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ABSTRACT: Let F' be a homogeneous polynomial of degree d in m + 1 variables
defined over an algebraically closed field of characteristic zero and suppose that

F belongs to the s-th secant varieties of the standard Veronese variety X, 4 C
m+d
(")t but that its minimal decomposition as a sum of d-th powers of linear

forms My,..., M, is F = M{ + .-+ M2 with r > s. We show that if s +r <
2d 4+ 1 then such a decomposition of F' can be split in two parts: one of them
is made by linear forms that can be written using only two variables, the other
part is uniquely determined once one has fized the first part. We also obtain a
uniqueness theorem for the minimal decomposition of F if the rank is at most d
and a mild condition is satisfied.

INTRODUCTION

The decomposition of a homogeneous polynomial that combines a minimum number of ad-
denda and that involves a minimum number of variables is a problem arising form classical
algebraic geometry (see e.g. [1], [14]), computational complexity (see e.g. [19]) and signal pro-
cessing (see e.g. [26]).

The so called Big Waring problem (coming from a question in number theory stated by E.

Waring in 1770) asked which is the minimum positive integer s such that the generic polynomial
of degree d in m + 1 variables can be written as a sum of s d-th powers of linear forms. That
problem was solved for polynomials over an algebraically closed field of characteristic zero by J.
Alexander and A. Hirschowitz in 1995 by computing the dimensions of all s-th secant varieties
to Veronese varieties (see [1] for the original proof and [4] for a recent proof).
In fact the Veronese variety X, ¢ C PV, N := (m;d) — 1, parameterizes those polynomials of
degree d in m + 1 variables that can be written as a d-th power of a linear form. The s-th
secant variety o4(X,q4) C PV of the Veronese variety Xm,d is the Zariski closure of the set that
parameterizes homogeneous polynomials of degree d in m + 1 variables that can be written as a
sum of at most s d-th powers of linear forms. The minimum s for which a point P € PV belongs
to 05(Xm,q) is often called the symmetric border rank of P and we write it sbr(P), while the
minimum integer r for which P € (Py,...,P,), with P1,..., P, distinct points of X,, 4, is called
the symmetric rank of P and we write it as sr(P).

If P € PV ~ P(K[zo,...,Tm]q) is the projective class of a homogeneous polynomial F' of
degree d in m+ 1 variables, the symmetric rank of F' is the minimum positive integer r such that
F' can be written as a sum of r d-th powers of linear forms. The following question is crucial
in many applications: “Which is the symmetric rank of a given homogeneous polynomial F'?”
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Applications are interested in the cases of polynomials defined both over an algebraically closed
field of characteristic zero and over the real numbers (see [23], [20], [13]). In this paper we will
restrict our attention to the cases of polynomials defined over an algebraically closed field K of
characteristic 0.

By the definition of secant varieties of Veronese varieties we see that, even if we were able
to compute their equations (it is not needless to underline here that the knowledge of such
equations is still an open problem, see [15], [6], [18]), in general they will not be sufficient in
order to compute the symmetric rank of a homogeneous polynomial, because the symmetric rank
of a homogeneous polynomial may be strictly bigger than its symmetric border rank.

If m = 1 there is the very well known Sylvester’s algorithm (due firstly to J. J. Sylvester himself
in 1886, then reformulated in 2001 by G. Comas and M. Seiguer, see [11], and more recently
different versions of the same appeared in [12], [3], [2]) that, given a homogeneous polynomial
of degree d in 2 variables, turns out its symmetric rank. If m > 2 the generalizations of the
Sylvester’s algorithm work effectively for small values of m and theoretically for all m’s (cfr.

