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Abstract 

Background: As an object’s electrical passive property, the electrical conductivity is 

proportional to the mobility and concentration of charged carriers that reflect the brain 

micro-structures. The measured multi-b diffusion-weighted imaging (Mb-DWI) data by 

controlling the degree of applied diffusion weights can quantify the apparent mobility 

of water molecules within biological tissues. Without any external electrical stimulation, 

magnetic resonance electrical properties tomography (MREPT) techniques have suc-

cessfully recovered the conductivity distribution at a Larmor-frequency.

Methods: This work provides a non-invasive method to decompose the high-

frequency conductivity into the extracellular medium conductivity based on a two-

compartment model using Mb-DWI. To separate the intra- and extracellular micro-

structures from the recovered high-frequency conductivity, we include higher b-values 

DWI and apply the random decision forests to stably determine the micro-structural 

diffusion parameters.

Results: To demonstrate the proposed method, we conducted phantom and human 

experiments by comparing the results of reconstructed conductivity of extracellular 

medium and the conductivity in the intra-neurite and intra-cell body. The phantom 

and human experiments verify that the proposed method can recover the extracellular 

electrical properties from the high-frequency conductivity using a routine protocol 

sequence of MRI scan.

Conclusion: We have proposed a method to decompose the electrical properties in 

the extracellular, intra-neurite, and soma compartments from the high-frequency con-

ductivity map, reconstructed by solving the electro-magnetic equation with measured 

B1 phase signals.

Keywords: Magnetic resonance electrical property tomography, High-frequency 

conductivity decomposition, Multi-b diffusion weighted imaging, Low-frequency 
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Background

Using a conventional MRI scanner without any external electrical stimulation, magnetic 

resonance electrical properties tomography (MREPT) techniques have been developed 

and successfully recover the conductivity distribution at Larmor-frequency (about 128 

MHz at 3 T ) [1–4]. �e electrical conductivity of biological tissues is proportional to 

the apparent concentration and mobility of ions in the intracellular and extracellular 

compartments. As the separated form of electrical conductivity of biological tissues, the 

low-frequency conductivity (< 1 kHz) is dominantly influenced by the apparent concen-

tration and mobility of ions in the extracellular compartment.

To decompose the high-frequency conductivity into the extracellular and intracellular 

compartments using a conventional clinical MRI scanner, it requires micro-structural 

parameters including the extracellular volume fraction (EVF), distributions of electrical 

charged molecules, and diffusion coefficient coefficients in the extracellular and intra-

cellular compartments [5, 6]. For the model-based micro-structure imaging based on 

the tissue micro architecture in the brain, the micro-structural parameters for the intra-

cellular and extracellular compartments have been studied, related with specific tissue 

micro-structure features from Mb-DWI data [7–9]. Although a two compartment model 

is the simplest form, the determination of micro-structural parameters from measured 

decay MR DWI signals with respect to b-value is ill-posed because the estimation of 

parameters from the combination of smooth exponential curves is sensitive to noise in 

the measured DWI data. To stabilize the ill-posedness, two compartment models typi-

cally assume some restrictions: intrinsic diffusivity and/or water diffusing in elongated 

cellular fibres, based on the ball-and-stick model [10, 11].

Various exponential diffusion models have been proposed to describe signal attenu-

ation with DWIs using more than two b-values [12–17]. Using the exponential diffu-

sion models, an electrodeless method providing the low-frequency electrical property 

imaging without any external hardware was proposed [6, 17–19]. �e proposed meth-

ods mainly focus on separating the ion mobility and concentration in the extracellular 

space (ECS) from the recovered high-frequency conductivity. Although, without injec-

tion of external currents, it is a promising work to separate the high-frequency conduc-

tivity (combined electrical properties from the extra- and intra-celluar compartments) 

into the low-frequency conductivity (electrical properties from the extracellular com-

partment), the developed methods still have difficulties in distinguishing the hindered 

diffusion of free water molecules and the diffusion-limited compartment [17, 19]. For 

separating the low-frequency conductivity from the high-frequency conductivity, we 

need to quantify the micro-structures of extracellular compartment. However, typical 

two compartment models based on the ball-and-stick model consider the diffusion sig-

nals from soma or other large cellular domains as those from the extracellular compart-

ment. �e reconstructed low-frequency conductivity using the ball-and-stick model 

overestimates EVF and, as a result, causes the biased conductivity values, especially in 

the gray matter region.

Recently, a biophysical model has been proposed for apparent cell body (soma) 

and neurite density imaging (SANDI), which tries to recover the soma size and den-

sity in addition to neurite density [9]. In particular, in ECS, to decompose the electri-

cal properties of each compartment, it is important to distinguish the micro-structural 
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characteristics of the soma size and density belonging to the intracellular compartment. 

�e SANDI model needs to include the direction-averaged DWI signal at high b-values 

( ≥ 3000 s/mm
2 ) to detect the apparent soma size and density. Combining with the esti-

mated DWI data for the higher b-values, we apply the SANDI model to estimate the 

micro-structures of extracellular compartment and use it to identify the characteristics 

of low-frequency conductivity.

To determine the micro-structural parameters of biological tissues using the meas-

ured Mb-DWI data, we use the random forest regression, an ensemble machine learning 

algorithm by constructing a multitude of decision trees at training time [20, 21]. �e 

applied machine learning method builds a forest of uncorrelated trees, combined with 

randomized node optimization and bootstrap aggregating [22].

