �2, . . . , �� of � such that every edge
of � belongs to exactly one ��. Various types of path
decompositions and corresponding parameters have been
studied by several authors by imposing conditions on the
paths in the decomposition. It is obvious that every graph
admits a decomposition in which each subgraph�� is either
a path or a cycle. In this connection, Erdös asked what is the
minimumnumber of paths intowhich every connected graph
on � vertices can be decomposed and Gallai conjectured that
this number is at most ⌈�/2⌉ as stated below.

Gallai’s Conjecture (see [1]). If � is a connected graph on �
vertices, then � can be decomposed into ⌈�/2⌉ paths.

A good number of research articles have been published
in which Gallai’s is the focus of study and still this conjecture
remains unsettled for more than 30 years. Towards a proof of

the conjecture, Lovasz [1] made the �rst signi�cant contribu-
tion by proving the following theorem.

�eorem 1 (see [1]). A graph � on � vertices (not necessarily
connected) can be decomposed into ⌊�/2⌋ paths and cycles.

Gallai’s conjecture and	eorem 1 motivate the following
de�nition.

De
nition 2. Let � = {�1, �2, . . . , ��} be a decomposition
of a graph �. If each �� is either a path or a cycle, then �
is called a path decomposition of �. If each �� is a path,
then � is called an acyclic path decomposition of �. 	e
minimum cardinality of a path decomposition of � is called
the path decomposition number. Similarly the acyclic path
decomposition number of � is de�ned and is denoted by
��(�).

	e parameter �� was introduced by Harary and further
studied extensively by Harary and Schwenk [2], Péroche [3],
Stanton et al. [4, 5], and Arumugam and Suseela [6]. 	is
paper initiates a study of the parameter path decomposition
number.
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2. Basic Terminologies and Results

By a graph � = (�, ) we mean a �nite, connected, and
undirected graph without loops or multiple edges. For graph
theoretic terminology we refer to Chartrand and Lesniak
[7]. 	e order and size of a graph are denoted by � and �,
respectively.

If � = (V1, V2, . . . , V�) is a path in a graph �, then the
vertices V2, V3, . . . , V�−1 are called internal vertices of � and
V1 and V� are called external vertices of �. For a cycle � =
(V1, V2, . . . , V�, V1), the vertex V1 is called the initial vertex and
all other vertices are internal vertices. Two paths � and � of
a graph � are said to be internally disjoint if no vertex of � is
an internal vertex of both � and �. If � = (V0, V1, V2, . . . , V�)
and� = (V� = �0, �1, �2, . . . , ��) are two paths in�, then the
walk obtained by concatenating � and � at V� is denoted by
�∘�, that is, �∘� = (V0, V1, . . . , V� = �0, �1, . . . , ��). Further
when� = (V1, V2, . . . , V�), the path (V�, V�−1, . . . , V1) is denoted
by �−1.

A caterpillar is a tree in which removal of all the pendant
vertices results in a path. For vertices � and � in a connected
graph�, the detour distance�(�, �) is the length of a longest
� − � path in �. 	e detour diameter � of � is de�ned to be
� = max{�(�, �) : �, � ∈ �(�)}. Two graphs are said to be
homeomorphic if both can be obtained from the same graph
by a sequence of subdivisions of edges.	e length of a longest
cycle in a graph � is called the circumference of �.

We need the following theorems.

�eorem 3 (see [4]). For any tree �, ��(�) = �/2, where � is
the number of vertices of odd degree.

�eorem 4 (see [6]). Let � be a unicyclic graph with cycle �.
Let � denote the number of vertices of degree greater than two
on �. Let � denote the number of vertices of odd degree. �en

�� (�) =
{{{{{
{{{{{
{

2 if � = 0,
�
2 + 1 if � = 1,
�
2 otherwise.

