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Submitted to Proceedings of the National Academy of Sciences of the United States of America

Bacteria and fungi drive decomposition, a fundamental process
in the carbon cycle, yet the importance of microbial community
composition for decomposition remains elusive. Here, we used an
18-month reciprocal transplant experiment along a climate gradi-
ent in Southern California, USA to disentangle the effects of the
microbial community versus the environment on decomposition.
Specifically, we tested whether the decomposition response to cli-
mate change depends on the microbial community. We inoculated
microbial decomposers from each site onto a common, irradiated
leaf litter within “microbial cages” that prevent microbial exchange
with the environment. We characterized fungal and bacterial com-
position and abundance over time and investigated the functional
consequences through litter mass loss and chemistry. After 12
months, microbial communities altered both decomposition rate
and litter chemistry. Further, the functional measurements de-
pended on an interaction between the community and its climate
in a manner not predicted by current theory. Moreover, microbial
ecologists have traditionally considered fungi to be the primary
agents of decomposition and for bacteria to play a minor role. Our
results indicate that not only does climate change and transplan-
tation have differential legacy effects among bacteria and fungi,
but also that bacterial communities might be less functionally
redundant than fungi with regards to decomposition. Thus, it may
be time to re-evaluate both the role of microbial community com-
position in its decomposition response to climate, and the relative
roles of bacterial and fungal communities in decomposition.

leaf litter decomposition | reciprocal transplant | bacteria | fungi |
climate gradient

Introduction.
Microbial communities are the engines of decomposition (1), a
fundamental process regulating the carbon cycle. In ecosystems,
microbial decomposition converts detritus into CO2 and releases
nutrients for plant growth. While much is understood about
how changes in abiotic conditions (2, 3) and substrate quality
(4) affect decomposition rates, the role of microbial community
composition remains elusive (5, 6).

This knowledge gapmay be key for predicting how ecosystems
will respond to climate change (7). Most terrestrial ecosystem
models assume that biogeochemical rates are invariant with
changes in the size and composition of microbial communities
(8). Yet, recent work from laboratory manipulations of microbial
communities (9, 10) and common garden field experiments (11,
12) demonstrate that bacterial and fungal community composi-
tion affects decomposition rates. These studies find that, under
the same environmental conditions, decomposer communities
are not functionally redundant. What is not yet known, however,
is the importance of community-by-environment interactions on
microbially-driven functioning. Even if communities are func-
tionally distinct, if they respond proportionally to changes in
climate, then one could still ignore community differences and
predict changes in functioning. Recent evidence suggests that
such interactions are likely. For instance, microbial community-
by-environment interactions influence respiration rates in labo-
ratory microcosms (13-15), and historical precipitation altered

the relationship between soil moisture and extracellular enzyme
production across a natural climate gradient (16).

Given that the factors regulating decomposition are often
context dependent and can vary in their influence across a range
of spatial and temporal scales (17, 18), we hypothesized that
decomposition responses to changing climatic conditions would
depend onmicrobial community composition. To test this hypoth-
esis, we conducted the largest microbial community transplant
experiment to date. Such transplant experiments are necessary
to disentangle the confounding effects of microbial community
composition and abiotic environment on functional processes
(18). We reciprocally transplanted five leaf litter microbial com-
munities into five sites across an elevation gradient in south-
ern California that varies in temperature and precipitation (Fig.
1A,B)(19). Moving the communities from colder, wetter sites at
higher elevations to hotter, drier sites at lower elevations mimics
the expected shift with climate change to more arid conditions
in the southwest USA (20). While elevation gradients have long
been used as ‘space for time’ substitutions to predict how plant
and animal communities will respond to climate change (21), the
approach has only recently been applied to microbial communi-
ties (22, 23).

