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Abst rac t .  This paper describes techniques to perform fast and accurate 
curve detection using a variant of the Hough transform. We show that 
the Hough transform can be decomposed into small subproblems that 
examine only a subset of the parameter space. Each subproblem considers 
only those curves that pass through some small subset of the data points. 
This property allows the efficient implementation of the Hough transform 
with respect to both time and space, and allows the careful propagation 
of the effects of localization error in the detection process. The use of 
randomization yields an O(n) worst-case computational complexity for 
this method, where n is the number of data points, if we are only required 
to find curves that are significant with respect to the complexity of the 
data. In addition, this method requires little memory and can be easily 
par Mlelized. 

1 I n t r o d u c t i o n  

The Hough transform is a method to detect parameterized models (e.g. curves 
and surfaces) in data by mapping data features into manifolds in the parameter 
space [3, 5]. The models are detected by locating peaks in the parameter space 
(which is typically performed using multi-dimensional histograming). In this 
paper, we consider methods to improve curve detection by decomposing the 
Hough transform into many small subproblems. We use randomization to limit 
the number of subproblems that we must examine and we carefully propagate 
the effects of localization error in the subproblems that  we do examine. While 
we concentrate on curve detection, similar Hough transform techniques can be 
applied to surface detection and a number of other problems. 

We will use a modified version of the formal definition of the Hough transform 
given by Princen et al. [6]. Let X = (z, y) be a point in the image space, [2 = 
(r ..., wN) be a point in art N-dimensional parameter space, and f ( X ,  1-2) -- 0 
be the function that parameterizes the set of curves. We will call the set of data 
points g = {X1, ..., Xn}.  

Standard Hough transform implementations discretize the parameter space 
and maintain a counter for each cell. The counters record the number of data 
points that  map to a manifold that intersects each of the cells. In the errorless 
case, each data point maps to an N - 1 dimensional manifold in the parameter 
space. Princen et al. denote a cell in parameter space centered at J2 by Co.  They 
define: 
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1, if {A: f(X,A) = 0} NCa # 0 
p(X, D) = 0, otherwise 

Thus, p(X, I-2) is 1 if any curve in the parameter space cell, Ca, passes through 
the point, X, in the image. If we assume that there is no localization error, the 
Hough transform can then be written: 

H(a) = ~-'~p(Xj, a) (1) 
j = l  

H(~2) is now the number of data points that any curve in Ca passes through. 
In an ideal system, the discretization of the parameter space would not be im- 
portant. Instead, we should consider the error in the localization of the image 
points. Let's assume that the true location of each data point lies within a 
bounded region, Nx, of the determined location, X. We can redefine p(X, ~2) as 
follows: 

1, if {Y:f (Y,  S 2 ) = 0 } A N x # 0  
p(X,/2) = 0, otherwise 

Now, p(X, ~) is 1 if the curve represented by I2 passes through Nx. With 
this definition we can still use (1) to describe the Hough transform. This yields, 
for each curve, the number of data points that the curve passes through up 
to the localization error. Since discretization of the parameter space will not be 
important for the techniques that we present here, we will use the new definition. 

2 M a p p i n g  P o i n t  S e t s  i n t o  t h e  P a r a m e t e r  S p a c e  

A technique that has been recently introduced [1, 2, 4, 7] maps point sets rather 
that single points into the parameter space. Rather than considering each point 
separately, this method considers point sets of some cardinality, k. For each 
such set, the curves that pass through each point in the set (or their error 
boundaries) are determined and the parameter space is incremented accordingly. 
The benefit of this technique is that each mapping is to a smaller subset of the 
parameter space. If the curve has N parameters, then, in the errorless case, N 
non-degenerate data points map to a finite set of points in the parameter space. 
For the curves we examine here, this will be a single point. We thus need to 
increment only one bin in the parameter space for each set, rather than the 
bins covering an N - 1 dimensional manifold for each point. Of course, we don't 
need to use sets of size N, we could use any size, k > 0. If k < N, each non- 
degenerate set maps to an N - k dimensional manifold in the parameter space. 
The disadvantage to methods that map point sets into the parameter space is 
that there are (~) sets of image pixels with cardinality k to be considered. 