(1)

�eorem 5 (see [2]). For the complete graph ��, one has
��(��) = ⌈�/2⌉.
�eorem 6 (see [2]). For the complete bipartite graph ��,�
with � ≤ !, one has

�� (��,�) =
{{
{{
{

� + !
2 if �! is odd,

⌈ �!
2� − % (�, !)⌉ otherwise, (2)

where %(�, !) is the conventional Kronecker delta.
3. Bounds for �
In this section we obtain some bounds for the path decompo-
sition number � and characterize the graphs attaining some
of the bounds obtained. Let us �rst establish an upper and

lower bound involving the order of the graph and the number
of vertices of odd degree. For this we de�ne the term '(�) of
a graph �. Given a path decomposition � for a graph �, let
'� = ∑�∈� '(�), where '(�) denotes the number of internal

vertices of�. Now, de�ne '(�) = max '�, where themaximum
is taken over all path decompositions � of �.
�eorem7. Let� be a graph on � vertices.�en �/2 ≤ �(�) ≤
�/2, where � is the number of vertices of odd degree in �.
Proof. Let P be the collection of all path decompositions of
� and let � ∈ P.

	en

� = ∑
�∈�

| (�)|

= ∑
�∈�

(' (�) + 1)

= ∑
�∈�

' (�) + 3333�3333
= '� + 3333�3333 .

(3)

Hence, |�| = � − '� so that � = � − '. Also, it is not dicult

to see that � = �/2 + ∑
V∈
(�)⌊deg V/2⌋ and hence �(�) =

�/2 + ∑
V∈
(�)⌊deg V/2⌋ − ', which implies that �(�) ≥ �/2.

	e upper bound follows immediately from	eorem 1.

Remark 8. If � is a graph with � vertices of odd degree, then
�(�) = �/2 if and only if there exists a path decomposition �
of� such that every vertex V is an internal vertex of ⌊deg V/2⌋
members in �.

	e following examples show that there are in�nite fami-
lies of graphs attaining the bounds given in the above theorem
and consequently prove that these bounds are sharp. 	at is,
the family of all trees and an in�nite class of unicyclic graphs
achieve the lower bound, whereas some common classes
of graphs such as complete graphs, wheels, and complete
bipartite graphs of odd size attain the upper bound. In this
connection we need to note down the inequality that �(�) ≤
��(�) which follows from the fact that every acyclic path
decomposition of a graph is also a path decomposition.

Example 9. (i) For any tree �, �(�) = ��(�) = �/2.
(ii) If � is a unicyclic graph with cycle � and if � denotes

the number of vertices on � with degree greater than two,
then

� (�) =
{{{{{
{{{{{
{

1 if � = 0,
�
2 + 1 if � = 1,
�
2 otherwise.

(4)

Proof. (i) Since every path decomposition of � is an acyclic
path decomposition of �, we have �(�) = ��(�) and hence
the result follows from	eorem 3.
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(ii) If � = 0, then � = � so that �(�) = 1. If � = 1, then
it follows from	eorem 4 that ��(�) = (�/2) + 1 and hence
�(�) ≤ ��(�) = �/2+1. Further, for any path decomposition
� of � all the � odd vertices and at least one vertex on � are
external vertices of some paths in � so that �(�) ≥ �/2 + 1.
	us �(�) = �/2+1. If � > 1, by	eorem 4, we have ��(�) =�/2 and hence �(�) ≤ ��(�) = �/2. 	us �(�) = �/2 as
�(�) ≥ �/2.
Example 10. (i) For the complete graph ��, we have �(��) =⌊�/2⌋.

(ii) For the complete bipartite graph ��,� with � ≤ !

� (��,�) =
{{{
{{{
{

� + !
2 if �! is odd,

⌈ !2⌉ otherwise,

(5)

(iii) If7� denotes the wheel on � vertices, then �(7�) =⌊�/2⌋.
Proof. (i) Let� be any path decomposition of��. Since every
member of � covers at most � edges, we have |�| ≥ ⌊�/2⌋ so
that �(��) ≥ ⌊�/2⌋. Further, it follows from 	eorem 1 that
�(��) ≤ ⌊�/2⌋. 	us �(��) = ⌊�/2⌋.

