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SUMMARY

Elasticity is described in general by a fourth-order tensor with 21 independent coefficients,
which corresponds to the triclinic symmetry class. However seismological observations are
usually explained with a higher order of symmetry using fewer parameters. We propose an
analytical method to decompose the elastic tensor into a sum of orthogonal tensors belonging to
the different symmetry classes. The method relies on a vectorial description of the elastic tensor.
Any symmetry class constitutes a subspace of a class of lower symmetry and an orthogonal
projection on this subspace removes the lower symmetry part. Orthogonal projectors on each
higher symmetry class are given explicitly. In addition, the method provides optimal higher
symmetry approximations, which allow us to decrease the number of independent parameters.
Consequences of the symmetry approximation of the elastic tensor on shear wave splitting
(SWS) are investigated for upper-mantle minerals (olivine and enstatite), natural samples and
numerically deformed olivine aggregates. The orthorhombic part of the elastic tensor as well
as the presence of enstatite are important second-order effects.
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1 INTRODUCTION

Seismic anisotropy in the upper mantle of the Earth results mainly from lattice preferred orientation (LPO) of its main constitutive minerals,
olivine and orthopyroxene, which are strongly anisotropic (Nicolas & Christensen 1987). Because LPO is produced by deformation of rocks,
observations of seismic anisotropy can be used to constrain the pattern of convective flow in the mantle (Ribe 1992; Zhang & Karato 1995).

Different seismic waves are used to study mantle anisotropy. Inversions of surface wave data yield 3-D images of anisotropy with typical
lateral and vertical resolutions of 1000 and 100 km, respectively (Montagner & Nataf 1986, 1988; Montagner & Tanimoto 1991; Trampert &
Woodhouse 1995). In contrast, shear wave splitting (SWS) measurements provide precise estimates of the polarization direction of the fast
S wave and S delay time beneath receivers, but have poor depth resolution (Silver & Chan 1991; Favier & Chevrot 2003). These different
approaches share a need for restrictive simplifying assumptions about the symmetry of the anisotropic medium to ensure tractability. In the
case of surface waves, an artificial distinction is made between azimuthal anisotropy (Smith & Dahlen 1973) that uses a horizontal hexagonal
axis and radial anisotropy that assumes hexagonal symmetry with a vertical axis (an elastic medium with hexagonal symmetry is equivalent
to a transversely isotropic medium). Studies of SWS generally use a small number of uniform hexagonal layers with a horizontal symmetry
axis. While such assumptions may be reasonable far from plate boundaries, they are probably invalid in regions such as ridges, hotspots and
subduction zones where mantle flow is likely to generate complex variations of anisotropy over short length scales (Kaminski & Ribe 2002).

A promising approach is forward modelling of anisotropy produced by mantle flow using polycrystalline plasticity models (Wenk &
Tomé 1999; Kaminski & Ribe 2001). Such calculations yield the anisotropic elastic tensor at all points in the domain under study, from
which synthetic seismograms may be calculated and compared with observations (Blackman et al. 2002a; Blackman & Kendall 2002b). This
approach requires no ad hoc assumptions about the relation between LPO and flow and, in principle, the comparison between predictions and
observations should help discriminate between candidate geodynamic models. The determination of the symmetry of the predicted elastic
tensor can help in evaluating whether simplified elastic models assumed in inverse problems (e.g., a hexagonal medium with a horizontal
symmetry axis) are appropriate representations of the more complicated geodynamic structures. An analysis of the symmetry of elastic
tensors calculated from LPO observed in natural samples (Mainprice & Silver 1993) allows also to compare the latter more effectively with
numerically predicted elastic tensors. Because seismologists are used to describing seismic anisotropy in terms of orientation of the symmetry
axis and amplitude of anisotropy, it is useful to make use of a method to find a representation of any elastic tensor in terms of an optimal
hexagonal elastic medium. More generally, we will show that any elastic tensor can be decomposed into contributions corresponding to
different symmetry classes.
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We introduce an analytical method for the symmetry decomposition of elastic tensors based upon orthogonal projections on subspaces.
The representation of the fourth-order elastic tensor by a second-order tensor, preserving its mathematical properties, was first proposed by
Kelvin (1856). Unfortunately, this convenient mathematical description is less popular than the widespread Voigt representation (Helbig 1994).
Symmetry of the elastic tensor becomes visible when it is expressed in its natural coordinate system whose axes correspond to directions of
symmetry. In a pioneering study, Cowin & Mehrabadi (1987) proposed a method for finding the normals to the symmetry planes of the elastic
tensor. Arts ez al. (1991) introduced an analytical method to find the optimal approximation of a given symmetry class for any elastic tensor.
They use the coordinate system obtained by the method of Cowin & Mehrabadi (1987) and minimize the distance between the tensor and
its representation in a given symmetry class. This gives a system of linear equations for the approximate elastic coefficients. This method is
effective for media close to orthorhombic or of higher symmetry. Helbig (1995) proposed the representation of fourth-order elastic tensors
by vectors in a 21-dimensional vector space. Using this representation, approximations of the elastic tensor can be seen as projections onto a
subspace describing a higher symmetry tensor.

