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Abstract

Skin conductance (SC) data are usually characterized by a sequence of overlapping phasic skin conductance responses

(SCRs) overlying a tonic component. The variability of SCR shapes hereby complicates the proper decomposition of

SC data. A method is proposed for full decomposition of SC data into tonic and phasic components. A two-

compartment diffusion model was found to adequately describe a standard SCR shape based on the process of sweat

diffusion. Nonnegative deconvolution is used to decompose SC data into discrete compact responses and at the same

time assess deviations from the standard SCR shape, which could be ascribed to the additional process of pore opening.

Based on the result of single non-overlapped SCRs, response parameters can be estimated precisely as shown in a

paradigm with varying inter-stimulus intervals.

Descriptors: Skin conductance, SCR, Electrodermal activity, EDA, Deconvolution, Decomposition

Sudomotor activity plays amajor role in thermoregulation (Wen-

ger, 2003) and in keeping the skin flexible for sensory discrim-

ination (Jänig, 2006), but it is also a known concomitant of

emotional states such as arousal (Boucsein, 1992). Sweat secre-

tion alters the electrical properties of the skin, which is referred to

as electrodermal activity (EDA). By applying constant voltage,

the change in skin conductance (SC) can be measured non-

invasively (Fowles et al. 1981). In psychophysiological research,

EDA is one of the most commonly used response systems (Daw-

son, Schell, & Filion, 2007). EDAmeasures are applied in a wide

range of issues in basic research (e.g., attention, emotion) as well

as in clinical research (e.g., schizophrenia).

Physiology of Sweat Secretion

Central control of sweat gland activity is attributed to the hy-

pothalamic areas, especially the paraventricular and posterior

nuclei (Boucsein, 1992). However, many other subcortical and

also cortical regions are known to be involved in the modulation

of its activation (Critchley, Elliott, Mathias, & Dolan, 2000;

Edelberg, 1973). Sudomotor fibers descend via hypothalamic-

reticular-spinal sympathetic pathways in close proximity to other

sympathetic fibers (e.g., vasoconstrictor or piloerector effer-

ences) ending at the preganglionic sudomotor neurons. The pre-

ganglionic neurons leave the spinal cord ipsilaterally via the

lateral horn leading to the sympathetic trunk, where they are

switched to postganglionic neurons. The postganglionic neurons

innervate the secretory part of the sweat glands in a widely ram-

ified way. Though postganglionic sympathetic transmission is

usually adrenergic, postganglionic sudomotor transmission is

cholinergic, using acetylcholine as a synaptic transmitter. The

secretory segment of the sweat gland is located in the subcutis.

The sweat is discharged into a sweat duct leading through dermis

and epidermis and ending in a pore on the skin surface. The

density of eccrine sweat glands varies markedly over the human

skin. Following Millington and Wilkinson (1983) the density is

highest on the sole and dorsum of the foot, on the forehead,

cheek, palm, and forearm (200–600 per cm2).

Postganglionic sudomotor fibers are slow unmyelinated fibers

with conduction velocities of about 0.5 to 2 m/s (Decomyn,

1998; Schmelz, Schmidt, Bickel, Torebjörk, & Handwerker,

1998). Conduction time from central activation to the sweat

glands of the fingertips (with a mean distance of 1.1 m) was

estimated at 1.1 s (Lim, Seto-Poon, Clouston, & Morris, 2003).

Neuroeffector time at the sweat glands was estimated to take 348

ms (Kunimoto, Kirnö, Elam, & Wallin, 1991).

Each sweat gland is innervated by many different fibers

(Kennedy,Wendelschafer-Crabb, & Brelje, 1994; Riedl, Nischik,

Birklein, Neundörfer, & Handwerker, 1998), and vice versa

each sudomotor unit innervates a skin area of about 1.28 cm2

(Schmelz et al., 1998). Sweat glands differ markedly in their ac-

tivity and seem to possess different activation thresholds (Nishi-

yama, Sugenoya, Matsumoto, Iwase, & Mano, 2001). Studies

involving microneurography (Vallbo, Hagbarth, &Wallin, 2004)
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show that postganglionic sudomotor fibers fire in a burst fashion

with bursts having a mean duration of 638 ms (Macefield &

Wallin, 1996). A sudomotor burst corresponds to a single skin

conductance response (SCR). The amplitude of the SCR was

found to be linearly related to the amplitude of the integrated

sudomotor nerve activity reflecting the frequency of action po-

tentials (Bini, Hagebarth, Mynninen, &Wallin, 1980; Sugenoya,

Iwase, Mano, & Ogawa, 1990). Moreover, the SCR amplitude

was shown to be related to the number of recruited sweat glands

(Freedman et al., 1994; Nishiyama et al., 2001). Sudomotor

activity is known to be modulated by respiration and the cardiac

cycle (Macefield & Wallin, 1996, 1999).

Quantification Methods

The skin conductance signal is usually described as consisting of

a slowly varying SC level (SCL), which is superposed by separate

phasic SCRs. One is commonly interested to measure the am-

plitude of the phasic response to a given stimulus. Convention-

ally, SCRs that arise within a predefined response window (1–3 s

to 1–5 s after stimulus onset) and that also meet a minimum

amplitude criterion (0.01 to 0.05 mS) are considered to be elicited

by the stimulus (Dawson et al., 2007; Levinson & Edelberg,

1985). Estimation of SCR onset and amplitude is usually based

on trough-to-peak analysis. Minima and maxima in the SC data

are viewed as onset and peak latencies, and the amplitude is

computed as the difference of the SC values for onset (trough)

and peak times (Boucsein, 1992; Edelberg, 1967). Some inves-

tigators are also interested in measuring temporal characteristics

of the SCR. Parameters of foremost interest involve SCR latency

(i.e., time from stimulus onset to SCRonset), rise time (time from

SCR onset to SCR peak), and half recovery time (time from SCR

peak to 50% recovery of SCR amplitude). Finally, parameters of

tonic activity can be computed. The SCL can be estimated for

adequate time intervals by averaging SC scores in segments free

of SCRs (Boucsein, 1992). As an alternative, the frequency of

nonspecific SCRs can also be assumed to reflect tonic electrode-

rmal activity (Venables & Christie, 1980).

The scoring of phasic parameters is complicated for SCRs

that occur in close temporal proximity, since succeeding SCRs

will be distorted by the recovery slope of preceding SCRs. The

degree of distortion depends on the amplitude and proximity of

the preceding SCR (Grings & Schell, 1969). If the recovery slope

cannot be extended and subtracted, the peak latency and the

amplitude of the following SCRwill generally be underestimated.

Moreover, close superposition of two SCRs can obscure the on-

set of the latter or even make them appear as one. This is es-

pecially problematic if, as a consequence, SCRs are wrongly

shifted outside or inside the response window and thus become

misclassified responses as a whole. Paradigms with short inter-

stimulus intervals (ISI) appear particularly prone to these errors.