To demonstrate the electrical property decomposition from the recovered high-fre-

quency conductivity, we generate the high-frequency conductivity using the convec-

tion-reaction partial differential equation with a small regularization parameter [1]. �e 

recovered high-frequency conductivity reflects the combined electrical properties by the 

intra- and extra-cellular compartments using a routine protocol sequence of MRI scan.

To validate the proposed method, a conductivity phantom including a giant vesicle 

suspension was conducted as a model for the membranes of biological cells. �e giant 

vesicles were cell-like materials with thin insulating membranes to validate the two com-

partment model including both extracellular and intracellular spaces. We conducted 

human experiments by comparing the results of reconstructed conductivity of extracel-

lular medium and the conductivity in the intra-neurite and intra-cell body. We extracted 

the apparent total ion concentration from the high-frequency conductivity map and the 

estimated micro-structural parameters. �e phantom and human experiments indicate 

that the total ion concentration and the extracellular diffusion tensor can predict the 

extracellular electrical properties without externally injected currents. �e accuracy and 

precision of the reconstructed low-frequency conductivity distribution in the extracel-

lular compartment were evaluated.

Results

Giant vesicle phantom experiment

Giant membrane vesicles dispersed in aqueous solution were prepared as described in 

[23]. Giant vesicles are a model membrane system for the investigation of lipid mem-

branes. In a 1L round-bottom flask containing 3 mL of chloroform and 400 μm of 

methanol, 2 mL of phospholipids dissolved with a chloroform solution of 30 mg/mL con-

centration under argon atmosphere. A 20 mL volume of distilled water or 0.75% NaCl 

solution was carefully added not to disturb the interface between the aqueous phase and 

organic solution phase. �e flask was installed to a rotary evaporator to remove organic 

solvent at 47 °C under vacuum for 20 min at 10 rpm and then followed by another 20 

min at 60 rpm. During evaporation of organic solvents, phospholipids were assembled 

to form giant vesicles. �e resultant aqueous solution containing giant vesicles were cen-

trifuged at 1500 rpm for 10 min. �e volume fraction of the giant vesicles was about 80 

to 90% by visual observations. �e mean and standard deviation of the diameters of the 

giant vesicles were 13 ± 4.7 μm.
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�e conductivity phantom was constructed, which comprised two compartments of 

electrolyte (Background) and giant vesicle suspension (ROI) (Fig. 1a). �e background 

was an NaCl solution of 3 g/L and ROI was filled with the giant vesicles suspension. �e 

giant vesicle suspension was a mixture of the same NaCl solution of background and 

giant vesicles. In the giant vesicle suspension, the ratio of NaCl solution and giant vesicle 

was the same, which means that the volume fraction of the intracellular space was about 

0.4–0.45.

A 9.4 T research MRI scanner (Agilent Technologies, USA) was used with a single-

channel mouse body coil. �e multi-spin-echo pulse sequence was used to acquire B1 

phase maps to reconstruct high frequency conductivity images of the phantom. �e 

imaging parameters were as follows: TR/TE = 2200/22 ms, number of echoes (NE) = 

6, number of excitation (NEX) = 5, slice thickness = 0.5 mm, field-of-view (FOV) = 

65× 65 mm
2 , flip angle = 90◦ , image matrix size = 128×128× 6, and scan time = 23 min. 

Diffusion weighted MR imaging was separately performed using the single-shot spin-

echo echo planar imaging sequence. �e imaging parameters were as follows: TR/TE 

= 2000/70 ms, δ/�  = 6/53.8 ms, NEX = 2, slice thickness = 0.5 mm, FOV = 65× 65 

mm
2 , flip angle = 90◦ , and image matrix size = 128 × 128 × 6. �e number of directions 

of the diffusion-weighting gradients was 30 with b-values of 1000, 2200, 3000 and 3600 

s/mm
2 . �e scan time was about 32 min. An additional conventional T1 weighted scan of 

5 min was included for anatomical reference.

�e conductivity values of the giant vesicle suspension in ROI (Fig. 1a) were measured 

by using an impedance analyzer (SI1260A, AMETEK Inc., UK). �e conductivity values 

were 0.57 S/m at 1 kHz and 1.05 S/m at 5 MHz.

Figure  1b shows the estimated high-frequency conductivity, σH , extracellular vol-

ume fraction, fec , extracellular diffusivity, Dec , and extracellular conductivity, σec , 

a

b

c

d

Fig. 1 a Magnitude image. b–d Estimated high frequency conductivity,σH , extracellular volume fraction, 

fec , extracellular diffusivity, Dec , and extracellular conductivity, σec for different noise levels of ( SNRP , SNRD ). b 

( ∞,∞ ), c (100,50), d (50,10))
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respectively. Table 1 shows the mean and standard deviation values of the estimated 

high frequency conductivity, extracellular volume fraction, extracellular diffusivity, 

extracellular ion concentration and extracellular conductivity within ROI.

�e estimated high-frequency conductivity was σH = 1.01 ± 0.02 S/m in ROI, which 

is close to the conductivity value 1.05 S/m measured using the impedance analyzer at 

5 MHz in ROI. We used the diffusion term c = 0.05 to stabilize the convection-reac-

tion partial differential equation in (3). Since the volume fraction of the giant vesi-

cles after the centrifugation was about 80% to 90% and the ratio of NaCl solution and 

giant vesicles was same in ROI, the controlled extracellular volume fraction was about 

0.55–0.60 in ROI. �e value of fec in ROI was 0.59±0.14 as expected.