Our experimental design allowed us to quantify the decom-
position response of five microbial communities across a cli-
matic gradient in the field. We disentangled the effects of abi-
otic environment versus microbial community on carbon cycling
functioning by inoculating microbial communities onto common,
gamma-irradiated leaf litter in nylon mesh litterbags that allow
for transport of water and nutrients but prevent immigration of

Significance

We overcame the difficulty of disentangling biotic and abiotic
effects on decomposition by using the largest field-based
reciprocal transplant experiment to date. We showed that de-
composition responses to climate depend on the composition
of microbial communities, which is not considered in terrestrial
carbon models. Microbial communities varied in their effects
on both mass loss and types of carbon decomposed in an
interactive manner not predicted by current theory. Contrary
to the traditional paradigm, bacterial communities appeared
to have a stronger impact on grassland litter decomposition
rates than fungi. Furthermore, bacterial communities shifted
more rapidly in response to changing climates than fungi. This
information is critical to improving global terrestrial carbon
models and predicting ecosystem responses to climate change.
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Fig. 1. A) Total precipitation (mm) and mean annual soil temperature
(ºC) at the five sites along the elevation gradient. Sites are represented in
increasing precipitation order in the same color scheme; Desert (D) = red,
Scrubland (Sc) = orange, Grassland (G) = green, Pine-Oak (P) = blue, Subalpine
(S) = purple. B) Schematic of microbial transplant experiment. Microbial
communities from all sites were placed in a common garden experiment in all
sites using a common substrate (irradiated grassland litter represented with
light green box; n= 5 inocula x 5 sites x 4 plots x 3 timepoints = 300 litterbags).
Three possibilities for decomposition responses are: C) redundancy, in which
all microbes function similarly in every site and are only affected by abiotic
conditions, D) parallel, in which microbes differentially affect decomposition,
but respond to climate in a proportional manner, E) and interaction, in which
decomposition is a result of an interaction between microbial communities
and their environment. While any interaction is possible, we illustrate an
example in which a community decomposes most in its home site (home-field
advantage).

Fig. 2. NMDS of Bray-Curtis microbial community composition at 18 months
for A) Bacteria colored by site and shapes by inoculum and B) bacteria
colored by inoculum and shapes by site. The bottom two panels are both
fungal community composition with either C) colored by site or D) colored
by inoculum.

microbial cells (12). We then tracked the microbial community
(bacterial and fungal biomass and community composition) and

Fig. 3. . Proportion of variance explained by the treatments (site, inoculum,
site x inoculum) on A) bacterial community composition B) fungal community
composition C) decomposition D) litter chemistry E) bacterial abundance and
F) fungal abundance. The proportions for bacterial and fungal community
composition and litter chemistry are calculated based on variance estimates
from PERMANOVA (Tables S4, S5, S7), whereas those for microbial abun-
dance and decomposition are calculated from the total variance explained
by the two-way ANOVA multiplied by the partial eta squares for each
explanatory variable (Tables S6, S9).

Fig. 4. Variation in leaf litter decomposition (mean ± standard error percent
mass loss) for the full factorial transplant experiment (5 inoculum treatments
by 5 sites) along the gradient across the three time points. Sites ordered in
order of increasing precipitation: Desert (D), Scrubland (Sc), Grassland (G),
Pine-Oak (P), Subalpine (S). In addition to transplant litterbags, we included
open or closed in-situ litterbags for comparison.

its functioning (litter chemistry and mass loss) after 6, 12 and
18 months. While many biotic and abiotic conditions vary along
the gradient, including vegetation and soil nutrients (19, 24),
the litterbags allowed us to control for changes in vegetation by
using a common litter substrate. They also physically separate
the litter communities from the soil. Thus, we presume that the
main site differences that the litterbag communities experience
are differences in temperature and precipitation (Fig 1A).

Although there are many potential outcomes, the possibil-
ities for decomposition responses to the climate gradient fall
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Submission PDFFig. 5. NMDS of litter chemistry of transplanted litterbags at 12 months. Each
point represents the chemical composition of the litter from each litterbag
for each site (color) and inoculum (shape) combination (4 plots x 4 inocula
x 5 sites = 100). Each vector represents whether each of the five organic
compounds (cellulose, crude proteins, hemicellulose, lignin, and structural
carbohydrates) increases or decreases in abundance in that site. Stress =
0.045.

under three general theoretical models, depending on whether
the communities are functionally redundant, parallel, or interact
with their local climate. Functional redundancy predicts that
all microbial communities decompose leaf litter similarly when
transplanted to the same abiotic conditions (Fig. 1C)(9). Thus,
decomposition may differ as the climate varies across sites (for
instance, increasing with increasing precipitation), but it is indif-
ferent to the microbial community within a site. Under the func-
tionally parallel model (Fig. 1D), different communities are not
functionally redundant. They decompose differently even when
exposed to the same climate conditions at a site. However, the
responses of the communities to climate change are predictable
based on observations from any one site; decomposition rates
of the communities change in proportion to one another across
sites. Finally, under the interaction model, the manner in which
the communities are functionally distinct depends on the envi-
ronment (Fig. 1E). One such example of microbial interaction
with its environment is home-field advantage, where a community
decomposes litter quickest in its native environment (25). This
outcome (or any outcome where the microbial community and
climate interact to influence decomposition) would indicate that
decomposition responses to climate depend on the microbial
community.

