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particular, explicit expressions of fundamental solutions for Weinstein operators and
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half-plane H+ for Re m < 1 is established. We prove a new decomposition theorem
for the GASP in annular domains for m ∈ C, which is in fact a generalization of the
Bôcher’s decomposition theorem. In particular, using bipolar coordinates, it is proved
for annuli that a family of solutions for the GASP equation in terms of associated
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Riesz basis in some non-concentric circular annuli.
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1 Introduction

In this article, we study the Weinstein differential operator

Lm = x−mdiv(xm ∇ ·) = � +
m

x

∂

∂x
, m ∈ C,

well-defined on the right half-plane H+ = {(x, y) ∈ R2 : x > 0} = {z ∈ C :
Re z > 0} with the convention xm = exp(m ln x). This class of operators is also
called operators governing axisymmetric potentials. They have been studied quite
extensively in cases m ∈ N and m ∈ R in [10–13,16–18,22–24,29–33,36–38,41,51–
68]. We will focus exclusively on the case m ∈ C, recalling in the course of the paper
some results for integer values of m. The Weinstein equation reads

Lmu = 0. (1)

The main motivation for which we consider the case m ∈ C is that if we complexify
the coordinates by writing z = x + iy, (1) takes the form

∂2u

∂z∂z
+

m/2

z + z

(
∂u

∂z
+

∂u

∂z

)
= 0,

which is a particular case of the equation

∂2u

∂z∂z
+

α

z + z

∂u

∂z
+

β

z + z

∂u

∂z
= 0

considered with α, β ∈ C in [49, Equation (5.7), p. 20].
Equation (1) also appears in physics in the study of the behavior of plasma in a

tokamak. The role of tokamak, which has a toroidal geometry, is to control location of
the plasma in its chamber by applying magnetic fields on its boundary. It is possible to
assume that plasma is axially symmetric what reduces this problem to a plane section
in H+, where the magnetic flux in the vacuum between the plasma and the circular
boundary of the chamber satisfies a second-order elliptic nonlinear partial differential
equation, the so-called Grad–Shafranov equation, which reduces to the homogeneous
equation (1) with m = −1 (Fig. 1).

Note that in this instance, (1) takes place in an annular domain rather than in a sim-
ply connected domain, see [8,9,46]. This fact motivates our decomposition theorem,
Theorem 5.9.

In the sequel, the sense in which the solutions are studied will be specified. We will
also look at solutions to the equation in the sense of distributions

Lmu = δ(x,y),

where δ(x,y) denotes the Dirac mass at (x, y) ∈ H+.
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584 S. Chaabi, S. Rigat

Fig. 1 Section of a Tokamak

The mentioned above class of operators was first considered by Weinstein in [54],
where he studied the case m ∈ N∗. He also established a relation between the axisym-
metric potentials for m ∈ N∗ and harmonic functions on Rm+2, see Proposition 2.4.

In [20,58,59], Weinstein and Diaz–Weinstein established the correspondence prin-
ciple between axisymmetric potentials Lm and L2−m , see Proposition 2.3. They
deduced an expression of a fundamental solution (where the singular point is taken
on the y-axis) for m ∈ R and established a link between the Weinstein equation and
Tricomi equations and their fundamental solutions.

Let us return to the book [49]. Studying elliptic equations with analytic coeffi-
cients, Vekua provided means to express their fundamental solutions by using the
Riemann functions, introduced earlier (see e.g. [28]) in the real hyperbolic context, he
also investigated generalized elliptic equations with complex operators ∂z and ∂z . In
heuristic words, in the same way as a harmonic function is the real part of a holomor-
phic function, or the sum of a holomorphic and an anti-holomorphic function, Vekua
established the fact that solutions to elliptic equations, and therefore GASP, can be
written as a sum of two functionals, one applied to an arbitrary holomorphic function
and the other applied to an arbitrary anti-holomorphic function. These functionals can
be written explicitly in terms of the Riemann function, by using the hypergeometric
functions [49] or fractional derivations [16]. In [34], Henrici gave a very interesting
introduction to the work of Vekua.