So far, different efforts have been made to identify superposing

SCRs (Foerster, 1984; Thom, 1988). Moreover, first approaches

for the decomposition of SC data have been proposed. Barry,

Feldman, Gordon, Cocker and Rennie (1993) suggested linearly

extending the baseline to a point below the following SCR peak.

Recently, more sophisticated techniques have been presented

trying to decompose SC data into discrete phasic components.

Lim et al. (1997) proposed a curve-fitting method for the de-

composition of 10 s segments of SC data. A four- to eight-pa-

rameter model is employed to fit tonic level, slope of preceding

SCR, and shape of one SCR or two overlapping SCRs (more

details can be found in the section on the SCR shape). The de-

composition process requires visual inspection to determine in

advance if the segment includes a residual slope and overlapping

SCRs before a standard least-squares routine fits themodel to the

data. SCR measures can then be derived from the model

parameters. Lim et al. (1997) report significant increases of

amplitude (by 15%) and latency (by 140 ms) as compared to

standard trough-to-peak method, and demonstrated the

applicability of the method to settings with short ISIs (Lim

et al., 1999).

Alexander et al. (2005) proposed an automated analysis

method based on the mathematical process of deconvolution.

They argue that SC data are the result of a convolution process of

the activity of sudomotor nerves (corresponding to a driver

function) and an impulse response shaped like a biexponential

function. Deconvolving SC data by the response function reveals

the driver function, which conforms to a sequence of discrete

bursts having a much shorter time constant than the SCRs. Peak

detection is performed on the driver function and time segments

of separate peaks are extracted. Finally, isolated SCRs can be

obtained by calculating the difference of the original SC data

with a reconstructed signal, for which the respective segment is

set to baseline. Phasic parameters (e.g., SCR amplitude) can then

be computed from each single, non-overlapped SCR.

The Shape of the SCR

When measuring SC by means of exosomatic DC-recording, an

isolated SCR shows amonophasic course, which is characterized

by a steep increase of SC and a slow recovery (Boucsein, 1992).

There have been different attempts to quantitatively or qualita-

tively describe the course of the SCR. Quantitative approaches

look for mathematical functions describing the course of the

SCRover time. Lim et al. (1997) proposed a sigmoid-exponential

four-parameter SCR model, which is defined as follows:

f ðtÞ ¼ g � e
�t
t2= 1þ t1

t

� �2� �2

for t > Tos ð1Þ

where g reflects gain, t1 and t2 are related to rise time and decay

time, respectively, and TOS is onset time. The sigmoid part serves

as approximation of the cumulative action of sweat duct filling,

while the exponential decay function is thought to depict the

recovery limb. For each parameter, some rationale is provided

that links it to physiological processes.

In the model of Alexander et al. (2005), the SCR is described

by a biexponential function, which was previously used to model

effects of individual nerve impulses on the synaptic activation of

the neuronal membrane (Wright et al., 2001):

f ðtÞ ¼ g � e
�t
t1 � e

�t
t2

� �
ð2Þ

According to the authors, setting the parameter values

t1 5 0.75 and t1 5 2 worked well for all data they analyzed.

The model was found to adequately relate a short time-constant

process (i.e., sudomotor bursts) to a long time-constant process

(i.e., SCRs).

A qualitative approach was taken in the poral valve model by

Edelberg (1993). This model assumes an initial situation, in

which especially the distal part of some ormost of the sweat ducts

are collapsed by the external pressure exerted by a well hydrated

surrounding corneum and, consequently, most of the pores are

closed. As sweat fills the ducts to the limits of their capacity,

intraductal pressure will cause hydraulic driven diffusion of

sweat into the corneum (see Figure 1A). Increasing hydration of
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deeper levels of the corneum will contribute to a moderately ris-

ing SC. As sweat is reabsorbed into the dermis or diffuses away

from the periductal area, SC will slowly recover, resulting in a

rather flat SCR. If secretion is strong enough and intraductal

pressure becomes stronger than the tissue pressure of the corn-

eum, the pore will eventually open. In addition to the diffusion

into the corneum, sweat will now be forced out through the pore.

Consequently, SC will show a steep increase. Volume loss

through the pore is substantial, and, after a short time, the se-

cretory rate cannot keep up with the loss of volume. The intra-

ductal pressure will soon fall below tissue pressure, and pores will

collapse again. This causes a rapid fall in SC, which finally passes

into a slower recovery as in the abovementioned case (see

Figure 1B). This model proposes that the SCR shape can pri-

marily be ascribed to two different underlying processes: an un-

conditional diffusion process, which, taken alone, causes a rather

flat SCR, and an optional opening of pores, which will add a

steep peak to the basic SCR shape. These processes thus give rise

to a variability of the SCR shape, which has not yet been properly

accounted for in quantitative models.

Modeling the Diffusion Process

The quantitative approaches described above (Equations 1 and 2)

have been proposed based on the similarity of the resulting

functions with experimentally obtained SCRs. Biexponential

functions (Equation 2) can, however, be derived directly from

models of the dynamics of the concentration of sweat in the

corneum. It can be assumed that this concentration is governed

by the laws of diffusion (Edelberg, 1993; Schneider, 1987). Its

dynamic can be modeled by a two-compartment model. The

substance (sweat) is released to compartment A (sweat duct),

transgresses to compartment B (corneum), and is eliminated

from compartment B (e.g., by evaporation). Both diffusion and

elimination are assumed to operate one way at speeds propor-

tional to the concentration in their respective compartment. One-

way diffusion can reasonably be assumed, if compartment B is

much larger than compartment A. The dynamics can then be

derived from two coupled first-order differential equations de-

scribing the concentration in compartments A and B:

da

dt
¼ � aðtÞ

t1
;
db

dt
¼ aðtÞ

t1
� bðtÞ

t2
ð3Þ

The assumption of forward-only diffusion allows a stepwise

solution, entering the solution to the previous compartment in

the equation for the next compartment. The solution of this

coupled first-order equation is a biexponential function b(t), the

so-called Bateman function:

bðtÞ ¼ e
�t
t1 � e

�t
t2 ð4Þ

The Bateman function is characterized by a steep onset and a

slow recovery. The steepness of onset and recovery is character-

ized by the time constants t1 and t2. This function is well known

in pharmacokinetics to quantify the time course of first-order

invasion of a drug into, and its first-order elimination out of, a

compartment body model (Garret, 1994).

As mentioned before, a biexponential function was previously

proposed byAlexander et al. (2005) as amodel for the SCR shape

(compare Equation 2). We prefer it to the exponentially damped

sigmoid proposed by Lim et al. (1997), because its exact shape can

be derived from a simple diffusion model. With respect to Edel-

berg’s model, we assume that the Bateman function primarily

describes the diffusion part of the SCR shape. Up until this time,

we do not have clear assumptions that enable us to additionally

model the effect of pore opening in a quantitative way.

