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DECOMPOSITION OF SEMIGROUP ALGEBRAS

JANKO BÖHM, DAVID EISENBUD, AND MAX J. NITSCHE

Abstract. Let A ⊆ B be cancellative abelian semigroups, and let R be an integral domain.
We show that the semigroup ring R[B] can be decomposed, as an R[A]-module, into a direct
sum of R[A]-submodules of the quotient ring of R[A]. In the case of a finite extension
of positive affine semigroup rings we obtain an algorithm computing the decomposition.
When R[A] is a polynomial ring over a field we explain how to compute many ring-theoretic
properties of R[B] in terms of this decomposition. In particular we obtain a fast algorithm
to compute the Castelnuovo-Mumford regularity of homogeneous semigroup rings. As an
application we confirm the Eisenbud-Goto conjecture in a range of new cases. Our algorithms
are implemented in the Macaulay2 package MonomialAlgebras.

1. Introduction

Let A ⊆ B be cancellative abelian semigroups, and let R be an integral domain. Denote
by G(B) the group generated by B, and by R[B] the semigroup ring associated to B, that is,
the free R-module with basis formed by the symbols ta for a ∈ B, and multiplication given
by the R-bilinear extension of ta · tb = ta+b. Extending a result of Hoa and Stückrad in [16],
we show that the semigroup ring R[B] can be decomposed, as an R[A]-module, into a direct
sum of R[A]-submodules of R[G(A)] indexed by the elements of the factor group G(B)/G(A).

By a positive affine semigroup we mean a finitely generated subsemigroup B ⊆ Nm, for
some m. If A ⊆ B ⊆ Nm are positive affine semigroups, K is a field, and the positive ra-
tional cones C(A) ⊆ C(B) spanned by A and B are equal, then K[B] is a finitely generated
K[A]-module and we can make the decomposition above effective. In this case the number of
submodules Ig in the decomposition is finite, and we can choose them to be ideals of K[A].
We give an algorithm for computing the decomposition, implemented in our Macaulay2 [12]
package MonomialAlgebras [4].

By a simplicial semigroup, we mean a positive affine semigroup B such that C(B) is a sim-
plicial cone. If B is simplicial and A is a subsemigroup generated by elements on the extremal
rays of B, many ring-theoretic properties of K[B] such as being Gorenstein, Cohen-Macaulay,
Buchsbaum, normal, or seminormal, can be characterized in terms of the decomposition, see
Proposition 3.1. Using this we can provide functions to test those properties efficiently.

Recall that any positive affine semigroup B has a unique minimal generating set called its
Hilbert basis Hilb(B). By a homogeneous semigroup we mean a positive affine semigroup that
admits an N-grading where all the elements of Hilb(B) have degree 1.

One motivation for developing the decomposition algorithm was to have a more efficient
algorithm to compute the Castelnuovo-Mumford regularity (see Section 4 for the definition)
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of a homogeneous semigroup ring K[B]. This invariant is often computed from a minimal
graded free resolution of K[B] as a module over a polynomial ring in n variables, where n is
the cardinality of Hilb(B). The free resolution could have length n− 1, and if n is large (say
n ≥ 15) this computation becomes very slow. But in fact the Castelnuovo-Mumford regularity
of K[B] can be computed from a minimal graded free resolution of K[B] as a module over any
polynomial ring, so long as K[B] is finitely generated. For example, if A is the subsemigroup
generated by elements of Hilb(B) that lie on the extremal rays of B, and K[B] ∼= ⊕gIg is
a decomposition as graded K[A]-modules, then the regularity of K[B] is the maximum of
the regularities of the Ig as K[A]-modules (Proposition 4.1). Since the minimal graded free
resolution of Ig has length at most the cardinality of Hilb(A) (equal to the dimension of K[B]
in the simplicial case), and the decomposition can be obtained very efficiently, this method
of computing the regularity is typically much faster. See Section 4 for timings.

The Eisenbud-Goto conjecture gives a bound on the Castelnuovo-Mumford regularity [9].
It is known to hold in relatively few cases. The efficiency of our algorithm allows us to test
many new cases of the conjecture (Proposition 4.3).