To estimated the extracellular ion concentration, c̄ec , in (12), we assume that the 

intra-neurite ion concentration and soma ion concentration are same, and further 

assume that c̄in = β c̄ec for some constant β . Since we used the same electrolyte for 

both inside and outside of the giant vesicle, the ratio of ion concentrations in the 

intracellular and extracellular compartments, β , was 1. �e extracellular ion concen-

tration c̄ec can be estimated as

With the estimated high-frequency conductivity and the parameters of the SANDI 

model for brain micro-structure, we recovered the extracellular ion concentration, c̄ec , 

extracellular conductivity, σec . σec  = 0.54 ± 0.15 S/m in ROI is close to the measured 

conductivity value 0.57 S/m at 1 kHz.

To verify the proposed method, we conducted two cases. We artificially destroyed 

the measured signals by adding random noise and motion artifacts. For noisy data, 

we added the zero-mean Gaussian random noise to both the phase data and diffusion 

weighted signal. �e noise standard deviation were calculated by 〈S〉/(
√

2 SNR), where 

〈S〉 is the average signal (phase signal and the signal obtained without diffusion gradi-

ent) amplitude and SNR is the signal-to-noise ratio in MR magnitude images. For the 

phase data, SNRP values 200, 100, and 50 were employed. For the diffusion weighted 

signal, we assumed that SNRD of the signal obtained without diffusion gradient, S0 , 

were 100, 50, and 10. �e random noise added to S0 was added to each Sb.

Figure 1c, d shows images of the estimated high frequency conductivity, σH  , extra-

cellular volume fraction, fec , extracellular diffusivity, Dec , and extracellular conduc-

tivity, σec for ( SNRP , SNRD ) = (100,50) and (50,10). Table  2 shows the mean and 

standard deviation values of the estimated high frequency conductivity, extracel-

lular volume fraction, extracellular diffusivity, extracellular ion concentration and 

(1)c̄ec =
σH

β(fneDin + fsoDis) + fecDec

Table 1 Mean and standard deviation values of the high frequency conductivity, σH , extracellular 

volume fraction, fec , extracellular diffusivity, Dec , extracellular ion concentration, c̄ec , and extracellular 

conductivity, σec within ROI

Conductivity values measured using the impedance analyzer are shown in the last two columns

σH fec Dec c̄ec σec Measured conductivity

ROI 1.01 ± 0.02 0.59 ± 0.14 1.36 ± 0.43 0.71 ± 0.15 0.54 ± 0.15 0.57 (1 kHz) 1.05 (5 MHz)
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extracellular conductivity within ROI for the chosen noise levels. The proposed 

method stably reconstructed the conductivity values when SNRP and SNRD were 

above 100.

To investigate the impact of subject motion, we simulated a sinusoidal motion in 

the phase-encoding direction with amplitude 1 and a frequency of 2 Hz and obtained 

a motion-corrupted complex MR signals which were the convolution of the meas-

ured complex MR signals with the corresponding point spread function [24]. Fig-

ure 2a shows the magnitude image with motion artifacts. Figure 2b–d shows images 

of the estimated high frequency conductivity, σH  , and extracellular conductivity, σec 

for the different diffusion term c in (3). Since the diffusion term c acts as a low-pass 

filter in the reconstruction algorithm, it was possible to reconstruct the motion-cor-

rected high-conductivity map using a high c value. For c = 1 , the values of the esti-

mated high frequency conductivity and extracellular conductivity within ROI were 

0.99±0.02 and 0.53 ± 0.14, respectively.

Table 2 Mean and standard deviation values of the high frequency conductivity, σH , extracellular 

volume fraction, fec , extracellular diffusivity, Dec , extracellular ion concentration, c̄ec , and extracellular 

conductivity, σec within ROI for different noise levels of ( SNRP , SNRD)

(200,100) (200,50) (200,10) (100,100) (100,50) (100,10) (50,100) (50,50) (50,10)

σH 1.00 ± 
0.06

1.00 ± 
0.06

1.00 ± 
0.06

1.02 ± 
0.12

1.02 ± 
0.12

1.02 ± 
0.12

1.09 ± 
0.29

1.09 ± 
0.29

1.09 ± 0.29

fec 0.61 ± 
0.15

0.60 ± 
0.16

0.70 ± 
0.16

0.61 ± 
0.15

0.60 ± 
0.16

0.70 ± 
0.16

0.61 ± 
0.15

0.60 ± 
0.16

0.70 ± 0.16

Dec 1.42 ± 
0.51

1.50 ± 
0.55

1.68 ± 
0.83

1.42 ± 
0.51

1.50 ± 
0.55

1.68 ± 
0.83

1.42 ± 
0.51

1.50 ± 
0.55

1.68 ± 0.83

c̄ec 0.70 ± 
0.17

0.68 ± 
0.18

0.72 ± 
0.34

0.71 ± 
0.19

0.69 ± 
0.20

0.73 ± 
0.34

0.76 ± 
0.29

0.74 ± 
0.28

0.78 ± 0.38

σec 0.56 ± 
0.16

0.55 ± 
0.16

0.67 ± 
0.16

0.57 ± 
0.17

0.56 ± 
0.17

0.68 ± 
0.17

0.61 ± 
0.23

0.60 ± 
0.24

0.72 ± 0.23

a

b c d

Fig. 2 a Magnitude image with motion artifacts. b–d Estimated high frequency conductivity, σH , and 

intracellular conductivity, σec for different diffusion term c in (3). ((b): c = 0.1 , c c = 0.5 , d c = 1)
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Human experiment

MRI measurements were performed with three healthy volunteers without a docu-

mented history of any disease were recruited. �e participants were located inside 

the bore of a 3T MRI scanner with the head coil in transmit and a 32-channel RF 

head coil (Achieva TX, Philips Medical Systems, the Netherlands). All experimen-

tal protocols were approved by the institutional review board of Kyung Hee Univer-

sity (KHSIRB-16-033). All methods were carried out in accordance with the relevant 

guidelines and regulations and all participants provided written informed consent.