We agreewithAlexander et al. that deconvolution represents a

very useful technique to reveal the discrete activation underlying

SC data. However, standard deconvolution requires the assump-

tion of a standard SCR shape (i.e., impulse response) and thus

cannot account for different SCR shapes as they may result from

the conditional process of pore opening. Therefore, we propose a
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Figure 1. Diagram of two different sequences underlying an SCR (adapted from Edelberg, 1993, with friendly permission). If sweat ducts are filled to

their limits, intraductal pressure will cause a hydraulic driven diffusion of sweat to the corneum resulting in a flat SCR (A). If intraductal pressure exceeds

tissue pressure, the distal part of the duct and the pore will eventually open, which results in a peaked SCR (B).



deconvolution method that deconvolves data by a fixed response

function (i.e., the Bateman function), but which at the same time

allows the detection of any deviation from this SCR shape.

Nonnegative Deconvolution

Standard (one-dimensional deterministic) deconvolution can be

applied to any signal, which evolved from convolution of a driver

function with an impulse response. If the shape of the impulse

response is known, deconvolution will perfectly retrieve the orig-

inal driver function. In accordance with Alexander et al. (2005),

we assume that SC can be viewed as the result of a driver function

(i.e., the activity of sudomotor neurons or sweat glands) trigger-

ing an impulse response (i.e., increased conductivity of the skin

due to perfusion by sweat). Sudomotor neurons are supposed to

be either active (stimulating sweat glands to discharge sweat) or

to be inactive. From this, it can be postulated that a driver func-

tion, representing the activity of sudomotor neurons, should be

nonnegative, either showing positive deflections (impulses) in

states of activity or remaining at zero otherwise. Moreover, we

assume that single SCRs correspond to discrete bursts of sudo-

motor activity and that consequently impulses should be com-

pact in time. They shall thus exhibit a marked onset and offset

which define their extent in time. These claims result in a non-

negative driver function, which is characterized by a zero baseline

intermitted by discrete positive impulses with a compact support.

Systematic analyses of SC data by means of standard decon-

volution employing the Bateman function for varying parame-

ters (t1, t2), however, fail to produce such a driver function. This

may be attributed to the fact that standard deconvolution only

accounts for a fixed impulse response (i.e., a single standard SCR

shape) and thus is not able to deal with varying SCR shapes.

Typical deconvolution results for standard deconvolution ap-

plied to either flat or peaked SCR shapes (which may result from

closed or open pores, as suggested by Edelberg, 1993) are dis-

played in Figure 2. Using an impulse response with small t2 (e.g.,
t2 5 2, as proposed by Alexander et al., 2005) yields a nonneg-

ative driver function for flat and peaked SCR shapes; however,

impulses show a tail after the main deflection, thus violating the

assumption of compact impulses. On the other hand, using an

impulse response with higher t2 (e.g., t2 5 20) will yield a com-

pact impulse for a flat SCR shape; however, for a peaked SCR

shape, the impulse shows a negative bend after the main deflec-

tion, thus violating the assumption of nonnegativity.

In order to comply with the claims of nonnegativity and

compactness of impulses in the face of varying SCR shapes, we

suggest a variant of the standard deconvolution method. Stan-

dard deconvolution can be thought to work in a similar way to

arithmetic long division (Evans, 1995). The signal is virtually

divided by the impulse response yielding the driver function.

However, the procedure only accounts for the respective first

digit of dividend and divisor and, since real numbers are allowed,

there is no carryover. Therefore, negative values can occur in the

quotient (i.e., driver function) and the remainder is zero. If we

demand that all values of the quotient have to be nonnegative, we

have to consider the entire divisor, calculate the quotient digit by

digit, and take the overall minimum. This adapted version of

deconvolution is even more similar to arithmetic long division

since it considers the whole divisor. As there is still no carryover,

the remainder is no longer confined to zero. Since this method

ensures that the resulting driver is nonnegative, wemay refer to it

as nonnegative deconvolution. An explicit demonstration of the

computation procedure for standard and nonnegative decon-

volution, based on an example, is provided in the Appendix.

In the bottom row of Figure 2, nonnegative deconvolution is

applied to flat and peaked SCRs using an impulse response with

high t2. Standard and nonnegative deconvolution do not differ

for a flat SCR. For a peaked SCR, nonnegative deconvolution

yields a nonnegative driver function exhibiting a compact pos-

itive impulse, plus a positive remainder. It thus, again, meets the

claim of nonnegativity and compactness. The optional positive

remainder represents a deviation from the basic SCR shape.

Following Edelberg’s model, a deviation from the basic (i.e., flat)

SCR shape may be associated with the process of pore opening.

According to this reasoning, the method would be able to seg-

regate a peaked SCR into a diffusion part and an additional part

attributed to the process of pore opening. Note that deconvo-

lution by a response function with a total integrated area of 1 is a

neutral transformation with respect to the area of the signals.

650 M. Benedek & C. Kaernbach

Figure 2. Standard deconvolution and nonnegative deconvolution applied to model data of two differently shaped SCRs: (A) flat SCR, resulting from

sweat diffusion only; (B) peaked SCR, resulting from sweat diffusion and additional pore opening. Standard deconvolution is depicted for two different

impulse response functions (Bateman functionwith small and higher t2), while nonnegative deconvolution is only depicted for the latter impulse response

function.



Thus, the area of the phasic data equals the area of the sum of

driver and remainder function; and the area of single SCRs

equals the total area of the corresponding impulse and the

corresponding remainder component. However, the signal-to-

noise ratio is enhanced in the deconvolved signal as the time basis

for single components is markedly reduced and the peak ampli-

tude is enlarged.

Method

Participants

Forty-eight healthy student volunteers (29 females) were re-

cruited from the Christian-Albrecht University student body

through advertisement. Mean age of the participants was 22.8

years (SD5 2.20). Prior to the experiment, the participants were

presented single noise bursts of 85, 90, and 95 dB SPL (white

noise of 140 ms total duration with 20 ms linear ramps). They

were told that the experiment comprised thirteen noise bursts of

95 dB. After this instruction, participants could decide upon

participation. No participant refused to participate. All partic-

ipants gave their written informed consent andwere paid for their

participation. The procedure was approved by the ethics com-

mittee of the German Psychological Society.