More recently, basing on the work of Vekua, Savina [44] gave a series representation
of fundamental solutions for the operator L̂u = �u + a∂x u + b∂yu + cu and studied
the convergence of this series. She also provided an application of her results to the
Helmholtz equation.

In [31], Gilbert studied the non-homogeneous Weinstein equation, i.e. the case
m ≥ 0, and gave an integral formula for this class of equations. In particular, an
explicit solution was given when the second member depends only on one variable.

Some Dirichlet problems are considered in [40,41] in a special geometry, the so-
called “geometry with separable variable”.
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Decomposition theorem and Riesz basis for axisymmetric... 585

Even if some results presented in this paper are known for real values of m, we make
a totally self-contained presentation involving elementary technics not necesseraly
used in the papers mentioned above. For instance, usual arguments involving estimates
of hypergeometric integrals are replaced by arguments using the Lebesgue dominated
convergence theorem. Our main result is a decomposition theorem for axisymmetric
potentials which is new also for real values of m. We obtain a Liouville-type result
for the solutions of Weinstein equation on H+, with an interesting observation that
there is a loss of strict ellipticity of the Weinstein operator on the boundary of H+.
An application of the decomposition theorem is given by showing that an explicit
family of axisymmetric potentials constructed by introduction of bipolar coordinates
is a Riesz basis in some annuli.

The plan of the paper is the following. In Sect. 2, we recall preliminary information
about fundamental solutions for linear partial differential operators with non-constant
coefficients. Proposition 2.1 provides with a connection between fundamental solu-
tions for Lm and fundamental solutions for L⋆

m , where L⋆
m denotes the formal adjoint

of Lm . The Weinstein principle [59], valid for m real and complex, establishes a
connection between Lm and L2−m . We state it without proof as Proposition 2.3. Propo-
sition 2.4, valid only for m ∈ N, is fundamental in the sense that one can compute
a fundamental solution for Lm just knowing the usual fundamental solution for the
Laplacian in Rm+2. The corresponding computations are done for m ∈ N and for
m ∈ Z in Sect. 3.

The extension of formulas for fundamental solutions to the case m ∈ C is the core
of Sect. 4. First we describe in Proposition 4.2 in an elementary way the behavior of
fundamental solutions near their singularities. Next we use the corresponding estimates
to establish the main result of the section, Theorem 4.4.

Section 5 is dedicated to the decomposition theorem. First we modify the funda-
mental solutions built earlier in order to get fundamental solutions which vanish on the
boundary of H+. Next, in Proposition 5.3, we show that if u is a solution for Lmu = 0
which vanishes on the boundary of H+, then u ≡ 0 on H+. Let us emphasize here that,
although this statement looks obvious, this is not the case due to the loss of ellipticity
of Lm on the boundary of H+. Let us mention that Proposition 5.3 is a consequence
of the maximum principle for pseudo-analytic functions given in a recent paper by
Chalendar–Partington [14] for more general function σ than xm , but in [14] there is an
additional assumption on σ , which in our case corresponds to the assumption |m| ≥ 1.
The proof of Proposition 5.3 is quite long, but not difficult, it follows careful estimates
of fundamental solutions in some parts of H+. Finally the decomposition theorem,
Theorem 5.9, is proved. Its proof is similar to the proof of the Bôcher’s decomposition
theorem presented in [4]. We end Sect. 5 with a Poisson formula for axisymmetric
potentials in H+, Proposition 5.10.

