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DECOMPOSITION OF PLANE CONVEX SETS,
PART 1I:
SETS ASSOCIATED WITH A WIDTH FUNCTION

RUTH SILVERMAN

This paper treats several classes K of plane convex bodies
such that the sum of any two members of the class is again
a member of the class. In each case K is a class of bodies
associated with a certain width function. An explicit charac-
terization is provided for the corresponding subclass I(K)
consisting of all indecomposable members of K.

This result was proved by the author [4].

The results and methods of that paper are used to characterize
I(K) when K consists of all plane convex bodies of constant width,
also when K consists of all plane convex bodies whose associated
width functions are a multiple of a given width function, known as
bodies of constant relative width. It is supposed without further
mention that all members of K have piecewise continuously second
differentiable support functions.

The class K of all plane convex bodies has the property that the
sum of any two members of the class is again a member of the class.
The indecomposable subclass I(K) is the class of all triangles and
line segments.

The reader is referred to [4] for the definitions used in this
paper, which are not repeated, for the sake of brevity. For clarity
it is, however, pointed out that as in [4], a body is a compact set.

This paper shows that, relative to the class K of all plane convex
bodies of constant width, the K-indecomposable bodies are those whose
boundaries are composed solely of circular arcs and have a corner
point opposite every arc, or equivalently, are composed solely of eir-
cular arcs with radius equal to the width of the body. A more
general problem is also considered; what are the K-indecomposable
members of the family K of sets with width function a multiple of
a given continuously second differentiable width function? The K-
indecomposable members of K are these bodies which have a corner
point in every direction, that is, at least one of the two support
lines in every direction goes through a corner point.

Let K be a convex body; by the width of K in the direction 4,
denoted w(f), we mean the distance between the two parallel support-
ing lines of K in the direction perpendicular to 4.

Let w be a positive function, and K(w) be the associated family
of sets whose width functions are a multiple of w. The machinery
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we will set up requires that the sets to be decomposed, or proved
indecomposable, have the origin in their interior.

The following remark is elementary but useful. Its proof is left
to the reader.

LEMMA 1. Let w be a positive function, and define the family of
sets K(w) as above. A set B in K(w) is K-decomposable if and only
if it has a K-decomposable translate whose interior contains the origin.

Let w(6) be a width function with continuous second derivative,
and K(w) the associated family of sets whose width functions are a
multiple of w(d). We will determine the K-indecomposable members
of K(w).

LEMMA 2. An admissible pair {P,, P.} is the restriction of the
support function of a set with width function w(f), if

P(—t) + @y(t) = VI + € w(arc cot t) ,
Sor all real t.

Proof. Let K be a convex body in R? whose interior contains
the origin, with width function w(f). Then

P,(t) = max (tx + ¥),
(z,y)e K

and
?.(t) = max (tx — y),
(z,9)e K

S0
@ (—t) = max (—tx — y) = —min (tx + ) .
(z,9) e K (z,y)e K

Clearly the extrema of (tx + y) will occur on the boundary of K.
For a specified value of ¢, the extrema will occur when (dy/dx) = —t,
or where the one sided derivatives have the property

(@) <= (%),

When we require that (dy/dz) = —t, we are actually looking for
support lines for K in the direction 6 such that cot § = —(dy/dx) = ¢.
There exist exactly two points on K with support lines in this direc-
tion. Let us denote by P, = (%,, ¥, the one minimizing (tx 4 y), and
by P, = (x, y,) the one maximizing (tx + y). Then

@2(@ = 5t + Y, ¢1('—t) = —%t — Y,
where
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t = cot 4, cotp = "0

Yo — Y
and

w(@) = V(@ — %) + (¥, — ¥)?cos (0 — P) .
Substituting all the above, adding, and simplifying,
Py(t) + P (—1t) = w(arccot t)- 1T + & .
On the other hand, if {®,, ®,} is an admissible pair satisfying
Po(t) + Pu(—1) = h(?)

for all real ¢, let K be a set containing the origin in its interior,
whose support function corresponds to {®,, ,}.

For a fixed direction 6, suppose P, = (z, %) and P, = (2, ¥.) are
the points where the parallel support lines in direction perpendicular
to 8 intersect K. Then

w(f) = V'(x, — 2,)* + (4, — ¥.)* cos (8 — @), where cot @ = o Rl

Y. — Y

But P, and P, are extrema for ({z + ¥) on the set K, when ¢t = cot 6;
suppose the maximum occurs at P, and the minimum at P,. Then
Py(t) =zt + ¥, and @(—1) = —x,t — ¥, Then

h(cot 0 = )L w()
|sind|’
Therefore,

w(0) = h(cot 0)+|sind| .

LEMMA 3. An admissible pair {p,, @,} satisfying @,(—1t) + @,(t) =
R(t) = V1 + & w(arecot t), for all real t, where w(6) has continuous
second derivative, can be nontrivially decomposed into the sum of two
admzissible pairs {0, 0,}, {v, ¥}, satisfying o.(—1%) + 6.(6) = 1/2 h(?),
r(—1t) + n(t) = 1/2 h(¥), if there is an interval I = (a, b] on the real
line such that neither ®,(t) nor ®.(—t) is linear on I, or om any
proper subitnterval of I.

Proof. Defining 0:(t) = 1/2[9,(?) + v:(D)], and +:(¢) = 1/2[9:(t) —
¥:(H)], as in Theorem 2, [4], we must have y,(—%) + ¥(¢) = 0 for all
real t.

Let h(t) = V1 + £ w(arccott). Then

R(t) = w(are cot t) + w'’(arc cot t)
(1 + 332

where w'(arc cot t) denotes
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d*w

d02 f=arccott *

w and w" are both defined on [0, 7] and continuous, so are
bounded on [0, #z]. Therefore, A”(t) is bounded by some number M,
for all real ¢. Note that A”(f) is also continuous.

Let fi(t) = #i(—1), fo(t) = Py, and let p,(1) = P (—1), p(t) = Pr(t).
Consider a closed subinterval I, = [a, b] of I on which p; is con-
tinuous for 7 =1,2. Let T, ={xel |pt) =0}, T; is compact for
©=1,2 and T; ++ I, as @, is not linear on I,. If I, = T, U T,, the con-
nectedness of I, implies that T, N T, ¢. But this is impossible, since
2.(t) + p,(t) = B"'(t) # 0. Therefore there exists a point ¢,€ I, such
that p;(t,) = 0 for ¢ =1,2. Let »(¢) = min,_,, p;(t). Then p(t,) >0,
and by piecewise continuity of p;, there is an interval I, such that
t,el,cI and tel,= p@) > 0. Therefore, p = min,_,,p; > 0 almost

everywhere. Therefore, Sx p(t)dt is a strictly increasing function of

xz, on I,, As in the theorem cited above, select z,, -+-, x, so that
f, assumes four different positive values, and define yi(x) from f(x)
rather than @)(x), as in that theorem. Letting v, (—t) = —¥i(t), we
then define {0}, 0.} and {y, v}. It is clear that f,(t) =< fi(¥), i =1, 2,
and

0 < fi(t) — ful®) = fult) — f:(®)
for t < t', so y certainly satisfies the necessary conditions for admis-

sibility. Thus, the nontrivial decomposition has been accomplished.

LEMMA 4. If an admissible pair {p,, P.} satisfying o.(—1t) + P(t)
= W(t), for all real t, where h(t) = V1 + £ w(arccott), and w(6) has
continuous second derivative is decomposable, there is an interval on
which both @,(—1t) and Py(t) are nonlinear.

Proof. If () is a function such that o,(t) = @,(¢) + y:(t) and
Jri(t) = @:(t) — y:(t) are convex and satisfy
oy(t) + o,(—1t) = (D),
and
Ve(t) + u(—1) = 1(t) ,

then y,(t) + ¥,(—t) = 0. This implies that, if on an interval I, say
@,(t) is linear, then for every z, ' ¢ I with 2’ > z,

lyi@') — yi(x) | = Pi(@') — @i(x) =0,
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and also |yy(—2') — ys(—=)| = 0. Therefore, ¥, is constant on I, and
y, is constant on —I. Suppose on every interval @,(—t) or P,(f) is
linear. Then ¥, is constant on every interval, and continuous on the
line, so it is identically a constant. Therefore, o,(f) and +(f) differ
from a multiple of @,(¢) at most by a linear function, and are therefore
translates of multiples of ®,(f). Therefore, {®,, ®,} is indecomposable.

The following theorem is therefore immediate.

THEOREM 1. An admisstble pair {®,, ®.} satisfying @,(—1t) +
P,(t) = h(t), for all real t, where h(t) = V1 + £ w(arccott), w(d)
having continuous second derivative, is indecomposable if and only if
there is a family {I,} of disjoint intervals, such that U. I. = R' and on
every I, exactly one of ®,(t), P.(—1t) is linear.

We can now characterize the indecomposable sets with a given
width function.

THEOREM 2. Let K(w) be the family of plane convex bodies with
width function a multiple of w(6), where w(6) has a continuous second
derivative. The K-indecomposable members of K are those sets with
the property that at least ome of the support lines of the set in every
direction goes through a corner point.

Proof. Let K be a body with width function w(f), and with
corresponding supporting admissible pair {p,, ®,}. Let y = f(x) be
the function satisfied by the boundary of K in a neighborhood of a
corner point (w,, ¥,) of K. Then the one-sided tangents, or extreme
rays of the bundle of support lines, will have slopes f”(x,), f'(,).
The support function @,(f) = max,,, .x [t + y] is linear on [¢, t,] if
and only if for every tel[t, t,] there is a point (x, %) such that
fi@) + t <0< fl(wy) + & or fl(x) = b, and fi(x) = —t. The value
of the function ®,(¢) on [t, t,] is then @,(t) = a;t + y,. The function
®,(t) = max,,,.x [t — y] is, correspondingly, linear on a line segment
[t, t.] when there is a point (2, ¥,) € K such that f’(x) = t,, fi(x,) = t,.
Therefore by Theorem 1, K is K-indecomposable if and only if at least
one of the two support lines in every direction goes through a corner
point.

Of special interest is the case where w(f) is independent of the
direction, i.e., K(w) is the family of bodies of comstant width.

Applying the results of the preceding discussion we note that
the admissible pair {®,, ®,} of support functions corresponding to a
body of constant width » with origin in its interior satisfies @,(—t) +
@,(t) = rV'1 + %, for all real t.
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Applying the results of Theorem 1 a body of constant width is
K-indecomposable if and only if at least one of the two support lines
in every direction goes through a corner point.

We note that if K, a body of constant width », has a corner
point @, where the bundle of supporting lines occupies an angle equal

tor — @6, then opposite @ is an arc pp with the property that every

point on pp is at distance » from @, i.e., pp is a circular arc of
radius » and angle 6. Therefore, the boundary of K is entirely com-
posed of circular arcs of radius equal to the width.

THEOREM 3. Let K be the family of bodies of comstant width.
The K-indecomposable sets are precisely those whose boundary is en-
tirely composed of circular arcs whose radius is equal to the width.

Since a plane convex body of constant width 7, whose boundary
is composed entirely of ares of radius 7, must have a corner point
opposite every arc, this result is immediate.

The author wishes to express her appreciation to her thesis
advisor, V. Klee, to M. Kallay, and to others too numerous to mention,
for their helpful suggestions and criticisms.
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