In this article, we extend the approach of Arts ef al. (1991); Arts (1993) and Helbig (1995) in order to present a practical method that
realizes these approximations. We first describe the vectorial representation of elastic tensors and the projections that allow to pass from a
given symmetry to any higher order symmetry class. An exact and practical version of the elastic tensor approximation method is formulated.
Finally, we consider various applications of the decomposition method to geophysical problems and investigate the consequences of symmetry
approximations using materials representative of the upper mantle.

2 FROM THE ELASTIC TENSOR TO THE ELASTIC VECTOR

Elastic properties are mathematically described by Hooke’s law, which relates deformation to stress through a fourth-order elastic tensor
described by 81 coefficients. The symmetry of the stress tensor o; and the strain tensor ¢; reduces the number of independent elastic
coefficients from 81 to 36 and the requirement that the elastic energy be completely defined by the strain tensor or the stress tensor further
decreases this number to 21 for a triclinic medium. Media with higher symmetry require fewer parameters for their description. A convenient
representation of the elastic coefficients is the so-called Voigt notation. The Voigt matrix is a six-dimensional symmetric array C;; whose
elements are related to the c;;; according to the rules:
Coy = ey with I=i6; + (1 =38;)9—i—}) @1
J=kéuy + (1 =8u)9 —k—1D).

The Voigt matrix is however not a tensor and no longer preserves the mathematical properties of c;;,. For elasticity, there are eight distinct
symmetry classes: triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, cubic and isotropic. A higher symmetry class can
be seen as a special case of a lower symmetry class, defined by additional relationships between coefficients (Helbig 1995). Increasing the
symmetry of a medium by adding symmetry planes decreases the number of independent parameters.

A useful representation of elastic tensors is in terms of vectors in a 21-dimensional vectorial space. The basis vectors correspond to 21
elementary tensors ¢V, . .., ¢®V as shown in Table 1. Any elastic tensor can be represented as an elastic vector X whose components are:

X = (C11,C22,C33,«/§C23,«/§C13,\/iCn,2C44,2C55s2C66,2C14,2C25,2C36s2C34,2C15,2C2652C24,2C35,2C16,2~/§C56,2«/§C46,2\/§C45>

= (X1, X2, X5, Xy, X5, X6, X7, Xz, Xo, X10, X11, X12, X13, X1a, X5, X6, X17, Xig, K19, Xao, Xo1) - (2.2)

The normalization factors that appear in the above expression reflect the multiplicity of the elastic tensor components and are included so that
the Euclidean norm of an arbitrary elastic tensor ¢ and its associated elastic vector X are identical. These norms are defined by

N(e) =+/(c, ¢) = VX, X) = N(X), (2.3)
where the scalar product of arbitrary tensors ¢’ and ¢/ or their associated vectors XV and X is

H @ 1) 2
¢V, ) = ijkzcz('j/)d =X,"x? = (XD, x). @4

3 DECOMPOSITION OF THE ELASTIC TENSOR BY PROJECTION

3.1 Principle of the orthogonal projection method

A projector in the 21-D elastic vectorial space is described by a 21 x 21 matrix. Let us consider the elastic vector X that belongs to a subspace
S of dimension Ny of the 21-D vectorial space. A higher symmetry class corresponds to a subspace H of S. Therefore, the elastic vector X
can be decomposed as

X =Xy +Xp, 3.1)
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Table 1. Definition of the elementary tensors ¢(!),

Decomposition of the elastic tensor and geophysical applications

basis vectors. Voigt matrix elements are also shown.