(12], [3], [2]).
The notion of symmetric rank of a homogeneous polynomial is derived from the language
of tensors. In fact the vector space K[xzo,...,Zm]qs of homogeneous polynomials of degree d in

m + 1 variables over an algebraically closed field K of characteristic 0 is isomorphic to SV *
where V is an (m + 1)-dimensional vector space over K, and V* its dual space. Now S?V*
is the linear subset of symmetric tensors of V®%. Then there is a 1:1 correspondence between
homogeneous polynomials of degree d in m + 1 variables and S?V*. Therefore we can describe
the Veronese variety both as X,, 4 C P(K[xo,...,Zm]q¢) parameterizing the projective classes of
those polynomials that can be written as the d-th power of linear forms, and as X, 4 C P(S4V*)
that parameterizes the projective classes of the symmetric tensors of the type v®¢ € S4V* with
v € V*. Hence the symmetric rank for symmetric tensors is nothing else than the minimum
positive integer s such that a symmetric tensor 7' € S?V* can be written as T' = v?d o 0®d

Assume now that we are in one of the cases in which it is possible to compute the symmetric
rank either of a homogeneous polynomial or of a symmetric tensor. Suppose therefore to be able
to find My,..., M, € K[zg,...,Zm|1 such that a given F' € K[xo,...,Tm]qs can be written as
F=M{+-.-4+ M? (in the language of tensors: suppose to be able to find vq,...,v, € V* s.t.
T € S*V* can be written as T = v® + .- + v®%). Is that decomposition unique? If it is not
unique, is at least possible to write a canonical decomposition in such a way that some of the
addenda are unique?

Moreover, is it possible to find such a canonical decomposition of F' € K|z, ..., Zm]q in such
a way that the appearing addenda use the minimum number of variables as possible?

In this paper we prove the following result.

Theorem 1. Let P € PV and let sbr(P) be the symmetric border rank of P and st(P) its
symmetric rank. Suppose that:

sbr(P) < sr(P) and
sbr(P) + sr(P) < 2d + 1.

Let § C X,p,.q be a 0-dimensional reduced subscheme that realizes the symmetric rank of P, and
let Z C Xy g be a 0-dimensional non-reduced subscheme such that P € (Z), deg Z < sbr(P)
and P ¢ (Z') for any 0-dimensional non-reduced subscheme Z' C X,, 4 with deg(2’) < deg(Z).
Let also Cq C Xy,.q be the unique rational normal curve that intersects S U Z in degree at least
d+2.
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Then, for all points P € PN as above we have that:
(1) S =38 U8y,
(2) Z=2U8,,

where S =8NCy, 21 =ZNCy and S = (SN 2Z)\ ;.
Moreover the scheme Sy is unique.

For the existence of the scheme Z in the statement of Theorem 1, see Remark 1, which is just a
quotation either of [5], Lemma 2.1.5 or of [2], Proposition 1. The assumption “ sbr(P)+sr(P) <
2d 4+ 17 in Theorem 1 is sharp (see Example 1).

If we interpret the point P € PV of Theorem 1 as the projective class either of a symmetric
tensor T' € SV* or of a homogeneous polynomial F' € K|z, ..., T4, we understand that the
scheme S C X, 4 gives either the decomposition T' = vig) + -+ v2? or the decomposition
F =1L¢+-- + L% with r being the symmetric rank of P, v; € V* and L; € K[z, ..., 7|1 for
1=1,...,r, if s is the symmetric border rank of P and if s4+r < 2d+ 1 and r > s. Now, under
these conditions, the scheme S can be split in two parts as in (1) . The existence of the scheme
&1 shows that there is a choice of a 2-dimensional vector space W* C V* such that some of the
v;’s appearing in the decomposition of 7' € S?V* belong to W* (that is the same to say that

some of the L;’s appearing in the decomposition of F' € K|z, ..., Zm]q4 can be written using only
two variables). Moreover there is a unique way to choose such a W* if we require that P(1W*)
intersects {[v1],...,[v,]} U Z in degree at least d + 2, where Z C P(V*) is the 0-dimensional

sub-scheme whose image via the Veronese map v, spans a P® that contains [7']. With this unique
choice of W* the other part of the decomposition of T (of F respectively) is uniquely determined.

Moreover in this paper we use Theorem 1 and a related lemma (see Lemma 3) to prove the
following uniqueness statement, which is the second major result of this paper.