Results
Across the five sites, soil temperature ranged from an average
of 11 to 26 °C and total precipitation from 214 to 1416 mm
over the duration of the experiment (Fig. 1A; Table S1; Fig. S1).
Microbial community composition of the initial inocula (n=20),
transplanted litterbags (n=300), and in-situ communities (n=80)
were assayed by amplicon sequencing (16S for bacteria and ITS2
for fungi), yielding 18.7M and 24.6M quality reads for bacteria
and fungi, respectively. Bacterial diversity in the leaf litter inocula
consisted of at least 135 families belonging to 26 phyla with the
vast majority of reads belonging to four phyla: Acidobacteria,
Actinobacteria, Bacteroidetes, and Proteobacteria (Fig. S2A).
Fungal diversity in the leaf litter inocula consisted of at least 145

families belonging to 6 phyla with the vast majority in the phylum
Ascomycota (Fig. S2B). OTU richness was higher for bacteria
than fungi in all sites (Fig. S3). Bacterial biomass dominated in
both the in-situ leaf litter and in the transplanted litterbags, with
F:B ratios ranging from 0.15 to 0.72 across the sites (Table S2),
similar to previous measurements (22).

As expected given the differences in temperature and precip-
itation across the sites (Fig. 1A), the initial communities used as
inocula differed in their composition (Fig. S4). The inocula were
also representative of the in-situ leaf litter communities adjacent
to the experimental plots during the experimental period (Fig.
S4), with microbial community composition varying strongly by
site (PERMANOVA: bacteria R2 = 0.66; fungi R2 = 0.58; P <
0.001) but much less over time (bacteria R2 = 0.05; fungi R2 =
0.04; P < 0.001; Table S3). Fungi and bacteria displayed similar
patterns in community similarity along the gradient; communities
from the highest elevation sites (pine-oak, subalpine) and the
lowest elevation sites (desert, scrubland) were relatively similar
to one another and distinct from the mid-elevation site (grass-
land)(Fig. S4).

Composition of the Transplanted Communities. We trans-
planted the microbial communities from each site along the ele-
vation gradient to disentangle the effect of abiotic environment
(site) and microbial community (inoculum) on decomposition.
Within the transplanted litterbags, both fungal and bacterial rich-
ness were reduced compared to the original inoculum (Fig. S5),
suggesting that the litterbags prevented new immigration while
non-litter specialists were outcompeted (11).

After 18 months, the transplanted bacterial communities
shifted to reflect the surrounding abiotic environment, clustering
largely by site (Fig. 2A, Fig. S6A) rather than inoculum (Fig. 2B,
Fig. S6B). In total, site explained 47% of variation in bacterial
composition, yet community composition still displayed signifi-
cant legacy effects, with inoculum and site-by-inoculum interac-
tions together accounting for 24% of the variation in bacterial
composition (Table S4).

Meanwhile, fungal communities retained much stronger
legacy effects, with site explaining only 20% of the variation and
inoculum and site-by-inoculum interactions together accounting
for 59% of the variation in fungal composition (Table S5), even
after 18 months. Thus, although there were significant effects
of site on fungal community composition, visual clustering of
communities by site was only visible within an inoculum type (Fig.
2C, Fig. S7A) because of the overriding effect of the inoculum
treatment (Fig. 2D; Fig. S7B). As expected, for both bacteria and
fungi, the effect of inoculum on composition was highest at the
first sample collection and decreased over time (blue points in
Fig. 3A,B), while conversely, the effect of site on composition
increased over time (red points in Fig. 3A,B).