Equipment and Data Acquisition

The experiment took place in a soundproof cabin. The stimuli

were presented via a closed Beyerdynamic DT 770 PRO head-

phone (Heilbronn, Germany). A 16-channel bioamplifier

(Nexus-16; Mind Media B.V.; Roermond-Herten, The Nether-

lands) providing 24 Bit A/D conversion was used for data ac-

quisition. A customer-specific SC sensor was used for SC

recording, ensuring the acquisition of completely raw, unfiltered

SC data. The functional circuit of the sensor comprised a voltage

source of 10 Vconnected in series with 13.2 MO. Thus, for SC in

a typical range of 1 mS or higher the sensor maintained a voltage

of less than 0.8 V between the two flat Ag-AgCl electrodes of 10

mm diameter placed at the medial phalanges of the digits III and

IV of the non-dominant hand. In order to preserve the natural

condition of the skin, no isotonic electrode paste was used in this

experiment. SC data was sampled at 32 Hz. As part of a standard

routine, blood volume pulse was recorded via a photoplethysmo-

graph placed on digit II of the non-dominant hand (sampled at

128 Hz), and respiration was assessed via a respiration belt

placed on the chest (sampled at 32 Hz). The data of these ad-

ditional sensors, however, were not analyzed.

Experimental Task and Procedure

After a rest period of 3 min, the participants were presented with

a series of thirteen noise bursts. The level of these noise bursts

was 95 dB SPL, the total duration was 140 ms with 20 ms

linear ramps. The sequence startedwith an initial stimulus, which

was succeeded by stimuli that were virtually grouped into three

blocks of four bursts. In each block, an ISI of 4, 8, 16, and 32

seconds was realized exactly once. The ISIs within each

block were randomized with the only condition that the first

ISI of each block was not the same as the last of the preceding

block, thus ensuring that two consecutive ISIs were different

from each other for the whole sequence. The analysis section

considers activity related to the final twelve stimuli, ignoring the

initial stimulus.

Participants were seated in a chair with a neck-rest, with their

non-dominant forearm placed on a soft armrest. After attach-

ment of the physiological sensors, the participants were asked to

find a comfortable position and to avoid any unnecessary move-

ment during the experiment. During the experimental session, the

experimenter sat outside of the cabin andmonitored the stimulus

presentation and the recorded physiological data. The experi-

ment took about 40 min in total.

Statistical Analysis

The minimum-amplitude criterion for inclusion of SCRs was set

to 0.01 mS. SCR components that assumably correspond to pore

opening will be referred to as PO components hereafter. PO

components of amplitudes equal or higher than 0.005 mS are

considered to be significant and included in the further analysis.

In order to account for the positively skewed distributions of

SCR amplitudes, the data were standardized with the formula

SCn 5 log(11SC) (Venables & Christie, 1980). The respective

units are labeled as log mS. For ANOVA analyses, degrees of

freedom were corrected by means of the Greenhouse-Geisser

method where appropriate and Bonferroni post-tests were used

for pair-wise comparison of means.

Seven participants (14.6%) failed to show significant SCRs to

at least 50% of the stimuli, which may constitute a habituation

effect caused by the frequent repetition of identical stimuli. In

order to allow for a powerful statistical analysis, participants

displaying this comparatively low response rate were excluded

from the further analysis. The final sample thus comprised 41

participants.

Decomposition Procedure

The decomposition procedure involves four steps: estimation of

the tonic component, nonnegative deconvolution of phasic SC

data, segmentation of driver and remainder, and reconstruction

of SC data. The procedure is initially performed for a predefined

parameter set (e.g., t1 5 0.75, t2 5 20). In order to increase the

goodness of fit of the model, these parameters then become op-

timized, which involves rerunning all four steps for each new

parameter set. In the following, the single steps of the decom-

position procedure are described in more detail and exemplified

on basis of a 60-s sample of SC data (see Figure 3). The entire

decomposition is performed using our own SC analysis software

(Ledalab 3.0.4) written in MATLAB, which is available online

(www.ledalab.de).

Estimation of tonic component. Tonic EDA can be observed

in the absence of any phasic activity (Boucsein, 1992). To this

end, SC data is deconvolved, and all intervals that are not part of

impulses (reflecting phasic activity) are used as estimates for the

tonic activity. First, a standard deconvolution using the Bateman

function as impulse response is computed. The resulting estima-

tion of the driver is not nonnegative (Figure 3B, see also third

row of Figure 2) which is undesirable. It does, however, only

serve to find SC data free from phasic activity.

As data convolution can be conceived as a smoothing oper-

ation, deconvolution has the reverse effect and amplifies error

noise. Therefore, the resulting driver function is smoothed by

convolution with a Gaussian window (s5 200 ms). Then, peak

detection is performed on the smoothed driver function in order

to identify impulses. This is achieved by finding zeros in the first

time-derivative of the smoothed driver function. A significant

peak is detected if a local maximum has a difference of d � 0.2

mS to its preceding or following local minimum. An impulse sec-

tion is defined by the local minima preceding and succeeding the

significant peak in time. All time sections that are not part of

detected impulses (inter-impulse sections) are considered to re-
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flect non-overlapped tonic component. Finally, tonic activity is

estimated for a time grid with 100-s spacing by averaging the

driver function values of available inter-impulse sections within

the range of half of the grid spacing before and after the grid

points. A cubic spline fit is used to interpolate the tonic activity

based on the grid data (see Figure 3B). Thus, the tonic compo-

nent is a quasi-steady function described by five parameters

(point in time and four cubic parameters) every 100 s of data.

Once the tonic component is estimated, it is subtracted from the

raw SC data. This yields phasic SC data, which consists of amere

superposition of phasic components (i.e., SCRs).

Nonnegative deconvolution. In order to avoid initial decon-

volution artifacts, which arise if the data do not start at zero level,

the data is prefixed with a smooth data fade-in. To this end, the

phasic data are extended by adding the rising part of the impulse

response, such that the last sample of the extension (i.e., max-

imum of impulse response) matches the first sample of the phasic

data. Then, nonnegative deconvolution is applied to the extended

phasic data as previously described. It results in a nonnegative

driver function and a nonnegative remainder. Both signals are

smoothed by convolutionwith aGaussian window (s5 200ms).

After smoothing, the discreteness of the driver impulses becomes

evident (see Figure 3C).

Segmentation of driver and remainder. The obtained driver

function is segmented in order to identify single impulses. This,

again, is realized by a peak detection analysis as described earlier

(now applying a less conservative detection threshold of d �
0.01 mS). Remainder segments are allotted to a certain impulse if

their onset falls into the time epoch from the onset of this impulse

to the onset of the succeeding impulse. It can be observed that, if

there is any deflection in the remainder segment, it reliably begins

around the peak latency of the corresponding impulse and ends

at the latest before the peak of the following impulse (see Figure

3C, compare also Figure 4B). This supports the concept of non-

negative deconvolution and its relation to the poral valve model.

Thus, nonzero activity of the remainder function subsequent to

an impulse could be attributed to the pore opening process of the

respective response.