In Sect. 6, we consider the case where the annular domain is a kind of annulus.
We introduce very classical (in physics) bipolar coordinates, cf. [39], in which the
GASP equation has a form presented in Theorem 6.2. Next, applying the method of
separation of variables we obtain a basis of solutions in disks and complements of
disks in H+, see Theorem 6.3. In Sect. 7 it is shown that this basis forms a Riesz
basis.
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586 S. Chaabi, S. Rigat

2 Notations and preliminaries

Throughout H+ = {(x, y) ∈ R2 : x > 0} stands for the right half-plane, all scalar
functions are assumed to be complex valued. If 	 is an open set in Rn, n ∈ N∗,
let D(	) designate the space of C∞-functions compactly supported on 	, where
supp f = {x ∈ 	 : f (x) �= 0}. If K is a compact set in 	, let DK (	) be the set of
functions ϕ ∈ D(	) such that supp ϕ ⊂ K .

The partial derivatives of a differentiable function u on an open set 	 ⊂ Rn will
be denoted by ∂u/∂xi , ∂xi

u or uxi
, i ∈ {1, . . . , n}. If α = (α1, . . . , αn) ∈ Nn is a

multi-index, we denote

∂α = ∂α1
x1

. . . ∂αn
xn

=
∂ |α|

∂x
α1
1 . . . ∂x

αn
n

with |α| = α1 + · · · + αn .
It is assumed that the reader is familiar with the terminology of distributions and

we refer to [35].
Let L be a linear differential operator on 	,

L =
∑

|α|≤N

aα∂α, N ∈ N,

where the summation runs over the multi-indices α of length |α| ≤ N , aα are C∞(	)-
functions. If T is a distribution, then LT =

∑
|α|≤N aα∂αT . Denote by L⋆ the adjoint

operator of L in the sense of distributions, namely,

L⋆T =
∑

|α|≤N

(−1)|α|∂α(aαT ).

One can easily check, if f, g ∈ D(	), we have

〈L f, g〉 = 〈 f, L⋆g〉.

Let a ∈ 	 and L be a differential operator on 	. A fundamental solution for L on 	

at a ∈ 	 is a distribution Ta such that

LTa = δa,

where the equality is understood in the sense of distributions on 	. This equality can
be rewritten as

ϕ(a) = 〈LTa, ϕ〉 = 〈Ta, L⋆ϕ〉, ϕ ∈ D(	).

In particular, if a ∈ 	 and Ta is a fundamental solution to L⋆ at a on 	 and if g ∈ D(	)

is such that g = L(ϕ) with ϕ ∈ D(	), then

123



Decomposition theorem and Riesz basis for axisymmetric... 587

ϕ(a) = 〈Ta, g〉, a ∈ 	.

Indeed, we have

ϕ(a) = 〈δa, ϕ〉 = 〈L⋆Ta, ϕ〉 = 〈Ta, Lϕ〉 = 〈Ta, g〉, a ∈ 	.

These fundamental solutions are therefore a good tool for solving equations Lϕ = g

on D(	) if g ∈ D(	).
If m ∈ N∗, the Laplacian in Rm will be denoted by �m , or � when m = 2. For

m ∈ C, Lm denotes the Weinstein operator:

Lm u(x, y) = �u(x, y) +
m

x

∂u

∂x
(x, y), u ∈ C2(H+), (x, y) ∈ H

+.

If f (x, y) = ( f1(x, y), f2(x, y)) is a C1-vector C2-valued function on an open set in
R2,

div f =
∂ f1

∂x
+

∂ f2

∂y
.

Similarly, if f : R2 → C is a C1-scalar C2-valued function on an open set in R2,

∇ f =
(

∂ f

∂x
,
∂ f

∂y

)
.

With these notations, the operator Lm can be written as follows:

Lm u(x, y) = x−m div(xm ∇u)(x, y), u ∈ C2(H+).

By the Schwarz rule, if u is a function defined on a connected open set in H+ such
that div(σ∇u) = 0, where σ : H+ → C∗ is a C1-function, then there is a function v

which satisfies the well-known generalized Cauchy–Riemann system of equations

⎧
⎪⎪⎨
⎪⎪⎩

∂v

∂x
= −σ

∂u

∂y
,

∂v

∂y
= σ

∂u

∂x

and v satisfies the conjugate equation div(1/σ ·∇v) = 0, see for example [7]. This
observation justifies the fact that we call L−m , m ∈ C, the conjugate operator of Lm .