(ii) Assume �rst that � = !. Now, if � is odd, then every
vertex is of odd degree and hence �(��,�) = �. If � is even,
then ��,� can be decomposed into hamiltonian cycles and
hence �(��,�) ≤ �/2. Further, for any path decomposition
� of ��,�, every member of � covers at most 2� edges so

that |�| ≥ �2/2� = �/2 and hence �(��,�) ≥ �/2. 	us
�(��,�) = �/2.

Suppose � ̸= !. If �! is odd, then every vertex is of odd
degree and hence �(��,�) = (� + !)/2. If �! is even, then
�(��,�) ≤ ��(��,�) = ⌈�!/2�⌉ = ⌈!/2⌉. Further, for any path
decomposition� of��,�, everymember in� covers atmost 2�
edges and hence |�| ≥ ⌈�!/2�⌉ = ⌈!/2⌉. 	us �(��,s) = ⌈!/2⌉.

(iii) Since the number of vertices of odd degree in 7� is� − 1 or � accordingly as � is odd or even, it follows from
	eorem 7 that �(7�) ≥ ⌊�/2⌋. Also by 	eorem 1, we have
�(7�) ≤ ⌊�/2⌋ and hence �(7�) = ⌊�/2⌋.

We now proceed to obtain some lower and upper bounds
for � involving detour diameter, circumference, and maxi-
mum degree of a graph along with the characterization of
graphs attaining the bounds.

�eorem 11. For any graph �, �(�) ≤ � − � + 1, where � is
the detour diameter of �. Further, equality holds if and only if
� is a caterpillar with Δ ≤ 3.
Proof. Let� be a path in� of length�.	en� = {�}∪{(�)−
(�)} is a path decomposition of� and |�| = �−�+1. Hence,
�(�) ≤ � − � + 1.

Suppose �(�) = � − � + 1. Let � be a path of length
� in �. If there is a vertex V not on � with deg V ≥ 2, let �
be a longest path which contains V and edge-disjoint from �.
	us, � = {�, �} ∪ ?, where ? is the set of edges not covered
by the paths � and � is a path decomposition of � and |�| <

�−�+1, which is a contradiction.	us every vertex not on
� is a pendent vertex and hence � is a caterpillar.

Now, if there exists a vertex � on � with deg� ≥ 4, let
�1 and �2 be two vertices not on � which are adjacent to �.
	en�1 = {�, �1 = (�1, �, �2)}∪?, where ? is the set of edges
not covered by the paths � and �1 is a path decomposition of
� and |�| < � − � + 1, which is a contradiction. Hence,
deg� ≤ 3, for all � ∈ �(�).

	e converse is obvious.

�eorem 12. For any graph �, �(�) ≤ � − B + 1, where B is
the circumference of �. Further, equality holds if and only if �
is either a cycle or a cycle with exactly one chord or a unicyclic
graph withΔ = 3 and every vertex not on the cycle is a pendant
vertex.

Proof. Let � be a cycle of length B. 	en � = {�} ∪ {(�) −
(�)} is a path decomposition of� and |�| = �−B+1. Hence
�(�) ≤ � − B + 1.

Suppose � = � − B + 1. Let � be a cycle of length B in �.
We consider the following two cases.