Reconstruction of SC data. The original SC data can now be

recomposed from its components. Each SCR is reconstructed by

convolution of the respective impulse with the impulse response

function and by adding the respective PO component, if avail-

able. SCR characteristics (e.g., SCR amplitude) can then be

derived from the shape of a single non-overlapped SCR. Finally,

all SCRs are superposed to the tonic component, restoring

the original SC data on the basis of a full decomposition (see

Figure 3D).

Optimization. However, the most adequate realization of the

response function (i.e., Bateman function) is unknown and

thought to reflect individual differences in skin characteristics.
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Figure 3. Sequence of the decomposition of SC data by means of nonnegative deconvolution. Given is a 60-s segment of raw SC data (A). Tonic

SC activity is estimated based on inter-impulse data detected in the standard deconvolution of the raw SCdata (B). Nonnegative deconvolution is applied

to the phasic SC data (original SC data minus tonic SC activity) and single impulses and corresponding pore opening components are identified by

means of segmentation of driver and remainder signal (C). The original SC data can finally be recomposed by superposition of its tonic and phasic

components (D).



Therefore, the initial parameter set is optimized to fit the ob-

served SCR shape as accurately as possible. To this end, several

criteria are used to evaluate the quality of the obtainedmodel and

to optimize it. First, the deflections of driver and remainder (i.e.,

impulses and PO components, respectively) and the signals

should approach zero between deflections. As an indicator of

discreteness (d), the number of succeeding samples with values

above a predefined threshold (of d5 0.2 and 0.005 for driver and

remainder function, respectively) are counted. These counts rep-

resent the length of a non-zero section. They are squared,

summed, and divided by the total sample number. This function

returns high values, if there are long time sections above thresh-

old. Then, the number of phasic responses (n) is considered, as a

higher number of responses allow for a closer fit, but also op-

poses the parsimony of the model. Finally, the RMSE of the

difference between original SC data and recomposed data is used

as an indicator of the goodness of the fit. Based on these criteria,

a compound criterion c is computed as follows:

c ¼ RMSE � ðnþ 1Þ � d ð5Þ

The model is optimized by minimizing the criterion c. Low

criterion scores are obtained for a model based on a low number

of short impulses offering a close fit to the original data. The

optimization is achieved by means of a gradient descent method

(e.g., Snyman, 2005), which essentially changes parameters in

direction of highest criterion improvement until no further sig-

nificant improvement can be obtained.

As exemplified in Figure 3, some SCRs do not show a distinct

onset defined by a local minimum, but they correspond to a

discrete impulse in the driver signal (e.g., the second or the one

but last SCR). The decomposition method thus detects and seg-

regates SCRs, which would have been missed or merged by

standard peak detection.

Results

Decomposition of SC Data

Decomposition of SC data was automatically processed for all

data. The reconstructed data fitted the original data with an

average RMSE of 0.019 mS (SD5 0.01). The optimization of t
parameters was performed for four different sets of initial values

(t5 0.75, 2; t5 0.75, 20; t5 0.75, 40; t5 0.75, 60). All four sets

usually converged toward a common solution, and the solution

with the overall lowest model error was kept. The optimized

values averaged for the sample were t1 5 0.46, t2 5 29.06

(SD5 0.48 and 14.85, respectively).

Impulses could be discriminated at inter-impulse latencies (or

inter-SCR latencies, respectively) down to 0.69 s. Overall, sig-

nificant PO components were found for 44.1% of the above–

threshold SCRs, and their amplitudes made up for 25.1% of the

total SCR amplitudes.

Figure 4 shows the amplitudes of the PO components as a

function of the amplitude of the underlying diffusion compo-

nents. The amplitudes have been normalized by dividing them by

the mean of the SCR amplitudes of the respective participant.

Amplitudes of diffusion and PO components per participant

showed an average correlation of r5 .50 (SD5 .25), suggesting a

higher probability that large diffusion components are accom-

panied by large PO components. The median (solid line) and

percentiles (dotted lines) also show that this positive relation is

not linear over the total range. The probability for a PO com-

ponent of a significant size increases disproportionately for

diffusion components that have at least 50% of the mean am-

plitude for this participant. Moreover, the moderate and non-

linear correlation of diffusion and PO components are an

indication of the high variability of the SCR shapes.

A recommended standard method to quantify the SCL is to

average SC scores at the respective beginning of each SCR and

average them over an interval of 10 s (Boucsein, 1992). This

standard measure was compared to the tonic component (as ob-

tained by the decomposition) with respect to the variability over

time. The variability of the tonic activity was assessed by aver-

aging the tonic activity for time intervals of 10 s and then com-

puting the mean absolute difference of succeeding time intervals.

The standard measure of SCL showed a mean variation of 0.14

mS (SD5 0.08) per 10 s. The tonic component derived from the

decomposition showed a markedly lower mean variation of only

0.03 mS (SD5 0.02) per 10 s (t[40]5 10.42, po.001).

Event-Related Activation

Figure 5A shows prototypical driver impulses for the four differ-

ent ISIs. With a few exceptions, most driver impulses have com-

parable onset times and durations. The width of the averaged

driver impulses (Figure 5B) is thus mainly due to the width of the

single pulses, and not to onset variability. Figure 5B shows

averaged driver impulses and averaged remainder data for the

four ISI conditions.

The event-related response was analyzed relative to stimulus

onset. Response parameters were averaged per participant and

analyzed with respect to the inter-stimulus interval (ISI5 4, 8,

16, and 32 s) by means of ANOVA (within-subject factor ISI).

Impulses occurred with a mean onset latency of 1249 ms

(SD5 246.4) and a mean peak latency of 2095 ms (SD5 308.8).

They showed a mean duration of 1615 ms (SD5 416.8), a mean

log-transformed amplitude of 1.04 log mS. While impulse onset

and peak latencies were not influenced by ISI (F[3,117]5 1.51,
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Figure 4. Normalized amplitudes of diffusion and pore opening

components of SCRs, for all SCRs that occurred during the

experiment. The solid and dashed lines show the median and the 25%

and 75% percentiles for the size of the pore opening component for a

given size of the diffusion component (in the range from 0 to 2 at bins of

0.25).



p5 .22, e5 .88, Z2 5 .04; and F[3, 117]5 1.11, p5 .35, e5 .76,

Z2 5 .03, respectively), impulses related to longer ISIs showed a

longer duration (F[3,111]5 4.17, po.05, e5 .86, Z2 5 .10) and a

higher amplitude (F[3,117]5 9.52, po.001, e5 .79, Z2 5 .20; see

Table 1 and Figure 5).