An examination of how the technique of mapping point sets into the param- 
eter space is related to the standard Hough transform is informative. Let's label 
the Hough transform technique that maps sets of k points into the parameter 
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space Hk(~2). An image curve (a point in the parameter space) now gets a vote 
only if it passes within the error boundary of each point in the set, so we have: 

= p ( X , , , a ) . . . . . p ( x , ,  a)  
{g ...... g,}e(~) 

where (~) is the set of all k-subsets of the data points, E. 
Consider this function at an arbitrary point in the parameter space. For some 

set of data  points, {Xg,, ..., Xg,}, the product, p(Xg~, [2)..... p(Xgk, 12), will be 
1 if and only if each of the p(X,/2) terms is 1 and otherwise it will be 0. If  there 
are x points such that p(X,/2) is 1 (these are the points that  lie o n / 2  up to the 
localization error), then there are (~) sets with cardinality k that  contribute 1 
to the sum. H~(~2) will thus be (~). Since the standard Hough transform will 
yield H(/2)  = x in this case, we can express g k ( ~ )  simply in terms of H(/2):  

Hk(n)-- (H(kn) ) 
If the standard Hough transform uses threshold t _> k to find peaks and the 

method of mapping point sets into the parameter  space uses threshold (~), these 
methods will find the same set of peaks according to the above analysis. Their  
accuracy is thus the same. 

3 D e c o m p o s i t i o n  i n t o  S u b p r o b l e m s  

Let us now introduce a new technique, where we map only those point sets 
into the parameter space that share some set of j distinguished points, 7) = 
{Xdl, ...,Xdj}. We will still vary k - j data points, G = {Xgl, ...,Xgk_j} , in 
these sets. The point sets we are mapping into parameter space are thus 7:) L) ~. 
This yields: 

j k- j  

H~'k(/2) = E H p ( X d ' ' ~ )  H P ( X g " Y 2 )  

Consider this function at an arbitrary point in the parameter  space. Since 
we aren' t  varying the distinguished points, {Xa~,..., Xdj}, the curve must pass 
through the error boundary of each of these to yield a non-zero response. If x 
points lie on a curve and we use a set of j of distinguished points on the curve, 
then x - j of these points remain in E\7:). We thus have: 

{ { H ( ~ ) - j )  if j Hv'k(S2) = \ k - j  ' [Ii:lP(Xd"O) = 1 
0, otherwise 

t - j  , 
We should thus use a threshold of (k- j )  In this case if the standard Hough 

transform used a threshold of t. We would then find those curves that  are found 
by the standard Hough transform that  pass through the distinguished points 
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up to the localization error. We can formulate algorithms to recognize arbitrary 
curves by considering several subproblems, each of which examines a particular 
set of distinguished points, as above. A deterministic algorithm using these ideas 
would consider each possible set of distinguished points. This would guarantee 
that  we would examine a correct set of distinguished points for each curve. If 
we are willing to allow a small probability of failure, we can use randomization 
to considerably reduce the number of sets of distinguished points that  we must 
examine (see Section 5). 

To gain the maximum decomposition of the problem, we want j ,  the number 
of distinguished points, to be as large as possible, but  note that  if we choose 
j > k, we will have H~,~(Y2) = 0 or 1 for all I2. Our response will be 1 if ~2 
goes through the j points and otherwise 0, but it yields no other information. 
We thus want to have j < k. In addition, we want k _< N or else we will examine 
sets that  are larger than necessary. The optimal choice is thus j = k - 1 = N - 1. 

Note that  considering sets of N data points that  vary in only one point (i.e. 
when j = k - 1 -- N - 1) constrains the transform to lie on a 1-dimensional 
manifold (a curve) in the parameter space. This can easily be seen since we have 
N variables (the curve parameters) and the N -  1 distinguished points yield N -  1 
equations in them. Let's call this curve the Hough curve. When localization 
error is considered, the transform will no longer be constrained to lie on the 
Hough curve, but the transform points will remain close to this curve. This yields 
two useful properties. First, since the Hough curve is essentially 1-dimensionM, 
it is much easier to search than the full parameter space. Second, it is now 
much easier to propagate localization error carefully. This will be accomplished 
by determining tight bounds on the range that  a set of points can map to in 
parameter space. 

4 E r r o r  P r o p a g a t i o n  

Let's now examine how to propagate the localization error in the curve detection 
process. We will first consider how error would be propagated in the ideal case. 
Each set of points maps to a subset of the parameter space under given error 
conditions. This subset consists of the curves that  pass through the set of points 
up to the error criteria. Call this subset of the parameter  space the error cloud 
of the set of points. Ideally, we would determine how many error clouds intersect 
at each point of the parameter space. This would tell us, for any curve, how 
many of the points the curve passes through up to the localization error. We do 
not do this since it is not practical, but for the subproblems we now examine, 
we can efficiently compute a good approximation. 

Since the Hough curve is one-dimensional in the noiseless case, we can pa- 
rameterize it in a single variable, t. Consider the projection of the error clouds 
onto the t-axis (see below for examples). The number of such projected error 
clouds that  intersect at some point in this projection yields a bound on the 
number of error clouds that  intersect on a corresponding hypersurface in the full 
space. Furthermore, since the error clouds do not vary far from the Hough curve, 
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Fig. 1. For any two points, we can determine bounds on the range of 0 by considering 
lines that pass through the boundaries of their possible localization error. 

this yields a good approximation to the m a x i m u m  number  of intersecting error 
clouds, which is the information we want. 