Theorem 2. Assume d > 5. Fiz a finite set B C P™ such that p := §(B) < d and no subset of it
with cardinality | (d+1)/2] is collinear. Fiz P € (v4(B)) such that P ¢ (E) for any E G va(B).
Then sr(P) = sbr(P) = p and vq(B) is the only zero-dimensional scheme Z C X, 4 such that
deg(Z) < p and P € (Z).

The uniqueness or non-uniqueness statement for the decomposition is an important problem.
For non-symmetric tensors, see Kruskal’s works and their extensions and simplifications ([17],
[16], [25]). For symmetric tensors there is a uniqueness theorem for general points with prescribed
non-maximal border rank k using the notion of (k — 1)-weakly non-defectivity introduced by C.
Ciliberto and L. Chiantini ([7], [10], Proposition 1.5). For uniqueness and non-uniqueness results
when the border rank is maximal, see [24], [21], [22], [9]. Theorem 2 is an extension (with an
additional assumption) of [5], Theorem 1.2.6. Without some additional assumptions [5], Theorem
1.2.6, cannot be extended (e.g. it is sharp when m = 1). We give an example showing that if
m = 2, then Theorem 2 is sharp (see Example 2), even taking S in linearly general position. We
do not know how to improve the upper bound in Theorem 2 in the case m > 2.

1. PRELIMINARIES AND LEMMAS

Fix integers m > 2 and d > 2. Let vy : P™ — PN, N := (mrzd) — 1, the order d Veronese
embedding of P™.

Definition 1. Let X C P™ be a projective variety. The s-th secant variety os(X) of X is defined
as follows:

oo(X):= |J (P,....Py).

Pi,..P,eX
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From now on we always take n := N and X := vy(P") = X, 4.

Definition 2. Fix any P € PY. The minimum integer s such that X € o4(X) \ 0s_1(X) is
called the symmetric border rank of P and we write sbr(P) =s .

Definition 3. Fix P € PY. The minimum integer r such that P € (Py,...,P,) for P;,..., P, €
Xm,q is called the symmetric rank of P and we write sr(P) = r.

Remark 1. Fix integers m > 1, d > 2 and P € PV such that sbr(P) < d + 1. By [5],
Lemma 2.1.5, or [2], Proposition 1, there is a zero-dimensional scheme E C X,, 4 such that
deg(E) < sbr(P) and P € (E). Moreover, sbr(P) is the minimal of the degrees of any such
scheme E. Thus if P € (E) and deg(E) < sbr(P), then deg(E) = sbr(P) and P ¢ (E') for any
E'CE.
=

Lemma 1. Fix any P € P" and two zero-dimensional subschemes A, B of P" such that A #
B, P c(A), Pc(B), P¢g (A) forany A" G A and P ¢ (B') for any B" G B. Then
hl(]Pm,IAuB(l)) > 0.

Proof. Since A and B are zero-dimensional, we have the inequality h!(P", Zaup(1)) >

max{h!(P", Z4(1)),h*(P",Z5(1))}. Thus we may assume h'(P" Z4(1)) = h'(P*, Zp(1)) = 0,
ie. dim((A)) = deg(A) — 1 and dim((B)) = deg(B) — 1. Set D := AN B (scheme-theoretic
intersection). Thus deg(A U B) = deg(A) + deg(B) — deg(D). Since D C A and A is linearly
independent, we have dim(({D)) = deg(D) — 1. Since h*(P",Za,5(1)) > 0 if and only if dim({AU
B)) < deg(AUB) —2, we get h'(P",Zaup(1)) > 0 if and only if (D) S (A) N(B). Since A # B,
then D G A. Hence P ¢ (D). Since P € (A) N (B), we are done. O

Lemma 2. Fiz an integer d > 1. Let W C P™ with m > 2, be a zero-dimensional scheme of
degree deg(W) < 2d + 1 and such that h* (P™, Iy (d)) > 0. Then there is a unique line L C P™
such that deg(LNW) >d+2 and

deg(WNL)=d+1+hr"(P™ Iy (d)).