The PO components occurred at amean onset latency of 1938

ms (SD5 282.6), which was on average 728 ms (SD5 226.1)

after impulse onset and 118 ms (SD5 139.9) before impulse

peak. Their mean peak latency was 3573 ms (SD5 573.3), which

is 709 ms after impulse offset. PO components showed a mean

duration of 4296 ms (SD5 1045.3), and their log-transformed

amplitude amounted to 0.11 log mS (SD5 0.74). Neither onset

latency, duration, nor amplitude of PO components was found to

differ with respect to ISI (F[3, 87]5 1.42, p5 .24, e5 .79,

Z2 5 .05; F[3, 84]5 0.95, p5 .42, e5 .78, Z2 5 .03; F[3,

87]5 0.85, p5 .46, e5 .84, Z2 5 .03). However, PO peak

latency was found to be higher for increasing ISIs (F[3,

87]5 8.78, po.001, e5 .64, Z2 5 .23; see Table 1 and Figure 5).

SCRs, which were reconstructed from impulses and PO com-

ponents, haveFper definitionFthe same onset latencies as the

respective impulses. Their mean log-transformed amplitude was

0.28 log mS (SD5 0.17) and theirmean log-transformed areawas

2.20 mS � s. SCR amplitude as well as SCR area were significantly

higher for longer ISIs as compared to shorter ISIs

(F[3,117]5 13.51, po.001, e5 .73, Z2 5 .26; F[3,87]5 11.11,

po.001, e5 .74, Z2 5 .28; see Table 1 and Figure 5).

Comparison of Nonnegative Deconvolution and Standard Peak

Detection

The method of nonnegative deconvolution detected SCRs

in 87% of the events and was found to be more sensitive than

the standard peak detection method displaying a significantly

lower detection rate of 78% (w2[1]5 113.8, po.001). The differ-

ence in the detection rates was largest for the shortest ISI of 4 s

(111%) and lowest for the longest ISI of 32 s (16%), the in-

teraction of method and ISI was, however, not significant

(F[3,120]5 0.36, ns.).

For events at which both methods detected significant SCRs,

nonnegative deconvolution yielded higher average SCR ampli-

tudes (10.06 log mS or 117%) and shorter SCR latencies (� 339

ms or � 21%) as compared to standard peak detection

(M5 0.30 log mS, SD5 0.16 vs. M5 0.26 log mS, SD5 0.15,

t[40]5 11.31, po.001, and M5 1227 ms, SD5 170 vs.

M5 1565 ms, SD5 214, t[40]5 � 19.89, po.001).

Discussion

Skin conductance is a widely used measure of psychological

arousal. Its popularity may partly be due to the availability of

simple and inexpensive methods for data acquisition (Dawson

et al., 2007). Moreover, phasic skin conductance responses seem

to be a reliable concomitant of states of arousal, with SCR am-

plitudes providing information on the intensity of these states.

While data acquisition can be achieved quite easily, data analysis

is faced with a complex signal of many superposed discrete re-

actions overlying a tonic component. Pragmatic but imprecise

methods, such as trough-to-peak analysis, are commonly applied

to extract parameters from raw SC data.

Recently, there have been valuable efforts to decompose SC

data into single components striving to avoid distortions of pa-

rameter estimations due to superposed SCRs. Lim et al. (1997)
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Figure 5. Event-related EDA in response to a startle probe for varying ISIs (4, 8, 16, and 32 s) depicted for 6 s relative to stimulus onset. Panel A shows

the driver impulse for the 50 strongest responses. Panel B shows the average driver (impulse) and remainder data (nThe remainder was amplified by

factor 6 in order to be discriminable in a common scaling with the driver data). Panel C shows the SCR recomposed by diffusion and pore opening part.



proposed a fitting method for decomposing 10-s sequences of

data into a sloping baseline and up to two overlapping SCRs.

Alexander et al. (2005) introduced the deconvolution method,

which assumes a standard SCR shape and transforms SC data

into a sequence of discrete impulses, which are then used to re-

store single non-overlapped SCRs.

The method proposed in this paper extends prior approaches

and is aimed at decomposing comprehensive SC data sets (e.g.,

data of a complete experimental session) into a tonic component

and a sequence of discrete phasic components allowing for a vari-

able SCR shape. It is based on Edelberg’s (1993) conception of

two mechanisms contributing to the SCR shape, namely, sweat

diffusion and pore opening (i.e., sweat expulsion). The process of

sweat diffusion was modeled by a two-compartment diffusion

process. It results in a biexponential function, which is assumed to

capture the essential SCR shape based on sweat diffusion. Vari-

ations of this basic shape (due to pore opening) can be assessed by

means of nonnegative deconvolution. Nonnegative deconvolution

(as compared to standard deconvolution) yields a driver signal,

which fulfills the constraints of nonnegativity. If used with the

appropriate template, it results in compact impulses. It is thus in

accordance with the assumption of a nonnegative sudomotor

nerve activity characterized by discrete bursts. In addition, non-

negative deconvolution also yields a nonnegative remainder signal,

which captures all variations from the basic SCR shape. Discrete

peaks in the remainder signal in close proximity to peaks of the

driver function are assumed to represent the physiological process

of pore opening, which occasionally accompanies sweat diffusion

in an SCR.

In the present experimental study, noise bursts (i.e., startle

probes) were used to elicit well-defined SCRs at varying inter-

stimulus intervals (ISIs) of 4 to 32 s. All data were successfully

decomposed into a slowly varying tonic component (i.e., SCL)

overlapped by a sequence of SCRs by means of automated anal-

ysis. Optimization of individual model fit resulted in average

estimations for SCR shape parameters of t1 5 0.46, t2 5 29.06. A

diffusion process described by these parameters shows a half-

recovery time of 22.5 s. For such a slow recovery speed, it can

easily be seen that a tight sequence of SCRs will rapidly accu-

mulate and result in an overall increase of SC. On this note, it

appears possible that the variation of the SCLFas assessed by

standard techniques (e.g., SC value at SCR onset; see Boucsein,

1992)Fis determined by the slow diffusion process of sweat

through the corneum and thus largely represents a reverberation

of phasic responses. This notion is corroborated by the obser-

vation that the variability of the decomposed tonic component

was markedly reduced as compared to a standard measure of

SCL. What still is captured by the decomposed tonic component

may be attributed to some very slow physiological or non-phys-

iological processes, which do not necessarily reflect SCL in the

sense of tonic activation any more.

The characteristics of single SCRswere studied on the basis of

well-defined responses to startle probes. The average impulse

onset latency (i.e., SCR onset latency) was 1249 ms, which is

markedly shorter than the onset latency of 1703 ms recently re-

ported by Lim et al. (2003) for 100 dB startle probes. This

difference may be the result of the particular conditions for onset

determination based on deconvolved data. Impulses have a very

advantageous signal-to-noise ratio as compared to raw SC data.