The adjoint operator of Lm is

L⋆
mu(x, y) = �u(x, y) −

∂

∂x

m u(x, y)

x
= �u(x, y) −

m

x

∂u

∂x
(x, y) +

m

x2 u(x, y),

where u ∈ C2(H+), (x, y) ∈ H+. This definition is given on H+ but it is easily
transposed to the case of an open set 	 of H+.
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588 S. Chaabi, S. Rigat

In the case where the functions involved do not depend only on x and y, we will
write Lm,x,y instead of Lm , which means that the partial derivatives are related to the
variables x and y, and all other variables are considered to be fixed.

If u ∈ D(H+), we define Smu, Du ∈ D(H+) as

(Smu)(x, y) = x−m u(x, y), (Du)(x, y) =
∂u

∂x
(x, y).

These operators satisfy the following property.

Proposition 2.1 The operator Sm conjugates L⋆
m and Lm , D conjugates L⋆

−m and

Lm , which means that

Sm L⋆
m = Lm Sm, L⋆

−m D = DLm .

Remark 2.2 1. Let m ∈ C, Sm and Lm Sm are self-adjoint operators, i.e. Sm = S⋆
m

and Lm Sm = (Lm Sm)⋆.
2. Let σ : 	 → C be a C1-function which does not vanish, consider the operator

defined on C2(	) as follows:

Pσ u(x, y) =
1

σ(x, y)
div(σ (x, y)∇u(x, y)), u ∈ C2(	),

where 	 is an open set in R2. Then

P⋆
σ = div

(
σ ∇

(
·
σ

))
.

Indeed, if u, v ∈ D(	), then, by using the derivation in the sense of distributions,
we have

〈Pσ u, v〉 =
∫

	

1

σ(x, y)
div
(
σ(x, y)∇u(x, y)

)
v(x, y) dxdy

= −
∫

	

σ ∇u·∇
(

v

σ

)
dxdy =

∫

	

udiv

(
σ∇
(

v

σ

))
dxdy

= 〈u, P⋆
σ v〉.

Define Sσ as

(Sσ u)(x, y) =
1

σ(x, y)
u(x, y), u ∈ C2(	).

Then, one can easily check that Sσ P⋆
σ = Pσ Sσ , hence Sσ conjugates Pσ and P⋆

σ .
The operators Pσ and Sσ are a generalization of Lm and Sm with the conjugation
relation preserved.

If m is a positive integer, introduce an operator Tm : u �→ v defined as follows: Tm

maps a function u defined on an open set 	 of H+ to the function
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v(x1, . . . , xm+2) = u
(√

x2
1 + · · · + x2

m+1, xm+2

)
.

The following two propositions can be found in the Weinstein paper [59] in the case
m ∈ R. They can be checked by a direct computation for m real and complex, so we
omit the proofs.

Proposition 2.3 (Weinstein principle [59]) Let 	 be a relatively compact open set in

H+, if u : 	 → C is C2, then for all m ∈ C,

Lmu = x1−m L2−m

[
xm−1u

]
.

Proposition 2.4 ([54]) Let 	 be a relatively compact open set in H+. If u ∈ C2(	)

and m ∈ N, then �m+2(Tmu) = Tm(Lmu).

These properties will allow us to calculate fundamental solutions for Lm and L⋆
m for

m ∈ N, and, thereafter, for m ∈ Z. Finally, estimates of formulas for Lm, L⋆
m , m ∈ Z,

will show that these formulas actually provide fundamental solutions for Lm and L⋆
m

in the case m ∈ C.

3 Integral expressions of fundamental solutions for integer values of m

Let us recall the definition of the Dirac mass in a point (x, y) ∈ R2:

〈δ(x,y), ϕ〉 = ϕ(x, y), ϕ ∈ D(R2).