..., ¢2Y associated to the 21 orthonormal

Fourth- Non-zero Non-zero

order Cijkl Cy

tensor elements elements

e cin =1 Cn=1

c? ¢ =1 Cpn=1

® c33 =1 Cy=1

@ 03 = e = 1/42 Cyn=Cp=1/V2

® cnss = e = 1/v2 Ci3=C3 =1/V2

c©® el = o = 1/42 Cip=Cy =1/V2

D €2323 = €2332 = €323 = ¢332 = 1/2 Cu=1/2

® c1313 = €1331 = €313 = 3131 = 1/2 Css=1/2

” cr12 =c33 =Cco12 =c2121 = 1/2 Cee=1/2

10 cli3 =cl13 =311 =c311 = 1/2 Clu=Cqy=1)2

1 213 =c31 =ci3n =c322=1/2 Cys=Csn=1/2

12 €3312 = C3321 = C1233 = 2133 = 1/2 Ci36=Ce=1/2

1 €3323 = €333 = €2333 = 3233 = 1/2 Cyy=Cp3=1/2

19 cis =ci3 =c1311 =311 = 1/2 Cis=Cs1=1/2

19 cpp=cmi=cnn=cun=1/2 Crp=Ce=1/2

19 C223 =232 =C3220 =C32 = 1/2 Cuy=Cp=1/2

1D €3313 = 3331 = C€1333 = ¢3133 = 1/2 Cis=Cs3=1/2

19 ciz =ci21 =ci211 =c211 = 1/2 Cis=Ca1=1/2

19 C1312 = C1321 = C€3112 = C3121 = C1213 Csg = Ces = (2v2)™!
=ci31 = 2113 = 2131 = (2v/2)7!

20 €2312 = 2321 = €3212 = C3221 = C1223 Cas = Coa = (2v2)™!
=c5n =ca2 = = (2v2)7!

@Y €2313 = €2331 = €3213 = €3231 = C1323 Cas = Css = (2V2)7!

=ci33 =313 = c3132 = (2V2) 7!
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where X, belongs to A and the deviation vector X, to the subspace orthogonal to A (Helbig 1995). Let p denote an orthogonal projector from

subspace S onto subspace H. If (S, ..

., Sxy) is an orthonormal basis of the subspace S with (S, ..

Sny) to the subspace orthogonal to H, the deviation vector X, constituting the lower symmetry part of the vector is given by

., Syy ) belonging to / and (Sy, 41, - -,

Xp = (X Sw,41)Sny+1 + -+ (X Syy)Sn (3.2)
and the projector on subspace H is defined by
p(X) = I1(X) — (X Xp)Xp = Xy, (3.3)

where / is the identity operator. The specific relationships satisfied by the coefficients of a vector that lies in the subspace H allow one to
find the set of vectors (Sy,+1, ..., Sy,) that are orthogonal to . This set is completed by (S, ..., Sy,) belonging to / in order to give an
appropriate orthonormal basis of S for the projection on H.

We explain in Appendix A how to calculate elementary projectors corresponding to a projection from a symmetry class to the next higher
order symmetry class. We then give matrix expressions of more general projectors from any symmetry class onto a higher symmetry class by
composing elementary projectors.

3.2 Symmetry cartesian coordinate system

The norm and scalar product defined by eqs (2.3) and (2.4) are invariant under rotation of the 3-D cartesian coordinate system. However,
the coefficients of the 21-D vector X depend both on the 3-D cartesian coordinate system and on the decomposition method. Finding the
appropriate 3-D cartesian coordinate system for the projection method requires one to determine the orientations of the symmetry elements.

Cowin & Mehrabadi (1987) define necessary and sufficient conditions for a vector to be normal to a symmetry plane. In particular, they
demonstrate that such a vector must be an eigenvector of both the dilatational stiffness tensor dj; = c;i and the Voigt stiffness tensor vy =
cjjig> which are given by

Cii+Cin+Ciz Cig+Cox+Ci6 Cis5+ Cas + Css
d=|Cis+Cxs+Cx Ci2+Cn+C3p Cis+Cou+Cs |, (34)
Cis+Crs+C35 Cia+Cog+Ciq Ci3+Cp3+c33
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Table 2. Structure of the eigenspaces of d;; and vy, and the relation with the
symmetry cartesian coordinate system (SCCS) for the different symmetry

classes.

Elastic Distinct Coincident Symmetry

symmetry eigenvalues eigenvectors cartesian

class of djj & vy of djj & v coordinate axes

Triclinic 3 0 No particularity

Monoclinic 3 1 Three-axis is the single
common eigenvector

Orthorhombic 3 3 Axes are the three
common eigenvectors

Tetragonal 2 3 Three-axis is the non-
degenerate eigenvector

Hexagonal 2 3 Three-axis is the non-
degenerate eigenvector

Isotropic 1 3 No particularity

Ci1+Ce6 +Css Cio+ Ca6+ Cas  Cis5+ C35 + Cag
V= |Cig+Ci+Css Co6+Crxo+Caa Cos+ C3s+Css | . (3.5)
Cis+C354+Cs6 Cra+C3a+Css Css+Caq +C33

While a general fourth-order tensor has six distinct contractions of rank two, the symmetries of elastic tensors reduce the number of distinct
contractions to two, which are conventionally chosen to be d;; and vy (Helbig 1994). Physically, the principal directions of d;; are the principal
directions of the stress tensor af-j‘.i) required to produce an isotropic dilatation &;; = €§;; of the anisotropic medium:

oD

i = Cijki€h = Ciju€du = €dj. (3.6)

