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SUMMARY

The concept of the integral sliding mode (ISM) is revised and applied for robustification of a linear time
invariant min–max multi-model problem with uncertainties. Modified version of ISM ensures the
insensitivity of the designed min–max control law with respect to matched uncertainty, starting from the
beginning of the process, and guarantees that the unmatched part of uncertainties is minimized and not
amplified. Proposed ISM dynamics allows to reduce the dimension ½Nn� of the min–max control design
problem to the space of unmatched uncertainties only of ½Nn� ðN � 1Þm� size. A numerical example
illustrates that the suggested modification of the ISM dynamics does not change the min–max control as
well as the value of the corresponding performance index. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Motivation

Sliding mode control is a powerful nonlinear control technique intensively developed during
the last 35 years [1, 2]. A system motion in a sliding surface, named sliding mode, turns out to
be robust with respect to disturbances and matched uncertainties by a control but seems to be
sensitive to unmatched ones. The sliding mode approach consists of two steps [1]: first, the
switching surface is constructed in such a manner that the system motion being in sliding mode
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satisfies the design specifications, and, second, a control function is designed to make the
switching function attractive to the system dynamics.

The concept of the optimal sliding mode control, formulated in Reference [3], provides an
optimal stabilization of sliding dynamics and ensures the insensitivity of designed the control law
with respect to the matched uncertainties. In the case of unmatched uncertainties the problem of
optimal sliding manifold design cannot be formulated, since an optimal control requires a
complete knowledge of system dynamics. Therefore, in this situation another design concept must
be developed. The corresponding optimization problem is usually treated as a min–max control
dealing with different classes of partially known models [4, 5]. The min–max control problem can
be formulated in such a way that the operation of the maximization is taken over a set of
uncertainty and the operation of the minimization is taken over the control strategies within a
given resource set. In view of this concept, the original system model is replaced by a finite set of
dynamic models such that each model describes a particular uncertain case including exact
realizations of possible dynamic equations as well as external bounded unmatched disturbances. In
Reference [6] the authors developed the concept of min–max sliding mode control design for linear
time variant multi-model system. This control design technique has the following disadvantages:

* the designed controller ensures optimality after the entrance point into the sliding mode
only;

* the trajectory of the designed solution is not robust even with respect to the matched
disturbances on a time interval preceding the sliding motion (within a reaching phase).

In References [1, 7–9] a new sliding mode design concept, namely integral sliding mode (ISM),
without any reaching phase has been proposed. As a result, the robustness of the trajectory for a
nominal system can be guaranteed throughout an entire response of the system starting from the
initial time instant. The main disadvantage of ISM is the following: ISM does not have the
decomposition property typical for sliding mode controllers since the trajectory robustification
requires designing the control law in the complete state space.

In Reference [10] both ISM and min–max approaches are brought together for linear time
variant multi-model systems with uncertainties. It allows

* to design the nominal system only taking into account the unmatched uncertainties;
* to ensure the insensitivity of the designed min–max control law with respect to matched

uncertainties starting from the initial time instant.

On the other hand, the direct usage of ISM in Reference [10] requires designing the min–max
control law in the space of extended variable with the dimension equal to the product of the
state vector’s dimension (n) multiplied by the number of scenarios (N), that is, the multi-model
optimal problem was solved in the space of nN-order.

1.2. Main contribution

In this paper the concept of the ISM for linear time invariant multi-model uncertain systems is
modified allowing

* to reduce the dimension of min–max multi-model control design problem (originally equal to
n �N) up to the space of unmatched uncertainties by ½Nn� ðN � 1Þm�-dimension (m is the
dimension of the control vector);

* to ensure insensitivity of the proposed controller with respect to unmatched uncertainties.
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Moreover, it is shown that proposed ISM design

* does not amplify the unmatched uncertainties in the sense that its Euclidian norm is not
bigger than the Euclidian norm of the original unmatched perturbation;

* ensures that the Euclidian norm of the performed unmatched perturbation is minimal with
respect to the class of the preliminary state-space transformations suggested in this paper.