For MREPT imaging experiments, the multi-spin-echo pulse sequence with multi-

ple refocusing pulses was adopted to minimize the measured noise. Before the data 

acquisition, we applied a volume shimming method with the volume defined to cover 

the brain region. Imaging parameters were as follows: TR/TE = 1500/15  ms, NE = 

6, NEX = 1, slice thickness = 4  mm, FOV = 260×260 mm
2 , imaging matrix size = 

128×128× 5, and scan time = 16 min. After MREPT scans, we performed DWI scans 

using the single-shot spin-echo echo planner imaging (SS-SE-EPI) pulse sequence. 

We applied the diffusion weighting gradients in 15 directions with 4 b-values of 1000, 

2200, 3000 and 3600 s/mm
2 , respectively. Imaging parameters were as follows: TR/

TE = 2000/70 ms, δ/� = 21/33 ms, NEX = 2, slice thickness = 4 mm, and acquisition 

matrix size  = 64×64× 5. �e scan time was about 6.2 min. �e matrix size of 64×64× 5 

was extended to 128×128× 5 to match the spatial resolution (2.03×2.03× 4  mm
3 ) of 

MREPT experiment. To increase the spatial resolution with the matrix size of 64 × 64 

to the spatial resolution of 128 × 128 by reducing scanning times without much loss 

in resolution or SNR, we used the zero-filling interpolation (ZIP) by zero filling the 

high spatial-frequency components of the raw k-space data, which places the acquired 

data in the central regions on k -space and fills the data of zero in the outer regions. 

An additional conventional T1 weighted scan of 2 min was included for anatomical 

reference.

Figure 3 shows the estimated micro-structural parameter maps of SANDI model (5) 

for the first human subject: the estimated extracellular volume fraction fec , intra-neu-

rite volume fraction fne , soma volume fraction fso , extracellular diffusivity Dec , and 

intra-neurite diffusivity Din from the first subject.

Figure 4a, b shows the MR magnitude and the B1 phase images at the third imaging 

slice of the first subject. For quantitative analyses, T1 image was segmented into cer-

ebrospinal fluid (CSF), gray matter (GM), and white matter (WM) using the segmen-

tation tool of Statistical Parametric Mapping (SPM 12) [25]. �ese regions are shown 

in Fig. 4c.

Figure 5 shows the details of reconstructed conductivity images from the first sub-

ject. To estimate the high frequency conductivity, σH , with the acquired transceiver 

phases of B1 maps, we solved the convection-reaction partial differential equation 

(PDE) in (3) with the diffusion term c = 0.02.

To estimate the extracellular ion concentration, c̄ec , in (12), we set that the ratio β for 

ion concentrations in the intracellular and extracellular compartments to be 0.41 as sug-

gested in [6] by adopting reference values of intracellular and extracellular ion concen-

trations of four predominant ions ( Na
+ , Cl− , K+ , and Ca2+ ). Using the reference ratio 

value β = 0.41 , the extracellular ion concentration c̄ec can be estimated by (1).
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With the estimated high-frequency conductivity and the parameters of the SANDI 

model for brain micro-structure, we recovered the extracellular ion concentration, c̄ec , 

extracellular conductivity, σec , intra-neurite conductivity, σne , and soma conductivity, σso.

Figure 6 shows the 3 × 3 extracellular conductivity tensor, Cec , and intra-neurite con-

ductivity tensor, Cne , images. To estimate conductivity tensors, we used the water mol-

ecule diffusion tensors with the b value of 1000 s/mm
2 . We fixed the principal diffusion 

direction (eigenvector corresponding to the maximum eigenvalue of the diffusion ten-

sor) and solved the equations (16) and (17) to obtain the extracellular diffusion tensor, 

Dec , and intra- neurite diffusion tensor, Dne , images. Using these diffusion tensors, we 

reconstructed the extracellular conductivity tensor, Cec , and intra-neurite conductivity 

tensor, Cne , in (18) and (19), respectively.

Table 3 summarizes the estimated values of high frequency conductivity, extracellu-

lar ion concentration, extracellular conductivity, and intra-neurite conductivity of each 

Fig. 3 Estimated extracellular volume fraction, fec , intra-neurite volume fraction, fne , soma volume fraction, fso , 

extracellular diffusivity, Dec , and intra-neurite diffusivity, Din , from the first subject. Imaging slices are shown in 

the first column

a b c

Fig. 4 Magnitude, phase, and segmented (CSF, GM, WM) images from the third imaging slice of the first 

subject
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subject. In Table 3, longitudinal (L), transverse (T), and average (A) white matter con-

ductivity values were found by computing the principal eigenvalue, the mean of the 

other two eigenvalues, and the mean of all eigenvalues of the conductivity tensor over all 

region, respectively.