The three principal directions of vy are the three phase propagation directions corresponding to extreme of the quantity
0 =p(Vi+ V5 +V3), 3.7)

where p is the density and Vp, V5 and Vs, are the phase velocities of P wave, fast S wave and slow S wave, respectively. Table 2 describes
the structure of the eigenspaces of d;; and vy, and the relation between the symmetry cartesian coordinate system (SCCS) and the eigenvectors
for the different symmetry classes. For media with orthorhombic or higher symmetry, the eigenvectors of d;; and vy are identical and define
uniquely the SCCS (Bennett 1972; Helbig 1994). For an orthorhombic medium, the three eigenvectors are normal to the three perpendicular
symmetry planes. For tetragonal and hexagonal media, only two of the eigenvalues are distinct. Accordingly, the only well-defined axis is
the one along the non-degenerate eigenvector, which corresponds to the 27/4 symmetry axis (tetragonal) or the transverse isotropy axis
(hexagonal). The choice of the other two axes is arbitrary. All three axes are arbitrary for an isotropic medium, for which any vector is an
eigenvector of both d;; and v;. A monoclinic medium has a single eigenvector common to d;; and vy, which is normal to the unique symmetry
plane. Finally, a triclinic medium has no eigenvalues common to d; and vy, and the choice of the SCCS is arbitrary. For a symmetry lower
than orthorhombic, the three SCCS directions are chosen as the bisectrix of each pair of one dj; eigenvector and the corresponding closest vj
eigenvector. This choice is appropriate and stable for a small triclinic part (less than 2—3 per cent) (Arts 1993).

3.3 Decomposition of the elastic tensor

Any triclinic vector X in a given 3-D cartesian coordinate system can be decomposed by a cascade of projections into a sum of vectors
belonging to the different symmetry classes:

X= Xtric + Xmon + Xort + Xtet + Xhex + Xiso- (38)

The space of elastic vectors has a finite dimension and thus all correctly defined norms are mathematically equivalent, i.e. using a different norm
from eq. (2.3) will change distances but not the resulting decomposition. Moreover, as noted above, an important property of an orthogonal
projection is that the distance between a vector X and its orthogonal projection X = p(X) on a given subspace is minimum. These two
features ensure that the decomposition is optimal once the 3-D Cartesian coordinate system is chosen.

4 GEOPHYSICAL APPLICATIONS

In this section, we present the symmetry decomposition of elastic tensors for three classes of media representative (supposedly) of the upper
mantle: single crystals of olivine and enstatite, natural peridotite samples from the Kaapvaal craton in Africa, and olivine and enstatite
aggregates deformed numerically in a polycrystalline plasticity code. We also investigate the relation between SWS, finite strain and the
hexagonal symmetry assumption. The SCCS directions indexes are chosen such that the 3-axis is always the hexagonal axis.

© 2004 RAS, GJI, 159, 667-678

220z 1snbny Gz uo 1senb Aq €18929//99/2/66 L/81o1e/1[6/woo dnoolwspede//:sdiy wolj pepeojumo(d



Decomposition of the elastic tensor and geophysical applications 671

4.1 Decomposition of olivine and enstatite elastic tensors

According to mineralogical models of the upper mantle, olivine is the most abundant (~70 per cent) and most deformable mineral, while
orthopyroxene is the secondary major mineral (~30 per cent; Anderson 1989). Elastic coefficients are taken from Anderson & Isaak (1995)
for olivine FoggFa ;o at 1500 K and from Bass (1995) for enstatite MgSiO3 at room pressure and temperature.

4.1.1 Olivine

The decomposition of the olivine elastic tensor in the different symmetry components is presented below in Voigt notation with elastic
coefficients in GPa:

192 66 60 0 0 0 6 0 2 0 00
66 160 56 0 0 0 0 —16 -2 0 00
60 56 272 0 0 0 2 =2 0 0 00
Cry = o 0o o0 6 o0 o]l "o o o -1 0o
0 0 0 0 62 0 0 0 0 0 10
0 0 0 0 0 49 o 0 0 0 00,
3 23000 0 217 17 =93 0 0 o0 1947 673 673 0 0 0
3 3 000 0 17 —217 =93 0 0 0 673 1947 673 0 0 0
0 0 000 0 93 93 773 0 0 0 673 673 1947 0 0 0
o 0000 0 T o 0 0 -27 0 o0 Tl o o o &7 0 o
0 0 000 0 0 0 0 0 27 0 0 0 0 0 67 0
o 0 000 -3/, 0 0 o o o -y o 0 0o 0o 0 &1

Subscripts are O for orthorhombic, T for tetragonal, H for hexagonal and I for isotropic. The isotropic approximation of olivine single crystal
accounts for 79.3 per cent of the norm of the tensor with isotropic moduli equal to K = 109.8 GPa and G = 63.7 GPa. The remaining anisotropic
part represents 20.7 per cent of the norm of the tensor. The different elastic symmetry parts of the tensor are presented as percentages of the
norm of the elastic tensor in the histogram of Fig. 1 using the following convention:

100 per cent = Niz(x) [Nz(xtric) + Nz(xmon) + Nz(xort) + Nz(xtet) + NZ(Xhex) + Nz(xiso)] . (41)

Anisotropic parts of the tensors are mainly hexagonal and orthorhombic. Most of the anisotropy is hexagonal (15.2 per cent), while the
remaining 5.5 per cent is tetragonal and orthorhombic (first column of Fig. 1).