2. PROBLEM STATEMENT

Let us consider a controlled linear uncertain system

’xðtÞ ¼ AxðtÞ þ BuðtÞ þ zðtÞ; xð0Þ ¼ x0 ð1Þ

where xðtÞ 2 Rn is the state vector at time t 2 ½0; t1�; uðtÞ 2 Rm is a control action, z is external
disturbance (or uncertainty). We will assume that

1. the matrix Amay take a finite number of fixed and a priori known matrix functions, that is,
A 2 fA1;A2; . . . ;ANg which is supposed to be bounded, that is,

sup
a¼1;N

jjAajj4a ð2Þ

the constant matrix B is known, it has a full rank, that is, rank B ¼ m and
Bþ :¼ ½BTB��1BT exist;

2. N is a finite number of possible dynamic scenarios;
3. the external disturbances z may be represented in the following manner:

zðtÞ ¼ gðx; tÞ þ xðtÞ; t 2 ½0; t1� ð3Þ

where gðx; tÞ is an unmeasured smooth uncertainty describing perturbations satisfying the
so-called ‘standard matching condition’, that is gðx; tÞ 2 spanB; or, in other words,
gðx; tÞ 2 O where

O :¼ fgðx; tÞ : gðx; tÞ ¼ Bgðx; tÞ; jjgðx; tÞjj4qjjxjj þ p; q; p > 0g ð4Þ

and xðtÞ is an unmatched disturbance taking a finite number of alternative functions, that
is, xðtÞ 2 fx1ðtÞ; . . . ; xNðtÞg :¼ X; where xaðtÞ ða ¼ 1; . . . ;NÞ are known (smooth enough)
bounded functions such that for all t 2 ½0; t1�

jjxðtÞjj4xþ ð5Þ

So, for each concrete realization a of possible scenarios we obtain the following dynamics:

’xaðtÞ ¼ AaxaðtÞ þ BuðtÞ þ gðxa; tÞ þ xaðtÞ; xað0Þ ¼ x0 ð6Þ

2.1. The control design challenge

Now the control design problem can be formulated as follows: design the control u ¼ uðtÞ in the
following form:

uðtÞ ¼ u0ðtÞ þ u1ðx; tÞ ð7Þ

where u1ðx; tÞ is the ‘integral sliding mode’ control part, providing:

* the complete compensation of the unmeasured matched uncertainly gðx; tÞ starting from
initial time ðtcomp ¼ 0Þ;
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* that the dynamics of the matched part of the system will depend on control component
u0ðtÞ only (the control function u0ðtÞ is the control which minimized a performance index
defined below).

The main goal is to design the control law ensuring

* robustness of the system with respect to the matched perturbations. This is done by the
control u1;

* the reduction and minimization of the norm of the unmatched perturbations;
* u0 dealing with the reduced dimension of the extended system without changing the value

of the performance index.

Substitution of the control law (7) and (3) into system (1) yields

’xðtÞ ¼ AxðtÞ þ Bu0ðtÞ þ Bu1ðx; tÞ þ gðx; tÞ þ xðtÞ; xð0Þ ¼ x0 ð8Þ

2.2. ISM control design

2.2.1. Projection matrix design. Let us define the auxiliary sliding function

s ¼ sðtÞ þ GxðtÞ ð9Þ

where sðtÞ is some auxiliary variable and G is a projection matrix defined bellow. Then,

’sðtÞ ¼ ’sðtÞ þ G ½AxðtÞ þ Bu0ðtÞ þ Bu1ðx; tÞ þ gðx; tÞ þ xðtÞ�

Suppose that det GB=0 and we wish to enforce the sliding mode on the surface s ¼ 0 via ISM
controller u1: To find ISM dynamics one has

u1eq ¼ �½GB��1G ½AxðtÞ þ xðtÞ� � u0ðtÞ � g� ½GB��1 ’sðtÞ

The corresponding ISM-dynamics equation has the form

’xðtÞ ¼ ½I � BðGBÞ�1G � ½AxðtÞ þ xðtÞ� � BðGBÞ�1 ’sðtÞ ð10Þ

Let us design such a projection matrix G which

* does not amplify the unmatched uncertainties xeqðtÞ ¼ ½I � BðGBÞ�1G�xðtÞ in the sense that
its Euclidian norm is not bigger than the Euclidian norm of the original unmatched
perturbation;

* ensures that the Euclidian norm xeqðtÞ of the performed unmatched perturbation is
minimal over all admissible transformations G:

Lemma 1
Bþ is the matrix minimizing the norm of xeqðtÞ; i.e.