Case 1 (�(�) = �(�)). We claim that � has at most one
chord. Suppose � has two chords say C1 and C2. If C1 = V�1
and C2 = V�2, then � = {�, (�1, V, �2)} ∪ ?, where ? is the
set of edges not covered by � and the path (�1, V, �2) is a
path decomposition of � and |�| < � − B + 1, which is a
contradiction. Suppose C1 = V1�1 and C2 = V2�2. Let � and�
denote the two (V1, V2)-sections of the cycle � and without
loss of generality we assume that � contains one of the
(�1, �2)-sections of�. Now, let�1 denote the path consisting
of the edge �1V1, followed by the path � and the edge V2�2.
	en �1 = {�, �1} ∪ ?, where ? denotes the set of edges not
covered by the paths � and �1 is a path decomposition of �
and |�1| < �−B+1, which is a contradiction. Hence,� has at
most one chord. 	us � is a cycle or a cycle with exactly one
chord.

Case 2 (�(�) ̸=�(�)). Suppose that there exists a vertex V not
on �with deg V ≥ 2. Let� be a longest path which contains V
and edge-disjoint from �. 	us � = {�,�} ∪ ?, where ? is the
set of edges not covered by � and � is a path decomposition
of� and |�| < �− B+1, which is a contradiction.	us every
vertex not on � is a pendant vertex.

If there exists a vertex V on � with deg V ≥ 4, let � be
a longest path containing V and edge-disjoint from �. 	en
� = {�, �} ∪ ?, where ? is the set of edges not covered by �
and � is a path decomposition of � with |�| < � − B + 1,
which is a contradiction. Hence every vertex on � has degree
less than or equal to 3.

Now, we claim that the cycle � has no chord. Suppose V�
is a chord of �. Let � be a pendant vertex not on �. 	en
there exists a vertex � on � di
erent from the vertices V and
� such that � and � are adjacent. Let � and� denote the two
(�, �)-sections of � and without loss of generality we assume
that V lies on �. Let �1 be the path consisting of the edge ��
followed by the path� and the edge�V. Now,� = {�, �1}∪?,
where ? is the set of edges not covered by the paths � and �1
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is a path decomposition of � and |�| < � − B + 1, which is a
contradiction. Hence, � has no chords.

	us � is a unicyclic graph with Δ = 3 and every vertex
not on the cycle is a pendant vertex. 	e converse is obvious.

Remark 13. Obviously, for any vertex V of a graph �, at most
two of the edges incident with V can be covered by a member
of a path decomposition of�. As this is true in particular for a
vertex of maximum degree it follows that �(�) ≥ ⌈Δ/2⌉. 	is
bound is sharp as a complete graph of odd order attains this.
In fact, every graphwhich is hamiltonian cycle decomposable
attains the bound. Further, for any tree�,�(�) = ⌈Δ/2⌉ if and
only if � is homeomorphic to the star�1,Δ.

	e following theorem characterizes the family of uni-
cyclic graphs achieving the bound given in Remark 13.

�eorem 14. Let � be a unicyclic graph with cycle � and
� ̸=�. �en �(�) = ⌈Δ/2⌉ if and only if every vertex not on
� has degree 1 or 2, at most two vertices on � have degree ≥ 3
and � has exactly one vertex with degree ≥ 3 if Δ ≥ 5.
Proof. Let � be a unicyclic graph with �(�) = ⌈Δ/2⌉. Let �
be a minimum path decomposition of �. Let V be a vertex in
� with deg V = Δ. 	en every member of � passes through V.

We claim that V lies on the cycle �. 	is is obvious if � ∈
�. If � ∉ �, let �1 and �2 be the paths in � covering the edges
of the cycle �. Since both �1 and �2 pass through V; it follows
that V lies on �. 	us every vertex of degree Δ lies on � and
consequently every vertex not on � has degree 1 or 2.

Further if Δ(�) ≥ 5, it follows that� contains exactly one
vertex of degree Δ and if Δ(�) ≤ 4, then � contains at most
two vertices of degree ≥ 3.

	e converse is obvious.

In the following theorem we characterize graphs of order
� with � = ⌈Δ/2⌉ and having minimum (maximum) number
of edges.