The high-frequency conductivity values in CSF regions were between 1.43 and 

1.58 S/m and the extracellular conductivity values were between 1.35 and 1.49 S/m. 

Note SANDI model does not take into account CSF compartment. For this reason, a 

Fig. 5 Estimated high-frequency conductivity, σH , extracellular ion concentration, c̄ec , extracellular 

conductivity, σec , intra-neurite conductivity, σne , and soma conductivity, σso , from the first subject

Fig. 6 Estimated extracellular conductivity tensor, Cec , and intra-neurite conductivity tensor, Cne , images from 

the third imaging slice of the first subject
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slight difference between high-frequency conductivity values and extracellular con-

ductivity values was found in CSF regions.

For GM regions, the high-frequency conductivity values were between 0.51 and 

0.55 S/m and the extracellular conductivity values were in the range of 0.29 to 0.31 

S/m. The extracellular conductivity values were higher than the neurite conductivity 

values (0.07–0.08 S/m in GM), as expected.

We found longitudinal WM extracellular conductivity values of 0.25–0.28 S/m. 

Transverse WM extracellular conductivity values were between 0.13 and 0.15 S/m. 

The average ratio between longitudinal conductivity values and transverse conduc-

tivity values was 1.87–2.00. For WM regions, longitudinal intra-neurite conductivity 

values were 0.19 –0.22 S/m and transverse intra-neurite conductivity values were 

0.10–0.11 S/m.

The extracellular conductivity values in GM regions were higher than the average 

extracellular conductivity values in WM regions, whereas the average intra-neurite 

conductivity values in WM regions were always higher than the intra-neurite con-

ductivity values in GM regions.

Figure 7 shows the estimated extracellular conductivity tensor, Cec , and intra-neu-

rite conductivity tensor, Cne , images represented by tri-axial ellipsoids, respectively, 

in the rectangular ROIs shown in extracellular conductivity, σec , and intra-neur-

ite conductivity, σne , images. Since all of the conductivity tensors shared the same 

eigenvectors from the diffusion tensor, their orientations were same. The radii of 

each ellipsoid are proportional to the eigenvalues and their axes are oriented along 

the directions of eigenvectors. As expected, the volume of intra-neurite conductivity 

ellipsoids appeared larger in WM regions.

Table 3 Estimated values of high-frequency conductivity, σH , extracellular ion concentration, c̄ec , 

extracellular conductivity, and intra-neurite conductivity within CSF, white matter, and gray matter 

regions

σH c̄ec Extracellular conductivity Intra-neurite conductivity

 Subject 1

  CSF 1.43 ± 0.70 0.57 ± 0.25 1.35 ± 0.72 0.02 ± 0.02

  GM 0.51 ± 0.30 0.45 ± 0.24 0.29 ± 0.20 0.07 ± 0.05

 WM 0.40 ± 0.19 0.39 ± 0.16 L T A L T A

0.28 ± 0.22 0.15 ± 0.11 0.19 ± 0.14 0.19 ± 0.10 0.10 ± 0.04 0.13 ± 0.06

 Subject 2

  CSF 1.58 ± 0.67 0.63 ± 0.29 1.49 ± 0.66 0.02 ± 0.03

  GM 0.53 ± 0.26 0.46 ± 0.22 0.30 ± 0.19 0.08 ± 0.05

  WM 0.39 ± 0.15 0.40 ± 0.15 L T A L T A

0.25 ± 0.15 0.13 ± 0.08 0.17 ± 0.10 0.22 ± 0.10 0.10 ± 0.04 0.14 ± 0.06

 Subject 3

  CSF 1.51 ± 0.86 0.60 ± 0.34 1.41 ± 0.85 0.03 ± 0.03

  GM 0.55 ± 0.32 0.49 ± 0.28 0.31 ± 0.20 0.07 ± 0.05

  WM 0.39 ± 0.17 0.41 ± 0.16 L T A L T A

0.26 ± 0.17 0.13 ± 0.07 0.17 ± 0.10 0.21 ± 0.12 0.11 ± 0.05 0.14 ± 0.07
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Discussion

Literature conductivity values including those obtained from direct impedance meas-

urements (IM), MREPT and diffusion tensor MR electrical impedance tomography (DT-

MREIT), are summarized in Table  4. �e conductivity values of brain tissues heavily 

depend on the biological tissue structures, participant’s age and pathology, frequency, 

and the measurement conditions (in vivo, ex vivo, and in vitro) [26–28]. Without exter-

nal injection currents and using conventional MR pulse sequences minimizing magnetic 

field inhomogeneity, MREPT is a promising research area for practical clinical medi-

cal devices. Comparing to MREPT, by injecting a dc current into the imaging subject, 

MREIT can reconstruct images of the internal low-frequency conductivity distribution. 

Fig. 7 Two chosen rectangular ROIs are shown in extracellular conductivity, σec , and intra-neurite 

conductivity, σne , images. Estimated extracellular conductivity tensor, Cec , and intra-neurite conductivity 

tensor, Cne , images represented by tri-axial ellipsoids, respectively. The radii of each ellipsoid are proportional 

to the eigenvalues and their axes are oriented along the directions of eigenvectors. For comparison, an 

isotropic tensor image with conductivity of 0.5 S/m is located in the center left. The colors of ellipsoids 

indicate the orientation of principle eigenvector

Table 4 Literature conductivity values

Literature 
conductivity 
valuesCSF

GM WM Method

L T A

– 0.69–0.82 – – 0.30–0.63 MREPT Human, 64–300 MHz [26]

– 0.70 – – 0.39 IM Ovine, 131 MHz [29]

1.71 ± 0.30 0.47 ± 0.24 – – 0.22 ± 0.14 Meta-analysis Human, <1 kHz [30]

1.79 - – – – IM Human, 10 Hz [28]

1.58, 1.53 0.29, 0.24 0.39, 0.49 0.13, 0.17 0.22, 0.28 DT-MREIT Human, 10 Hz [31]

1.67 - 0.47 0.08 - IM Cat(spinal cord), 5–10 Hz [32]
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In this paper, we proposed a new way to decompose electrical properties in each com-

partment (extracellular, intra-neurite, and soma compartments) from the reconstructed 

high-frequency conductivity using MREPT technique and the micro-structural param-

eters using SANDI model.