Bþ ¼ arg min
G2Rm�n

jj½I � BðGBÞ�1G �xðtÞjj2 ð11Þ

Proof
Remark that

jj½I � BðGBÞ�1G�xðtÞjj2 ¼ jjxðtÞ � BðGBÞ�1GxðtÞjj2 ¼ jjxðtÞ � Bjjj2
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where j ¼ ðGBÞ�1GxðtÞ: Thus, problem (11) can be rewritten in the form:

j0 ¼ arg min
j2Rm

jjxðtÞ � Bjjj2

which has j0 ¼ BþxðtÞ as the solution (see Reference [11]). Taking G ¼ Bþ and in view of the
relations BþBBþ ¼ Bþ and ðBþBÞ�1Bþ ¼ Bþ we obtain

ðGBÞ�1GxðtÞ ¼ BþxðtÞ ¼ j0

that implies (11). &

Lemma 2
The unmatched perturbation xeqðtÞ ¼ ½I � BBþ�xðtÞ is not amplified, i.e.

jj½I � BBþ�jj2 ¼ 1

Proof
Let mðDÞ be the largest eigenvalue of D and nðDÞ the smallest eigenvalue of D: Denote the
Euclidian norm of a real matrix as

jjDjj2 ¼ ðlargest eigenvalue ofDTDÞ1=2 ¼ ðmðDTDÞÞ1=2

Then, we have

jj½I � BBþ�jj2 ¼ ðmð½I � BBþ�T½I � BBþ�ÞÞ1=2

Since ½I � BBþ�T½I � BBþ� ¼ ½I � BBþ�; and in view of the properties of eigenvalues ðI þDÞx ¼
ð1þ lÞx (l is an eigenvalue of D) we get

jj½I � BBþ�jj2 ¼ ðmðI � BBþÞÞ1=2 ¼ ð1� nðBBþÞÞ1=2 ð12Þ

Now, let l be any eigenvalue of BBþ and, in view of the fact that the matrix ðBTBÞ�1 can be
represented as ðBTBÞ�1=2ðBTBÞ�1=2; one may obtain the following:

lx ¼BBþx ¼ BðBTBÞ�1BTx

lxTx ¼ xTBðBTBÞ�1=2ðBTBÞ�1=2BTx

¼ jjðBTBÞ�1=2BTxjj250

that means that l50: The matrix BBþ is singular, that is why at least one eigenvalue is equal to
zero, hence, nðBBþÞ ¼ 0: Then, from (12) it follows that

jj½I � BBþ�jj2 ¼ 1 &

Remark 1
Lemmas 1 and 2 was firstly proved in Reference [9].

2.2.2. Transformation of the state. Now, taking in account Lemmas 1, 2, let us transform
system (8) into two subsystems using the co-ordinates corresponding to the matched and
unmatched parts of uncertainties. Define the following non-singular transformation:

T :¼
B?

Bþ

" #
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where B? 2 Rðn�mÞ�n is a matrix which is composed by the transposition of a basis of the
orthogonal space of B: Since rank ðBÞ ¼ m; then rank ðB?Þ ¼ n�m:

Applying the transformation T to system (8) one get

zðtÞ ¼
z1ðtÞ

z2ðtÞ

" #
:¼ TxðtÞ ¼

B?xðtÞ

BþxðtÞ

" #

and

’zðtÞ ¼
’z1ðtÞ

’z2ðtÞ

" #
¼

B? ’xðtÞ

Bþ ’xðtÞ

" #
ð13Þ

2.2.3. ISM surface design. Redefine the auxiliary ‘sliding’ function sðx; tÞ 2 Rm as

sðx; tÞ ¼ sðtÞ þ z2 ¼ sðtÞ þ BþxðtÞ ð14Þ

where G ¼ Bþ and sðx; tÞ is an auxiliary variable which will be defined bellow. Then, since
BþB ¼ I ; it follows that

’sðx; tÞ ¼ ’sðx; tÞ þ BþAxðtÞ þ u0ðtÞ þ u1ðx; tÞ þ Bþgðx; tÞ þ BþxðtÞ ð15Þ

The next step is to select the auxiliary variable s as the solution to the following Cauchy
problem:

’sðtÞ ¼ �u0ðtÞ; sð0Þ ¼ �z2ð0Þ ð16Þ

Then, the equation for the slack function sðx; tÞ becomes as

’sðx; tÞ ¼ Bþ½AxðtÞ þ Bu1ðx; tÞ þ Bgðx; tÞ þ xðtÞ�

sðxð0Þ; 0Þ ¼ 0
ð17Þ

In order to realize a sliding mode dynamics, let us design the relay control in the form

u1ðx; tÞ ¼ �MðxÞ
sðtÞ
jjsðtÞjj

MðxÞ ¼ %qjjxðtÞjj þ %p; %q5qþ bþa; %p5pþ bþxþ
ð18Þ

(q; a; p; , xþ were defined in (2), (4) and (5), bþ :¼ jjBþjj), that implies

’sðx; tÞ ¼ gðx; tÞ �MðxÞ
sðtÞ
jjsðtÞjj

þ BþðAxðtÞ þ xðtÞÞ ð19Þ

2.2.4. ISM stability. For the Lyapunov function V ¼ 1
2
jjsjj2; in view of (4), (2) and (19), it

follows that

d

dt
V ¼ s; gðx; tÞ �MðxÞ

sðtÞ
jjsðtÞjj

� �
þ ðs;BþðAxðtÞ þ xðtÞÞÞ

4 � jjsjj ½MðxÞ � jjgðx; tÞjj� � jjsjj ½�bþðjjAjj jjxðtÞjj þ xþÞ�

4 � jjsjj ½ð%q� q� bþaÞ jjxðtÞjj� � jjsjj ½%p� p� bþxþ�40
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So, by (16), it follows that

VðsðxðtÞ; tÞÞ4Vðsðxð0Þ; 0ÞÞ ¼ 1
2
jjsðxð0Þ; 0Þjj2 ¼ 0

that implies for all t 2 ½0; t1� the following identities:

sðtÞ ¼ 0; ’sðtÞ ¼ 0 ð20Þ

This means that the ISM control (18) completely compensates the effect of the matched
uncertainty g from the beginning of the process.

2.3. Nominal system design

Taking into account (17), we will find the equivalent control (maintaining the dynamics over a
sliding surface) for ISM dynamics as follows:

u1eq ¼ �Bþ½AxðtÞ þ BgðxðtÞ; tÞ þ xðtÞ�

Applying u1eq to (8) we obtain the nominal system as the ISM dynamics in the following form:

’x0ðtÞ ¼ Aeqx0ðtÞ þ Bu0ðtÞ þ xeqðtÞ ð21Þ

where

Aeq ¼ ½I � BBþ�A and xeqðtÞ ¼ ½I � BBþ�xðtÞ

Applying u1eq to (13), one get

’z0ðtÞ ¼ ½TAeqT
�1z0ðtÞ þ TBu0ðtÞ þ TxeqðtÞ�

¼
’z10ðtÞ

’z20ðtÞ

" #
¼
½B?AT�1z0ðtÞ þ B?xðtÞ�

u0ðtÞ

" #

:¼
Ae1 Ae2

0 0

" #
z10ðtÞ

z20ðtÞ

" #
þ

xe1ðtÞ

0

" #
þ

0

u0ðtÞ

" #
ð22Þ

which may be called the transformed nominal system. One can see that the state vector ’z20ðtÞ in
(22) does not depend on the state vector z0; but depends on control u0 only.

2.4. The corrected LQ-index

Let us apply the min–max approach [4, 5] to the nominal system (21), allowing to obtain the
control u0ðxÞ as a control function minimizing the worst LQ-index over a finite horizon t1; that is

min
u02Rm

max
a¼1;N

ha ð23Þ

where

ha :¼
1

2
ðxa0ðt1Þ;Lx

a
0ðt1ÞÞ þ

1

2

Z t1

t¼0
½ðxa0ðtÞ;Qxa0ðtÞÞ

þ ½u0ðtÞ � ðBþAaxa0ðtÞÞ;Rðu0ðtÞ � BþAaxa0ðtÞÞ�� dt

L ¼ L>50; Q ¼ Q>50; R ¼ R> > 0
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Since zðtÞ ¼ TxðtÞ and xðtÞ ¼ T�1zðtÞ; the LQ-index ha can be represented as

ha :¼
1

2
ðza0ðt1Þ; ðT

>Þ�1LT�1za0ðt1ÞÞ þ
1

2

Z t1

t¼0
½ðza0ðtÞ; ðT

>Þ�1QT�1za0ðtÞÞ

þ ½u0ðtÞ � ðBþAaT�1za0ðtÞÞ;Rðu0ðtÞ � BþAaT�1za0ðtÞÞ�� dt

2.5. Minimax multi-model control design

Following to [4, 5] consider the extended system

’x ¼ Aeqxþ Bu0 þ d ð24Þ

where

xT ¼ ½ x1T0 � � � xNT
0 �; Aeq :¼ diag ðA1

eq; . . . ;A
N
eqÞ; x 2 RN�n

B> :¼ ½B> � � � B> �; d> :¼ ½ x1Teq � � � x
NT
eq �

ð25Þ

Using the previous extended system and according to Poznyak et al. [5, 10] the control u0;
denoted below by u0x to emphasize that it is designed before any state-space transformation
application), is

u0x ¼ �R
�1BT½Plxþ pl� þ BþAKx ð26Þ

where the matrix Pl ¼ P>l 2 R
nN�nN is the solution to the parametrized differential matrix

Riccati equation:

’Pl þ PlðAeq þ BBþAKÞ þ ðAeq þ BBþAKÞTPl � PlBR
�1BTPl

þ KðQeq � ðB
þAÞ>RBþAKÞ ¼ 0; Plðt1Þ ¼ KL ð27Þ

and the shifting vector pl satisfies

’pl þ ðAeq þ BBþAKÞTpl � PlBR
�1BTpl þ Pld ¼ 0

plðt1Þ ¼ 0
ð28Þ

with the matrices defined as

A :¼ diag ðA1; . . . ;ANÞ; Qeq :¼ diag ðQ1; . . . ;QNÞ

L :¼ diag ðL; . . . ;LÞ; K :¼ diag ðl1In�n; . . . ; lNIn�nÞ

Qa ¼ Qþ ½BþðtÞAaðtÞ�>RBþðtÞAaðtÞ

Now consider the extend system using z0ðtÞ

’z ¼ TAeqT
�1zþ TBu0 þ Td ð29Þ

where

zT ¼ z1T0 � � � zNT
0

� �
; T ¼

T 0 � � � 0

..

. . .
. ..

.

0 � � � T

2
6664

3
7775
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By (29) the control u0 (denoted by u0z to emphasize that it is designed after the T-transformation
application), is as follows:

u0z ¼ �R
�1ðTBÞT½Slzþ sl� þ BþAT�1Kz ð30Þ

where the matrix Sl¼ ST
l 2 R

nN�nN is the solution to the parametrized differential matrix Riccati
equation:

’Sl þ SlðTAeqT
�1 þ TBBþAT�1KÞ þ ðTAeqT

�1 þ TBBþAT�1KÞTSl

� SlTBR
�1ðTBÞTSl þ KðT>Þ�1ðQeq � ðB

þAÞ>RBþAKÞT�1 ¼ 0

Slðt1Þ ¼ KðT>Þ�1LT�1 ð31Þ

’sl þ ðTAeqT
�1 þ TBBþAT�1KÞTsl � SlTBR

�1ðTBÞTsl þ SlTd ¼ 0

slðt1Þ ¼ 0
ð32Þ

Lemma 3
The controls u0x (26), designed for system (24) and u0z for systems (29) and (30), are identical,
that is

u0z ¼ u0x ¼
4
u0 ð33Þ

Proof
Equation (33) is true if

�R�1BT½Plxþ pl� þ BþAKx ¼ �R�1ðTBÞT½Slzþ sl� þ BþAT�1Kz

Since TK ¼ KT by the triangularity of both multipliers, it implies

Pl ¼ TTSlT and pl ¼ TTsl ð34Þ

and, of course, if (34) is true, then equality (33) is satisfied. That is why, in order to prove (33)
it is necessary and sufficient to prove (34). Premultiplying (31) by TT and postmultiplying by T

we obtain

TT ’SlTþ TTSlTðAeq þ BBþAKÞ þ ðAeq þ BBþAKÞTTTSlT

� TTSlTBR
�1B>TTSl þ Tþ KðQeq � ðB

þAÞ>RBþAKÞ ¼ 0

TTSlðt1ÞT ¼ KL

This differential Riccati equation is equal to (27) with Pl ¼ TTSlT:Now postmultiplying (32) by
TT gives

TT’sl þ ðAeq þ BBþAKÞTTTsl � TTSlTBR
�1BTTTsl þ TTSlTd ¼ 0

TTslðt1Þ ¼ 0

The previous equation is equal to (28) with pl ¼ TTsl and Pl ¼ TTSlT: Hence, (34) and,
therefore, (33) are proven. &
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Since zað0Þ ¼ z0 and za20 ¼ z20; system (29), by rearranging the components order, can be
represented as follows:

’zr ¼ Arzr þ Bru0 þ dr ð35Þ

zr ¼

z110

..

.

zN10

z20

2
6666664

3
7777775
; Ar :¼

A1
e1 0::: 0 A1

e2

..

. . .
. ..

. ..
.

0 0::: AN
e1 AN

e2

0 0::: 0 0

2
6666664

3
7777775

B>r ¼½ 0 � � � 0 Im�m �; zr 2 RNðn�mÞþm

d>r ¼ ½ x
1>
e1 � � � xN>e1 0 � ð36Þ

We note that in (36) we reduce the original ðnNÞ-dimension of the state vector up to Nn�
ðN � 1Þm: Hence, we can design the control u0 using system (25), or, using system (36) that
seems to be much simpler from the computational point of view.

According to Poznyak et al. [4, 5, 10] this control is as follows:

u0 ¼ �R�1BT
r ½%Plzr þ %pl� þ FKzr ð37Þ

where the matrix %Pl ¼ %P>l 2 R
½Nðn�mÞþm��½Nðn�mÞþm� is the solution to the following parametrized

differential matrix Riccati equation:

%P
D
lþ %PlðAr þ BrFKÞ þ ðAr þ BrFKÞT %Pl � %PlBrR

�1BT
r
%Pl

þ ðKQr � KF>RFKÞ ¼ 0; %Plðt1Þ ¼ KL ð38Þ

and the shifting vector %pl 2 RNðn�mÞþm satisfies

%p
D
lþ ðAr þ BrFKÞT%pl � %PlBrR

�1BT
r %pl þ %Pldr ¼ 0

%plðt1Þ ¼ 0
ð39Þ

with

F ¼ ½F1
1 . . . FN

1 l1F1
2 þ � � � þ lNFN

2 �

Fa :¼ ½Fa
1 Fa

2 � ¼ BþAaT�1; Fa
2 2 Rm�m

and

Q :¼
Q1 Q2

QT
2 Q3

" #
; Qa :¼

Qa
1 Qa

2

ðQa
2Þ
> Qa

3

" #

L :¼
L1 L2

LT
2 L3

" #

Q1; L1 2 Rðn�mÞ�ðn�mÞ; Q3; L3 2 Rm�m
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Qa
1 ¼ Q1 þ ðB�12 Aa

21Þ
>RðB�12 Aa

21Þ

Qa
2 ¼ Q2 þ ðB�12 Aa

21Þ
>RðB�12 Aa

22Þ

Qa
3 ¼ Q3 þ ðB�12 Aa

22Þ
>RðB�12 Aa

22Þ

L :¼

l1Iðn�mÞ 0::: 0 0

..

. . .
. ..

. ..
.

0 0::: lNIðn�mÞ 0

0 0::: 0 Im�m

2
6666666664

3
7777777775

LQr :¼

l1Q1
1 0::: 0 l1Q2

2

..

. . .
. ..

. ..
.

0 0::: lNQN
1 lNQN

2

l1ðQ1
2Þ
> ::: lNðQN

2 Þ
T l1Q1

3 þ � � � þ lNQN
3

2
6666666664

3
7777777775

KL :¼

l1L1 0::: 0 l1L2

..

. . .
. ..

. ..
.

0 0::: lNL1 lNL2

l1LT
2 ::: lNLT

2 L3

2
666666664

3
777777775

ð40Þ

The matrix K ¼ KðlnÞ is defined by (40) with the weight vector l ¼ ln solving the following
finite-dimensional optimization problem:

ln ¼ argmin
l2SN

JðlÞ ð41Þ

JðlÞ :¼ max
a¼1;N

ha ¼
1

2
z>r ð0Þ%Plð0Þzrð0Þ þ z>r ð0Þ%plð0Þ

þ
1

2
max
i¼1;N

"Z t1

0

½xiT0 ðtÞQ
ixi0ðtÞ þ 2xiT0 ðtÞ � ðF

iÞ>ðBT
r ½ %Plzr þ %pl�
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�RFKzrÞ� dtþ xiT0 ðt1ÞLx
i
0ðt1Þ

#
�

1

2

XN
i¼1

li

"Z t1

0

½xiT0 ðtÞQ
ixi0ðtÞ þ 2xiT0 ðtÞ

�ðFiÞ>ðBT
r ½ %Plzr þ %pl� � RFKzrÞ� dtþ xiT0 ðt1ÞLx

i
0ðt1Þ

#

þ
1

2

Z t1

t¼0
%p
T
l ½2dr � BrR

�1BT
r %pl� dt

SN ¼ k 2 RN : la50;
XN
a¼1

la ¼ 1

( )

2.6. Control algorithm description

We can summarize the designed control algorithm as follows:

1. For a fixed control u0; construct the, so-called, extended nominal system in the form (29).
2. Create the corrected LQ-index.
3. Design the control u0 using the extended system (36) and (40).
4. Design the ISM law u1 completely compensating the matched part of the uncertainties

from the beginning of the process.
5. Apply the control u ¼ u0 þ u1 to the closed-loop system (1).

3. EXAMPLE

Let us consider the following system:

’xaðtÞ ¼ AaxaðtÞ þ Buðxa; tÞ þ gðxa; tÞ þ xaðtÞ

with three possible scenarios (N ¼ 3), where

A1 ¼
�1 2

1:2 �1:5

2
4

3
5; A2 ¼

1 �2

1:5 1

2
4

3
5; A3 ¼

0:5 2:5

�1:5 1

2
4

3
5

B> ¼ ½ 1 1 �; g> ¼ ½ 0:8x1 0:8x1 �; ðx1Þ> ¼ ½ 0:25 0:15 �

ðx2Þ> ¼ ½ 0:12 0:57 �; ðx3Þ> ¼ ½ 0:45 0:25 �

ð42Þ

Step 1. The nominal system has the following parameters and unmatched uncertainties:

’z0ðtÞ ¼ ½TAeqT
�1z0ðtÞ þ TBu0ðtÞ þ TxeqðtÞ�

where

T :¼
B?