2. Decomposition

If X ⊆ G(B) we write tX := {tx | x ∈ X}.

Theorem 2.1. Let A ⊆ B be cancellative abelian semigroups, and let R be an integral domain.

The R[A]-module R[B] is isomorphic to the direct sum of submodules Ig ⊆ R[G(A)] indexed

by elements g ∈ G := G(B)/G(A).

Proof. We think of an element g ∈ G as a subset of G(B). For g ∈ G let

Γ′
g := {b ∈ B | b ∈ g}.

By construction, we have

R[B] =
⊕

g∈G
R · tΓ

′

g .

For each g ∈ G, choose a representative hg ∈ g ⊆ G(B). The module R · tΓ
′

g is an R[A]-
submodule of R[B] and, as such, it is isomorphic to

Ig := R · {tb−hg | b ∈ Γ′
g} ⊆ R[G(A)].

�

With notation as in the proof, we have

R[B] ∼=R[A]

⊕

g∈G
Ig · t

hg .

This decomposition, together with the ring structure of R[A] and the group structure of G
actually determines the ring structure of R[B]: if x ∈ Ig1

and y ∈ Ig2
and xy = z as elements

of R[G(A)] then as elements in the decomposition of R[B]

x ·R[B] y =
thg1 thg2

thg1+g2

z ∈ Ig1+g2
.

Henceforward we assume that A ⊆ B ⊆ Nm are positive affine semigroups, and we

work with monomial algebras over a field K.

The set BA = {x ∈ B | x /∈ B + (A \ {0})} is the unique minimal subset of B such that
tBA generates K[B] as a K[A]-module. We define Γg := {b ∈ BA | b ∈ g}. Then Γg +A = Γ′

g.
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We can compute the decomposition of Theorem 2.1 if K[B] is a finitely generated K[A]-
module, or equivalently BA is a finite set. This finiteness (for positive affine semigroups
A ⊆ B) is equivalent to the property C(A) = C(B), where C(X) denotes the positive ratio-
nal cone spanned by X in Qm. (Proof: if C(A) $ C(B) we can choose an element x ∈ B on
a ray of C(B) not in C(A), so nx ∈ BA for all n ∈ N+. Thus, BA is not finite. Conversely,
if C(A) = C(B), then for all b ∈ B there exists nb ∈ N+ such that nbb ∈ A. To generate
K[B] as a K[A]-module, it suffices to take all possible sums of the multiples mb such that
m < nb for all b in a (finite) generating set for the semigroup B.) Note that if BA is finite,
then G(B)/G(A) is also finite.

From these observations we obtain Algorithm 1 computing the set BA and the decomposi-
tion of K[B].

Algorithm 1 Decompose monomial algebra

Input: A homogeneous ring homomorphism

ψ : K[y1, . . . , yd] → K[x1, . . . , xn]

of Nm-graded polynomial rings over a field K with deg yi = ei and deg xj = bj such
that ψ(yi) is a monomial for all i and the gradings specify positive affine semigroups
A = 〈e1, . . . , ed〉 ⊆ B = 〈b1, . . . , bn〉 ⊆ Nm with C(A) = C(B).

Output: An ideal Ig ⊆ K[A] and a shift hg ∈ G(B) for each g ∈ G := G(B)/G(A) with

K[B] ∼=
⊕

g∈G
Ig(−hg)

as Zm-graded K[A]-modules (with deg tb = b).
1: Compute the set BA = {b ∈ B | b /∈ B+(A\{0})}, and let {v1, . . . , vr} be the monomials

in K[B] corresponding to elements of BA. For example, this can be done by computing
the toric ideal IB := kerϕ associated to B, where

ϕ : K[x1, . . . , xn] → K[B], xi 7→ tbi ,

and then computing a monomial K-basis v1, . . . , vr of

K[x1, . . . , xn]/(IB + ψ(〈y1, . . . , yd〉)).

2: Partition the elements vi by their class modulo G(A), forming the decomposition

BA =
˙⋃

g∈G
Γg.

3: For each g ∈ G, choose a representative ḡ ∈ Γg.
4: For each v ∈ Γg, choose cv,j ∈ Z such that

v = ḡ +
∑d

j=1
cv,jej .