Proof. For the existence of the line L C P see [2], Lemma 2.
Since deg(W) < 2d + 1 and since the scheme-theoretic intersection of two different lines has
length at most one and deg(W) < 2d + 2, there is no line R # L such that deg(RNW) > d + 2.
Thus L is unique.
We prove the formula deg(W N L) = d + 1 + h'(Zy (d)) by induction on m.

First assume m = 2. In this case L is a Cartier divisor of P™. Hence the residual scheme
Resp (W) of W with respect to L has degree deg(Resz(W)) = deg(W) — deg(W N L). Look at
the exact sequence that defines the residual scheme Resy (W):

(3) 0— IReSL(W) (d - ].) — Iw(d) — IWﬂL,L(d) — 0.

Since dim(Resr,(W)) < dim(W) < 0and d—1 > —2, we have h2(IP’m,IReSL(W)(d—1)) = 0. Since
deg(WNL) > d+1, we have h®(L, Tyy~(d)) = 0. Since deg(Resy,(W)) = deg(W)—deg(WNL) <
d, we have hl(vaIResL(W) (d —1)) = 0 (obvious and also a particular case of [2], Lemma 2).
Thus the cohomology exact sequence of (3) gives h!(P™,Zy (d)) = deg(W N L) — d — 1, proving
the lemma for m = 2.
Now assume m > 3 and that the result is true for P™~1,
Take a general hyperplane H C P containing L and set W’ := WNL. The inductive assumption
gives h'(H, Ty (d)) = deg(W’' N L) —d — 1. Since deg(Resy(W)) < d — 1, as above we get
hl(Pm,IReSH(W)(d —1)) = 0. Consider now the analogue exact sequence to (3) with H instead
of L:
0— IReSH(W)(d - 1) — Iw(d) — IWOH,H(d) — 0.
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Then, since W N L =W'N L, we get, as above, that h'(P™, Ty (d)) = degW NL) —d—1. O

2. THE PROOFS

In this section we prove Theorems 1 and Theorem 2.

Proof of Theorem 1. The existence of the scheme Z C X is assured by Remark 1. Let S
(resp. Z) be the only subset (resp. subscheme) of P such that & = v4(S) (resp. Z = v4(2)).
We have £(S) = sr(P) and deg(Z) = sbr(P). Set W := SUZ and W := vg(W). We have
deg(W) = sr(P)+sbr(P) < 2d+1. Lemma 1 gives h*(Zyy(1)) > 0. Thus dim((W)) < deg(W)—2.
Since deg(W) < deg(Z) + deg(S) = sbr(P) + sr(P) < 2d + 1, then, by Lemma 2 in [2], there
is a line L C P™ whose image Cy := v4(L) in X contains a subscheme of W with length at
least d + 2. Since Cyq = (Cy) N X (scheme-theoretic intersection), we have WNCy = vy(W N L),
ZNCy ZVd(ZﬂL) andSQCdZVd(SﬁL).

(a) Let S1,S2 C S be defined in the statement and set Sz := S\ (S1 USz). Let S35 C P™ be
the only subset such that Sz = v4(S3). Set W’ := W\ S3 and W' := vg(W’) = W\ Ss. Notice
that W’ is well-defined, because each point of S3 is a connected component of the scheme W.
In this step we prove Sz =0, i.e. S3 = 0.

Assume that this is not the case and that #(S3) > 0. Lemma 2 gives that h*(PY, Ty (1)) =
Rt (PN, Ty (1)) and that h°(Zw (1)) = h°(Zce,rw (1)) — deg(W) + deg(W N Cy). Hence we get

dim((W)) = dim((V')) + §(S).