They arise from a quasi constant baseline, have high amplitudes,

short rise times (846 ms) and thus exhibit much steeper inclina-

tions than SCRs. To some extent, the difference could also be

attributed to the effect of data smoothing, which is indispensable

in a deconvolution procedure and which will tend to advance the

onset of any deflection. This effect should, however, not exceed

the temporal parameters of the smoothing procedure (Gaussian

window with s5 200 ms in our study). As a single impulse ap-

pears to have a virtually symmetrical shape (with its peak 846 ms

after impulse onset and a duration of 1615 ms), the impulse peak

latency is not prone to distortion by smoothing. Therefore, if we

want to tell if an SCR is located within a predefined response

window, the impulse peak latency may represent an even more

reliable indicator of SCR position than impulse onset.

A driver impulse is assumed to be a correlate of the activity of

the sudomotor nerves (Alexander et al., 2005). Themean impulse

duration of 1615 ms, however, is markedly longer than the mean

duration of heat-induced sudomotor bursts (638 ms) reported by

Macefield andWallin (1996) on grounds of microneurographical

methods. Although one generally has to stay cautious when di-

rectly comparing data resulting from such different recording

techniques as microneurography and SC recording, this discrep-

ancy might also be attributed to the different stimulus type.

Macefield and Wallin used an initial warming procedure in order

to elicit spontaneous responses. These spontaneous responses

might be weaker than SCRs elicited by startle probes. While

smoothing might feign longer durations, this effect will again be

limited to the width of the smoothing window. In order to avoid

smoothing biases, the impulse duration could also be estimated

bymeans of the secondmoment of the respective impulse section.

SCR amplitudes were found to increase with increasing ISI.

Short ISIs will result in stronger superposition of SCRs, which
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Table 1. Means and Standard Deviations of Various Shape

Characteristics of Impulse, PO Component and SCR by

Inter-Stimulus Interval (ISI)

ISI

4 8 16 32
M (SD) M (SD) M (SD) M (SD)

Impulse Onset
latency (ms) 1311

(273)
1240
(283)

1225
(208)

1219
(219)

Peak latency (ms) 2057
(308)

2091
(344)

2106
(309)

2124
(272)

Duration (ms) 1458
(344)a

1610
(401)ab

1662
(474)b

1720
(419)b

Amplitude (log mS) 1.71
(0.73)a

1.89
(0.81)ab

2.04
(0.79)bc

2.21
(0.78)c

Pore opening
Onset latency (ms) 1910

(368.1)
1848
(294.7)

1906
(331.7)

1973
(301.1)

Peak latency (ms) 3389
(526)ab

3302
(469)a

3442
(518)b

3648
(566)bc

Duration (ms) 4486
(986.1)

4257
(775.7)

4138
(850.4)

4302
(1121.1)

Amplitude (log mS) 0.11
(0.07)

0.13
(0.08)

0.13
(0.09)

0.12
(0.09)

SCR
Amplitude (log mS) 0.22

(0.15)a
0.27

(0.18)a,b
0.31

(0.19)b,c
0.36
(0.20)c

Area (log mS � s) 1.84
(0.62)a

2.19
(0.61)b

2.24
(0.73)b

2.53
(0.71)c

Note. a,b,cMeans with different letters differ statistically according to
Bonferroni post-tests.



may lead to a higher underestimation of SCR amplitudes. This is

different for the decomposed signal. Even for an ISI as short as

4 s, the event-related driver impulse (in contrast to the SCR) does

not show any overlap or distortion caused by the preceding re-

sponse (see Figure 5). We can, therefore, assume that response

parameters retrieved by the nonnegative deconvolution method

are largely unaffected by responses dating back at least 4 s and

were measured without significant distortion. As quantification

bias can be ruled out, this effect has to be attributed to psycho-

logical or physiological reasons, such as increased excitability

and reduced refractoriness (Recio, Schlacht, & Sommer, 2009).

This provides an interesting opportunity to study which response

characteristics covary with SCR amplitude. Higher SCR ampli-

tude (as found for higher ISIs) goes along with increased dura-

tion and amplitude of impulses and with a deferred PO peak. The

latter effect might be the result of increased impulse duration. As

sweat secretion prevails for a longer time (which is indicated by

increased impulse duration), the average peak of PO activity is

expected to be postponed. Both increased impulse duration and

impulse amplitude will lead to increased impulse area. Thus, the

impulse area may be considered as a meaningful compound

measure of impulse size. Moreover, impulse area plus area of

corresponding PO components equal the total SCR area. An

area measure was already suggested to represent a more com-

prehensive measure for the ‘‘strength of affect’’ (Traxel, 1957).

However, maybe due to difficulties in the unambiguous compu-

tation of the SCR area, area measures have not yet been adopted

by psychophysiological literature (Boucsein, 1992).

According to Edelberg’s (1993) poral valve model, variations

in the shape of the SCR can primarily be ascribed to the varying

contribution of pore opening. SCRs with open pores will have a

peaked shape, whereas the SCR shape will be rather flat when the

pores stay closed. The results obtained with nonnegative decon-

volution appear to be in line with this model. The onset of the

average remainder deflection depicted in Figure 5B roughly co-

incides with the peak of the corresponding driver impulse, and the

deflections are limited in their temporal extent. This is compatible

with the notion that they reflect the effect of pore opening fol-

lowing secretion into the sweat duct. Pore opening shouldbemore

likely for large driver impulses, leading to the secretion of large

quantities of sweat. This is reflected by the positive correlation

between driver impulse amplitude and the existence and size of a

PO component (see Figure 4). Interestingly, the relation of the

amplitudes of diffusion and PO components does not appear to

be linear over the total range. This might be due to the fact that

the poral valve needs a certain minimum pressure to open. More-

over, the correlation between diffusion component and PO com-

ponent is only moderate, with examples of high PO components

following small diffusion components and vice versa. Nonnega-

tive deconvolution thus reveals the high variability of SCR shapes

and also provides means of dealing with it. A possible cause for

this variability might be that pore opening does not only depend

on the intensity of a single response, but also on the total dis-

charge pattern including especially preceding responses that

might have left the sweat ducts prefilled, and on the hydration of

the skin that influences the elasticity and tension of the valve.

In conclusion, the poral valve model may serve to explain

deviations from standard SCR shapes, which conform to the

remainder of nonnegative deconvolution (i.e., PO components).

This notion, however, has to remain somewhat speculative in the

absence of direct empirical support. Direct observation of the

sweat pores and concomitant sweat secretion will be necessary to

decide upon the adequacy of this model and its applicability to

the results obtained by nonnegative deconvolution. This could be

achieved by combining standard SC measurements with video-

microscopy, a method which was already successfully imple-

mented by Nishiyama et al. (2001).