5: Let c̄g,j := min{cv,j | v ∈ Γg}.
6: return

{

hg := ḡ +
∑d

j=1
c̄g,jej , Ig := K[A]{tv−hg | v ∈ Γg} | g ∈ G

}

For v ∈ Γg the element tv−hg is in K[A] because

v − hg =
∑d

j=1
(cv,j − c̄g,j) ej
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is an expression with non-negative integer coefficients. Thus, Ig is a monomial ideal of K[A]
and hg ∈ G(B) for each g ∈ G, as required.

Example 2.2. Consider B = 〈(2, 0, 3), (4, 0, 1), (0, 2, 3), (1, 3, 1), (1, 2, 2)〉 ⊂ N3 and the sub-
semigroup A = 〈(2, 0, 3), (4, 0, 1), (0, 2, 3), (1, 3, 1)〉. We get the decomposition of BA into
equivalence classes BA = {0, (2, 4, 4)} ∪ {(1, 2, 2), (3, 6, 6)}. Choosing shifts h1 = (−2, 0,−3)
and h2 = (−1, 2,−1) in G(B) we have

K[B] ∼= K[A]{t(2,0,3), t(4,4,7)}(−h1) ⊕K[A]{t(2,0,3), t(4,4,7)}(−h2)

∼= 〈x0, x1x
2
2〉(−h1) ⊕ 〈x0, x1x

2
2〉(−h2),

where K[A] ∼= K[x0, x1, x2, x3]/〈x
2
1x

3
2 − x3

0x
2
3〉.

Example 2.3. Using our implementation of Algorithm 1 in the Macaulay2 package Mono-

mialAlgebras we compute the decomposition of Q[B] over Q[A] in case of Example 2.2:
i1: loadPackage "MonomialAlgebras";

i2: A = {{2,0,3},{4,0,1},{0,2,3},{1,3,1}};
i3: B = {{2,0,3},{4,0,1},{0,2,3},{1,3,1},{1,2,2}};
i4: S = QQ[x 0 .. x 4, Degrees=>B];
i5: P = QQ[x 0 .. x 3, Degrees=>A];
i6: f = map(S,P);

i7: dc = decomposeMonomialAlgebra f
o7: HashTable{ {0,0,0} => { ideal ( x0, x1x

2
2 ), {-2,0,-3} }

{5,0,0} => { ideal ( x0, x1x
2
2 ), {-1,2,-1} }}

i8: ring first first values dc

o8: P
x2

1
x3

2
−x3

0
x2

3

The keys of the hash table represent the elements of G.

3. Ring-theoretic properties

Recall that a positive affine semigroup B is simplicial if it spans a simplicial cone, or equiv-
alently, there are linearly independent elements e1, . . . , ed ∈ B with C(B) = C({e1, . . . , ed}).
Many ring-theoretic properties of semigroup algebras can be determined from the combina-
torics of the semigroup; see [10, 18, 19, 21, 27]. Here we give characterizations in terms of
the decomposition of Theorem 2.1.

Proposition 3.1. Let K be a field, B ⊆ Nm a simplicial semigroup, and let A be the

submonoid of B which is generated by linearly independent elements e1, . . . , ed of B with

C(A) = C(B). Let BA be as above, and K[B] ∼=
⊕

g∈G Ig(−hg) be the output of Algorithm 1

with respect to A ⊆ B using minimal generators of A. We have:

(1) The depth of K[B] is the minimum of the depths of the ideals Ig.
(2) K[B] is Cohen-Macaulay if and only if every ideal Ig is equal to K[A].
(3) K[B] is Gorenstein if and only if K[B] is Cohen-Macaulay and the set of shifts