Functioning of the Transplanted Communities. The initial com-
positional differences among the transplanted communities al-
lowed us to test whether decomposition responses to climate
differed by community. Decomposition rate (percent mass loss
of litter) was primarily influenced by site, explaining 30 to 64%
of the total variation in mass loss at all three collection times
(Fig. 3C; Table S6). Generally, mass loss was lowest at the two
lowest elevation sites and peaked at the mid-elevation grassland
site with intermediate temperature and precipitation (Fig. 4).
However, in agreement with our main hypothesis, decomposi-
tion rates also depended on the microbial community and in
particular, an interactive effect of the community with environ-
ment. Litterbags inoculatedwith communities fromdifferent sites
differed in mass loss at both the 12 and 18 month collections
(ANOVA: p<0.05; Table S6). While the main effect of inoculum
was small (explaining only 3-10% of mass loss variation; Fig. 3C;
Table S6), it indicates that communities were not functionally
redundant. Moreover, decomposition rate was also influenced by
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a significant inoculum-by-site interaction (Fig. 3C). This inter-
action did not result in a home-field advantage for the micro-
bial communities; in particular, scrubland microbial communities
decomposed more litter in the grassland site and vice-versa. In
addition, communities from the lowest (desert) and highest (pine-
oak, subalpine) sites appeared to respond more similarly to one
another that the mid-elevation sites (Fig. 4). We also plotted
decomposition against total precipitation (Fig. S8A) and average
soil temperature °C (Fig. S8B), yielding similarly shaped curves.
This inoculum-by-site effect explained 19% and 16% of mass loss
variation at the 6 and 12 month collections, respectively (Fig.
3C). The functional differences between communities peaked
at 12 months, when the grassland community decomposed on
average 39% more than any other community in the scrubland
site, and scrubland microbes decomposed 20% more than any
other community in the grassland site. By 18 months, however,
these differences disappeared as the microbial communities in
the litterbags, and particularly bacterial composition, converged
to reflect the abiotic environment (Fig. 3).

We next tested whether these functional differences between
the microbial communities also affected the residual chemistry of
the leaf litter. As with mass loss, litter chemistry depended pri-
marily on the abiotic environment (main effect of site: R2=0.53),
but also on the initial microbial community; together the ef-
fect of inoculum and the inoculum-by-site interaction accounted
for 21% of the variance observed in litter chemistry (Fig. 3D;
Table S7). Cellulose and hemicellulose were significantly more
degraded in grassland than in any other site, whereas other lit-
ter components (lignin, crude protein, structural carbohydrates)
were less degraded in the grassland (Fig. 5; Fig. S9). An ad hoc
analysis revealed that the site effects were most strongly driven
by differences in the proportion of hemicellulose degraded, al-
though effects were fairly evenly spread across carbon compo-
nents (Table S8). For the inoculum effects, the ad hoc compar-
isons were not significant, but the trends were similar to the
site effects; the difference between the grassland and scrubland
communities appeared to be driven by differences in the resulting
proportions of hemicellulose, followed by protein and cellulose.
Thus, not only do inoculum source and site-by-inoculum inter-
actions affect the ecosystem process of decomposition, but also
which specific carbon compounds are degraded, indicating that
the five microbial communities had unique impacts on carbon
cycling along the gradient.

Microbial abundance. The functional differences among the
microbial communities do not appear to be due to initial differ-
ences in abundance. Decomposition rate in the litterbags was not
a function of either bacterial or fungal abundance in the inoculum
leaf litter (Fig. S10). Both bacterial and fungal abundances in
the litterbags quickly responded to the abiotic environment (site
explained 12 to 47% variation for bacteria and 1-5% variation
for fungi), whereas the original inoculum only explained 11% of
the variation in bacterial abundance at 6 months (Fig. 3E; Table
S9). Further, decomposition rates were highest in the grassland,
but bacterial abundance peaked at higher elevations (pine-oak,
subalpine) (Fig. S11A), and grassland fungal abundance did not
significantly differ from the other sites (Fig. S11B). At the same
time, microbial abundance and decomposition rates were corre-
lated during the experiment (Pearson r = 0.63, 0.30, 0.30 at 6,12,
and 18 months, respectively for bacteria; r = 0.21 at 6 months for
fungi), presumably because higher decomposition rates lead to
higher microbial biomass.