Once we have projected each of the sets that  we consider in some subproblem 
onto the t-axis, we can find the peaks along the Hough curve in one of two 
ways. We could simply discretize t and perform voting by incrementing the bins 
consistent with each range in t that  an error cloud projects to. This discretization 
can be done finely since it is only in one dimension. Alternatively, we could sort 
the minimal  and maximal  t points of each error cloud and use a sweep algorithm. 
This method would examine the extremal points in sorted order and keep a 
counter that  is incremented each t ime we hit a minimal  point and decremented 
each t ime we hit an maximM point. If  the counter reaches a large enough value, 
then a line has been found which passes through (or close to) many  points. 

The following subsections describe how we can parameterize the Hough curve 
in t for the cases of lines and circles, and how we can project the error cloud for 
the point sets onto the t-axis for each case. 

4.1 L i n e s  

If  we use the p-8 parameterizat ion for lines (i.e. z cos8 + ys in8  = p), we can 
simply parameterize the Hough curve by 8, since p is a function of 8. To project 
the error cloud for a pair of points onto the 8-axis, we simply determine the 
minimal  and maximal  8 that  a pair of points can yield. If we use square error 
boundaries, we need only consider the corners of the squares in determining 
these minimal  and maximal  8 values. See Fig. 1. 

4.2 C i r c l e s  

We can parameterize the space of circles by the coordinates of the center of the 
circle and the radius, so there are three parameters:  (xc, Yc, r). For this case, 
the opt imal  decomposition will use j = N - 1 = 2 distinguished points. We can 
parameterize the Hough curve by the distance of the center of the circle f rom the 
midpoint  of the two distinguished points (which we will take to be positive when 
the center is to the right of the segment connecting the distinguished points, and 
negative otherwise). 
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Fig, 2. We can determine bounds on the position of the center of a circle passing 
through 3 points (up to localization error) by examining the range of possible perpen- 
dicular bisectors for the segments between the points. 

To project the error cloud onto the t-axis, we now want to determine error 
bounds on this distance given three points and their localization error bound- 
aries. Recall that  the center of the circle passing through three points is the point 
where the perpendicular bisectors of the segments between the points meet. We 
can thus determine bounds on the location of the center of the circle by examin- 
ing the set of points in which two of the perpendicular bisectors of the segments 
can meet (see Fig. 2). The minimum and maximum distance from the center of 
the circle to the midpoint of the distinguished points can easily be determined 
by examining the extremal points of this set. 

5 C o m p u t a t i o n a l  C o m p l e x i t y  

This section determines the computational complexity of the techniques de- 
scribed in this paper. Let's first determine how many of the sets of distinguished 
points we must examine to maintain a low rate of failure. We'll assume that  
we only need to find curves that comprise some fraction, e, of the total number 
of data points. The probability that  a single set of j random points lie on a 
particular such curve is then at least: 

( ny = 
p0 _> ~ ~ nJ 

since we must have ( 7 )  sets of distinguished points that  lie on the curve among 
the (~) possible sets of distinguished points. If we take t such trials, the proba- 
bility that  all of them will fail for a particular curve is no more than: 

p _< (1 - P0)' ~ (1 - J ) '  

For each curve, we thus have a probability no larger than p that  we will fail 
to examine a set of distinguished points that  is a subset of the curve in ~ trials. 
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Since conservative peak finding techniques are used, we can assume tha t  any trial 
examining a correct set of distinguished points will lead to the identification of 
the curve. 

We can now choose an arbitrarily small probabil i ty of failure, 6, and deter- 
mine the number  of trials necessary to guarantee this accuracy: 

Solving for t yields: 

In 6 In �89 

- l n ( 1  - eJ) cJ 
For each trial, we now have to find the peaks on the Hough curve. Recall 

tha t  we use j = N - 1 in our method to facilitate the propagat ion of error. If  we 
use voting, the t ime is dependent on how finely the Hough curve is discretized. 
If  there are a bins, we need to increment O(a) bins per trial per point, yielding 
O(na) t ime per trial. The total  t ime requirement is thus ~n~l_.~_~.~ ~ ~ - 1  j or s imply 
O(n) when measured by the size of the input (a,  6, c, and N are constants). 

If  we use the sweep algorithm, we must  sort the O(n) maximal  and minimal  
points of the error clouds, requiring O(nlogn) t ime per trial. Processing the 

f}/r* lo•n log6 sorted points requires O(n) time. We thus require v~ F ' - ,  ) total  t ime or 
O(n log n) when measured by the size of the input. 