Proposition 3.1 (partially in [20,53,54]) Let m ∈ N⋆. For (x, y) ∈ H+ and (ξ, η) ∈
H+,

Em(x, y, ξ, η) = −
ξm

2π

∫ π

0

sinm−1 θ dθ
[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2

is a fundamental solution on H+ for the operator L⋆
m,ξ,η at the fixed point (x, y) ∈ H+,

which means

L⋆
m,ξ,η Em(x, y, ξ, η) = δ(x,y)(ξ, η)

in the sense of distributions. Moreover, if (ξ, η) ∈ H+ is fixed, then

Lm,x,y Em(x, y, ξ, η) = δ(ξ,η)(x, y)

in the sense of distributions, which means that Em is a fundamental solution on H+

for the operator Lm,x,y at the fixed point (ξ, η) ∈ H+.
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590 S. Chaabi, S. Rigat

Proof Let m ∈ N∗. Recall that

E(x) = −
1

m ωm+2‖x‖m
, x ∈ R

m+2,

is a fundamental solution for the Laplacian on Rm+2, i.e. in the sense of distributions
�m+2 E = δ0, where ωm+2 is the area of the unit sphere in Rm+2. Thus, for all
v ∈ D(Rm+2),

v(t1, . . . , tm+2) = −
1

m ωm+2

∫

Rm+2

�m+2v(τ) dτ1dτ2 . . . dτm+2(
(τ1 − t1)2 + · · · + (τm+2 − tm+2)2

)m/2 ,

where τ = (τ1, . . . , τm+2).
Applying this relation to the function v = Tmu, where u ∈ D(H+), and, due to

Proposition 2.4, for all (x, y) ∈ H+ we have

u(x, y) = −
1

m ωm+2

∫

Rm+2

(Lmu)
(√

ξ2
1 + · · · + ξ2

m+1, ξm+2

)
dξ1 . . . dξm+2

(
(ξ1 − x)2 + ξ2

2 + · · · + ξ2
m+1 + (ξm+2 − y)2

)m/2 .

We will simplify this integral expression. For this, we will consider the following
hyper-spherical coordinates:

ξ1 = ξ cos θ1,

ξ2 = ξ sin θ1 cos θ2,

· · ·
ξm−1 = ξ sin θ1 · · · sin θm−2 cos θm−1,

ξm = ξ sin θ1 · · · sin θm−1 cos θm,

ξm+1 = ξ sin θ1 · · · sin θm,

where ξ =
√

ξ2
1 + · · · + ξ2

m+1 ≥ 0, θm ∈ (−π, π) and θ1, . . . , θm−1 ∈ (0, π). The
absolute value of the determinant of the Jacobian matrix defined by this system of
coordinates is

ξm sin θm−1 sin2 θm−2 · · · sinm−1 θ1.

Then, for all (x, y) ∈ H+,

u(x, y) =
∫ ∞

−∞
dη

∫ ∞

0
Lm(u)(ξ, η) Em(x, y, ξ, η) dξ (2)
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Decomposition theorem and Riesz basis for axisymmetric... 591

with

Em(x, y, ξ, η)

= −
ξm

m ωm+2

∫ π

−π

dθm

∫ π

θ1,...,θm−1=0

sin θm−1 sin2 θm−2 · · · sinm−1 θ1dθ1 . . . dθm−1(
ξ2 − 2xξ cos θ1 + x2 + (y − η)2

)m/2 .

Let

ωm =
∫ π

−π

dθm−1

∫ π

θ1,...,θm−2=0
sin θm−2 sin2 θm−3 · · · sinm−2 θ1 dθ2 . . . dθm−2

=
∫

Sm

1 dσ =
2πm/2

Ŵ(m/2)
,

then Em can be written as

Em(x, y, ξ, η) = −
ωm ξm

m ωm+2

∫ π

0

sinm−1 θ dθ
(
ξ2 − 2xξ cos θ + x2 + (y − η)2

)m/2

= −
ξm

2π

∫ π

0

sinm−1 θ dθ
(
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

)m/2 .