4.1.2 Enstatite

Enstatite is less anisotropic (9.2 per cent) than olivine as the isotropic part accounts for 90.8 per cent of the norm of the elastic tensor (moduli
are K = 108.3 GPa and G = 76.4 GPa). Anisotropy is distributed between the hexagonal part (4.3 per cent) and the tetragonal/orthorhombic
part (4.9 per cent). Addition of enstatite to the olivine decreases the total anisotropy as well as the orthorhombic part.

225 54 72 0 0 O 5 0 95 0 0 0

54 214 53 0 0 0 0 -5 -9 0 0 0

7253 178 0 0 0 95 =95 0 0 0 0

0 0 0o 7 0 0 0 0o -2 00

0 0 0 0 8 0 0 0 0 20

0 0 0 0 76 0 0 0 0 0/ ¢
34 =34 0 0 0 0 59 1.7 5.1 0o 0 2102 574 574 0 0 0
-34 34 0 0 0 O 0 59 51 o 0 0 574 2102 574 0 0 0

+ 0 0O 000 O + 51 51 =322 0 0 0 + 574 574 2102 O 0 0

0 0O 000 0 0 0 0 36 0 0 0 0 0 76.4 0 0
0 0O 000 O 0 0 0 0 36 0 0 0 0 0 764 0
0 0 000 34/ ¢ 0 0 0 0 0 30/ g 0 0 0 0 0 764/ ¢

4.2 Depth variation of elastic symmetry in the upper mantle

Because elastic moduli of olivine and orthopyroxene depend on pressure and temperature, seismic anisotropy is expected to vary as a function
of depth. To measure this effect, we have taken elastic moduli and their derivatives from Estey & Douglas (1986), assuming an aggregate
of 70 per cent olivine Fog;Fa; and 30 per cent orthopyroxene EngyFs,, (with the [010] axis parallel to the olivine [100] axis and the [100]
axis parallel to the olivine [001] axis). The oceanic geotherm used is from Stacey (1977) and pressure and density profiles come from the
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Bl Triclinic

[ 1 Monoclinic
I Orthorhombic
B Terragonal
|'_'_ Hexagonal

(%)

20

OL OL+ENS KBBF4 KBBF4 Simple Simple
OL OL+ENS shear shear
oL OL+ENS

Figure 1. Decomposition of the elastic tensor, expressed in percentage of the total norm. OL denotes olivine single crystal (Section 4.1.1), OL + ENS
represents 70 per cent OL and 30 per cent enstatite (Sections 4.1.1 and 4.1.2) with the enstatite [010]-axis parallel to the olivine [100]-axis and the enstatite
[100]-axis parallel to the olivine [001]-axis. KBBF4 OL corresponds to olivine samples fabrics and KBBF4 OL + ENS to olivine and enstatite samples fabrics
(Section 4.3). Simple shear case is a numerical deformation for finite strain ¢ = 100 per cent (Section 4.3).

Table 3. Symmetry decomposition as a function of depth in the upper mantle. Anisotropy
(Anis.) and the hexagonal part (Hex.) decrease with depth while orthorhombic part (Orth.) is
almost constant.

Depth (km) K (GPa) G (GPa) Anis. Orth. Hex.
60 113 68 17.8 59 11.9
115 121 69 17.3 6.0 11.2
185 134 72 16.2 6.2 9.9
220 140 73 15.7 6.2 9.3
265 149 75 15.2 6.3 8.7
310 158 78 14.7 6.4 8.0
355 167 80 14.2 6.5 7.4
400 176 82 13.8 6.5 6.9

Preliminary Reference Earth Model (Dziewonski & Anderson 1981). Triclinic, monoclinic and tetragonal parts are negligible (less than 0.5 per
cent). The orthorhombic part contributes to the same percentage of the tensor through the entire depth of the upper mantle (Table 3). The
hexagonal part and the total anisotropy decrease with depth as isotropic moduli increase. The orthorhombic part becomes predominant when
depth increases.

4.3 Symmetry of natural xenolith samples

We consider the olivine and orthopyroxene orientations based upon the microscopic analysis of the peridotite sample KBBF4 (Boullier
& Nicolas 1975; Mainprice & Silver 1993). This garnet lherzolite has been collected in the South African Kaapvaal region at Bulfontein
(Kimberly) and has a modal composition of 68 per cent olivine, 27 per cent enstatite, 2.4 per cent garnet and 2 per cent clinopyroxene. This
kimberlite nodule was formed at a pressure of 3.5 GPa, a temperature of 900 °C at 120 km depth approximately 120—-80 Ma (Mainprice
& Silver 1993). This sample experienced first a large-strain ductile deformation followed by annealing in the upper mantle prior to a rapid
eruption. Measurements of the orientation of 95 olivine crystals and 56 enstatite crystals have been performed.