In-situ litter decomposition. We used two additional sets of
“in-situ” litterbags (n=120) to investigate how the experimental
manipulation itself influenced decomposition rates relative to
natural rates of leaf litter decay at each site. Beyond the manip-
ulation of the microbial communities, decomposition within the
litterbags might differ from local rates for two additional reasons:

(1) the use of a common, ground, grassland substrate and (2)
the use of closed (0.22 µm mesh) litterbags. To quantify these
effects separately, one set of litterbags contained snipped (much
coarser than ground) in-situ litter with their natural microbial
communities in open (window screen) litterbags. The second
set of litterbags contained the same snipped, in-situ litter but
packaged in the closed mesh. As expected, ground litter in the
inoculated transplant bags decomposed faster than the snipped
in-situ litter, but the mass loss patterns across the gradient were
similar to that observed in the main experiment (Fig. 4). Further,
litterbag material (open versus closed) had a significant effect
(explaining 18% of variation versus 72% explained by site) on
decomposition at 6 months, but no effect at 12 and 18 months
(Table S10). Interestingly, there was a significant site-by-material
interaction at 18 months, where higher decomposition occurred
in the open than closed in-situ litterbags at the desert, perhaps
due to increased exposure to UV radiation (26).

Discussion

Experimental manipulations of abiotic and biotic factors are
essential for disentangling themechanisms through which climate
change will affect biodiversity and ecosystem processes (27, 28).
By performing a fully-reciprocal microbial transplant experiment
across a gradient of nearly 2,000m elevation and 15°C soil tem-
perature, we were able to expand upon previous findings from
laboratory manipulations that show that microbial composition
can influence decomposition (9, 10, 13).We find that natural com-
munities of microbial decomposers are not only functionally dis-
tinct, but their functioning depends on an interaction between the
community and its climate, supporting a functional interaction
model (Fig. 1E). Moreover, community differences accounted for
a large fraction of the variation in decomposition observed. After
a year, the abiotic environment was still the largest factor explain-
ing decomposition rates (30%) and litter chemistry (53%), but the
microbial community and its interactions with the environment
also accounted for 22% of the variation in decomposition rate
and 21% of the variation in litter chemistry. These results counter
the often implicit assumption that the contribution of microbial
community composition to decomposition is negligible relative to
climate or litter quality (29).

While decomposition responses to climate depended on the
microbial community, they were not consistent with home-field
advantage. Surprisingly, microbial communities from the extreme
sites along the gradient were functionally similar across the cli-
mate gradient, with desert microbes decomposing just as much
litter in the subalpine environment as subalpinemicrobes and vice
versa. At the same time, communities from themid-elevation sites
appeared to perform opposite from what would be predicted by
home-field advantage (25), with the scrublandmicrobes perform-
ing best in grassland and the grassland microbes performing best
in scrubland, with decomposition rates varying by as much as 40%
in a single environment (Fig. 4). Notably, home-field advantage
is usually considered in terms of litter quality (25), whereas in
this experiment we kept litter quality constant and considered
performance in terms of a home climate. Nonetheless, other
studies have found inconsistent effects of home-field advantage
(30) or observed that these effects were limited to recalcitrant
litter types (31, 32). Ultimately, although the exact mechanisms
remain unclear, our results suggest that ecosystempredictions can
be improved by considering the relationship between a microbial
community’s ability to degrade leaf litter and its response to new
climate conditions.

In addition to having large impacts on decomposition rates,
the microbial community also had smaller but significant effects
on the types of carbon compounds degraded. This is important
because the types of carbon compounds left behind can influ-
ence carbon storage (1, 33). These results indicate that litter
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communities from different environments vary in carbohydrate
degradation traits, similar to previous work in the grassland site
showing that communities subjected to drought conditions shift
in composition and glycoside hydrolase (GH) abundance (11).

The duration of our experiment also allowed us to tease apart
the timing of the bacterial and fungal compositional shifts and
their corresponding functional consequences. After 18 months,
bacterial composition was more reflective of their new environ-
ment than of their initial inoculum, while fungal composition still
primarily reflected the initial inoculum. This result – that fungal
communities are more resistant to change – was also found in
an earlier litter transplant experiment within the grassland site
(11). One potential explanation is faster rates of turnover in
bacterial communities, which are known to respond more quickly
to disturbances (34) than fungi (35).

The timing of these shifts relative to the functional con-
sequences of the inoculated community suggests that bacterial
decomposers may be less functionally redundant than fungal
decomposers and that they might have larger effects on decom-
position than previously believed. The effect of the microbial
community (and particularly the community-by-site interaction)
largely attenuated from 12 to 18 months even though the fungal
communities within a site were still highly distinct at 18 months.
A review of the subject also concluded that shifts in fungal com-
munity structure do not necessarily influence decomposition rates
(32), potentially due to the high overlap in metabolic activities of
saprobic soil fungal species (36, 37). Indeed, both aquatic (38)
and terrestrial (39) laboratory manipulations found that fungal
diversity-decomposition relationships saturated rapidly after the
addition of only 2-6 species. In contrast, a study that manip-
ulated bacterial richness found increasing respiration function
with diversity beyond 72 species (40). These results might be
attributed to the larger breadth of phylogenetic diversity and
thus corresponding functional traits represented by the bacterial
communities. In our study, >95% of fungal taxa belonged to a
single phylum (Ascomycota), whereas the vast majority of bacte-
ria belonged to four phyla, representing hundreds of millions of
years of evolution between them. In addition, a large diversity of
GH genes have been found in bacteria from leaf litter (41, 42) and
soil (43). Interestingly, recent work on soilmicrobial decomposers
suggests that both fungi and bacteria are involved in complex
organic matter breakdown, and that interactions between fungi
and bacteria in decomposition are perhaps more lateral and less
hierarchical than previously believed (44). Thus, it is becoming
clear that bacteria can have strong impacts on decomposition.
The larger phylogenetic diversity and breadth of metabolic capac-
ities of bacteria may explain why shifts in bacterial composition
appear to have a stronger effect on decomposition than shifts in
fungal diversity.

Finally, it is notable that microbial composition, but not
initial microbial biomass, predicted litter decomposition rates.
Decomposition within a site was not correlated with fungal or
bacterial biomass in the inoculum leaf litter. For instance, the
desert community, with its low initial inoculum biomass, carried
out decomposition at similar rates to communities with greater
biomass. At the same time, microbial biomass and decomposition
were positively correlated across all samples and sites. Many
studies have observed similar correlations; for instance, a recent
study found that soil microbial biomass, as measured by substrate
induced respiration, was correlated with leaf litter decomposition
as much as litter quality and climate (6). However, our transplant
experiment indicates that this correlation is not due to microbial
biomass driving decomposition. Instead, biomass and decompo-
sition might be correlated because they are both influenced by
environment. Alternatively, faster decomposition might result in
higher microbial biomass.

In conclusion, decomposition responses to changing temper-
ature and precipitation depended on the composition of a micro-
bial decomposer community. This is the first study to examine the
decomposition response curves of different microbial communi-
ties across a range of climate conditions that could be relevant for
predictions of ecosystem functioning. In fact, the dominant plant
taxa along this same elevation gradient have shifted upward over
the last 30 years due to climate change (24). While it is impossible
to know if the microbial communities have also begun to shift
their range due to a lack of historical data, our study indicates
that bacterial and fungal decomposers communities take time
to respond to changes in climate, and this lag has consequences
for functioning. Future work should also consider invertebrate
grazers (45), viruses, and fungal-bacterial interactions to obtain
a more complete understanding of decomposition responses to
climate change.

Materials and Methods.
Field experiment: The five field sites (desert, scrubland, grassland, pine-
oak, and subalpine, named for the vegetation present) were selected to
represent a wide temperature and precipitation range within southern
California (Table S1; Fig. 1A). On 19 October 2015, we deployed 300 litterbags
containing irradiated grassland litter inoculated with one of the microbial
communities from each of the five sites into each site (Fig. 1B). We selected
litter from the mid-elevation grassland site as a common substrate, because
the site is intermediate in temperature and precipitation and has been
intensively characterized as part of the long-term Loma Ridge Global Change
Experiment (11, 12). The grassland is dominated by the annual grass genera
Avena, Bromus and Lolium; the annual forb genera Erodium and Lupinus;
and the native perennial grass Nassella pulchra (11).

The grassland litter was homogenized by grinding in a coffee grinder.
In addition to improving litter homogenization, pre-grinding (rather than
clipping) aids in subsampling of the decomposed litter for downstream
analyses. Homogenized litter (5g) was placed into nylon membrane bags
with 0.22 µm pores (cat# SPEC17970, Tisch Scientific, North Bend, OH, USA).
This pore size was selected to allow for the movement of water and nutrients
but prevent the dispersal of exogenous microbial cells into the bags (12).
The litterbags were then sterilized with at least 22 kGy gamma irradiation
(Sterigenics, Tustin, Ca, USA). Microbial growth was not observed when the
irradiated litter was plated on agar media, but we recognize that complete
sterilization is unlikely. However, our goal was to knock down the existing
community to such low abundance that the inocula communities could
establish, which is confirmed by our results. To create the five microbial
inocula, four samples of litter from each of the sites was collected on 11
September 2015, ground, homogenized within site, and 50mg inoculum was
added to each sterile litterbag to manipulate microbial community origin.