Also, due to (2) we have

L∗
m,ξ,η Em(x, y, ξ, η) = δ(x,y)(ξ, η).

Moreover, since for all (x, y), (ξ, η) ∈ H+,

Em(x, y, ξ, η) =
(

x

ξ

)−m

Em(ξ, η, x, y),

and by Proposition 2.1, Sm conjugates L⋆
m and Lm , we have

Lm,x,y Em(x, y, ξ, η) = Lm,x,y

((
x

ξ

)−m

Em(ξ, η, x, y)

)

=
(

x

ξ

)−m

L⋆
m,x,y Em(ξ, η, x, y)

in the sense of distributions. Hence

Lm,x,y Em(x, y, ξ, η) =
(

x

ξ

)−m

δ(ξ,η)(x, y) = δ(ξ,η),

and the proof is complete. ⊓⊔

This proposition and the Weinstein principle imply the following result.
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592 S. Chaabi, S. Rigat

Proposition 3.2 (partially in [20,53,54]) Let m ∈ Z\N∗. For (x, y), (ξ, η) ∈ H+,

Em(x, y, ξ, η) =
(

ξ

x

)m−1

E2−m(x, y, ξ, η)

= −
ξ x1−m

2π

∫ π

0

sin1−m θ dθ
[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]1−m/2

is a fundamental solution on H+ for the operator L⋆
m,ξ,η at the fixed point (x, y) ∈ H+

and it is also a fundamental solution on H+ for the operator Lm,x,y at the fixed point

(ξ, η) ∈ H+.

Proof For all m ∈ N∗, u ∈ D(H+) and (x, y) ∈ H+ we have

u(x, y) =
∫

(ξ,η)∈H+
(Lmu)Em(x, y, ξ, η) dξdη,

and by the Weinstein principle, Proposition 2.3, we have

u(x, y) =
∫

H+
ξ1−m L2−m(ξm−1u)Em(x, y, ξ, η) dξdη.

Denoting v(x, y) = xm−1u(x, y), we obtain

x1−m v(x, y) =
∫

H+
ξ1−m(L2−mv)Em(x, y, ξ, η) dξdη,

then, for all m′ ∈ Z\N∗, v ∈ D(H+) and (x, y) ∈ H+, putting m = 2 − m′, we have

v(x, y) =
∫

H+
(Lm′v)

(
ξ

x

)m′−1

E2−m′(x, y, ξ, η) dξdη.

The proof of the second statement is similar. ⊓⊔

4 Fundamental solutions for the Weinstein equation with complex
coefficients

In this section, we will generalize the result obtained in the previous section for m ∈ Z

to the case m ∈ C.
Let m ∈ C. If Re m ≥ 1 put

Em = −
ξm

2π

∫ π

0

sinm−1 θ dθ
[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2 , (3)
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and if Re m < 1 put

Em = −
ξ x1−m

2π

∫ π

0

sin1−m θ dθ
[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]1−m/2 , (4)

here, if α > 0 is a real number and μ is a complex number, αμ = exp(μ ln α). Both
values are well defined as the integrals on the right-hand side converge in the Lebesgue
sense.

Proposition 4.1 For m ∈ C and (ξ, η) ∈ H+ fixed, we have

Lm,x,y Em(x, y, ξ, η) = 0, (x, y) ∈ H
+\{(ξ, η)},

and for (x, y) ∈ H+ fixed, we have

L⋆
m,ξ,η Em(x, y, ξ, η) = 0, (ξ, η) ∈ H

+\{(x, y)}.

Proof For convenience, denote

fm(x, y, ξ, η, θ) =
1

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2 .