© 2004 RAS, GJI, 159, 667-678
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Decomposition of the elastic tensor and geophysical applications 673

The distribution of the orientations of olivine and enstatite results in the amplitude of anisotropy being lower than of single crystals. The
ratio between the orthorhombic and the hexagonal part is slightly increased (fourth column of Fig. 1) and a triclinic part occurs.

4.4 Anisotropy of numerically deformed olivine aggregate

4.4.1 Symmetry

Kaminski & Ribe (2001) have developed a model for the evolution of LPO in olivine aggregates that deform by both intracrystalline slip (plastic
deformation) and dynamic recrystallization. In this model, dynamic recrystallization implies that grains with a large density of dislocations
lower their bulk strain energy by nucleating strain-free subgrains at a rate proportional to a dimensionless parameter 1*. Grains with high
energy are then invaded by grains with low energy by grain-boundary migration at a rate proportional to a dimensionless grain-boundary
mobility M*. Values of these two parameters are constrained to A* > 3 and M* = 125 £ 75 in Kaminski & Ribe (2001) by comparison with
the LPO produced in laboratory experiments. The best-fitting values are A* = 5 for nucleation and M* = 50 for mobility. The aggregate is
constituted by 15° grains (70 per cent olivine and 30 per cent enstatite). Three active slip systems (010)[100], (001)[100] and (010)[001] with
a non-newtonian rheology exponent 3.5 are considered for the plastic deformation of olivine at high temperature. Critical shear stresses that
are adimensionalized to the weakest slip system are 7; = 1, 7, = 2 and 73 = 3 (Kaminski & Ribe 2001). Enstatite has only one slip system.
Voigt average elastic tensors of the aggregates for simple shear deformation and uniaxial compression are analysed.

Simple shear deformation of ¢ = 100 per cent decreases the norm of the anisotropic part of the tensor (5.6 per cent) present in an olivine
single crystal while preserving the relative magnitudes of the different symmetry parts (fifth column of Fig. 1). A slight monoclinic/triclinic
component is also present as the result of the statistical distribution of orientations of olivine crystals within the aggregate.

4.4.2 Deformation and anisotropy

Figs 2 and 3 show the evolution of the symmetry composition of numerically deformed olivine aggregates versus finite strain ¢ = 2é¢ for a
simple shear deformation. Introducing the long axis a and the short axis ¢ of the finite strain ellipsoid, we get In (a/c) = ¢ for a simple shear
deformation and In(a/c) = ¢/2 for an uniaxial compression (Ribe & Yu 1991). In simple shear deformation (Fig. 2), the dominant parts
are hexagonal and orthorhombic. In uniaxial compression (Fig. 3), the anisotropic part is dominated by the hexagonal part. However, while
the [100]-axis is the symmetry axis for the hexagonal part of the olivine crystal, the symmetry axis becomes the [010]-axis when olivine
aggregates are deformed by uniaxial compression.

These curves allow a comparison between synthetic and natural olivine aggregate fabrics. Anisotropy of the KBBF4 sample is 8.4 per
cent with a predominant orthorhombic part (Fig. 1), which could correspond to a 150 per cent simple shear deformation (Fig. 2). Bystricky
et al. (2000) have calculated from laboratory experiments a P-wave anisotropy of respectively 3.1 and 14.9 per cent for a 50 and 500 per cent
simple shear deformation. Our results fall within this range.

(%)
12 T T T T T T T T

- triclinic

1 1 1 1
0 20 40 60 30 100 120 140 160 180 200
€ (%)

Figure 2. Evolution of the same decomposition as in Fig. 1 for simple shear deformation with finite strain . Monoclinic and tetragonal parts are negligible
(less than 0.1 per cent). Anisotropy is the result of hexagonal and orthorhombic parts.

© 2004 RAS, GJI, 159, 667-678

18929/299/2/65 L /81o14e/B/woo dno-olwspeoe//:sdly wolj pspeojumoq

N
&)
>
c

Q
C
(2]
@
N
o
N
N



674  J T Browaeys and S. Chevrot

(%)

8 T T T T T T T T

P . .
- orthorhombic monoclinic
P Tl Sediouioutts B E L o

1
0 20 40 60 80 100 120 140 160 180 200
€ (%)

Figure 3. Same as Fig. 2 but for an uniaxial compression (triclinic and tetragonal parts are less than 0.1 per cent) in which anisotropy is almost equal to the
hexagonal part. In the early stage of deformation, a monoclinic peak appears as the [100] and [001] axes rotate into the plane perpendicular to the compression
axis without any specific symmetry. Then their orientations in this plane become isotropic and the hexagonal symmetry develops.