�eorem 15. Let � be a graph of order � with �(�) = ⌈Δ/2⌉.
�en �−1 ≤ � ≤ ⌈�Δ/2⌉. Further,� = �−1 if and only if � is
homeomorphic to the star�1,Δ. Also� = ⌈�Δ/2⌉ if and only if
� is hamiltonian cycle decomposable or� is the complete graph
�� with � even.
Proof. Let � be a graph with �(�) = ⌈Δ/2⌉. 	en � is
connected and hence � − 1 ≤ � ≤ ⌈�Δ/2⌉.

Now, suppose � = � − 1. 	en � is a tree. As �(�) =
⌈Δ/2⌉ it follows that � is homeomorphic to the star �1,Δ.
Conversely, if � is homeomorphic to �1,Δ, then �(�) =
⌈Δ/2⌉.

Now, suppose � = ⌈�Δ/2⌉. 	en � is Δ-regular. If Δ is
even, then for any minimum path decomposition � of �, we
have |�| = Δ/2 and each path in � must cover � edges so
that � is hamiltonian cycle decomposable. Conversely, if �
is hamiltonian cycle decomposable, then �(�) = Δ/2. If Δ
is odd, then �(�) = �/2 = ⌈Δ/2⌉ and hence Δ = � − 1.
Hence, � = �� and � is even. 	e converse follows from
Example 10(i).

4. Relation between the Parameters � and ��
In this section we establish some relation between the
parameters � and ��.
�eorem 16. For any graph �, one has �(�) ≤ ��(�) ≤
2�(�). Further, ��(�) = 2�(�) if and only if every component
of � is a cycle.

Proof. 	e �rst inequality is already seen. For the other
inequality, consider a path decomposition � of � and spilt
each cycle member of � into two paths and thus an acyclic
path decomposition of � with cardinality at most 2�(�) is
obtained, which proves the required inequality. Now suppose
��(�) = 2�(�). Let � be a minimum path decomposition of
�. 	en every member of � is a cycle. Further, all the cycles
in � are vertex-disjoint and hence every component of � is a
cycle. 	e converse is obvious.

Remark 17. 	e�rst part of the inequalities given in the above
theorem is strict in the sense that they both are equal for
in�nitely many graphs. For example, one has the following.

(i) For even integers �, we have �(��) = ��(��), which
follows from	eorem 5 and Example 10(i).

(ii) Example 9 and 	eorem 4 together show that the
parameters � and �� are equal for all trees and also for
the class of all unicyclic graphs other than the cycles.

	ough the upper bound suggested by Gallai’s conjecture
for �� and the upper bound given by 	eorem 1 for � di
er
by at most 1, the di
erence between the actual values of these
parameters can be made arbitrarily large, which we proceed
to prove. 	e following lemma is useful in this regard.

Lemma 18. Let � be a connected graph which can be decom-
posed into a cycle � = (V1, V2, . . . , V�, V1) and a path � =
(�1, . . . , ��). �en � can be decomposed into two paths if and
only if � has a vertex of degree 2 which lies on � or on the
(��1 , ��2)-section of � where F1 is the smallest positive integer
such that 1 ≤ F1 < ! and ��1 ∈ �(�) and F2 is the largest
positive integer such that F1 < F2 ≤ ! and ��2 ∈ �(�).
Proof. Suppose � can be decomposed into two paths �1 and�2. Since �1 and �� are the only two vertices of odd degree
in �, we may assume that �1 is the origin of �1 and �� is the
origin of �2. Let V be the terminus of �1. Since the degree of V
is even, it follows that V is not an internal vertex of �2 so that V
is the terminus of �2 as well, and the degree of V is 2. Clearly V
cannot lie on the (�1, ��1)-section or the (��2 , ��)-section of
�.

Conversely, suppose � has a vertex V of degree two
satisfying the conditions stated in the lemma. We consider
two cases.