To prove the first equality of the proposition, it suffices to show that

∫ π

0
Lm,x,y fm(x, y, ξ, η, θ) sinm−1 θ dθ = 0.

Let us compute the partial derivatives of the function fm :

∂x fm =
−m

2

2(x − ξ) + 4ξ sin2 θ/2
[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2+1

(= −m(x − ξ cos θ) fm+2),

∂xx fm =
−m

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2+1

+
m

2

(
m

2
+ 1

)
(2(x − ξ) + 4ξ sin2 θ/2)2

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2+2 ,

∂yy fm =
−m

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2+1

+
m

2

(
m

2
+ 1

)
4(y − η)2

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2+2 .
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We then have

� fm =
−2m

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2+1

+
m

2

(
m

2
+ 1

) (
2(x − ξ) + 4ξ sin2 θ/2

)2 + 4(y − η)2

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2+2 .

Note that

(
2(x − ξ) + 4ξ sin2 θ

2

)2

+ (2(y − η))2

= 4

[
(x − ξ)2 + 4xξ sin2 θ

2
+ (y − η)2

]
− 4ξ2 sin2 θ,

hence

� fm =
m2

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2+1

−
m(m + 2)ξ2 sin2 θ

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2+2 .

Noting that

∂ fm+2

∂θ
= −(m + 2)

x ξ sin θ
[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2+2 ,

we have

� fm = m2 fm+2 + m
ξ

x
sin θ

∂ fm+2

∂θ
.

Integrating by parts, we have

∫ π

0
� fm sinm−1 θ dθ = m2

∫ π

0
fm+2 sinm−1 θ dθ + m

ξ

x

∫ π

0

∂ fm+2

∂θ
sinm θ dθ

=
m

x

∫ π

0
m(x − ξ cos θ) fm+2 sinm−1 θ dθ

= −
m

x

∫ π

0
∂x fm sinm−1 θ dθ,

and the result is deduced in the case Re m ≥ 1. The same argument is valid for
Re m < 1. The second equality of the proposition can be deduced immediately from
the fact that Sm conjugates L⋆

m and Lm , see Proposition 2.1. ⊓⊔
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In the sequel, we will denote

d2 = (x − ξ)2 + (y − η)2, k =
4xξ

d2 .

The following proposition describes the behavior of Em defined by (3) and (4) near
its singularity. In particular, we show that the behavior of Em is close to the behavior
of fundamental solutions for the Laplacian. This fact is well known for elliptic oper-
ators. But we emphasize here that in our proof the estimates of elliptic integrals are
elementary (obtained using the dominated convergence theorem) and we do not use
estimates arising from classical estimates of hypergeometric functions.

Proposition 4.2 Let m ∈ C. For (x, y) ∈ H+ fixed,

Em(x, y, ξ, η) ∼
1

2π
ln
√

(x − ξ)2 + (y − η)2 as (ξ, η) → (x, y).

Proof We start with Re m ≥ 1. In this case, we have

Em(x, y, ξ, η) = −
ξm

2π

∫ π

0

sinm−1 θ dθ
[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2

= −
1

2π

(
ξ

d

)m∫ π

0

sinm−1 θ dθ

(1 + k sin2 θ/2)m/2
.

Note that when d → 0, k tends to +∞.

Claim 4.3

∫ π

0

sinm−1 θ dθ

(1 + k sin2 θ/2)m/2
∼ 2m−1

km/2 ln k as k → +∞.

Proof Putting u = sin θ/2, we have

∫ π

0

sinm−1 θ dθ

(1 + k sin2 θ/2)m/2
= 2m

∫ 1

0

um−1(1 − u2)(m−2)/2du

(1 + ku2)m/2

=
2m

km/2

∫ 1

0

um−1(1 − u2)(m−2)/2du

(1/k + u2)m/2 .