Now, by definition, we have that SN W' = S; US;, W = W/ US3 and ZUS; USy = W'. Grass-
mann’s formula gives dim((W’) N (S)) = dim((W')) + dim((S)) — dim((W' U S)) = dim((S)) —
#(S3). Since Z C W', we have P € W) N (S) that has dimension dim(S) — #(S3) as just
proved. Since S is linearly independent, we have dim({(S; U S2)) = dim((S)) — #(S3). Hence
dim((S;US82)) = dim((W'YN(S)); since (S1US2) € W')N(S) we get that (S1USz) = W)N(S).
Since P € (Z) N (S) C (W'Y N(S) = (51 USa), we get that P € (S; USq). Since we supposed
that S C X is a set computing the symmetric rank of P, it is absurd that P belongs to the span
of a proper subset of S, then necessarily #(S3) = 0, that is equivalent to the fact that S3 = 0.
Thus in this step we proved § = &1 U Ss.

In steps (b), (c) and (d) we will prove Z = (ZNCy) US, in a very similar way (using Z instead
of S). In each of these steps we take a subscheme W5 C W such that S C Wy, WonNL =W NL
and Wy U Z = W. Then we play with Lemma 2. In steps (b) (resp. (c), resp. (d)) we call
Wy =W" (resp. Wo = Wq, resp. Wa = W1).

(b) Let Z4 be the union of the connected components of Z which does not intersect
L US;. Here we prove Zy = (. Set W” := W\ Z;. The scheme W" is well-defined, be-
cause Z4 is a union of some of the connected components of W. Lemma 2 give dim(vg(W))) =
dim(vg(W"))) 4+ deg(Z4). Since W = W U Z, Grassmann’s formula gives dim({vy(W" U Z))) =
dinn({a(W)))+dim((va(2))) — dim((va(W" )} (va( 2))). Thus dimn({va(Z)}) = dimn( (va(W" )
(va(2))) + deg(Z4). Since vg(Z) is linearly independent and Z = (Z N W") U Z, we get
dim((v4(2))) = dim({(va(Z N W"))) 4+ deg(Z4). Thus dim({vg(W")) N {(va(2))) = dim({v4(Z N
W), Since vg(W"NZ) C {va(W" ) Nvg(2)), deg({va(W"))N{ve(Z))) = dim({(vg(W"N2Z)))+1,
and vg(W") is linearly independent, then the linear space (vg(W")) N (v4(Z)) is spanned by
va(W" N Z). Since S C W and P € (vq4(Z)) N (vq(S)), we have P € (vg(W" N Z)). Since Z
computes the border rank of P, we get W' NZ = Z, ie. Zy =0.
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(c) Here we prove that each point of Sy is a connected component of Z. Fix Q € Sy and
call Zg the connected component of Z such that (Zg)req = {Q}. Set Z[Q] :== (Z\ Zg) U{Q}
and Wq := (W \ Zg) U{Q}. Since Zg is a connected component of W, the schemes Z[Q)] and
Wq are well-defined. Assume Zg # {Q}, i.e. W # W, ie. Z[Q] # Z. Since WoNL=WnNL,
Lemma 2 gives dim((vq(W))) — dim((v4(Wg))) = deg(Zg) — 1 > 0. Since v4(Z) is linearly
independent, we have dim((vq(Z))) = dim({(v4(Z[Q])) + deg(Zg) — 1. The Grassmann’s formula
gives dim((va(Z[Q]))) = dim((va(Wq)) N (va(2))). Since (va(Z[Q]) C (va(Wa)) N (wa(Z) and
Z[Q)] is linearly independent, we get (v4(Z[Q])) = (va(Wgq)) N (va(Z)). Since Q € S2 C S, we
have S C Wg. Thus P € (Wg). Thus P € (vq(Z)) N (va(Wo)) = (va(Z[Q))). Since Z computes
the border rank of P, Z[Q] C Z and P € (v4(Z[Q)])), we get Z[Q] = Z. Thus each point of Sy
is a connected component of Z.