{hg}g∈G has exactly one maximal element with respect to ≤ given by x ≤ y if there is

an element z ∈ B such that x+ z = y.
(4) K[B] is Buchsbaum if and only if each ideal Ig is either equal to K[A], or to the

homogeneous maximal ideal of K[A] and hg + b ∈ B for all b ∈ Hilb(B).
(5) K[B] is normal if and only if for every element x in BA there exist λ1, . . . , λd ∈ Q

with 0 ≤ λi < 1 for all i such that x =
∑d

i=1 λiei.
(6) K[B] is seminormal if and only if for every element x in BA there exist λ1, . . . , λd ∈ Q

with 0 ≤ λi ≤ 1 for all i such that x =
∑d

i=1 λiei.
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Proof. For every x ∈ G(B) there are uniquely determined elements λx
1 , . . . , λ

x
d ∈ Q such that

x =
∑d

j=1 λ
x
j ej . Then by construction

hg =
∑d

j=1
min

{

λv
j | v ∈ Γg

}

ej .

Assertion (1) and (2) follow immediately; (2) was already mentioned in [27, Theorem6.4].
Assertion (3) can be found in [27, Corollary 6.5].

(4) Let Ig be a proper ideal, equivalently, #Γg ≥ 2. The ideal Ig is equal to the homogeneous
maximal ideal ofK[A] and hg+b ∈ B for all b ∈ Hilb(B) if and only if Γg = {m+e1, . . . ,m+ed}
for some m with m + b ∈ B for all b ∈ Hilb(B). Now the assertion follows from [10, Theo-
rem 9].

(5) We set DA = {x ∈ G (B) | x =
∑d

i=1 λiei, λi ∈ Q and 0 ≤ λi < 1 ∀i}. The ring K[B]
is normal if and only if B = C(B) ∩ G(B) by [18, Proposition 1]. We need to show that
C(B) ∩G(B) ⊆ B if and only if BA ⊆ DA. We have BA ⊆ DA if and only if DA ⊆ BA, since
BA has #G = #DA equivalence classes and by definition of BA. Note thatDA ⊆ C(B)∩G(B)
and DA ∩B ⊆ BA. The assertion follows from the fact that every element x ∈ C(B) ∩G(B)

can be written as x = x′ +
∑d

i=1 niei for some x′ ∈ DA and ni ∈ N.

(6) We set D̄A := {x ∈ B | x =
∑d

i=1 λiei, λi ∈ Q and 0 ≤ λi ≤ 1 ∀i}. By [19, Propo-
sition 5.32] and [21, Theorem4.1.1] K[B] is seminormal if and only if BA ⊆ D̄A, provided
that e1, . . . , ed ∈ Hilb(B). Otherwise there is a k ∈ {1, . . . , d} with ek = e′k + e′′k and
e′k, e

′′
k ∈ B \ {0}. We set A′ = 〈e1, . . . , e

′
k, . . . , ed〉 and A′′ = 〈e1, . . . , e

′′
k, . . . , ed〉. Clearly

C(A) = C(A′) = C(A′′). We need to show that BA ⊆ D̄A if and only if BA′ ⊆ D̄A′ . Let
x ∈ BA \ D̄A. If x− e′k /∈ B, then x ∈ BA′ \ D̄A′ . If x− e′k ∈ B, then x− e′k ∈ BA′′ \ D̄A′′ . Let
x ∈ BA′ \ D̄A′ , say x =

∑

j 6=k λjej + λke
′
k and λj > 1 for some j. If j 6= k, then x ∈ BA \ D̄A.

Let j = k; consider the element y = x + e′′k −
∑

j 6=k njej ∈ B for some nj ∈ N such that
∑

j 6=k nj is maximal. It follows that y ∈ BA \ D̄A and we are done. �

Note that normality of positive affine semigroup rings can also be tested using the imple-
mentation of normalization in the program Normaliz [6]. We remark that from Proposi-
tion 3.1 it follows that every simplicial affine semigroup ring K[B] which is seminormal and
Buchsbaum is also Cohen-Macaulay. This holds more generally for arbitrary positive affine
semigroups by [7, Proposition 4.15].