4.5 Hexagonal approximation

The symmetry decomposition method allows one to find the optimum equivalent hexagonal medium. The bias introduced by assuming
hexagonal symmetry is investigated in this section.

Fig. 4 shows the influence of the simple shear finite strain and of the aggregate composition on the SWS induced by the hexagonal part
(propagation perpendicular to the hexagonal axis). SW'S shows a linear dependence with finite strain up to 150 per cent deformation, beyond
which saturation occurs at a level of 1.7 s compatible with SW'S observations. The presence of enstatite globally decreases splitting.

Fig. 5 inspects the bias introduced by assuming hexagonal symmetry for a 100 per cent simple shear deformation. Assuming a horizontal
hexagonal axis, SWS effects for a vertical propagation of 100 km are shown for a rotation of the tensor around this horizontal direction.
Considering solely the hexagonal part yields a constant SW'S. Taking into account the orthorhombic part gives variations of the same order of
magnitude as the ones obtained by taking the enstatite into account. Splitting variation resulting from the rotation of the orthorhombic tensor
around the fastest axis has an amplitude of 0.3 s. Introducing enstatite in the aggregates decreases the splitting to 0.4 s and smooths splitting
variations resulting from orthorhombicity to an amplitude of 0.2 s. Each of these two effects therefore represents less than half of typical delay
times measured by studying SKS splitting.
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o
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Figure 4. Evolution of SWS as a result of the hexagonal part of the tensor with finite strain . Waves propagate vertically across a 100-km-thick layer with a

horizontal hexagonal axis. Deformation is simple shear and the two cases are for olivine elastic tensor (ol) and for 70 per cent olivine and 30 per cent enstatite
(ol + ens). Elastic coefficients and densities come from Anderson & Isaak (1995) for olivine and Bass (1995) for enstatite.
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Figure 5. Influence of the orthorhombic component on SWS using elastic tensors ol and ol 4 ens (same composition as the last two columns of Fig. 1) for a
simple shear deformation ¢ = 100 per cent. The configuration is the same as in Fig. 4. HEX denotes the hexagonal part while ORT is the hexagonal plus the
orthorhombic part. The angle is the rotation angle of the tensors around the horizontal fast axis direction.

5 CONCLUSION

Vectorial description of elastic tensors is convenient for their decomposition and approximation into the different elastic symmetry classes. For
approximating the elastic tensor, we propose a simple and direct projection method that leaves the isotropic component unaffected. Provided
the elastic tensor is close to orthorhombic, our analysis of symmetry composition of an elastic tensor yields proper symmetry approximations
of elastic media. Typical mantle aggregates sampled at the surface are mainly hexagonal and orthorhombic with a total anisotropy around
5 per cent. The relation between SWS and intensity of deformation allows a calibration of the deformation experienced by natural samples at
least for simple shear and uniaxial compression.
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APPENDIX A: ORTHOGONAL PROJECTORS

Each general projector p is represented by a matrix M in the 21-D vectorial space described by the orthonormal basis given in Table 1. The
projection of any vector X on a higher symmetry subspace of dimension Ny is given by X5 = M.X. Projectors are found according to the
relation (3.3) and using the properties that an orthogonal projector p is such that p?> = p and that its matrix representation on an orthonormal
basis is symmetric. Necessary conditions for a vector X to belong to a subspace H are also given below. These conditions are cumulative with
increasing symmetry order.

A1l Projection p; onto monoclinic symmetry (Ng = 13)

For monoclinic symmetry:

Xio=X11 = X3 = Xig = Xig = X17 = X9 = X9 = 0. (A1)
M® is the unit 21 x 21 square matrix but with diagonal coefficients MY with i = 10, 11, 13, 14, 16, 17, 19, 20 equal to zero.

ii»

A2 Projection p, onto orthorhombic symmetry (Ng = 9)
For orthorhombic symmetry:
Xpp = X5 = Xig = X2 =0. (A2)

M® is the unit 21 x 21 square matrix with diagonal coefficients M le) with i = 10, ..., 21 equal to zero. In the following, projectors on
symmetry classes higher than orthorhombic will be presented by only their upper left 9 x 9 square matrix because the remaining part only
contains zeros.