(d) To conclude that Z = (ZNL)LSs it is sufficient to prove that every connected component

of Z whose support is a point of L is contained in L. Set 7 := deg(Z N L) and call p the sum of
the degrees of the connected components of Z whose support in contained in L.
Set Wy := (WNL)US,. Notice that deg(W;) = deg(W)+n—p. Lemma 2 gives dim({vg(W1))) =
dim({vg(W))) +n — p. Since W = Wy U Z, Grassmann’s formula gives dim({vg(W; U Z))) =
dim((vg(W1))) +dim({(vq(2))) — dim((va(W1)) N (v4(Z))). Thus dim((v4(Z2))) = dim({vg(W1))N
(va(2))) + p —n. Notice that Z N Wy = (ZNL)U Sy, ie. deg(Z N Wy) = deg(Z) —n+ p.
Since v4(Z) is linearly independent, we get dim({v4(Z))) = dim((v4(Z N W1))) + p — n. Thus
dimn((va(W1)) 0 (val 2))) = dim({va(Z AW2))), Le. (va(W2)) 1 (va(2)) is spanned by va(Wi (1Z).
Since S C Wy and P € (vq4(Z)) N {(vq(S)), we have P € (vy(W1 N Z)). Since Z computes the
symmetric border rank of P, we get W1 N Z = Z, i.e. n = p. Together with steps (b) and (c)
we get Z = (Z N L)USy. Thus from steps (b), (¢) and (d) we get Z = (ZNCy) USs.

(e) Here we prove that there exists an unique rational normal curve Cy that intersects SUZ
in degree at least d + 2. Notice that L and Cy = v4(L) are uniquely determined by the choice of
a pair (Z, S) with v4(Z) computing sbr(P) and v4(S) computing sr(P). Fix another pair (Z', S")
with v4(Z) computing sbr(P) and v4(S) computing sr(P). Let L' be the line associated to Z'US".
Assume L' # L. First assume S’ = S. The part of Theorem 1 proved before gives Z = Z; LU So,
Z'=ZiUShand S=S1US, with Z1 =ZNL, Zi =Z'NnL',S=SNLand S =S NL.
Now sbr(P) = deg(Z1) + #(S2) = deg(Z]) + £(S5), sr(P) = deg(S1) + £(S2) = deg(S7) + 4(55),
deg(S1) > deg(Zy), deg(S1) + deg(Z1) > d + 2 and deg(S}) + deg(Z}) > d + 2. Since L' # L,
at most one of the points of S; may be contained in L’ and at most one of the points of
S7 may be contained in L. Thus deg(S]) — 1 < #(S2) and deg(S1) — 1 < #(S%). Since
deg (1) +deg(Z1) +2(4(S)) = deg(S}) + deg(Z]) + 2(4(S4)) < 2d+1, deg(S1) +deg(Z1) > d+2
and deg(S]) + deg(Z]) > d + 2, we get 2(8(S2)) < d — 1 and 2(#(S5)) < d — 1. Since
deg(Sy) + deg(Z1) > d + 2 and deg(Sy) > deg(Zy), we have deg(S1) > (d + 3)/2. Hence
deg(S1)—1>(d+1)/2> (d—1)/2 > #(S5), contradiction. Thus all pairs (Z’,.5) give the same
line L. Now assume S’ # S. Call L” the line associated to the pair (Z,S”). The part of Theorem
1 proved in the previous steps gives that L is the only line containing an unreduced connected
component of Z. Thus L” = L. Since we proved that the lines associated to (Z’,5") and (Z, 5")
are the same, we are done.

(f) Here we prove the uniqueness of Sy. Take any pair (Z', S") with v4(Z) computing sbr(P)
and vg(S) computing sr(P). By step (e) the same line L is associated to any pair (Z”,5"”) as
above. Hence the set S§ := S\ (S” N L) associated to the pair (Z,S5’) is the union of the
connected components of Z not contained in L. Thus S5 = S\ SNL = Sy. We apply the part of
Theorem 1 proved in steps (a), (b), (¢) and (d) to the pair (Z’,S). We get that S\ SN L is the
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union of the connected components of Z’ not contained in L. Applying the same part of Theorem
1 to the pair (Z’, 5") we get S'\S’'NL = S\SNL, concluding the proof of the uniqueness of So. [

The following example shows that the assumption ¢ sbr(P) + sr(P) < 2d+ 1 ” in Theorem
1 is sharp.