Example 3.2 (Smooth Rational Monomial Curves in P3). Consider the simplicial semigroup
B = 〈(α, 0), (α− 1, 1), (1, α− 1), (0, α)〉 ⊆ N2 and set A = 〈(α, 0), (0, α)〉, say K[A] = K[x, y].
Note that we have α equivalence classes. We get

K[B] ∼= K[x, y]3 ⊕ 〈xα−3, y〉 ⊕ 〈xα−4, y2〉 ⊕ . . .⊕ 〈x, yα−3〉,

as K[x, y]-modules, where the shifts are omitted. In the decomposition each ideal of the
form 〈xi, yj〉, 1 ≤ i, j ≤ α − 3 with i + j = α − 2 appears exactly once. Hence K[B] is not
Buchsbaum for α > 4, since 〈xα−3, y〉 is a direct summand. In case α = 4 there is only one
proper ideal I4 = 〈x, y〉 and h4 = (2, 2); in fact (2, 2) + Hilb(B) ⊆ B and therefore K[B] is
Buchsbaum. It follows immediately that K[B] is Cohen-Macaulay for α ≤ 3, Gorenstein for
α ≤ 2, seminormal for α ≤ 3, and normal for α ≤ 3. Note that we could also decompose
K[B] over the subring K[A], where A = 〈(2α, 0), (0, 2α)〉 = K[x′, y′], for α = 4 we would get

K[B] ∼= K[x′, y′]15 ⊕ 〈x′, y′〉

and the corresponding shift of 〈x′, y′〉 is again (2, 2).
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Example 3.3. Let B = 〈(1, 0, 0), (0, 1, 0), (0, 0, 2), (1, 0, 1), (0, 1, 1)〉 ⊂ N3, moreover, let
A = 〈(1, 0, 0), (0, 1, 0), (0, 0, 2)〉, say K[A] = K[x, y, z]. This example was given in [21, Ex-
ample 6.0.2] to study the relation between seminormality and the Buchsbaum property. We
have

K[B] ∼= K[A] ⊕ 〈x, y〉(−(0, 0, 1)),

as Z3-graded K[A]-modules. Hence K[B] is not Buchsbaum, since 〈x, y〉 is not maximal;
moreover, K[B] is seminormal, but not normal.

Example 3.4. Consider the semigroupB = 〈(1, 0, 0), (0, 2, 0), (0, 0, 2), (1, 0, 1), (0, 1, 1)〉 ⊂ N3,
and set A = 〈(1, 0, 0), (0, 2, 0), (0, 0, 2)〉. We get

K[B] ∼= K[A] ⊕K[A](−(1, 0, 1)) ⊕K[A](−(0, 1, 1)) ⊕K[A](−(1, 1, 2)).

Hence K[B] is Gorenstein, since (1, 0, 1) + (0, 1, 1) = (1, 1, 2). Moreover, K[B] is not normal,
since (1, 0, 1) = (1, 0, 0) + 1

2(0, 0, 2), but seminormal.

Example 3.5. We illustrate our implementation of the characterizations given in Proposi-
tion 3.1 at Example 3.4:

i1: B = {{1,0,0},{0,2,0},{0,0,2},{1,0,1},{0,1,1}};
i2: isGorensteinMA B

o2: true

i3: isNormalMA B

o3: false

i4: isSeminormalMA B

o4: true

Note that there are also commands isCohenMacaulayMA and isBuchsbaumMA available testing
the Cohen-Macaulay and the Buchsbaum property, respectively.

4. Regularity

Let K be a field and let R = K[x1, . . . , xn] be a standard graded polynomial ring, that is,
deg xi = 1 for all i = 1, . . . , n. Let R+ be the homogeneous maximal ideal of R, and let M be
a finitely generated graded R-module. We define the Castelnuovo-Mumford regularity regM
of M by

regM := max
{

a(H i
R+

(M)) + i | i ≥ 0
}

,

where a(H i
R+

(M)) := max
{

n | [H i
R+

(M)]n 6= 0
}

and a(0) = −∞; H i
R+

(M) denotes the i-th

local cohomology module of M with respect to R+. Note that regM can also be computed in
terms of the shifts in a minimal graded free resolution of M . An important application of the
regularity is that it bounds the degrees in certain minimal Gröbner bases by [1]. Thus, it is of
interest to compute or bound the regularity of a homogeneous ideal. The following conjecture
(Eisenbud-Goto) was made in [9]: If K is algebraically closed and I is a homogeneous prime
ideal of R then for S = R/I

regS ≤ degS − codimS.

