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Abstract-This research discusses the formulation and solution algorithm of the reactive dynamic 
traffic assignment with the link travel time explicitly taking into account the effects of queues 
under the point queue concept. In the reactive assignment, vehicles are assumed to choose their 
routes based on present instantaneous travel times. Time dependent many-to-many origin4estination 
volumes are assumed to be given; that is, the departure times of vehicles from origins are known. 
We first discuss the formulation of the dynamic assignment so as to satisfy the flow conservation 
and the First-In-First-Out queue discipline. Then, the reactive assignment is shown to be decomposed 
with respect to present time, since route choices of vehicles are dependent on the present traffic 
situation but independent of the past and future traffic condition. An algorithm is finally 
proposed based upon the decomposition. Copyright 0 1996 Elsevier Science Ltd 

1. INTRODUCTION 

This research analyses the formulations and decomposition of the reactive dynamic 
assignment with queues on a network. We assume that time dependent many-to-many 
origin-destination (OD) volumes are given; that is, the departure times of vehicles from 
origins are known. In the reactive assignment which is sometimes known as the dynamic 
optimal assignment, vehicles are assumed to choose their routes based on present instan- 
taneous travel times which may be observed by traffic detectors installed on a network 
and transmitted to travellers through variable message signs, in-vehicle equipment, etc. 

Suppose that a network consists of links and nodes and that travel times of all links 
are observed at present time 1. Then, a traveler is assumed to evaluate a route travel time 
as simply the sum of present link travel times on the route and to choose the shortest 
route to his destination based on the above present travel time. This possible route 
choice would become more common as ATIS, such as variable message signs, highway 
radios, and in-vehicle navigation equipments, frequently supply current traffic information. 

In the usual equilibrium assignment travelers are assumed to choose their routes 
according to the travel times they actually experienced. This is sometimes called predictive 
assignment in contrast with the reactive assignment for which travelers respond to future 
traffic conditions as they travel. 

Friesz et al. (1989), Wie et al. (1990), Boyce et al. (1993) and Lam and Huang (1995), 
individually developed mathematically interesting models based upon the control theory, 
in which link travel time was evaluated from arrival and departure flow rates of the link 
as well as the number of vehicles existing on the link. However, the First-In-First-Out 
(FIFO) queue discipline has sometimes been neglected and travellers’ perceived route 
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costs do not hold a clear relationship with link travel times. Also, their link travel times 
have not been well explained in conjunction with the arrival and departure flow 
rates, although the link travel time should be related to these flow rates through 
the FIFO queue discipline. This point will be further discussed in Section 2. 

On the other hand, Kuwahara and Akamatsu (1993, 1994) analyzed the predictive 
dynamic user equilibrium assignment for a one-to-many (many-to-one) OD pattern taking 
the effect of queues explicitly into account, given time-dependent OD volume. One of the 
most important results is the decomposition of the problem with respect to departure 
time from an origin (arrival time at a destination). This research follows the approach of 
our previous study and introduces a similar decomposition scheme for the reactive 
assignment with a many-to-many OD pattern. 

2. DYNAMIC NETWORK FLOWS AND LINK TRAVEL TIME WITH QUEUES 

2.1. Network and trajic demand 
A network consists of links and nodes. Sequential numbers from 1 to N are allocated 

to N nodes. The number of links is L and a link from node i to j is denoted as link (i, j). 
A time-dependent many-to-many OD demand generated and absorbed at nodes is 
assumed to be given, which is denoted as: 

Q,(t) = cumulative OD demand from origin node i to destination node j generated at 
the origin by time t (given). 

Let us also introduce demand functions with respect to the arrival time at a node: 

R,{t) = cumulative trips generated at origin i by time t, 

= 3 Q,(t), 

Sj(t) = cumulative trips absorbed at destination nodei by time t. 

Arrival time at node j cannot be known in advance (except when j is an origin node) 
and hence Sj(t) must be evaluated through the dynamic assignment. 

2.2. Cumulative functions and constraints 
The cumulative arrival and departure curves are defined as follows: 

A,(t) = the cumulative arrivals at link (i, j) by time t, (1) 

oii(t) = the cumulative departures from link (i, j) by time t. 

And the derivatives of those with respect to time t are denoted as: 

(2) 

A,(t) = the arrival rate at link (i, j) at time t = dd,(t)ldt, 
pu(t) = the departure rate from link (i,j) at time t = dD,(t)/dt. 