Example 1. Fix integers m > 2 and d > 4. Let C C P™ be a smooth conic. Let Z C C be any
unreduced degree 3 subscheme. Set Z := v4(Z). Since d > 2, Z is linearly independent. Since Z
is curvilinear, it has only finitely many degree 2 subschemes. Thus the plane (Z) contains only
finitely many lines spanned by a degree 2 subscheme of Z. Fix any P € (Z) not contained in
one of these lines. Remark 1 gives sbr(P) = 3. The proof of [2], Theorem 4, gives sr(P) = 2d —1
and the existence of a set S C C such that §(S) =2d—1, SNZ = 0 and v4(S) computes sr(P).
We have sbr(P) + sr(P) = 2d + 2.

Lemma 3. Fiz P € PV such that p := sbr(P) = sr(P) < d. Let U be the set of all zero-
dimensional schemes A C X such that deg(A) = p and P € (v4(A)). Assume §(¥) > 2. Fiz any
A € V. Then there is a line L C P™ such that deg(L N A) > (d +2)/2.

Proof. Since sr(P) = p and §(¥) > 2, there is B € ¥ such that B # A and at least one among
the schemes A and B is reduced. Since deg(A U B) < 2d + 1 and h'(Zaup(1)) > 0 there is
a line L C P™ such that deg((AU B)N L) > d + 2. We may repeat verbatim the proof of
Theorem 1, because it does not use the inequality deg(A) < deg(B) We get A = A; U Ay and
B = By U A with As reduced, A,NL =0 and A; U By C L. Since deg(A) = deg(B), we have
deg(A1) = deg(By). Thus deg(A41) > (d + 2)/2. O

Proof of Theorem 2. Since sbr(P) < p < d, the border rank is the minimal degree of
a zero-dimensional scheme W C X, 4 such that P € (W) (Remark 1). Thus it is sufficient to
prove the last assertion. Assume the existence of a zero-dimensional scheme Z C X, 4 such
that z :=deg(Z2) < p and P € (Z). If z = p we also assume Z # v4(B). Taking z minimal, we
may also assume z = sbr(P). Let Z C P™ be the only scheme such that v4(Z) = Z. If 2 < p we
apply a small part of the proof Theorem 1 to the pair (Z,v4(B)) (we just use or reprove that
deg((ZUB)NL) > d+ 2 and that deg(BNL) =deg(ZNL)+p—2z>deg(ZNL)). We get a
contradiction: indeed B N L must have degree > (d + 1)/2, contradiction. If z = p, then we use
Lemma 3. (I

Example 2. Assume m = 2 and d > 4. Let D C P2 be a smooth conic. Fix sets S, S’ C D such
that #(S) = #(S") = d+1 and SN.S" = ). Since no 3 points of D are collinear, the sets S, S" and
SUS’ are in linearly general position. Since h°(D,Op(d)) = 2d+1 and D is projectively normal,
we have h!(Zs(d)) = h'(Zs/(d)) = 0 and h'(Zsus/(d)) = 1. Thus v4(S) and v4(S’) are linearly
independent and (v4(S)) N (vqa(S’)) is a unique point. Call P this point. Obviously sr(P) < d+1.
To get the example claimed in the introduction after the statement of Theorem 2, it is sufficient
to prove that sbr(P) > d+ 1. Assume sbr(P) < d and take Z computing sbr(P). We may apply
a small part of the proof of Theorem 1 to P, S, Z (even if a priori S may not compute sr(P)). We
get the existence of a line L such that deg(ZNL) < $(SNL) and deg(ZNL)+4(SNL) > d+2.
Since d > 4, we get (S N L) > 3, contradiction.

We do not have experimental evidence to raise the following question (see [2] for the cases
with sbr(P) < 3).

Question 1. Is it true that sr(P) < d(sbr(P) — 1) for all P € PV and that equality holds if and
only if P € TX,,.q \ Xin,q where TX,, g C PY is the tangential variety of the Veronese variety
Xona?
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