Here degS denotes the degree of S and codimS := dimK S1 − dimS the codimension. The
conjecture has been proved for dimension 2 by Gruson, Lazarsfeld, and Peskine [13]; for the
Buchsbaum case by Stückrad and Vogel [29] (see also [30]); for degS ≤ codimS + 2 by Hoa,
Stückrad, and Vogel [17]; and in characteristic zero for smooth surfaces and certain smooth
threefolds by Lazarsfeld [20] and Ran [25]. There is also a stronger version in which S is
only required to be reduced and connected in codimension 1; this version has been proved in
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dimension 2 by Giaimo in [11]. For homogeneous semigroup rings of codimension 2 the con-
jecture was proved by Peeva and Sturmfels [24]. Even in the simplicial setting the conjecture
is largely open, though it was proved for the isolated singularity case by Herzog and Hibi [15];
for the seminormal case by [22]; and for a few other cases by [16, 23].

We now focus on computing the regularity of a homogeneous semigroup ring K[B]. Note
that a positive affine semigroup B is homogeneous if and only if there is a group homo-
morphism deg : G(B) → Z with deg b = 1 for all b ∈ Hilb(B). We always consider the
R-module structure on K[B] given by the homogeneous surjective K-algebra homomorphism
R ։ K[B], xi 7→ tbi , where Hilb(B) = {b1, . . . , bn}. Generalizing the results from [16], the
regularity can be computed in terms of the decomposition of Theorem 2.1 as follows:

Proposition 4.1. Let K be an arbitrary field and let B ⊆ Nm be a homogeneous semigroup.

Fix a group homomorphism deg : G(B) → Z with deg b = 1 for all b ∈ Hilb(B). Moreover, let

A be a submonoid of B with Hilb(A) = {e1, . . . , ed}, deg ei = 1 for all i, and C(A) = C(B).
Let K[B] ∼=

⊕

g∈G Ig(−hg) be the output of Algorithm 1 with respect to A ⊆ B. Then

(1) regK[B] = max {reg Ig + deg hg | g ∈ G}; where reg Ig denotes the regularity of the

ideal Ig ⊆ K[A] with respect to the canonical K[x1, . . . , xd]-module structure.

(2) degK[B] = #G · degK[A].

Proof. (1) Consider the T = K[x1, . . . , xd]-module structure on K[B] which is given by T ։

K[A] ⊆ K[B], xi 7→ tei . Since C(A) = C(B) we get by [5, Theorem 13.1.6]

H i
K[B]+

(K[B]) ∼= H i
T+

(K[B]),

as Z-graded T -modules (where K[B]+ is the homogeneous maximal ideal of K[B]). By the
same theorem we obtain H i

K[B]+
(K[B]) ∼= H i

R+
(K[B]). Then the assertion follows from

K[B] ∼=
⊕

g∈G Ig(−deg hg) as Z-graded T -modules.

(2) Follows from deg Ig = degK[A] for all g ∈ G. �

Using Proposition 4.1 we obtain Algorithm 2.

Algorithm 2 The regularity algorithm

Input: The Hilbert basis Hilb(B) of a homogeneous semigroup B ⊆ Nm and a field K.
Output: The Castelnuovo-Mumford regularity regK[B].
1: Choose a minimal subset {e1, . . . , ed} of Hilb(B) with C({e1, . . . , ed}) = C(B), and set
A = 〈e1, . . . , ed〉.

2: Compute the decomposition K[B] ∼=
⊕

g∈G Ig(−hg) over K[A] by Algorithm 1.

3: Compute a hyperplane H = {(t1, . . . , tm) ∈ Rm |
∑m

j=1 ajtj = c} with c 6= 0 such that

Hilb(B) ⊆ H. Define deg : Rm → R by deg(t1, . . . , tm) = (
∑m

j=1 ajtj)/c.

4: return regK[B] = max {reg Ig + deg hg | g ∈ G}.

By Algorithm 2 the computation of regK[B] reduces to computing minimal graded free
resolutions of the monomial ideals Ig in K[A] as K[x1, . . . , xd]-modules.