A comparison of the proposed decomposition method to stan-

dard peak detection revealed that the former yields enhanced de-

tection sensitivity for elicited SCRs, and the benefitwas highest for

the shortest ISI of 4 s. In the case that both methods detected

SCRs, nonnegative deconvolution returned larger SCR ampli-

tudes and reduced SCR latencies. This result pattern conforms to

the notion that an SCR, which arises on the declining tail of its

preceding SCR, will show reduced amplitude, postponed onset (to

the point in time when the initial rise of an SCR surpasses the

underlying decline), and it may even fail to be detected without the

use of decomposition. The increase of amplitude by decomposi-

tion was in the range previously reported by Lim et al. (1997). In

contrast to the present results and the abovementioned expecta-

tions, Lim et al. also reported an increase of SCR latency as com-

pared to standard scoring method. Besides these general effects, it

is expected that a valid decomposition should also enhance the

correct classification of SCRs to stimuli and thus reduce the error

variance of the estimated event-related response magnitude.

In summary, nonnegative deconvolution adds to the power of

decomposition of skin conductance data and extends previous

approaches in at least three significant respects. First, it provides

a way to employ the efficient method of deconvolution proposed

by Alexander et al. (2005) and at the same time to retain the

consideration of variable SCR shapes (compare Lim et al., 1997),

even without a new estimation of basic SCR parameters for each

single SCR. Second, all aspects of the mathematical model were

derived from and thus are based on a physiological rationale.

Finally, the decomposition can be applied to full-length data,

separating all phasic components and also considering tonic ac-

tivity. It thus results in a complete decomposition model of the

original SC data. However, a further validation of the method

and the underlying assumptions is necessary and should involve

the combination of standard SC recordings with microneuro-

graphical methods or videomicroscopy. This will not only enable

an even more valid decomposition of SC data but also meet the

strive for a full understanding of the complex data recorded from

the skin.
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Kunimoto, M., Kirnö, K., Elam, M., & Wallin, B. G. (1991).
Neuroeffector characteristics of sweat glands in the human hand ac-
tivated by regular neural stimuli. Journal of Physiology, 442, 391–411.

Levinson, D. F., & Edelberg, R. (1985). Scoring criteria for response
latency and habituation in electrodermal research: A critique.
Psychophysiology, 22(4), 417–426.

Lim, C. L., Gordon, E., Rennie, C., Wright, J. J., Behramali, H., Li, W.
M., et al. (1999). Dynamics of SCR, EEG, and ERP activity in an
oddball paradigm with short interstimulus intervals. Psychophysio-
logy, 36(5), 543–551.

Lim, C. L., Rennie, C., Barry, R. J., Bahramali, H., Lazzaro, I., Manor,
B., & Gordon, E. (1997). Decomposing skin conductance into tonic

and phasic components. International Journal of Psychophysiology,
25, 97–109.

Lim, C. L., Seto-Poon, M., Clouston, P. D., & Morris, J. G. L. (2003).
Sudomotor nerve conduction velocity and central processing time of
the skin conductance response. Clinical Neurophysiology, 114, 2172–
2180.

Macefield, V. G., & Wallin, B. G. (1996). The discharge behaviour of
single sympathetic neurons supplying human sweat glands. Journal of
the Autonomic Nervous System, 61, 277–286.

Macefield, V. G., & Wallin, B. G. (1999). Respiratory and cardiac mod-
ulation of single sympathetic vasoconstrictor and sudomotor neurons
to human skin. Journal of Physiology, 516(1), 303–314.

Millington, P. F., & Wilkinson, R. (1983). Skin. Cambridge: University
Press.

Nishiyama, T., Sugenoya, J., Matsumoto, T., Iwase, S., & Mano, T.
(2001). Irregular activation of individual sweat glands in human sole
observed by videomicroscopy. Autonomic Neuroscience: Basic and
Clinical, 88, 117–126.

Recio, G., Schlacht, A., & Sommer, W. (2009). Effects of inter-stimulus
interval on skin conductance responses and event-related potentials in
a Go/NoGo task. Biological Psychology, 80(2), 246–250.

Riedl, B., Nischik, M., Birklein, F., Neundörfer, B., & Handwerker, H.
O. (1998). Spatial extension of sudomotor axon reflex sweating in
human skin. Journal of the Autonomic Nervous System, 69, 83–88.

Schmelz, M., Schmidt, R., Bickel, A., Torebjörk, H. E., & Handwerker,
J. O. (1998). Innervation territories of single sympathetic C fibers in
human skin. Journal of Neurophysiology, 79, 1653–1660.

Schneider, R. L. (1987). A mathematical model of human skin conduc-
tance. Psychophysiology, 24(5), 610.

Snyman, J. A. (2005). Practical mathematical optimization: An introduc-
tion to basic optimization theory and classical and new gradient-based
algorithms. Berlin: Springer Publishing.

Sugenoya, J., Iwase, S., Mano, T., & Ogawa, T. (1990). Identification of
sudomotor activity in cutaneous sympathetic nerves using sweat ex-
pulsion as the effector response. European Journal of Applied Phys-
iology, 61, 302–308.

Thom, E. (1988). Die Hamburger EDAFAuswertung. In W. Boucsein
(Ed), Elektrodermale Aktivität. Grundlagen, Methoden und An-
wendungen (pp. 501–514). Berlin: Springer.
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APPENDIX

A demonstration and comparison of standard and nonnegative

deconvolution is provided on the grounds of long division. It is

assumed that the signal f is the result of the driver function g

convoluted with the impulse response h plus some remainder r

such that

f ¼ g � hþ r

Let f be (1,0,4,1,0, . . .) and h be (2,1).

In standard deconvolution, r(i) is assumed to be zero.

Employing long division, g(i) is simply determined by f(i)/

h(i), thus ignoring further digits of h, and g(i) can take on real

negative values. Deconvolving f by standard deconvolution

yields:

g(i)5 .5, � .25, 2.125, � .5625, . . .

2, 1 1, 0, 4, 1, 0, . . .

1, .5

� .5, 4

� .5, � .25

4.25, 1

4.25, 2.125

� 1.125, 0

� 1.125, � .5625

� .5625

:

r(i)5 0, 0, 0, 0

In nonnegative deconvolution, it is assumed that r(i) � 0.

Employing long division, g(i) is determined as

gðiÞ ¼ minðf ðjÞ=hðjÞÞ

with j5 i to i1k� 1 and k being the number of digits of h. This

procedure ensures that g(i) is nonnegative. Deconvolving f by

means of nonnegative deconvolution thus yields:

g(i)5 0, 0, 1, 0, . . .

2, 1 1, 0, 4, 1, 0, . . .

0, 0,

0, 4,

0, 0

4, 1

2, 1

0, 0

0, 0

0

:

r(i)5 1, 0, 2, 0

Assuming that r only shows compact deflections from zero,

which have a shorter time constant than h, this method appears

to be equally robust as standard deconvolution to deviations

from the correct impulse response function h and to error noise.
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