A3 Projection p3 onto tetragonal symmetry (Ng = 6)

For tetragonal symmetry:

X=Xy, Xy=Xs, X7=2Xg (A3)
and the projection matrix is given by

C12 172
12 12
0

0 0
0 0
()
0 12
0 1/2
0
0
0
0

c oo o< X oo o
NN

o O o = O O ©o o ©
o o o o o

M® —

c o o o o o

o

172 12
12 12

- o © © © © © o <

o o o o o o
c o o o o o ©
c o o
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A4 Projection p4 onto hexagonal symmetry (Ng = 5)

For hexagonal symmetry:

X\ — X /V2 = Xq. (A4)
A vector X in the tetragonal symmetry class has the form

X = (X1, X1, X5, Xy, Xy, Xe, X7, X7, Xo). (A5)

A tetragonal vector perpendicular to the hexagonal subspace must have a scalar product with X equal to a multiple of X; — Xs/+/2 — Xo.
Therefore, the normalized vector

1
Xy =— (1/2, 1/2,0,0,0, —1//2, 0,0,—1) (A6)
can be used to define the projector from the tetragonal space onto the hexagonal subspace according to the relation (3.3):
PX) = I1(X) = (X Xy)Xy, (AT)

where [ is the identity operator. The unique general projector p4 on the hexagonal space is given by p o p3, where o denotes the composition.
The projection matrix is then

 3/8 380 0 0 1/4/2 0 0 174 7]

3/8 38 0 0 0 1/42 0 0 1/4

0 0o 1 0 0 0 0 0 0

0 0 0 1/2 12 0 0 0 0

M@ — 0 0 0 1/2 12 0 0 0 0
= y4v2 17442 0 0 0 3/4 0 0 —1/2v2

0 0 0 0 0 0 1/2 172 0

0 0 0 0 0 0 12 172 0

1/4 /4 0 0 0 —1/2J2 0 0 1/2

Applying projector p4 to a 21-D vector X will produce the same hexagonal approximation as the one given by Arts (1993):

3 1 1
Cift =" = g(Cll +Cn) + ZCIZ + ECG& (A8)
C?zex = C33, (A9)
hex hex 1
G = Ci5" = 5(Cis + Cn), (A10)
o=l te )+3c Le (Al1)
12 = glen 22 24127 5 Ces
1
Ci§* = 5(Caa + Css), (A12)
hex 1 hex hex 1 1 1
Ces = E(Cu -y ) = g(cn + Cxn) — chz + Ecc(y (A13)

A5 Projection ps onto the isotropic space (Ng = 2)

For an isotropic material:

X; —X; =0, (Al14)
Xy — V2(X) — Xo) =0, (A15)
X7 — Xy = 0. (A16)

A vector in the hexagonal symmetry class has the form
X = (X1, X1, X, Xa, Xy V2K, = Xo), X, X7, Xo ). (A17)

Any hexagonal vector (a, a, b, 0, 0, V2(a = ¢), 0,0, ¢) that is perpendicular to the subspace X; — X3 = 0 must have a scalar product with X
equal to X'| — X3 equal to a multiple of X'| — X5. This condition gives a = 3/8, b = —1 and ¢ = 1/4. Therefore, the normalized vector

8
XN=,IH(3/8,3/8,—1,O, 0, ﬁ/8,0,0,1/4) (A18)
can be used to determine the projector on the subspace defined by X; — X3 = 0:
pX) = 1(X) = (X Xy)Xy, (A19)
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where / is the identity operator. The unique general projector on the subspace X; — X3 = 0 is given by p o p4. Taking a similar approach for
the relations (A15) and (A16), we get the general projector onto isotropic symmetry:

[ 3/15  3/15
3/15 3/15
3/15 3/15

3/15
3/15
3/15

V2/15 V2/15 215

® V2/15 V215 V2/15

2/15
2/15

M= V2/15 V2/15 V215
2/15  2/15
2/15  2/15
2/15  2/15

2/15

V2/15
V2/15
V2/15
4/15
4/15
4/15
—V2/15
—V2/15
—V2/15

V2/15
V2/15
V2/15
4/15
4/15
4/15
—V2/15
—V2/15
—V2/15

V2/15
V2/15
V2/15
4/15
4/15
4/15
—V2/15
—V2/15
—2/15

2/15 2/15 2/15 ]
2/15 2/15 2/15
2/15 2/15 2/15

—V2/15 —V2/15 —V2/15
—V2/15 —V2/15 —/2/15
—V2/15 —V2/15 —V2/15

1/5 1/5 1/5
1/5 1/5 1/5
1/5 1/5 1/5

From the expression of M®, it can be seen that the incompressibility modulus K and the shear modulus G are combinations of the traces of
the dilatational tensor dj; = ¢ and the Voigt tensor v = c;;, which are two scalar invariants of the fourth rank tensor c;:

K =d;/9,

G = Qv — d;;)/30.

(A20)

(A21)

These analytical relations were already proposed by Fedorov (1968), Backus (1970) and Arts (1993). The resulting 21-D isotropic vector has
only its first nine components that are non-zero:

X, = K +4G/3,
X, = K +4G/3,
X; = K +4G/3,

Xy =~2(K —2G/3),
Xs = V2(K —2G/3),

Xo = V2(K —2G/3),

X; =26,
X; = 2G,
Xy = 26G.

(A22)
(A23)
(A24)
(A25)
(A26)
(A27)
(A28)
(A29)

(A30)

For any projection, isotropic parameters K and G are not affected by the removal of the lower symmetry parts.
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