We placed 60 litterbags in each site such that 4 replicates of each
microbial community treatment could be collected every six months for 18
months (5 sites x 5 inocula x 4 replicate plots x 3 time points = 300 litterbags).
Replicates were distributed across four 1m x 1m plots separated by >5m.
Litterbags from each plot were collected on 5 April 2016, 24 October 2016,
and on 18 April 2017. To assess the composition of the in-situ microbial
communities outside the litterbags, litter adjacent to the plots (the mixture
of decaying plant species present) was collected at initial deployment and at
each litterbag collection (5 sites x 4 replicate plots x 4 time points = 80 in-situ
survey samples).

To compare the decomposition rate within the transplant bags versus
in-situ litter decomposition, we deployed two additional sets of litterbags
within each plot (2 types x 5 sites x 4 plots x 3 time points = 120 litterbags).
One set of bags contained local, clipped (not ground) litter placed in lit-
terbags made of 2 mm mesh window screening (“in-situ open”). To test how
the nylon membrane mesh contributed to these differences, the second set
contained local, clipped litter placed in the nylon membrane litterbags (“in-
situ closed”).

For information on how temperature, precipitation, decomposition,
litter chemistry, and bacterial and fungal abundance were assessed, and full
details on sample processing, DNA extraction, genetic analysis, and bioinfor-
matics, please see SI appendix Material and Methods section. Briefly, bac-
terial community composition was characterized using the V4 region of the
16S ribosomal RNA (rRNA) gene and fungal composition was characterized
using the ITS2 region of the Internal Transcribed Spacer (ITS) with Illumina
MiSeq. Sequences were submitted to the National Center for Biotechnology
Information Sequence Read Archive under accession number SRP150375. All
bioinformatics processing was conducted in UPARSE (46) version 10. Analyses
were conducted by defining both 97% OTUs and exact sequence variants,
but since the results were nearly identical (47), we only present the analyses
using 97% OTUs.

Statistical analysis: All statistical analysis was performed in R version
3.4.0 with some additional analysis conducted in PRIMER 6+ (48). Scripts
for R analyses are available on https://github.com/stevenallison/UCIClimateE-
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xperiment. We tested the treatment main effects (site, inoculum) and inter-
action effect (site-by-inoculum) with a two-way ANOVA for each time point
for decomposition, bacterial abundance, and fungal abundance. Bacterial
and fungal abundance were square root transformed to improve normality.
We estimated effect sizes – the relative importance of the two manipulated
factors – on microbial abundance and decomposition with partial eta-
squared as it is the preferred method for n-way ANOVA (49). We then
estimated the total variance explained by multiplying the partial eta-squared
by the adjusted R2 of the model.

For bacterial and fungal community composition, we
calculated dissimilarity matrices with avgdist (https://github.com/M-
icrobiology/vegan/blob/master/R/avgdist.R). OTU tables were normalized
by subsampling to the lowest common sampling depth 100X (5-17,000
seq/sample), then the median of the Bray-Curtis dissimilarity matrices
calculated from each of subsampled OTU tables was square root
transformed. We then tested the treatment main effects (site, inoculum)
and interaction effect on the transplanted litterbags, and the main effects
(site, sample date) and interaction effect on the inoculum and in-situ leaf
litter communities, with a two-way PERMANOVA as implemented with

the Adonis function in vegan (50) . We estimated the effect size of the
manipulated factors on microbial composition using the estimates of the
components of variation from PERMANOVA (11).

To test changes for in litter chemistry, we calculated the euclidian
distance between samples of the non-ash leaf litter proportions. We tested
the effect of treatments (site, inoculum) and interaction on litter chemistry
with Adonis. We visualized the differences in leaf chemistry per site with
NMDS and used the “envfit” function to determine which organic compounds
correlated well with ordination space. Figures were created in base R graph-
ics or ggplot2.
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