Example 4.2. We apply Algorithm 2 using the decomposition computed in Example 2.3. A
resolution of I =

〈

x0, x1x
2
2

〉

as a T = Q[x0, x1, x2, x3]-module is

0 −→ T (−4) ⊕ T (−5)
d

−→ T (−1) ⊕ T (−3) −→ I −→ 0
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with

d =

(

x1x
2
2 x2

0x
2
3

−x0 −x1x2

)

,

hence reg I = 4. The group homomorphism is given by deg b = (b1 + b2 + b3)/5 and therefore
reg Q[B] = max {4 − 1, 4 − 0} = 4.

With respect to timings, we first focus on dimension 3 comparing our implementation of
Algorithm 2 in the Macaulay2 package MonomialAlgebras (marked in the tables by
MA) with other methods. Here we consider the computation of the regularity via a minimal
graded free resolution both in Macaulay2 (M2) and Singular [8] (S). Furthermore, we
compare with the algorithm of Bermejo and Gimenez [2]. This method does not require the
computation of a free resolution, and is implemented in the Singular package mregular.lib

[3] (BG-S) and the Macaulay2 package Regularity [26] (BG-M2). For comparability
we obtain the toric ideal IB always through the program 4ti2 [14], which can be called
optionally in our implementation (using [28]). We give the average computation times over
n examples generated by the function randomSemigroup(α,d,c,num=>n,setSeed=>true).
Starting with the standard random seed, this function generates n random semigroups B ⊆ Nd

such that

• dimK[B] = d.
• codimK[B] = c; that is the number of generators of B is d+ c.
• Each generator of B has coordinate sum equal to α.

All timings are in seconds on a single 2.7 GHz core and 4 GB of RAM. In the cases
marked by a star at least one of the computations ran out of memory or did not finish within
1200 seconds. Note that the computation of reg Ig in step 4 of Algorithm 2 could easily be
parallelized. This is not available in our Macaulay2 implementation so far.

The next table shows the comparison for K = Q, d = 3, α = 5, and n = 15 examples.

c 1 2 3 4 5 6 7 8 9
MA .073 .089 .095 .10 .13 .14 .14 .19 .16
M2 .0084 .0089 .011 .017 .043 .10 .45 2.8 21
S .0099 .0089 .011 .013 .020 .046 .18 1.1 6.8
BG-S .016 .030 .19 1.2 15 24 59 44 77
BG-M2 .036 .053 .47 1.8 9.0 19 34 39 43

c 10 11 12 13 14 15 16 17 18
MA .21 .26 .22 .26 .29 .30 .31 .36 .47
M2 180 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
S 30 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
BG-S 170 520 ∗ ∗ ∗ ∗ 360 460 350
BG-M2 85 150 140 250 310 290 300 410 320

For small codimension c the decomposition approach has slightly higher overhead than
the traditional algorithms. For larger codimensions, however, both the resolution approach in
Macaulay2 and Singular and the Bermejo-Gimenez implementation in Singular fail. The
average computation times of the Regularity package increase significantly, whereas those
for Algorithm 2 stay under one second. The traditional approaches become more competitive
when considering the same setup over the finite field K = Z/101, but are still much slower
than Algorithm 2:
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c 1 2 3 4 5 6 7 8 9
MA .072 .088 .093 .10 .12 .13 .13 .19 .16
M2 .0075 .0095 .010 .013 .020 .032 .090 .40 2.8
S .0067 .010 .011 .015 .023 .041 .16 .99 6.3
BG-S .017 .020 .031 .052 .094 .12 .18 .34 .42
BG-M2 .030 .037 .064 .14 .34 .48 .80 1.5 2.0

c 10 11 12 13 14 15 16 17 18
MA .21 .25 .22 .25 .29 .29 .31 .35 .39
M2 26 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
S 28 250 ∗ ∗ ∗ ∗ ∗ ∗ ∗
BG-S .57 .88 .88 1.1 1.4 1.5 1.7 2.5 2.4
BG-M2 3.3 4.4 4.4 6.4 7.9 7.8 9.2 12 13

Note that over a finite field there may not exist a homogeneous linear transformation such
that the initial ideal is of nested type, see for example [2, Remark 4.9]. This case is not covered
and hence does not terminate in the implementation of the Bermejo-Gimenez algorithm in
the Regularity package. In the standard configuration the package mregular.lib can
handle this case, but then does not perform well over a finite field in our setup. Hence we
use its alternative option, which takes the same approach as the Regularity package and
applies a random homogeneous linear transformation.