Bþ

" #
¼
�0:7071 0:7071

0:5 0:5

" #
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TA1
eqT

�1 ¼
�2:85 �0:9192

0 0

" #
; ½Tðx1eqÞ�

T ¼ ½�0:0707 0 �

TA2
eqT

�1 ¼
1:25 2:4749

0:0 0:0

" #
; ½Tðx2eqÞ�

T ¼ ½ 0:3182 0 �

TA3
eqT

�1 ¼
0:25 �2:4749

0:0 0:0

" #
; ½Tðx3eqÞ�

T ¼ ½�0:1414 0 �

Step 2. Then, now the objective is to design the control u0 such that

min
u02Rm

max
a¼1;3

ha

selecting R ¼ 1; Q ¼ I ; L ¼ I ; t1 ¼ 10: The LQ-index becomes

ha :¼
1

2
ðxa0ð10Þ;x

a
0ð10ÞÞ þ

1

2

Z 10

t¼0
½ðxa0ðtÞ; x

a
0ðtÞÞ

þ ðKaxa0;K
axa0Þ þ ðu0ðtÞ; u0ðtÞÞ � 2ðKaxa0; u0ðtÞÞ� dt

K1 :¼ ½ 0:1061 0:3500 �x10; K2 :¼ ½�1:2374 0:7500 �x20

K3 ¼ ½ 1:5910 1:2500 �x30

Step 3. The control u0 is designed using the following extended system:

’zr ¼ Arzr þ Bru0ðzr; tÞ þ dr

z>r ¼½ z
1
10 z210 z310 z20 �; B>r ¼ ½ 0 0 0 1 �

Ar ¼

�2:85 0 0 �0:9192

0 1:25 0 2:4749

0 0 0:25 �2:4749

0 0 0 0

2
666664

3
777775

d>r ¼ ½�0:0707 0:3182 �0:1414 0 �

One can see in Figure 1 that the optimal weights are ln
1 ¼ 0; ln

2 ¼ 0:1; ln
3 ¼ 0:9 and the

performance index JðlnÞ ¼ 594:6517:
The control u0 was calculated as in (24) and also as in (29). In both cases it turned out to be

the same. This confirms that the proposed decomposition scheme does not affect the value of
JðlnÞ: In this example the dimension of the extended state vector zr of the previous extended
system is 4; while the dimension of the state vector z of the extended system (25) is 6.
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Step 4. Design the ISM law of control with M ¼ ð2jjxjj þ 0:5Þ (this is only an option, the
choose of M depends on the knowledge of the bound of the matched uncertainty), that implies
u1 ¼ �ð2jjxjj þ 0:5Þsign½sðtÞ�: Note that in jjxjj; x represent the state variable of the realization of
system (1).

Step 5. Applying the control u ¼ u0 þ u1 to each one within the set of the different given
scenarios we obtain the corresponding state variable dynamics and the control law which are
depicted at Figures 1 and 2.

0 2 4 6 8 10
-15

-10

-5

0

5

10

15

Time (sec)

xα

x3
1

x1
1

x2
1

x1
2

x2
2

x3
2

Figure 1. Performance index J and Trajectories of the states variables for system (42).
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Figure 2. Controls u0 and u1 for a ¼ 1; a ¼ 2 and a ¼ 3:
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4. CONCLUSIONS

The decomposition problem for the robust optimal (min–max) control design is considered
for a stationary linear multi-model system with bounded disturbances and uncertainties
which are assumed to be partially known. In view of this the methods of integral sliding
mode control and min–max robust optimal control are modified. The suggested control law
consists of two terms: the integral sliding-mode component and multi-model min–max optimal
controller.

The integral sliding-mode component:

* compensates the matching part of the uncertainty right from the start point of the process,
that is, from t ¼ 0;

* does not amplify the modified unmatched perturbation in the sense that its Euclidian norm
is not bigger than the Euclidian norm of the original unmatched perturbation;

* minimizes (over all admissible state transformations) the Euclidian norm of the performed
unmatched perturbation.

The proposed sliding dynamics design allows:

* to apply the min–max control design taking into account only the projection of possible
perturbations on the space of unmatched uncertainties,

* to reduce the original order ½Nn� of the extended system into ½Nn� ðN � 1Þm� for the min–
max problem design.

It is proven and illustrated by the presented example that the suggested version of the ISM
dynamics does not modify the robust optimal control and, consequently, the value of the
performance index is not modified by the use of the extended system in a lower dimension to
designed the control u0: Sure, that the proposed procedure demands an extra work on
verification of the decomposition properties in more complex situations (for example, when only
the output of the system is available or when there are external noises in output observations)
that might present a formidable problem for the further investigations.
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