From the intrinsic noise in the MR measurements, MREPT reconstruction techniques 

have been proposed to improve the quality of the high-frequency conductivity map [33–

36]. �e high conductivity values in Table 3 using the reconstruction algorithm in [1] 

also depend on the first term in (3), which is the diffusion term to stabilize the solution. 

�e diffusion term acts as a low-pass filter, leading to some blurring of the final high-

conductivity maps.

Because SANDI model does not take into account CSF compartment, a slight differ-

ence between the high-frequency conductivity values and the extracellular conductiv-

ity values was found in CSF region as was described in Result section. SANDI model 

estimates the orientation-independent features of microstructure using the direction-

averaged DWI signals. In future studies, it is worth exploring a new model that take into 

account CSF compartment. In the SANDI model, the direction averaged signals using 

many uniformly distributed directions are advantageous to estimate the microstructural 

parameters since the DWI data is noisy at a high-b value. Although the accuracy of esti-

mated parameters can be improved as the diffusion directions are increase, the numbers 

of diffusion directions were 30 and 15 for the phantom and human experiment, respec-

tively, to recover the low-frequency electrical properties within a feasible MR scanning 

time.

At the low frequency, the internal electrical current flow caused by external current 

stimulation occurs only in the extracellular space and CSF, excluding the intracellular 

space, due to the insulation properties of cell membrane [27, 37, 38]. Despite extensive 

researches for the electrical properties in ECS, the reported low frequency conductivity 

values do not match and show considerable standard deviation. Recently, a meta-analysis 

of reported human head electrical conductivity values at low frequency (< 1 kHz) pro-

vides a recommended value estimated under suitable and realistic conditions, in which 

data acquisition techniques were categorized into five groups including directly applied 

current and MREIT. In Table 4, the reference values for low-frequency conductivity were 

1.71 ± 0.3 (CSF), 0.47 ± 0.24 (GM), and 0.22 ± 0.14 S/m (WM) with broadly similar 

results to ours [30].

At fairly low frequencies, the conductivity of brain tissue, particularly white matter, 

is known to be anisotropic [32]. Comparing to the anisotropicity of intra-neurite com-

partment, the average ratio between longitudinal WM extracellular conductivity values 

and transverse WM conductivity values of 1.87–2.00 found here were lower than 3 and 

5.9 reported in [31, 32], respectively. �e extracellular conductivity values in GM and 

WM regions exhibited much stronger frequency dependencies compared to CSF region, 

because of their complicated tissue structures. More rigorous analysis including geomet-

ric and viscous components of the tortuosity of ECS will be needed in the future work.

In this paper, the acquired DWIs are combined because SANDI model assume an iso-

tropic diffusion to distinguish the intra- and extra-cellular diffusion signals. We focus 

on separating the microscopic parameters for extracellular space from the multiple 

DWI data. �e recovering procedure for the low-frequency electrical properties is very 
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complex and requires further developments, including measurement techniques, noise 

artifact reduction, main magnetic field inhomogeneity artifact correction, and more reli-

able models to separate the extracellular and intracellular compartments.

To compensate the difficulties of measuring DWI data for higher b-values, we adopt 

the hypothesis that the DWI data corresponding to the b-value range (1000-3600 s/mm
2 ) 

reflects distinguishable diffusion signals between the soma and the extracellular space. 

To avoid the ill-posedness to determine the six unknowns, fin, fec,Din,Dis,Dec, and rs , 

in the two compartment model (5) from the smoothly decayed exponential curves, the 

parameter of Dis was fixed as 2 ×10
−3 mm

2/sec. However, the determination of param-

eters by matching the observed DWI data for Mb-DWI data and SANDI model was still 

very sensitive to measured noise artifacts.

As described in the above, there are several problems to overcome, especially includ-

ing the follows

• SANDI model is not yet suitable for clinical MRI scanner because it requires high 

b-values (higher than 3000 s/mm
2 ) DWI and relatively many diffusion directions to 

apply direction averaged DWI signals.

• To estimate the extracellular ion concentration, c̄ec , it is assumed that the intra-neu-

rite and soma ion concentrations are the same. Moreover, the ratio of ion concentra-

tions in the intra- and extra-compartments is assumed as a fixed constant, β = 0.41 

for human experiments. Since the ratio β depends on the apparent ion concentra-

tion, β cannot be fixed as a constant in the whole brain region. However, no method 

to experimentally estimate of the human brain is available.

Nevertheless, the method of extracting low-frequency electrical properties in a non-

invasive way from the high-frequency conductivity is critical for clinical usefulness.

Electrical brain stimulation (EBS) techniques, such as transcranial direct current stim-

ulation (tDCS) and deep brain stimulation (DBS), are promising treatments for human 

disorders [39–43]. Since there is no clear explanation for the mechanism, EBS studies 

have relied on computational modeling using reference conductivity values in the whole 

brain region. �e proposed electrical property decomposition from the high-frequency 

conductivity can be a promising work for the EBS techniques.