Note that

∫ 1

0

um−1(1 − u2)(m−2)/2du

(1/k + u2)m/2 −
∫ 1

0

um−1du

(1/k + u2)m/2

= −
∫ 1

0

um−1

(1/k + u2)m/2

(
1 − (1 − u2)(m−2)/2) du
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where, due to monotone convergence, the right-hand side tends to

−
∫ 1

0

um−1

(u2)m/2

(
1 − (1 − u2)(m−2)/2) du = −

∫ 1

0

1 − (1 − u2)(m−2)/2

u
du

as k → +∞. The change of variable u = sh t/
√

k gives us

∫ 1

0

um−1du

(1/k + u2)m/2 =
∫ argsh

√
k

0
thm−1t dt.

Since thm−1t tends to 1 as t → +∞, we deduce that as k → +∞,

∫ argsh
√

k

0
thm−1dt ∼

∫ argsh
√

k

0
dt = argsh

√
k ∼

1

2
ln k.

The proof is complete. �

Due to Claim 4.3, we have

Em(x, y, ξ, η) ∼ −
1

2π

(
x

d

)m 2m−1

km/2 ln k ∼
1

2π
ln d

as d → 0+. The case Re m < 1 is analogous. ⊓⊔
Now, we can prove the main result of this section which shows that Em are funda-

mental solutions not only for m ∈ N but for all m ∈ C.

Theorem 4.4 Let m ∈ C. For (x, y), (ξ, η) ∈ H+, Em defined by (3) and (4) is a

fundamental solution on H+ for the operator L⋆
m,ξ,η at the fixed point (x, y) ∈ H+,

which means that on H+

L⋆
m,ξ,η Em(x, y, ξ, η) = δ(x,y)(ξ, η)

in the sense of distributions. Moreover, if (ξ, η) ∈ H+ is fixed, then on H+

Lm,x,y Em(x, y, ξ, η) = δ(ξ,η)(x, y)

in the sense of distributions, which means that Em is a fundamental solution on H+

for the operator Lm,x,y at the fixed point (ξ, η) ∈ H+.

Proof Let m ∈ C and u ∈ D(H+). Let (x, y) ∈ H+ and ε > 0 be such that
D((x, y), ε) ⊂ H+, where D((x, y), ε) is a disk with center (x, y) and radius ε.
Put

Iε =
∫

H+\D((x,y),ε)

Lm(u)(ξ, η)Em(x, y, ξ, η) dξdη

=
∫

H+\D((x,y),ε)

(
Lm(u)(ξ, η)Em(x, y, ξ, η) − u(ξ, η)L⋆

m(Em)(x, y, ξ, η)
)

dξdη.
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We use the fact that L⋆
m(Em) = 0 on H+\ D((x, y), ε). An elementary computation

gives

Lm(u)Em − uL⋆
m(E) = ∂ξ

(
(∂ξ u)Em − u(∂ξ Em) +

m

ξ
uEm

)

+ ∂η

(
(∂ηu)Em − u(∂η Em)

)
.

Let us recall the Green formula: If 	 is an open set in R2 with a piecewise C1-
differentiable boundary, then

∫

	

div X (x, y) dxdy =
∫

∂	

X (x, y) ·n(x, y) ds,

where n is the outer unit normal vector to ∂	 and ds the arc length element on ∂	

(positively oriented), X = (X1, X2) : 	 → C2 is a C1-vector field.
Applying this formula to the open set 	 = U \ D((x, y), ε), where U is a regular

open set in H+ containing the support of u, we have

Iε = −
∫

t∈[0,2π ]
(ξ,η)=(x,y)+ε(cos t,sin t)

((
(∂ξ u)Em − u(∂ξ Em) +

m

ξ
uEm

)
cos t

+
(
(∂ηu)Em −u(∂η Em)

)
sin t

)
ε dt.

Proposition 4.2 implies

∫
t∈[0,2π ]

(ξ,η)=(x,y)+ε(cos t,sin t)

((
(∂ξ u) +

m

ξ
u

)
cos t + (∂ηu) sin t

)
Em ε dt → 0

as ε → 0+ because limε→0 ε ln ε = 0. