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DECOMPOSITION OF RESIDUE CURRENTS

MATS ANDERSSON & ELIZABETH WULCAN

Abstract. Given a submodule J ⊂ O⊕r
0 and a free resolution

of J one can de�ne a certain vector valued residue current whose
annihilator is J . We make a decomposition of the current with
respect to Ass(J) that correspond to a primary decomposition of
J . As a tool we introduce a class of currents that includes usual
residue and principal value currents; in particular these currents
admit a certain type of restriction to analytic varieties and more
generally to constructible sets.

1. Introduction

Let (f1, . . . , fq) be a holomorphic mapping at 0 ∈ Cn that forms a
complete intersection, that is, the codimension of the common zero set
V f = {f1 = · · · = fq = 0} is equal to q. The Cole�-Herrera product

(1.1) µf = ∂̄
1

f1

∧ . . . ∧ ∂̄ 1

fq

,

introduced in [10], is a ∂̄-closed (0, q)-current with support on V f , such
that ĪV fµf = 0, that is, ϕ̄µf = 0 for all holomorphic ϕ that vanish on
V f . It has turned out to be a good notion of a multivariate residue
of f . The duality theorem, [12] and [16], asserts that a holomorphic
function ϕ belongs to the ideal J = (f1, . . . , fq) in O0 if and only if
the current ϕµf vanishes, in other words the annihilator ideal annµf

equals J . The condition ϕµf = 0 is an intrinsic way of expressing that
a certain family of di�erential operators applied to ϕ vanishes on V f .
Such a family is referred to as Noetherian operators for J . The fact
that ĪV fµf = 0 means that only holomorphic derivatives are involved.
Furthermore µf has the so called standard extension property, SEP,

which basically means that µf has no �mass� concentrated on subva-
rieties of V f of codimension > q, or equivalently its restriction, in a
sense that will be de�ned below, to each subvariety vanishes. Due to
the SEP µf can be decomposed in a natural way with respect to the
irreducible components Vj of V f : µf =

∑
j µj, where µj is a current

that has the SEP and whose support is contained in Vj; µj should be
thought of as the restriction of µf to Vj. Moreover

(1.2) J = annµf = ∩jannµj.
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From Proposition 4.1 it follows that annµj is an IVj
-primary ideal,

where IVj
denotes the ideal associated with Vj, and hence (1.2) gives

a minimal primary decomposition of J . For a reference on primary
decomposition we refer to [5]. In general, however, µj is not ∂̄-closed.
It is natural to consider the current µf as a geometric object and then
µf =

∑
j µj is a geometric decomposition of µf that corresponds to

a decomposition of the Noetherian operators leading to the algebraic
decomposition (1.2) of J .

In [4] we introduced, given a general ideal J ⊂ O0 a vector-valued
residue current R such that annR = J . The construction of R is based
on a free resolution of J and it also involves a choice of Hermitian met-
rics on associated vector bundles (see Section 5). In case J is de�ned
by a complete intersection f , then R is just the Cole�-Herrera product
µf . By means of the currents R we were able to extend several results
previously known for complete intersections. Combined with the frame-
work of integral formulas developed in [2] we obtained explicit division
formulas realizing the ideal membership, which were used to give for
example a residue version of the Ehrenpreis-Palamodov fundamental
principle, [13] and [15], generalizing [8].

In this paper we prove that the current R can be decomposed as
R =

∑
pR

p, where p runs over all associated prime ideals of J , so that
Rp has support on V (p) and has the SEP. It is easy to see that this
decomposition must be unique. Moreover it turns out that annRp is
p-primary and

J =
⋂
p

annRp

provides a minimal primary decomposition of J ; our main result is
Theorem 5.1, which in fact holds also for submodules J ⊂ O⊕r

0 .
As long as J has no embedded primes the current Rp is just R re-

stricted to V (p) as for a complete intersection above, whereas the de�ni-
tion of Rp in general gets more involved. As a basic tool we introduce a
class of currents that admit restrictions to varieties and more generally
constructible sets. This class of currents, which we call hypermero-
morphic, includes all residue currents in this paper and the de�nition
is modeled on the currents that appear in various works as [1], [4]
and [17]; the typical example being the Cole�-Herrera product. The
class has many desirable properties; it is closed under ∂̄ and multiplica-
tion with smooth forms. If T is hypermeromorphic and has support on
the variety V , then T is annihilated by ĪV and ∂̄ĪV . In particular, (a
version of) the SEP follows: if T is of bidegree (p, q) and q < codimV
then T vanishes.

In Section 2 we de�ne hypermeromorphic currents, whereas restric-
tions to constructible sets are discussed in Section 3. Section 4 deals
with annihilators of hypermeromorphic currents. Our main result, the
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decomposition of R is presented in Section 5 and a corresponding result
in the algebraic case is given in Section 6. As an application we get a
decomposition of the representation in our version of the fundamental
principle.

2. Hypermeromorphic currents

Let X be an n-dimensional complex manifold. Recall that the prin-
cipal value current [1/σa] is well-de�ned in Cσ, and that ∂̄ [1/σa] is
annihilated by σ̄ and dσ̄. In Cn

σ, therefore, the current

(2.1) τ = ∂̄

[
1

σ
ai1
i1

]
∧ . . . ∧ ∂̄

[
1

σ
aiq

iq

]
∧

[
1

σ
aiq+1

iq+1

]
· · ·

[
1

σ
aiν
iν

]
∧ α,

where {i1, . . . , iν} ⊂ {1, . . . , n}, ak > 0, and α is a smooth form, is
well-de�ned. If τ is a current on X, and there exists a local chart Uσ

such that τ is of the form (2.1) and α has compact support in Uσ we
say that τ is elementary. Note in particular that this de�nition, with
q equal to 0, includes principal value currents as well as smooth forms.
A current T on X is said to be hypermeromorphic if it can be written

as a locally �nite sum

(2.2) T =
∑

Π∗τ`,

where each τ` is a an elementary current on some manifold X̃r and
Π = Π1 ◦ · · · ◦ Πr is a corresponding composition of resolutions of
singularities Π1 : X̃1 → X1 ⊂ X, . . . ,Πr : X̃r → Xr ⊂ X̃r−1. We
denote the class of hypermeromorphic currents on X by HM(X) and
we write HMp,q(X) to denote the elements that have bidegree (p, q).
The Cole�-Herrera-Passare products are typical examples of hyper-

meromorphic currents. From the proof of Theorem 1.1 in [17] and
Theorem 1.1 in [1] it follows that the residue currents of Bochner-
Martinelli type are hypermeromorphic, and the arguments in Section 2
in [4] shows that the residue currents introduced there are hypermero-
morphic.
Note that if τ is an elementary current, then ∂̄τ is a sum of ele-

mentary currents and since ∂̄ commutes with pushforwards it follows
that HM(X) is closed under ∂̄. In the same way HM(X) is closed
under ∂. Moreover if T is given by (2.2) and β is a smooth form, then
β ∧ T =

∑
Π∗(Π

∗β ∧ τ`) and thus HM(X) is closed under multiplica-
tion with smooth forms. Furthermore HM(X) admits a multiplication
from the left with meromorphic currents:

Proposition 2.1. Let T ∈ HM(X) and let g be a holomorphic func-
tion. Then the analytic continuations[

1

g

]
T :=

|g|2λ

g
T

∣∣∣∣
λ=0

and ∂̄

[
1

g

]
∧ T :=

∂̄|g|2λ

g
∧ T

∣∣∣∣
λ=0
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exist and are hypermeromorphic currents. The support of the second
one is contained in {g = 0} ∩ suppT . Moreover the products satisfy
Leibniz' rule:
(2.3)

∂̄

([
1

g

]
T

)
= ∂̄

[
1

g

]
∧ T +

[
1

g

]
∂̄T, ∂̄

(
∂̄

[
1

g

]
∧ T

)
= −∂̄

[
1

g

]
∧ ∂̄T.

By the �rst statement in the proposition we mean that the currents
(|g|2λ/g)T and (∂̄|g|2λ/g) ∧ T , which are clearly well de�ned if Reλ is
large enough, have analytic continuations to Reλ > −ε for some ε > 0,
and (|g|2λ/g)T |λ=0 and (∂̄|g|2λ/g) ∧ Tλ=0 denote the values at λ = 0.

Example 1. In C the analytic continuations of (|σa|2λ/σa)
[
1/σb

]
,

(|σa|2λ/σa)∂̄
[
1/σb

]
and ∂̄(|σa|2λ/σa)

[
1/σb

]
to Reλ > −ε exist, which

for instance can be seen by integration by parts, and we have[
1

σa

] [
1

σb

]
= |σa|2λ 1

σa

[
1

σb

] ∣∣∣∣
λ=0

=

[
1

σa+b

]
[

1

σa

]
∂̄

[
1

σb

]
= |σa|2λ 1

σa
∂̄

[
1

σb

] ∣∣∣∣
λ=0

= 0

∂̄

[
1

σa

] [
1

σb

]
= ∂̄|σa|2λ 1

σa

[
1

σb

] ∣∣∣∣
λ=0

= ∂̄

[
1

σa+b

]
.

In particular it follows that the products with meromorphic currents
in general are not (anti-)commutative. �

Proof. Note that if T is an elementary current and g is a monomial,
then, in light of Example 1, the analytic continuations exist and the
values at λ = 0 are elementary.
For the general case, assume that T is of the form (2.2). Locally,

due to Hironaka's theorem on resolution of singularities, see [7], for

each `, in X̃r we can �nd a resolution Πr+1 : X̃r+1 → Xr+1 ⊂ X̃ such
that for each k, (Πr+1)∗σk is a monomial times a non-vanishing factor
and moreover (Πr+1)∗(Πr)∗ · · · (Π1)∗g is a monomial. Thus we may
assume that Π∗g is a monomial for each `. Now, since (|g|/2λ/g)T =∑

Π∗((|Π∗g|2λ/Π∗g)τ`), the analytic continuation to Reλ > −ε exists
and the value at λ = 0 is in HM(X).
The existence of the analytic continuation of ∂̄(|g|2λ/g) ∧ T follows

analogously. If g 6= 0 the value at λ = 0 is clearly zero and hence the
support of ∂̄[1/g] ∧ T is contained in {g = 0} ∩ suppT .
The last statement (2.3) follows directly from the de�nition and the

uniqueness of analytic continuation. �

If T ∈ HM(X) and V ⊂ X is an analytic variety, we shall now
see that the restriction of T to the Zariski-open set U = V C has a
natural (standard) extension to X, which we denote T |U . The current
T − T |U , which has support on V , is a kind of residue that we will call
the restriction of T to V and denote by T |V .
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Proposition 2.2. Let T ∈ HM(X), let U ⊂ X be a Zariski-open
set, and let h a tuple of holomorphic functions such that {h = 0} =
UC. Then the analytic continuation T |U := |h|2λT |λ=0 exists and is
independent of the particular choice of h.

The de�nition immediately extends to any Zariski-open set on any
manifold.

Proof. If T is an elementary current (2.1) and h is a monomial the
analytic continuation exists, compare to the proof of Proposition 2.1,
and it is easy to see that the value at λ = 0 is T if none of σi1 , . . . , σiq

divide h and zero otherwise.
Assume that T is of the form (2.2). Then, for each ` we can �nd

resolutions of singularities Πr+1 : X̃r+1 → Xr+1 ⊂ X̃r and toric resolu-

tions Πr+2 : X̃r+2 → Xr+2 ⊂ X̃r+1 such that each (Πr+2)∗(Πr+1)∗σk is a
monomial times a non-vanishing factor and moreover
(Πr+2)∗(Πr+1)∗(Πr)∗ · · · (Π1)∗h is a monomial h0 times a nonvanishing
tuple h′, see for example [7]. Thus in (2.2) we may assume that each
Π∗h is a monomial times a nonvanishing tuple. Now, since |h|2λT =∑

Π∗(Π
∗|h|2λτ`), the analytic continuation to Reλ > −ε exists. More-

over,

|h|2λT |λ=0 =
∑

Π∗τ`′ ,

where the sum is taken over `′ such that none of the factors σi1 , . . . , σiq

in τ`′ divides Π∗h. In particular it follows that |h|2λT |λ=0 only depends
on U and not on the particular choice of h. Indeed, if g is another
tuple of functions such that UC = {g = 0}, we can �nd resolutions
such that both Π∗h and Π∗g are monomials times nonvanishing tuples.
Then clearly Π∗h and Π∗g must be divisible by the same coordinate
functions. �

Assume that T is a hypermeromorphic current with support on the
analytic variety V of (pure) codimension k. We say that T has the
standard extension property (SEP) with respect to V if T |W = 0 for all
analytic varieties W ⊂ V of codimension > k. Classically a current T
with support on V has the SEP if it is equal to its own standard exten-
sion in the sense of Barlet [6], which means that limε→0 χ(|h|/ε)T = T
if h is a holomorphic function that is generically nonvanishing on V ,
that is, V ∩{h = 0} has codimension > k, and χ is (a possibly smooth
approximand of) the characteristic function for the interval [1,∞). One
can show that limε→0 χ(|h|/ε)T is indeed equal to T |{h=0}C , see [3] (in
fact, this holds also for a tuple h of holomorphic functions). Moreover,
as we will see below, T |{h=0} = T |V ∩{h=0} if T has support on V . Thus
our de�nition of the SEP coincides with the classical one.

Proposition 2.3. Let T ∈ HM(X). Suppose that suppT is contained
in the variety Z and Ψ is a holomorphic form that vanishes on Z. Then
Ψ ∧ T = 0.
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Proof. Note that if T is an elementary current and Z is a union of co-
ordinate hyperplanes the result follows from the one-dimensional case.
Indeed, each term of Ψ then contains a factor σk or dσk for each σk

that vanishes on Z, and moreover σ̄ as well as dσ̄ annihilate ∂̄[1/σa].
For the general case assume that T is given by (2.2). Note that

T = T |Z since suppT ⊂ Z. The crucial point is now that according
to the proof of Proposition 2.2 we have T =

∑
Π∗τ`′ , where τ`′ is an

elementary current with support on (ΠL)−1(Z), and hence

Ψ ∧ T =
∑

Π∗
(
(Π)∗Ψ ∧ τ`′

)
.

Now, since Ψ vanishes on Z, the holomorphic form (Π)∗Ψ vanishes
on (Π)−1(Z), which however is a union of coordinate planes. Hence
(Π)∗Ψ ∧ τ`′ vanishes as noted above and we are done. �

In particular, Proposition 2.3 implies that dh ∧ T = 0 if h is holo-
morphic and vanishes on suppT . Arguing as in the proofs of Theorems
III.2.10-11 on normal currents in [11] yields the following.

Corollary 2.4. Let T ∈ HMp,k(X). If suppT is contained in the
analytic variety V of codimension > k, then T = 0.

In other words, the corollary says that if T ∈ HMp,k(X) has support
on V of codimension k, then T has the SEP. Also, Proposition 2.3
implies that T is annihilated by all anti-holomorphic functions that
vanish on V . Thus, if in addition ∂̄T = 0, then by de�nition T is a
Cole�-Herrera current, that is, T ∈ CHp,k

V (X), see [9].

Conversely, if T ∈ CHp,k
V (X), then locally T = γR, where R is a

residue current and γ is a holomorphic (0, p)-form, see for example [3],
and so T ∈ HM. Hence we conclude:

Proposition 2.5. Suppose that V ⊂ X is an analytic variety of pure
codimension k. Then CHp,k

V (X) is precisely the set of currents T ∈
HMp,k(X) with support on V that are ∂̄-closed.

Example 2. Let f = (f1, . . . , fq) be a holomorphic mapping at 0 ∈ Cn.
By iterated use of Proposition 2.1 one can build up a product like
(1.1). If f is a complete intersection the product is anti-commutative
with respect to the factors ∂̄[1/fi]. To see this, when q = 2, let T =
[1/f1]∂̄[1/f2]−∂̄[1/f2][1/f1]. Then T has support on {f = g = 0} which
has codimension 2, and so T = 0 by Corollary 2.4. Now (2.3) implies
that 0 = ∂̄T = ∂̄[1/f1] ∧ ∂̄[1/f2] − ∂̄[1/f2] ∧ ∂̄[1/f1]. The general case
follows analogously. It is now easy to see that in this case the product
indeed coincides with the Cole�-Herrera product, compare to [3]. �

3. Restrictions of hypermeromorphic currents

We will now show that one can give meaning to restrictions of hyper-
meromorphic currents to all constructible sets. Recall that the set of
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constructible sets in X, which we will denote by C(X), is the Boolean
algebra generated by the Zariski-open sets in X.

Theorem 3.1. There exists a unique, linear in HM(X) and degree-
preserving, mapping

HM(X)× C(X) → HM(X) : (T,W ) 7→ T |W
such that T |U coincides with the natural extension across UC of the
restriction of T to U if U ⊂ X is Zariski-open and moreover for all W
and W ′ in C(X),

(i) T |W C = T − T |W
(ii) T |W∩W ′ = T |W |W ′.

The uniqueness of the restriction mapping •|•, provided it exists,
follows from (i) and (ii), since any constructible set can be obtained
from a �nite number of Zariski-open sets by taking intersections and
complements.
Since restriction to Zariski-open sets U is local, that is, the value of

T |U in Ω ⊂ X only depends on the values of T in Ω, by (i) and (ii) this
holds for any W ∈ C(X). In particular suppT |W ⊂ suppT . Moreover

T |W |W C = 0 by (ii) and hence T |W = 0 in the Zariski-open set W
C
.

Thus

suppT |W ⊂ W ∩ suppT.

Furthermore, it follows from (i) and (ii) that

T |W∪W ′ = T |W + T |W ′ − T |W∩W ′ .

Theorem 3.1 also implies that

(3.1) (ξ ∧ T )|W = ξ ∧ T |W , ξ ∈ E(∗,∗)(X).

Indeed, (3.1) holds if W is open in light of Proposition 2.2 and by (i)
and (ii) it extends to all constructible sets.
As a basis for the proof of Theorem 3.1 we �rst consider a simple

situation where the restriction is de�ned in a more direct way.
Throughout this section we will use the notation B(W1, . . . ,Wr)

to denote the Boolean algebra generated by the constructible sets
W1, . . . ,Wr ⊂ X. It is clear that every constructible set lies in B(U1, . . . , Ur)
for some choice of Zariski open sets U1, . . . , Ur.

Example 3. Suppose that T is a sum of elementary currents in Cn
σ, that

is, T =
∑
τj, where each τj is of the form (2.1), and moreover that

W ∈ B(H1, . . . , Hn), where Hi is the coordinate hyperplane {σi = 0}.
The constructible sets in B(H1, . . . , Hn) can be seen to correspond

precisely to subsets of the power set P([n]) of [n] = {1, . . . , n}. First,
identify ω ∈ P([n]) with the constructible set

Wω = {σi = 0 if i ∈ ω, σi 6= 0 if i /∈ ω};
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then all Wω are disjoint and their union is Cn. Next, we claim that to
each W ∈ B(H1, . . . , Hn) there is a unique Ω = Ω(W ) ⊂ P([n]) such
that W =

⋃
ω∈ΩWω. To see this �rst note that if such a Ω exists it

is unique since the Wω are disjoint. Next, observe that Hi =
⋃

ω3iWω

and furthermore that if Ω(W ) and Ω(W ′) are well de�ned, then

(3.2) (Ω(W ))C = Ω(WC) and Ω(W ) ∩ Ω(W ′) = Ω(W ∩W ′)

and so Ω(WC) and Ω(W ∩W ′) are well de�ned. The claim now follows
by induction.
Let d be the mapping from the set of elementary currents on Cn

σ to
P([n]) that maps (2.1) to {i1, . . . , iq}, that is, d sends an elementary
current to the subset of [n] corresponding to its residue factors. Then
the mapping

(3.3) (T,W ) 7→ T |W =
∑

j:d(τj)∈Ω(W )

τj

satis�es the requirements in the theorem. It is clear that it is linear
in T and that T |W is in HMp,q(Cn) if T is. Next, (i) and (ii) follow
because of (3.2).
In the case when W = HC

i it is clear that (3.3) coincides with the
analytic de�nition in Proposition 2.2 and thus with the natural exten-
sion across Hi of the restriction of T to HC

i . Hence (3.3) must coincide
with the natural extension across WC of the restriction of T to W for
all Zariski-open sets W in B(H1, . . . , Hn), provided that the analytic
de�nition satis�es (i) and (ii). This, however, will be clear from the
proof of Theorem 3.1 below. �

Example 4. Suppose n = 2. Then the four elements in P([2]), {1, 2},
{1}, {2} and ∅ correspond to the origin, the σ2-axis H1 with the origin
removed, the σ1-axis H2 with the origin removed, and C2 with the
coordinate axes removed, respectively. For example H2 is given as
W{2} ∪W{1,2}. Suppose that

T = α

[
1

σ3
1

]
+ β

[
1

σ2

]
∂̄

[
1

σ2
1

]
+ γ ∂̄

[
1

σ1

]
∧ ∂̄

[
1

σ2
2

]
= τ1 + τ2 + τ3,

where α, β and γ are just smooth functions with compact support.
Then d(τ1) = ∅, d(τ2) = {1} and d(τ3) = {1, 2}. Now T |H2 = τ3
whereas T |W = τ1 + τ3 if W = W∅ ∪W{1,2}. �

Lemma 3.2. Let U1, . . . , Ur ⊂ X be Zariski-open sets. Then there
is a degree-preserving mapping HM(X)× B(U1, . . . , Ur) → HM(X) :
(T,W ) 7→ T |W that is linear in HM(X), such that T |Ui

coincides with
the natural extension across UC

i of the restriction of T to Ui and (i)-(ii)
hold.

Proof. Once we have Proposition 2.2 we can give meaning to •|W for
W ∈ B(U1, . . . , Ur) (or any constructible set) by inductively using (i)
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and (ii). However, a priori it is not clear that this de�nition of |W
is independent of the representation of W in B(U1, . . . , Ur). To show
that this is indeed the case we will introduce an auxiliary de�nition of
restriction modeled on Example 3.

We say that a set {ΠL} of compositions ΠL = Π`1 ◦ . . . ◦ Π`r`
of

resolutions Π`1 : X̃`1 → X`1 ⊂ X, . . . ,Π`r`
: X̃`r`

→ X`r`
⊂ X̃`r`−1 is

good with respect to the Zariski-open set U ⊂ X if (ΠL)−1(UC) locally

in X̃`r`
is a union of coordinate hyperplanes. Moreover, we say that

T ∈ HM(X) is good with respect to {ΠL} if T can be written

T =
∑

ΠL
∗ τL,

where each τL is an elementary current (2.1) (with respect to some local

coordinate chart in X̃`r`
). We denote the set of currents in HM(X)

that are good with respect to {ΠL} by G({ΠL}).
Now, let {ΠL} be a set of resolutions that is good with respect to

U1, . . . , Ur. Inspired by (3.3), we de�ne a restriction mapping G({ΠL})×
B(U1, . . . , Ur} → G({ΠL}),

(T,W ) 7→ T |{Π
L}

W =
∑

L:d(τL)∈Ω((ΠL)−1(W ))

ΠL
∗ τL;

here d and Ω are taken with respect to a �xed coordinate chart in X̃`r`
.

It is clear that •|{Π
L}

W is linear and maps G({ΠL}) to G({ΠL}) and in

light of Example 3 it is easily checked that •|{Π
L}

• satis�es (i)-(ii) using
that (ΠL)−1 commutes with complements and intersections.

We will now show that T |{Π
L}

W is independent of the particular choice
of {ΠL} (as long as T ∈ G({ΠL})). First, we claim that if {ΠL} is good
with respect to the Zariski-open set U and T is good with respect to

{ΠL}, then T |{Π
L}

U is equal to T |U . In this case (ΠL)−1(UC) is a union
of coordinate hyperplanes, say Hi1 , . . . , Hiq , and so Ω((ΠL)−1(UC)) is
the set of subsets of [n] that contains at least one of the elements
i1, . . . , iq, (that is, the dual order ideal generated by {i1, . . . , iq}). How-
ever, from the proof of Proposition 2.2 we know that |h|2λΠL

∗ τL|λ=0 is
equal to ΠL

∗ τL if d(τL) does not contain any of i1, . . . , iq, in other words if
d(τL) ∈ Ω((ΠL)−1(UC))C = Ω((ΠL)−1(U)), and zero otherwise. Hence
the claim follows.
Furthermore, assume thatW,W ′ ∈ B(U1, . . . , Ur) are such that T |{Π

L}
W

and T |{Π
L}

W ′ if are independent of {ΠL} for all T ∈ G({ΠL}). Then

T |{Π
L}

W C = T − T |{Π
L}

W

T |{Π
L}

W∩W ′ = T |{Π
L}

W |{Π
L}

W ′ .
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are independent of {ΠL} since the right hand side expressions are,

and it follows by induction that T |{Π
L}

W is independent of {ΠL} for all
W ∈ B(U1, . . . , Ur).

Now for (T,W ) ∈ HM(X)×B(U1, . . . , Ur) we de�ne T |W = T |{Π
L}

W ∈
HM(X), where {ΠL} is some set of resolutions that is good with re-
spect U1, . . . , Ur and such that T is good with respect to {ΠL}. By
Hironaka's theorem and the de�nition of hypermeromorphic currents

such a {ΠL} always exists, and thus, since T |{Π
L}

W is independent of
{ΠL}, T |W is well-de�ned. It is clear that •|• ful�lls the requirements

in the lemma since •|{Π
L}

• does for a �xed {ΠL}. �

Proof of Theorem 3.1. For (T,W ) ∈ HM(X)×C(X) let T |W = T |(U1,...,Ur)
W ∈

HM(X), where •|(U1,...,Ur)
• denotes the restriction mapping HM(X)×

B(U1, . . . , Ur) → HM(X) from Lemma 3.2 and U1, . . . , Ur ⊂ X are
Zariski-open sets such that W ∈ B(U1, . . . , Ur). To see that this def-
inition is independent of the choice of U1, . . . , Ur, suppose that W

also is in B(O1, . . . , Os). Then according to Lemma 3.2, T |(U1,...,Ur)
W =

T |(U1,...,Ur,O1,...,Os)
W = T |(O1,...,Os)

W . It is clear that •|• is linear and degree
preserving, coincides with the natural restriction of to open sets, and

ful�lls (i) and (ii), since this holds for •|(U1,...,Ur)
• . �

Example 5. The restriction •|• does not commute with ∂̄. Let

T = ∂̄

[
1

στ

]
=

(
∂̄

[
1

σ

]) [
1

τ

]
+

[
1

σ

]
∂̄

[
1

τ

]
.

Then T is clearly hypermeromorphic and since ∂̄T = 0 it follows that
(∂̄T )|{τ=0} = 0. However,

T |{τ=0} =

[
1

σ

]
∂̄

[
1

τ

]
,

and consequently

∂̄(T |{τ=0}) = ∂̄

[
1

σ

]
∧ ∂̄

[
1

τ

]
6= 0.

�

4. Annihilators of hypermeromorphic currents

Let HMx denote the Ex-module of germs of hypermeromorphic cur-
rents at x ∈ X. For T ∈ HMx let annT denote the annihilator ideal
{ϕ ∈ Ox;ϕT = 0} in Ox.

Example 6. Assume T ∈ HMx and let W be a germ of a constructible
set at x. Then if ϕ ∈ Ox

ϕT = (ϕT )|W + (ϕT )|W C = ϕT |W + ϕT |W C ,



DECOMPOSITION OF RESIDUE CURRENTS 11

where the �rst equality follows using (i) and the second one from (3.1).
Hence if ϕ ∈ annT |W ∩ annT |W C , then ϕ ∈ annT . On the other
hand if ϕT = 0, then by (3.1) ϕT |W = (ϕT )|W = 0 and analogously
ϕT |W C = 0. Thus

annT = annT |W ∩ annT |W C .

�

For a germ Z at x of a variety let IZ denote the prime ideal in Ox

of germs of holomorphic functions that vanish on Z and for an ideal
J ⊂ Ox let V (J) denote the (germ of the) variety of J .

Proposition 4.1. Suppose that Z is an irreducible germ at x of a
variety of codimension k. If T ∈ HMp,k

x has its support in Z then
either T = 0 or annT is an IZ-primary ideal.

Proof. Suppose ϕ ∈ Ox vanishes on Z. Then, since T has �nite order,
ϕmT = 0 for m large enough. It follows that V (annT ) ⊂ Z. If
h ∈ annT , that is, hT = 0, then suppT ⊂ Z ∩ {h = 0}. Since Z
is irreducible, Z ∩ {h = 0} is either equal to Z or has codimension
≥ k + 1. In the latter case T = 0 according to Corollary 2.4. Hence
V (annT ) = Z if T 6= 0.
If ϕψ ∈ annT , then ϕ ∈ ann (ψT ). Since ψT satis�es the as-

sumptions of the proposition, the �rst part of the proof implies that if
ψ /∈ annT , then ϕ ∈ IZ =

√
annT . Thus annT is IZ-primary. �

Remark 1. Note that the proof only uses that T has the SEP with
respect to Z. Thus annT is Z-primary whenever T ∈ HMx has
support on Z, has the SEP with respect to Z and does not vanish
identically. �

5. Decomposition of R with respect to Ass(J)

We will now use the results from the the previous sections to make the
decomposition of R. Let us start by brie�y recalling the construction of
residue currents from [4]. Let J be a submodule of O⊕r0

x , in particular
if r0 = 1, then J is an ideal in Ox, and let

(5.1) 0 → O⊕rN
x

FN−→ . . .
F2−→ O⊕r1

x
F1−→ O⊕r0

x ,

be a free resolution of Ox-modules of O⊕r0
x , where J = Im (O⊕r1

x →
O⊕r0

x ). Now (5.1) induces a holomorphic complex

(5.2) 0 → EN
FN−→ . . .

F2−→ E1
F1−→ E0,

of (trivial) rk-bundles Ek over some neighborhood Ω of x ∈ X that is
exact outside Z = V (J) and such that Ox(Ek) ' O⊕rk

x . Equipping the
bundles Ek with Hermitian metrics we construct a current R that has
support on Z, is annihilated by ĪZ , and

(5.3) R = Rp + · · ·+Rµ,
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where p = codimZ, µ = min(n,N), and Rj is a (0, j)-current that
takes values in Hom (E0, Ej).
Moreover, if ϕ is a germ of a holomorphic section of E0 at x, that is,

an element in O⊕r0
x , then ϕ ∈ J if and only if Rϕ = 0 and ϕ lies generi-

cally in ImF1. If F1 is generically surjective, that is, codimO⊕r0
x /J > 0,

in particular if r0 = 1 and F1 6≡ 0, the latter condition is automatically
satis�ed and J = annR. In general, one can extend the complex (5.2)
with a mapping F0 : E0 → E−1 so that the extended complex is gener-
ically exact. Then J = kerF0 ∩ annR.
Recall that a proper submodule J of the Ox-module O⊕r

x is primary
if ϕξ ∈ J implies that ξ ∈ J or ϕν ∈ ann (O⊕r

x /J) for some ν > 0.
If J ⊂ O⊕r

x is primary then ann (O⊕r
x /J) is a primary ideal and so

p =
√
ann (O⊕r

x /J) is a prime ideal. We say that J is p-primary.
As for ideals in Ox, a submodule of O⊕r

x always admits a primary
decomposition; that is, J =

⋂
Jk, where Jk are pk-primary modules.

If all pk are di�erent and no intersectands can be removed, then the
primary decomposition is said to be minimal and the pk are said to
be associated prime ideals of J . The set of associated prime ideals is
unique and we denote it by AssJ .

Example 7. If F0 : O⊕r0
x → O⊕r−1

x is a non-zero Ox-homomorphism,
then J = kerF0 is a p-primary module, with p = (0). Indeed, we have
that

√
ann kerF0 = (0), and moreover if ϕ ∈ Ox and ξ ∈ O⊕r0

x are such
that F0(ϕξ) = 0, then ϕF0ξ = 0 and so ξ ∈ kerF0 or ϕ = 0. �

Let R(0) = F0 so that annR(0) = kerF0. For each associated prime
ideal p 6= (0) of J let

(5.4) Rp = R|V (p)\
S

q⊃p V (q).

In view of (5.3) (and Corollary 2.4) we have that Rp = Rp
k + . . .+Rpi

µ ,

where k = codim p and Rp
j is of bidegree (0, j) and takes values in

Hom (E0, Ej).

Theorem 5.1. Let J be a submodule of O⊕r0
x , and let R be the residue

current associated with (5.1) (and the choice of Hermitian metrics on
the bundles Ek in (5.2)). Then for each p ∈ AssJ , Rp has support
on V (p) and has the SEP with respect to V (p), annRp ⊂ O⊕r0

x is p-
primary,

(5.5) R =
∑

p∈AssJ, p6=(0)

Rp,

and

(5.6) J = annR(0) ∩ annR =
⋂

p∈AssJ

annRp

yields a minimal primary decomposition of J .
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The decomposition (5.5) is unique once the Rp are required to have
support on V (p) and the SEP with respect to V (p). Indeed, suppose
that p is of minimal codimension, say q, among the associated primes.
Then Rp = R outside a set of codimension ≥ q + 1 and so, because of
the SEP, Rp is uniquely determined. Consequently R′ =

∑
codim p>q R

p,
whose support is of codimension ≥ q + 1, is uniquely determined. By
the same argument applied to R′ all Rp with codim p = q+1 are unique.
The general statement follows by induction. In the same way, as soon
as we have the decomposition (5.5) with the above assumptions on Rp,
then (5.6) must hold.
We �rst show a lemma which asserts that Rp has the SEP.

Lemma 5.2. Suppose that p ∈ AssJ is of codimension k > 0. Then
annRp = annRp

k. Moreover, suppose that W is a variety of codimen-
sion > k. Then Rp|W = 0.

Proof. Let Zk denote the set where the mapping Fk in (5.2) does not
have optimal rank. The key observation is that Rp

k+`|Zk+`
= 0 for

` ≥ 1. To see this let Z ′ be one of the irreducible components of Zk+`.
If codimZ ′ > k + `, then Rp

k+`|Z′ = 0 due to Corollary 2.4. On the
other hand if codimZ ′ = k+`, then IZ′ ∈ AssJ according to Corollary
20.14 in [14]. Thus Rp

k+`|Z′ = Rp
k+`|Z′∩(V (p)\

S
q⊃p V (q)) = 0, since either

IZ′ ⊃ p or codimZ ′ ∩ V (p) > k + `, in which case the current vanishes
according to Corollary 2.4.
To prove the �rst statement take ϕ ∈ annRp

k. Outside Zm+1 it holds
that Rm+1 = αmRm, where αm is a smooth Hom (Em, Em+1)-valued
(0, 1)-form, see for example the proof of Theorem 4.4 in [4]. Now,
by (i),

Rp
k+1ϕ = αkR

p
kϕ|X\Zk+1

+Rp
k+1ϕ|Zk+1

= 0.

By induction it follows that Rp
k+`ϕ = 0 for ` > 0 and so Rpϕ = 0. Thus

annRp = annRp
k.

For the second statement, note that Rp
k|W = 0 according to Corol-

lary 2.4. It follows thatRp
k+`|W = 0 by the same induction as above. �

We also need the following module version of Proposition 4.1.

Proposition 5.3. Suppose that Z is an irreducible germ at x of a
variety that has codimension k. If T ∈ HMp,k

x (E∗
0) has its support in

Z, then either T ≡ 0 or annT ⊂ Ox(E0) is a IZ-primary module.

Proof. For each ξ ∈ Ox(E0), the scalar-valued current Tξ satis�es the
assumption of Proposition 4.1. Now, ann (Ox(E0)/annT ) =

⋂
ξ∈Ox(E0) ann (Tξ).

If T 6= 0, then Tξ 6= 0 for some ξ ∈ Ox(E0) and hence it follows from
Proposition 4.1 that V (ann (Ox(E0)/annT )) = Z.
Moreover, suppose that ϕ ∈ Ox and ξ ∈ Ox(E0) are such that ϕξ ∈

annT . Since the scalar-valued current Tξ satis�es the assumptions of
Proposition 4.1 it follows that if ξ /∈ annT , that is, Tξ 6= 0, then ϕ ∈ IZ
and thus annT is IZ-primary.
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�

Proof of Theorem 5.1. Clearly Rp has support on V (p) and Lemma 5.2
asserts that it has the SEP. Throughout this proof we will repeatedly
use (i) and (ii). From Example 7 we know that annR(0) = kerF0 is
(0)-primary. Now, suppose that p 6= (0) and let k = codim p. Since
Rp

k is a current of bidegree (0, k) and V (p) is an irreducible variety
of codimension k, it follows from Proposition 4.1 that annRp

k is p-
primary. Hence by Lemma 5.2, annRp is p-primary. This could also
be seen using Remark 1.
Next, we show (5.5). By Lemma 5.2, for p 6= (0) we have that

Rp = Rp|V (p)\
S
codim r>codim p V (r), which by the de�nition of Rp is equal

to R|V (p)\
S
codim r>codim p V (r). Suppose that p and q are two associated

prime ideals of the same codimension k > 0. Then, by Lemma 5.2,
Rp = Rp|V (p)\V (q), since codim (V (p)∩V (q)) > k. Moreover, in light of
(5.4), this is equal to R|(V (p)\

S
codim r>k V (r))\V (q). Hence,

Rp +Rq = R|(V (p)\
S
codim r>k V (r))\V (q) +R|V (q)\

S
codim r>k V (r) =

R|(V (p)∪V (q))\
S
codim r>k V (r),

and so∑
p∈AssJ, p6=(0)

Rp =
∑
k>0

∑
codim p=k

Rp =
∑
k>0

R|S
codim p=k V (p)\

S
codim r>k V (r) =

R|S
p∈AssJ, p 6=(0) V (p) = R,

since R has support on V (J) =
⋃

p∈AssJ, p6=(0) V (p).

We need to show that annR =
⋂

p∈AssJ, p6=(0) annR
p. Clearly if Rϕ =

0 then Rpϕ = 0 if p 6= (0) and so annR ⊂
⋂

p∈AssJ, p6=(0) annR
p. On

the other hand if Rpϕ = 0 for all associated prime ideals p 6= (0) then
by (5.5) Rϕ =

∑
p∈AssJ,p6=(0)R

pϕ = 0 and we are done. �

Example 8. Consider the ideal (z2, zw) with the associated prime ideals
p = (z) and q = (z, w), where q is embedded. It is easy to see that

0 → Ox
F2−→ O2

x
F1−→ Ox,

where F1 =
[
z2 zw

]
and F2 =

[
w
−z

]
is (minimal) resolution of

Ox/J . Assume that the vector bundles in the corresponding complex
(5.2) are equipped with trivial metrics. Then Rp = [1/w]∂̄[1/z] and
Rq = ∂̄[1/z2] ∧ ∂̄[1/w], see Example 2 in [4] or [19]. Thus we get the
minimal primary decomposition

J = annRp ∩ annRq = (z) ∩ (z2, w).

Let us also point out that the primary decomposition (5.6) in general
depends on the choice of Hermitian metrics. Notice that J = (z2, z(w−
az)) for a ∈ C. Thus if we make the same resolution and choice of
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metrics with respect to the coordinates ζ = z, ω = w− az, we obtain a
residue current that gives the primary decomposition J = (z)∩(z2, w−
az), which is clearly di�erent for di�erent values of a. Now, since all
minimal resolutions are isomorphic this new resolution is obtained from
the original resolution with a choice of metrics. �

Example 9. If J has no embedded primes, it is well known that the
minimal primary decomposition is unique. In particular Rp must be
independent of the choice of metrics. This can be veri�ed directly, since
outside an exceptional set O⊕r

x /J is Cohen-Macaulay and in that case
R is essentially canonical, compare to [4], Section 4. �

Remark 2. [The semi-global case] Let K ⊂ X be a Stein compact set,
(that is, K admits a neighborhood basis in X consisting of Stein open
subsets of X) and let J be a submodule of O(K)r0 , where O(K) is the
ring of germs of holomorphic functions on K. Due to Proposition 3.3
in [4] J can be represented as the annihilator of a residue current as
above. The ring O(K) is Noetherian precisely when Z ∩K has a �nite
number of topological components for every analytic variety Z de�ned
in a neighborhood of K, see [18]. In this case the arguments in this
and the previous section go through and so we get a decomposition of
the residue current analogous to the one in Theorem 5.1. �

Example 10. Let J be a coherent subsheaf of a locally free analytic
sheaf O(E0) over a complex manifold X. From a locally free resolution
of O(E0)/J we constructed in [4] a residue current R, whose anni-
hilator sheaf is precisely J . Let Zk be the (intrinsically de�ned) set
where the kth mapping in the resolution does not have optimal rank
(compare to the proof of Lemma 5.2). Then R can be decomposed as
R =

∑
k

kR, where kR = R|Zk\Zk+1
, so that J =

⋂
k ann

kR and ann kR
is of pure codimension k (meaning that all its associated primes in each
stalk are of codimension k). To see this it is enough to show that the
germ of kR at x ∈ X satis�es that kR =

∑
codim p=k R

p, where p runs
over all associated prime ideals of Jx. However, this can be veri�ed
following the proofs of Theorem 5.1 and Lemma 5.2. �

6. The algebraic case

Let J be a submodule of C[z1, . . . , zn]r and suppose for simplicity
that codimC[z1, . . . , zn]r/J > 0, that is, (0) /∈ AssJ . From a free reso-
lution of the corresponding homogeneous modules over the graded ring
C[z0, . . . , zn] we de�ned in [4] a residue current on Pn whose restriction
R to Cn

z satis�es that ϕ ∈ C[z1, . . . , zn]r is in J if and only if Rϕ = 0.
Propositions 4.1 and 5.3 hold with the same proof if Z is an irreducible
algebraic variety in Cn and T is a current on Cn of �nite order (in
particular if it has an extension to Pn). If we de�ne the currents Rp for
p ∈ AssJ as in the local case, the proofs of Lemma 5.2 and Theorem 5.1
go through and we obtain the following version of Theorem 5.1.
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Theorem 6.1. Suppose that J is a submodule of C[z1, . . . , zn]r such
that C[z1, . . . , zn]r/J has positive codimension and let R a residue cur-
rent associated with J as above. Then for each p ∈ AssJ , Rp has
support on V (p) and has the SEP with respect to V (p), annRp ⊂
C[z1, . . . , zn]r is p-primary,

R =
∑

p∈AssJ

Rp,

and
J = annR =

⋂
p∈AssJ

annRp

yields a minimal primary decomposition of J .

In [4] the residue currents for polynomial modules were used to ob-
tain the following version of the Ehrenpreis-Palamodov fundamental
principle: any smooth solution to the system of equations

(6.1) η(i∂/∂t) · ξ(t) = 0, η ∈ J ⊂ C[z1, . . . , zn]r

on a smoothly bounded convex set in Rn can be written

ξ(t) =

∫
Cn

RT (ζ)A(ζ)e−i〈t,ζ〉,

for an appropriate explicitly given matrix of smooth functions A. Here
RT is (the transpose of) the residue current associated with J as above.
Conversely, any ξ(t) given in this way is a homogeneous solution since
J = annR. Now, for each p ∈ AssJ let

ξp(t) =

∫
Cn

(Rp)T (ζ)A(ζ)e−i〈t,ζ〉,

where Rp is de�ned above. Then by Theorem 6.1 ξ =
∑
ξp. Moreover

ξp satis�es η(i∂/∂t) · ξp = 0 for each η ∈ annRp. Hence we get a
decomposition of the space of solutions to (6.1) with respect to AssJ .

Acknowledgement: We would like to thank Ezra Miller for valu-
able discussions.
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