The arrival rate at link (i, j) at time t, A,(t), is the unknown variable which must be 
determined so as to establish the reactive assignment principle defined later. The cumulative 
arrival, A,(t), is the integral of A,(t) over time until time t, and our objective is thus to 
determine A,(t) at every link for any t. 
2.2.1. Flow conservation at nodes. The first constraint is the flow conservation at a node, 
which is written with respect to node i: 

- 3 D&) + F A,(t) - Ri(t) + $(t) = 0, i = 1, 2, . . . . . . N. (3) 

The first and third terms give the cumulative number of vehicles flowing into node i by 
time t, while the remaining terms describe the number of vehicles leaving node i by time 
1. 

Since the flow conservation should be satisfied within vehicles travelling to the same 
destination d, eqn (3) is rewritten only for them: 

- 5 Q:(t) + 5 A,“(t) - Qid(t) = 0, i = 1, 2, . . . . . . N, if d. (4) 
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AUd(t) = the cumulative arrivals at link (i, j) to destination d by time t, 
DVd(r) = the cumulative departures from link (i, j) to destination d by time t. 
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Although eqn (4) is written by destinations, the flow conservation can be apparently 
formulated by origins as well. 
2.2.2. First-h-First-Out discipline. Second, under the FIFO discipline, a vehicle must 
leave link (i, j) in the same order as its order of arrival at the link. Thus, the A,(t) and 
D&t) must be related to each other through link travel time rj(t) as shown in Fig. 1. 

A,(t) = Dfj(t + Tjtt))l (5) 

where 

T,,(t) = travel time on link (i,]) for a vehicle entering the link at time t. 

This condition must also be satisfied even by vehicles travelling toward the same 
destination node d: 

Al(t) = Dijd(t + 7;i(t)). 

This FIFO discipline is also described using arrival and departure rates by taking derivative 
with respect to time t when these cumulative functions are differentiable: 

At(t) = pi/d(t + Tj(t)) (1 + dTJt)ldt), (6) 

where 

hiid = dAUd(t)ldt and piid = dDUd(t)ldt. 

Therefore, if link (i, I] contains vehicles travelling to destination d as well as a different 
destination d’, the ratio of their arrival and departure rates must be the same under 
FIFO such that: 

A,P’(t)/Aqd(t) = /_Ljjqt + z-Q(t))/ pFL,id(t + T&)>. (7) 

From eqn (7), we clearly see the role of the FIFO discipline: the departure rate pbd(t + 
T)(t)) is controlled not only by its arrival rate hiid but also by arrival rates to other des- 
tinations Avd’(t)‘s, d’ f d. Thus, departure rate ptid(t) cannot be simply a function either of 
its arrival rate hod(t) alone or of just the number of vehicles on the link. 

2.3. Link travel time 
As in Fig. 1, the FIFO discipline clearly defines link travel time q,(t) such that the 

horizontal time difference between arrival and departure curves at arrival time t. From 
eqn (5), Tti{t) is thus written as a function of A,(t) and D&t): 

T&) = Q+,(t)) - t. (8) 

Since A,(t) and D,(t) are integration of A,(t) and pil(t) over time, link travel time at time 
t must be described by A&t’) and piJ(t’) for t’ I t under the FIFO discipline. However, as 
mentioned in Section 1, link travel times defined in the previous studies do not have clear 
relationships with their arrival and departure rates. 

Travellers are assumed to perceive Tj{t) as a penalty of travel, although it is possible 
to introduce perceived costs of travel rather than actual travel time T&t) as the conven- 
tional traffic assignment. Since the analysis is essentially the same, the link travel time is 
here considered as the perceived cost to eliminate further complications. 

The point queue concept in which a vehicle has no physical length is employed. Conse- 
quently, the departure rate from link (i, 1’) is evaluated as follows independently of traffic 
condition downstream: 
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Cumulative Vehicles : Tijft) 

‘slope = 

1 time 

t t+ mii t + Tij(t) 

Fig. 1. Cumulative arrival and departures on link (i, j). 

lq? if Tii(t) > rnti or h,(t) > pti*, 

/4j(f + Tjlt)) = 

&O) 9 otherwise, (9) 

where 
p,* = the maximum departure rate of link (i, J], which is given, 
mu = the minimum link travel time at free flow speed, which is given. 

If a vehicle is not delayed, it is assumed to travel on link (i, 1’) for the minimum travel time 
mii which is shown by a broken line in Fig. 1. However, once link travel time T&t) becomes 
larger than mti at time t or the arrival rate h,(t) is larger than maximum departure rate 
pii*, the departure rate po(t + 7’j(t)) is assumed to be restricted to pij*. On the other 
hand, if T&t) is equal to mii and h,(t) I pii* when no queue exists, dKj(t)ldt must be zero 
and consequently from eqn (6), ktid(t + T&t)) is equal to A&t). Together with eqn (7), 
when a queue exists on link (i,j) the individual departure rate ktid(t + TO(t)) becomes: 

~~d(t + ~j~t)) = ~~*. 

h;(t) 

c A/(t) ’ 

d 

(10) 

since ;pt(t + To(t)) is equal to the given /.Q*. 

The above condition implies that if the arrival curve A,(t) is known up to time t which 
means A,,(t) is known up to time t as well, p&t) is determined up to time t + TO(t) and so 
is D&t). Therefore, from eqn (g), TO(t) basically becomes a function of only arrival curve 
A&t’) for t’ 5 t but independent of A&t’) for t’ > t. In the deterministic queuing analysis, 
this result seems apparent under the point queue concept; that is, if arrival curve A,(t) 
were known, the departure curve D,(t) could be drawn as the lower tangent line with the 
slope of given maximum service rate pii* and travel time To(t) could be evaluated from 
these two cumulative curves. 

3. REACTIVE DYNAMIC ASSIGNMENT WITH A MANY-TO-MANY OD PATTERN 

3.1. Definition of the reactive assignment principle 
Every vehicle is assumed to choose the shortest route to its destination at any time 

based on the present instantaneous link travel times. Let ?ridt) be the shortest travel time 
from node i to destination d prevailing at time t, which means that rid(f) is the sum of 
link travel times along the shortest route pid evaluated at time I: 
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Similar to the static assignment, the required condition for the reactive assignment is 
defined such that 

i 

rikt) - r,At) = T>(t), if a vehicle with destination d leaving 
node i at time t uses link (i, j), 

TiAt) - mjAt) 5 T&t), otherwise. (11) 

This condition means that if a vehicle with destination d leaving node i at time t uses 
link (i, ~1, node j must be on the shortest route to destination d evaluated from the 
instantaneous link travel times at present time t. 

On the other hand, the definition of the predictive assignment is written as follows: 

i 

r’;At) - r>At + T&t)) = Tb{t), if a vehicle with destination d leaving 
node i at time t uses link (i, ~1, 

7r’;d(t) - r>At + T&t)) 5 Tb{t), otherwise. (12) 

where diAt) is the shortest travel time from node i to destination d actually experienced 
by a traveller leaving node i at time t. This description is quite similar to eqn (11) except 
that the shortest travel time from nodej to d is evaluated at time t + T&t) when a vehicle 
actually arrives at node j. Since this difference means that a vehicle must predict future 
link travel times to find its shortest route from its present node i to the destination d, the 
predictive assignment is much more difficult compared to the reactive assignment. 

3.2. Decomposition with respect to present time 
According to the definition of the reactive assignment eqn (1 l), the route choice of 

vehicles is clearly dependent only upon the instantaneous link travel times at present 
time t, but independent of the future link travel times. Therefore, the assignment is 
decomposed with respect to present time t; that is, we can consider the assignment 
sequentially from the beginning of the study time period. 

If the cumulative arrival curves by destination d have been obtained until time t for 
link (i, 11, the departure curve can be determined until some later time of t + 7’,{t) for 
V(i, 1’) as shown in Fig. 2 which illustrates the cumulative curves on two sequential links 
(k, 9 and (i, j) or (i, I). Then, let us consider how the arrival curves, Atid(t can be 
extended from time t, which means that we have to determine arrival rate hiid for the 
individual destination at time t. 

At node i, the flow conservation eqn (4) must be satisfied at time t and this conserv- 
ation can be written in a slightly different form by taking derivatives with respect to time t: 

-Tpkd (t) + E h:(t) - qid(t) = 0, i = 1,2 ,......., N, i # d, 
j 

where 

q,&) = dQ&)ldt. 

The CL,!(~) can be evaluated, since D,t(.) has been constructed until time t + Tk,(t) 1 t + 
m,.. > t as shown in Fig. 2 and qia(t) has been assumed to be given. Thus, the total arrival 
rate at node i for destination d is known as: 

?A: (t) = : /..~~t(t) + qiAt), i = 1,2 ,..... .., N, i # d. (13) 

However, individual arrival rate At(f) on link (iJ] has not been determined yet, and it 
must be evaluated based on the reactive assignment principle. By definition, the above 
total arrival rate at node i must be loaded on one of the links lying on the shortest route 
from node i to destination d based on the Tj(t)s. In the case of Fig. 2, the instantaneous 
travel time from node k to j at time t is Tk,(t) + 7’,{t). 

Since present instantaneous link travel times 7’j(t)s have been known for all links 
(i&s, the shortest route from node i to destination d can be determined without diffi- 
culty by a standard shortest route algorithm. Suppose that link (i,o lies on the shortest 
route from node i to destination d: qAt) - r,At) = Ti,(t). The total arrival rate of 
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i 
k- 

< 

Cumulative Trips 

1 y* time 

t t + T&t) 

Fig. 2. Cumulative curves on two sequential links. 

F h:(t) must be then loaded on link (i,f): 

&t(t) = J2ijd(t), 

A#) = 6, j+ 1. (14) 

Even if there are two or more equally shortest routes from node i to d, the total rate of: 

&%) 

could be loaded onto one of the shortest routes in order to establish the reactive assign- 
ment principle by definition. As the result, AVd(t) for V(i,$ and Vd is determined at time t. 

Since travellers are assumed to choose the shortest routes simply responding to present 
traffic situation in this study, it is valid to assign the entire flow rate of: 

&“(t) 
i 

onto one of the shortest routes as mentioned above. However, this assignment may cause 
an oscillation of flow rates among the candidates of the shortest routes. To prevent the 
oscillation, one could split: 

CA,d(O 
i 

into several equally shortest routes so as to equilibrate their travel times. However, an 
iterative procedure may be needed to determine the split. 

3.3. An algorithm to construct the cumulative arrival curves 
An algorithm with discrete time intervals of equal length At is proposed to evaluate 

arrival rates at all links for every At. As shown in Fig. 3, arrival rate AVd(t) is assumed to 
stay constant during (t, t + At), and departure rate pcd(t + T&t)) is also assumed con- 
stant during [t + T&t), (t + At) + T&t + At)] for V (i, J). The proposed algorithm is 
explained step by step as follows: 

Step 1: Initialize present time, link travel times, flow rates and the cumulative numbers: 

t .- .- 0, 

qo, := me, ‘d (i, J-), 
AUd(t’) := 0, t’ < 0, V (i, J] and Vd, 
piid := 0, t’ < t + Tij(t) = mu, V (i, J) and Vd, 
A&t’) := 0, t’ I 0, V (i, J) and Vd, 
D$(t’) := 0, t’ I t + T/j(t) = mu, V (i, J) and Vd, 
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Cumulative Vehicles 

7 
\ 

,... 

I /.lk+(t)*b . . . 

time 

t + Tki(t)’ t + Tii(t,J (t+At) + Tii(t+At) 
Fig. 3. Construction of cumulative arrival and departure curves on link (i. 1). 

Step 2: Determine the total arrival demand at node i, &lod(t).At, for (t, r+At) from 

(13): Z$h,d(r).Ar := Fpkt(r).At + q,dt).At, Vi and Vd, i f d. 

Step 3: Deter’mine the shortest route from node i to destination d, pi,,, for Vi and Vd 
based on link travel times, r,(t)s. 

Step 4: Load the total demand at node i, 

~A,%)~& 

onto a link starting from node i lying on the shortest route pld for Vi and Vd, 
and evaluate hvd(r).Ar for V(i, 1’) and destination V’d: if link (i, j) lies on route 
p;d, h,d(t).Af := FAYd(f).At; otherwise A,,d(t).At:= 0. 

Step 5: Evaluate A,d(t+At): 

Aud(r+ At) := Abd(r)+ Aud(t),Ar, for V(i,j) and Vd. 

Step 6: Evaluate departure rate pW,d(r+T&r)) from eqns (9) and (10). By extending II,“(.) 
from f + To(t) with the slope of ~l.,jd(t+TJt)), determine link travel time T,‘(t+ At) 
for V(i,J based on eqn (8). 

Step 7: Time t := r+At and return to step 2 if t is less than the end of the study period; 
otherwise stop. 