Increasing the dimension to d = 4 we compare our implementation with the most com-
petitive one, that is, mregular.lib (K = Z/101, α = 5, n = 1). Here also the Singular

implementation of the Bermejo-Gimenez algorithm fails:

c 4 8 12 16 20 24 28 32 36 40 44 48 52
MA .13 .31 3.8 13 .69 2.2 1.7 1.9 1.5 4.4 6.0 8.9 13
BG-S .61 2.2 46 150 380 840 940 ∗ ∗ ∗ ∗ ∗ ∗

To illustrate the performance of Algorithm 2 we present the computation times (K =
Z/101, n = 1) of our implementation for d = 3 and various α and c:

α\c 4 8 12 16 20 24 28 32 36 40 44 48 52
3 .083
4 .073 .10 .24
5 .11 .13 .15 .22
6 .11 .31 .21 .22 .27 .75
7 .10 .16 .18 .24 .29 .86 1.0 1.4
8 .11 .22 .26 .31 .35 .54 .67 .85 1.2 3.6
9 .13 .25 .31 .38 .56 .64 .77 .98 1.4 3.8 5.7 8.6 13

The following table is based on a similar setup for d = 4:

α\c 8 16 24 32 40 48 56 64 72 80
3 .18 .51
4 .26 .32 .54
5 .31 13 2.2 1.9 4.4 8.9
6 9.6 120 ∗ ∗ 3.4 7.8 15 36 66 120
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Obtaining the regularity via Algorithm 2 involves two main computations - decomposing
K[B] into a direct sum of monomial ideals Ig ⊆ K[A] via Algorithm 1 and computing a
minimal graded free resolution for each Ig. The computation time for the first task is in-
creasing with the codimension. On the other hand the complexity of the second task grows
with the cardinality of Hilb(A), which tends to be small for big codimension. This explains
the good performance of the algorithm for large codimension observed in the table above. In
particular the simplicial case shows an impressive performance as illustrated by the following
table for simplicial semigroups with d = 5 and α = 5 (same setup as before). The examples
are generated by the function randomSemigroup using the option simplicial=>true.

c 10 20 30 40 50 60 70 80 90 100 110 120
MA 13 13 17 32 69 86 110 170 250 400 650 1000

In case of a homogeneous semigroup ring of dimension 2 the ideals Ig are monomial ideals
in two variables. Hence we can read off reg Ig by ordering the monomials with respect to
the lexicographic order (see, for example, [23, Proposition 4.1]). This further improves the
performance of the algorithm.

Due to the good performance of Algorithm 2 we can actually do the regularity computation
for all possible semigroups B in Nd such that the generators have coordinate sum α for some
α and d. This confirms the Eisenbud-Goto conjecture for some cases.

Proposition 4.3. The regularity of Q[B] is bounded by deg Q[B]−codim Q[B], provided that

the minimal generators of B in Nd have fixed coordinate sum α for d = 3 and α ≤ 5, for

d = 4 and α ≤ 3, as well as for d = 5 and α = 2.

Proof. The list of all generating sets Hilb(B) together with reg Q[B], deg Q[B], and codim Q[B]
can be found under the link given in [4]. �

Figure 1 depicts the values of deg Q[B]− codim Q[B] plotted against reg Q[B] for all semi-
groups with α = 3 and d = 4. For the same setup Figure 2 shows reg Q[B] on top of
codim Q[B] plotted against deg Q[B]. The line corresponds to the projection of the plane
reg Q[B] − deg Q[B] + codim Q[B] = 0. Figures for the remaining cases can be found at [4].
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[6] W. Bruns, B. Ichim, and C. Söger, Normaliz, computing normalizations of affine semigroups, available at
http://www.math.uos.de/normaliz.
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