Case 1 (V ∈ �(�)). Since � is connected, |�(�) ∩ �(�)| ≥ 1.
If |�(�) ∩ �(�)| = 1, then trivially � can be decomposed
into two paths. Hence, we assume that |�(�) ∩ �(�)| ≥ 2. If
there exists a (V, ��1)-section of � which is internally disjoint
from�, let�1 be the path consisting of the (�1, ��1)-section of
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� followed by the (��1 , V)-section of � which is not internally
disjoint from� and let�2 be the path consisting of the (V, ��1)-
section of � which is internally disjoint from � followed by
the (��1 , ��)-section of �. 	en {�1, �2} is a decomposition of
�. 	e proof is similar if there exists a (V, ��2)-section of �
which is internally disjoint from �.

Now, suppose both the (V, ��1)-sections of� and both the
(V, ��2)-sections of � are not internally disjoint from �. Let �
be the largest positive integer such that F1 < � < F2 and �� ∈�(�).	en the (��, ��2)-section of� and one of the (��, ��2)-
sections of �, say �, are internally disjoint. If � has length
greater than 1, then any internal vertex V� of � has degree
2 and the (V�, ��2)-section of � is internally disjoint from �
and hence the proof is complete. If the (��, ��2)-section of
� has length greater than 1, let �1 be the path consisting of

the (��, ��2)-section of �−1 followed by the (��2 , ��)-section
of � which is di
erent from � followed by the edge ����+1
and let �2 be the path consisting of the (��+1, ��2)-section of

� followed by �−1 followed by (��, �1)-section of �−1. 	en
{�1, �2} is a decomposition of �.
Case 2 (no vertex on � has degree 2). In this case V lies on
the (��1 , ��2)-section of �. Let V = �� and let H and I be
integers with F1 ≤ H < F < I ≤ F2 such that ��, � ∈ �(�)
and no internal vertex of the (��, �)-section of � lies on
�. Without loss of generality we assume that there exists a
(��1 , �)-section of �, say�1, which contains�� and��2 and
let �2 be the other (��1 , �)-section of �. Let �1 be the path
consisting of the (�1, ��1)-section of �, followed by �1 and
the (�, ��)-section of �−1. Let �2 be the path consisting of

the (��, �)-section of �−1 followed by�−12 and the (��2 , ��)-
section of �. 	en {�1, �2} is a decomposition of �.
Corollary 19. If � is a graph admitting a minimum path
decomposition � having exactly one cycle � = (V1, . . . , V�, V1),
then �� ≤ � + 1. Further, �� = � if and only if there exists
a path � = (�1, . . . , ��) in � with �(�) ∩ �(�) ̸= 0 and the
induced subgraph ⟨�(�)∪�(�)⟩ satis
es the conditions stated
in Lemma 18.

�eorem 20. Given any positive integer �, there exists a graph
� such that ��(�) − �(�) = �.
Proof. Let � be the graph consisting of � vertex-disjoint
cycles �1, �2, . . . , �� and a M-V path � = (M, V11, . . . , V1�1 ,
V21, . . . , V2�2 , . . . , V�1 , V�2 , . . . , V��� , V), where �(��) = {V�1 ,
V�2 , . . . , V���}, for N = 1, 2, . . . , �. Clearly �(�) = �+1. Further,��(�) ≤ 2�+1.Wenowprove that��(�) ≥ 2�+1by induction
on �.

If � = 1, then it follows from Lemma 18 that ��(�) =
3 = 2� + 1. Assume that ��(�) ≥ 2� + 1, for all graphs �
as described above with � < � cycles. Let � be such a graph
with � cycles. Let � be an acyclic path decomposition of �.
Let �1 be the path in � containing the edge V1�1V21. Let �1 =⟨�(�1)∪{M, V21}⟩,�2 = ⟨�(�2)∪�(�3)∪⋅ ⋅ ⋅∪�(��)∪{V, V1�1}⟩,�1 = �1 − (�1) and �2 = �2 − (�1). Let ��1, ��2, . . . , ���
be the paths in � which decompose the graph �1 and let
���1 , ���2 , . . . , ���� be the paths in � which decompose the graph