Note that, in step 2, to evaluate 
FA,d(+Ar 

during (t, t + At), we need to know pkt(t).At which means II,!(.) must be known at least 
until time r + At. On the other hand, &.t(-) can be drawn until time r + T&) as men- 
tioned earlier. Thus, time interval At must be decided so that At < T&) for any (k, i) 
and r, which means that At should be smaller than or equal to: 
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m34 = 0.4 [unit time] 

3 ~34*= 4000 [veh/ unit time] 4 

I 

+ Freeway 

ml3 = 0.1 [unit time] On-Ramp OffBRamP m42 = 0.1 [unit time] 

ju3*= 4000 [veh/ unit time] cL42*= 4000 [veh/unit time] 
I + 

Origin 1 mt2 
l Arterial 

= 1.0 [unit time] 2 Destination 

p12*= sufficiently large 

Fig. 4. A simple network. 

Also, to simplify the algorithm, the computation starts from the zero-flow condition by 
setting Aiid(t) and Dgd(t) equal to zero in step 1. However, one can start with some posi- 
tive cumulative numbers with the corresponding link travel times as initial values. 

3.4. An example 
A simple network with a freeway and an arterial running parallel is shown in Fig. 4, in 

which free flow link travel times and maximum link service rates are also shown. 
Although only one arterial is illustrated in Fig. 4, it is considered to the aggregation of 
several arterials running parallel with the freeway, and its maximum capacity is thus 
assumed to be sufficiently large to handle the demand. 

Let us consider a case with only one OD pair from node 1 to 2 so that the estimated 
cumulative figures can be easily compared with the theoretical figures under continuous 
time, which can be easily drawn in this example. For a typical rush hours, the time- 
dependent OD demand rate is assumed as follows: 

qa(t) = 2000 [vehicles/ unit time], for 0 It < 1 and 2 It, 
q,2(t) = 8000 [vehicles/ unit time], for 1 It ~2. 

Since link travel times on the freeway are smaller, everyone would use the freeway at the 
beginning. At time 1.0 [unit time], a queue forms on link (Z,3) because the demand 
increases from 2000 to 8000 [vehicles/ unit time]. The entire OD demand still uses the 
freeway (links (2,3), (3,4) and (4,2)) until time 1.4 [unit time] even after the queue forms. 
However, at time 1.4 [unit time], travel time via the freeway reaches 1.0 [unit time] due 
to the queue, and the OD demand should be split into two routes so as to equalize the 
travel times: A,2(t) = A,,(f) = 4000 [veh/unit time] until time 2.0 [unit time]. (Note that a 
suffix of destination d is eliminated because of one destination in this example.) Then, at 
time 2.0 [unit time], the OD demand returns to 2000 [veh/unit time] which is less than the 
maximum service rate of link (1,3) and therefore everyone again uses the freeway there- 
after. In this example, the delay on link (1,3) controls the assignment, since the maxi- 
mum service rates of downstream links (3,4) and (4,2) are not less than that of link (Z,3). 

Figure 5 shows the estimated cumulative curves with three different values of At, in 
which we clearly see that as At gets smaller, the cumulative curves become close to the 
theoretical figures. However, general trends of the cumulative curves seem to be repro- 
duced even with At = 0.1 [unit time]. 

4. SUMMARY AND FUTURE EXTENSIONS 

This research deals with the reactive dynamic assignment on an over saturated net- 
work with queues, given a time dependent many-to-many OD demand. In the reactive 
assignment, vehicles are assumed to choose routes based on the current instantaneous 
link travel times. First, we formulate the flow conservation and the FIFO queue disci- 
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At = 0.1 [unit time] 

Cumulative Vehicles 
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Fig. 5. Estimated cumulative arrivals and departures with various Al. 

[unit time] 

pline, which must be satisfied not only in the reactive assignment but generally in any 
dynamic assignment. We then argue that the link travel time should be defined in rela- 
tion to the arrival and departure flow rates of the link. Second, the reactive assignment 
principle is formulated and the assignment is shown to be decomposed with respect to 
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present time. Third, a procedure to draw the cumulative arrival curves at all links is pro- 
posed and applied to a simple network. 

The analysis presented here is fairly straightforward because the assignment is inde- 
pendent of future traffic conditions. For immediate extension of this analysis, we may in- 
troduce the perceived cost function as the criteria of route choice into the same 
decomposition framework, although here we employ travel time itself to avoid the com- 
plication. Also, the stochastic route choice model can be easily included instead of the 
shortest route choice, as long as travellers are assumed to choose routes based upon pre- 
sent traffic condition. To consider queue back up phenomena based on physical queues 
rather than point queues would be also covered by the reactive assignment framework, 
since the queue back up phenomena (kinematic waves) are in principle dependent only 
upon past and present traffic history. For future research, inclusion of the departure time 
choice in addition to the route choice seems to be some interest. 
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