Conclusion

We have proposed a method to decompose the electrical properties in the extracellular, 

intra-neurite, and soma compartments from the high-frequency conductivity map, recon-

structed by solving the electro-magnetic equation with measured B1 phase signals. By 

decomposing the electrical conductivity into the product of mobility and charged carrier 

concentrations, voxel-wise micro-structures including the extracellular volume fraction and 

diffusivity were investigated using SANDI model by analyzing the Mb-DWI data based on a 

two compartment model. In the SANDI model, to distinguish the intra-soma compartment 

from the mixed diffusivity signals in ECS, the Gaussian phase distribution approximation 

of the tail was used. To determine the micro-structural parameters in each separated com-

partment using Mb-DWI data, a machine learning algorithm, random forests, was used by 

constructing a multitude of decision trees. Combining with the predicted DWI data and 
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SANDI model, we separated the extracellular conductivity from the high-frequency con-

ductivity using the decomposed micro-structural diffusion parameters. To verify the pro-

posed method, we conducted human experiments to verify that the proposed method 

recovered the low-frequency electrical properties using a routine protocol sequence of MRI 

scan.

Methods

High-frequency conductivity at Larmor frequency using B1 phase map

�e electrical conductivity of biological tissue as a function of frequency is complicated by 

the anisotropic nature of tissue, non-homogeneous natures in the extracellular and intracel-

lular compartments, and randomly distributed cells sizes. �e high-frequency conductivity 

is dominantly isotropic because the electrical current flow tends to pass through the cell 

membrane.

For the positive (negative) rotating component of the transmit B1 field B+

1
=

∣

∣B
+

1

∣

∣e
iϕ

+

 

( B−

1
=

∣

∣B
−

1

∣

∣e
iϕ

−

 ), by assuming σH ≫ ωǫH , a phase-based MREPT formula has been pro-

posed and conducted for numerous clinical studies [44–47]:

where τH denotes 1

σH
 and ϕtr

= ϕ
+

+ ϕ
− is the measurable transceive phase using MRI 

[1].

Since the reaction–diffusion equation is sensitive to the measured noise, to stabilize the 

formula (2), after adding an artificial diffusion term, the equation (2) leads to

where c is a constant diffusion coefficient.

Detection of the micro-structures of biological tissues based on intracellular 

and extracellular compartments

For the model-based micro-structure imaging based on the tissue micro architecture in the 

brain, the model parameters for the intracellular and extracellular compartments are asso-

ciated with specific tissue micro-structure characteristics from Mb-DWI data [7–9]. �e 

signal intensity Sb by applying a diffusion encoding gradient is given by

where S0 is the signal obtained without diffusion gradient and b denotes the diffusion-

weighting factor. To distinguish the diffusion signals from ECS and the cell bodies of any 

brain cell type (collectively named soma) [9], SANDI model proposes the following com-

partment model of brain tissue micro-structure:

where fic and fec are the intracellular and extracellular volume fractions, fic + fec = 1 ; fin 

and fis are the neurite and soma relative volume fractions in the intracellular compart-

ment, fin + fis = 1 ; Ain and Ais are the normalized signals for restricted diffusion within 

neurites and soma, respectively, and Aec is the normalized signal of the extracellular 

(2)∇ϕ
tr

· ∇τH + τH∇
2
ϕ
tr

− 2ωµ0 = 0

(3)−c∇
2
τH + ∇ϕ

tr
· ∇τH + τH∇

2
ϕ
tr

= 2ωµ0

(4)Sb = S0 exp(−bD)

(5)Sb = S0
(

fic
(

finAin(b) + fisAis(b)
)

+ fecAec(b)
)
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compartment. To investigate the complicated micro-structural model (5), some assump-

tions are applied to each parameter. �e diffusion of water molecules associated with the 

extracellular compartment is modeled as isotropic Gaussian diffusion:

�e diffusion signals Ain from neurites are assumed as a collection of sticks (long thin 

cylinders). �e direction-averaged DWI signal Ain is computed as [11]

where erf is the error function. �e signal contribution, Ais , for the inra-soma compart-

ment is computed from the Gaussian phase distribution (GPD) approximation of the 

tail:

where

Dis is the bulk diffusivity of water in soma, αm is the m-th root of the Bessel equation 

(αrs)
−1J 3

2

(αrs) = J 5
2

(αrs).

�e total unknown parameters to be determined are fin, fec,Din,Dis,Dec, and rs . To 

avoid the ill-posedness to determine the six unknowns from the smoothly decayed expo-

nential curves, typically the parameter of Dis is fixed as 2 ×10
−3 mm

2/sec [9].

Model-parameter estimation using random forest regression

Random forest is a popular machine learning algorithm using the bootstrap aggregating 

(bagging) with a tree model as the base model. Random forest regression is an ensemble 

supervised learning method that combines bagging decision trees with random subset 

sampling of the predictors for constructing each node split [22]. To perform the ran-

dom forest regression, each individual decision tree produces a prediction individually 

and then predictions of all decision trees are combined to generate a prediction of the 

ensemble. �e number of trees can be adapted to find the desired trade-off between 

accuracy and computational efficiency of the detection process.