�2. Clearly � ≥ 2. We now claim that ! ≥ 2� − 2. Let
� ̸= V1�1 be the end vertex of �1 which lies in �2. 	en the

(V1�1 , �)-section of �1 together with the paths ���1 , ���2 , . . . , ����
decompose the graph �2. Hence, by induction hypothesis
!+1 ≥ ��(�2) ≥ 2(�−1)+1 = 2�−1 so that ! ≥ 2�−2. Hence,|�| = �+ !+1 ≥ 2+2�−2+1 = 2�+1 so that ��(�) ≥ 2�+1.
	us ��(�) = 2� + 1 and so ��(�) − �(�) = �.
�eorem 21. Let � be a connected graph. �en ��(�) =
2�(�) − 1 if and only if � is the graph consisting of � −
1 vertex-disjoint cycles �1, �2, . . . , ��−1 and a path � =
(�1, �2, . . . , ��) satisfying the following conditions.

(i) Every vertex of the cycle ��, 1 ≤ F ≤ � − 1, lies on the
path �.

(ii) If F1 and F2 denote, respectively, the smallest and the
largest positive integer such that ��1 , ��2 ∈ �(��), 1 ≤F ≤ � − 1, then every edge of the (��1 , ��2)-section of �
is a chord of the cycle ��.

Proof. Suppose ��(�) = 2�(�)−1. Let � be a minimum path
decomposition of�.	en� consists of exactly one path, say�
and�(�)−1 vertex-disjoint cycles, say�1, �2, . . . , ��(�)−1. Let� = (�1, �2, . . . , ��). Since � is connected, �(�) ∩ �(��) ̸= 0
for all F, 1 ≤ F ≤ �(�) − 1. Now, if there exists a vertex of
degree 2 in � which lies either on any of the cycles �� or on
the (��1 , ��2)-section of � then it follows from Lemma 18 that
��(�) ≤ 2�(�) − 2, which is a contradiction. Hence, (i) and
(ii) hold.

Now, the graph � given in the theorem is nothing but the
graph described in Corollary 19 with � = � − 1 and thus the
converse follows.

�eorem 22. Given two positive integers H and I with H ≤ I ≤
2H, there exists a graph � such that �(�) = H and ��(�) = I.
Proof. If I = 2H, let � be the graph with H components, each
component being a cycle. If I = 2H − 1, let � be the graph
given in	eorem 21. If H = I, let � be the graph consisting of
exactly one cut vertex and H blocks, each block being a cycle.
In all these cases, �(�) = H and ��(�) = I.

Now, suppose H + 1 ≤ I ≤ 2H − 1. Let I = H + �, where
1 ≤ � ≤ H − 1. Let � be the connected graph consisting of
H − 1 vertex-disjoint cycles �1, �2, . . . , ��−1 and a path � =
(�1, �2, . . . , ��) satisfying the following conditions:

(i) �(�) ∩ �(��) = �(��) if 1 ≤ F ≤ � and �(�) ∩ �(��)
is a proper nonempty subset of �(��) if � + 1 ≤ F ≤ I;

(ii) if F1 and F2 denote, respectively, the smallest and
largest positive integer such that ��1 , ��2 ∈ �(��),1 ≤ F ≤ �, then each edge of the (��1 , ��2)-section of �
is a chord of the cycle ��.

Clearly �(�) = H and it follows from Lemma 18 that ��(�) =2� + 1 + H − 1 − � = � + H = I.
We conclude the paper by posing the following problem

for further researchs.

(i) Characterize graphs� for which �(�) = �/2, where �
is the number of vertices of odd degree in �.
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(ii) Characterize graphs � for which �(�) = ⌊�/2⌋.
(iii) Characterize graphs � for which ��(�) = �.
(iv) Characterize graphs for which �(�) = ⌈Δ/2⌉.
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