6 R e s u l t s  

These techniques have been applied to real images to test their efficacy. Figure 3 
shows an image that  was used to test the line detection techniques. The edges 
were determined to sub-pixel accuracy. For tests on this image, square error 
boundaries were used such that  the true location of each point was assumed to 
be within 0.25 pixels of the measured location in both x and y. When a large 
threshold was used (e = 0.01), all of the long lines were found in the image, 
but short or curving lines were not found. When a lower threshold was used 
(e -- 0.004), even short lines were found in the image. 

Figure 4 shows an image that  was used to test the circle detection techniques. 
This image is an engineering drawing that  has been scanned. For this reason, 
it was not possible to determine the location of pixels to sub-pixel accuracy. In 
addition, the presence of small and dashed circles and the clutter in the image 
make this a difficult test case. While all of the large circles were found with 
e -- 0.04, the small and dashed circles did not comprise a large enough fraction 
of the image to be found. With c --- .008, the implementat ion finds several of 
circles, some of which are not perceptually obvious. Note that  in each of the 
insalient circles, the pixels found overlay most  of the perimeter  of a circle and 
thus if we want to find small and/or  broken circles it is difficult to rule out these 
circles without using additional information. In addition, the implementa t ion has 
difficulty finding both of the dashed circles with the same center since they are 
so close together and are imperfect circles. The dashed circles shown in Fig. 4(c) 
consist of the top half of one of the circles and the bo t tom half of the other. 
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Fig. 3. A test image for line detection. (a) The original image. (b) The edges detected. 
(c) The lines found with e = .01. (d) The lines found with e = .004. 

7 E l l i p s e s  a n d  O t h e r  H i g h - O r d e r  C u r v e s  

When applying these techniques to curves with several degrees of freedom, we 
must take special care, since the number of trims that  are required can become 
large. Let's consider the detection of ellipses, which have five parameters.  If the 
image is sparse or we can segment the image, then we should have no prob- 
lems. For example, if we only need to detect ellipses that  comprise 50% of the 
image pixels (or some subset after segmentation), then the number of trials re- 
quired to achieve 99% accuracy is 74. On the other hand, if we wish to detect 
ellipses that  comprise at least 10% of the image pixels using these techniques in 
a straightforward manner, then this would require 46,052 trials to achieve 99% 
accuracy. 

When we wish to detect high-order curves in complex images there are ad- 
ditional techniques that  we can use in order to perform curve detection quickly. 
One simple technique is to use more information at each curve pixel. For exam- 
ple, we can use the orientation of the curve at each pixel (as determined from 
the gradient, the curve normal, or the tangent). When we do this, we require 
fewer curve points to determine the position of the curve. We can determine the 
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(c) (d) 

Fig. 4. A test image for circle detection. (a) The original engineering drawing. (b) The 
circles found with e = 0.04. (c) Perceptually salient circles found with e = 0.008. (d) 
Insalient circles found with c = 0.008. 

position of an ellipse using three points with orientations rather  than five unori- 
ented points. We would thus use two, rather than four, distinguished points, and 
we would require many  fewer trials to ensure that  there is a low probabil i ty of 
not selecting a correct set of distinguished points. Of course, we do not need to 
restrict this technique to high-order curves. We can use two oriented points to 
determine the position of a circle, rather than the three unoriented points used 
in the previous sections. 

An alternate technique that  can detect high-order curves quickly is to use a 
two-step technique, where we first determine a subset of the curve parameters  
and then determine the remaining parameters.  For examine, Yuen et al. [8] 
describe a method for detecting ellipse centers. They note tha t  the center of an 
ellipse must  lie on the line connecting the intersection of the tangents of two 
points on the ellipse with the midpoint of the segment between the two points. 
A point of intersection between several such lines yields a likely ellipse center. 
We can use decomposition techniques similar to those already described in this 
paper when this method is used to detect ellipse centers. Once the center of the 
ellipse has been detected, there are three remaining ellipse parameters .  These can 
be detected using a three parameter  Hough transform similar to the detection 
of circles. 
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8 Summary  

We have considered efficient techniques to perform the Hough transform with 
careful propagation of localization error. To this end, we have modified a formal 
definition of the Hough transform to allow localization error to be analyzed 
appropriately. We then considered a new method where the Hough transform 
is decomposed into several subproblems, each of which examines a subset of 
the parameter space, by considering only those point sets that  include some 
set of distinguished points. These subproblems allow us, first, to propagate the 
localization error efficiently and accurately in the parameter  space, and second, 
to use randomization techniques to reduce the complexity while maintaining a 
low probability of missing an important  curve. The overall complexity of the 
resulting algorithm is O(n), where n is the number of data points in the image. 
Finally, we have given results of this system detecting straight lines and circles in 
cluttered and noisy real images and discussed the  application of these techniques 
to curves with several parameters. 
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