�e five parameters fin, fec,Din,Dec, and rs in (5) are estimated by random forest regres-

sion using the scikit-learn python toolkit [48] as in [9]. We generated 135 synthetic signals 

using the model (5) with 135 combinations of the five parameters chosen uniformly dis-

tributed within the intervals: fin, fec ∈ [0.01, 0.99] , Din, Dec ∈ [0.1, 3] × 10−3 mm
2/sec, 

and rs ∈ [3, 20] µ m. We added rician-distributed noise to the synthetic signals. We split 

the synthetic signals into random train and test subsets with test size of 20%. Hyperpa-

rameter selection in random forest regression was performed using a grid search for the 

number of decision trees (150, 180, 200, 230, 250, 280, 300 and 330 trees). �e remaining 

(6)Aec(b) = e
−bDec

(7)Ain(b) =

√

π

4bDin
erf

(

√

bDin

)

(8)Ais(b) = exp

{

−

2(γG)2
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(

∞
∑

m=1

α−4
m
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2
s − 2

)
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hyperparameters were left to default in scikit-learn toolkit. By comparing the mean squared 

errors obtained from the different number of trees, the final random forest regressor was 

built with 300 trees. One decision tree in the random forest regressor is displayed in Fig. 8. 

To produce an understandable image, the depth of the decision tree was limited to three.

High-frequency conductivity decomposition

�e recovered high-frequency conductivity σH at Larmor frequency, obtained by solving 

the equation (3), can be decomposed as the following compartment mode:

where σne and σso denote the conductivity in the intra-neurite and soma compartments, 

respectively, and σec is the conductivity in the extracellular compartment. At each com-

partment, the apparent conductivities σne , σso , and σec are expressed as the sum of prod-

ucts of concentration, charge carrier mobility, and the charger of carrier. For simplicity 

of notation, we write fne and fso instead of ficfin and ficfis , respectively:

(9)σH = (σne + σso) + σec

(10)
σne = fne

Nn
∑

j=1

z
j
nqc

n
j m

n
j = fne

Nn
∑

j=1

z
j
nqc

n
j

(

rwq

rjkBT

)

Din

= fne c̄inDin

(11)
σso = fso

Ns
∑

j=1

z
j
sqc

s
jm

s
j = fso

Ns
∑

j=1

z
j
sqc

s
j

(

rwq

rjkBT

)

Dis

= fsoc̄isDis

Fig. 8 Sample visualization for a small decision tree
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where c̄ec :=
∑Nec

j=1
z
j
eqc

e
j

(

rwq
rjkBT

)

 denote the apparent ion concentrations with respect to 

the water molecule diffusivity in the extracellular compartments. �e other symbols of 

the physical quantities are as follows: rw and rj are the Stoke’s radius of a water molecule 

and an ion, respectively, q = 1.6 × 10
−19 C is the electric charge carried by a single pro-

ton, kB is the Boltzmann constant, and T is the absolute temperature. cej  , m
e
j  z

j
eq , and Nec 

are concentration, the charge carrier mobility, the charge of carrier, and the number of 

electrical charges in the extracellular space, respectively.

By the same argument, σne = fne c̄inDin and σso = fsoc̄isDis , where c̄in and c̄is denote the 

apparent ion concentrations with respect to the water molecule diffusivity in the intra-

neurite, and soma compartments, respectively.

Extracellular di�usion tensor

Diffusion process is sensitive to intracellular, extracellular, and cell density. For a fixed b 

value, the measured non-singular diffusion tensor Db can be diagonalized as

where the column vectors of SD are the orthonormal eigenvectors of Db , the superscript 

T denotes the transpose and db
1

≥ d
b
2

≥ d
b
3
 are the corresponding eigenvalues.

We separate the apparent diffusion tensor Db into the extracellular and intracellular 

compartments:

where Dec and Dne denote the apparent diffusion tensors in ECS and intra-neurite com-

partment, respectively, and Dso is the isotropic diffusion. By assuming that the diffusion 

tensors Dec , Dne , and Db share the eigenvectors, the intrinsic diffusion tensors Des and 

Dne can be expressed as

where D̃ec and D̃ne are the diagonal matrices consist of the eigenvalues of Dec and Dne , 

respectively. To translate the estimated intrinsic diffusivities Dec and Din to apparent dif-

fusion tensors in each compartment, we define scale parameters as

where tr(Db) = d
b
1

+ d
b
2

+ d
b
3
 denotes the trace of Db . Under the hypothesis that the 

extracellular diffusion tensor Dec , the diffusion tensor Dne , and the diffusion tensor Db 

share the eigenvectors, we can determine the decomposed diffusion tensors:

(12)
σec = fec
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Dec
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(13)Db = SDD̃bS
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(14)Db = Dec + Dne + Dso

(15)Dec = SDD̃ecS
T
D and Dne = SDD̃neS

T
D

(16)ηec = fec
3Dec

tr(Db)
, and ηne = fne

3Din

tr(Db)
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From the relation (17), the conductivity tensors in ECS and the neurite compartment 

can be expressed as the following

and

Data processing

�e motion, eddy current distortion, and EPI distortion of DWI images were corrected 

using the DIFFPREP tool of TORTOISE [49, 50]. To reduce the noise artifacts, we used 

odd echoes of six measured complex MREPT signals to avoid the background phase 

signal due to the consecutive 180◦ RF pulses. Since the accumulated noise artifacts in 

the phase signal is inversely proportional to MR magnitude intensity, S̃k , k = 1, 3, 5 , the 

measured phase signal was optimized as a weighted averaging using the weight of [51]

�e procedure of combining the high frequency conductivity and diffusion parameter 

(e.g. extracellular volume fraction and extracellular diffusivity) requires an accurate reg-

istration. Using the co-registration tool of Statistical Parametric Mapping (SPM 12), the 

diffusion images and the diffusion parameter maps were transformed to the first echo 

magnitude of MREPT image.
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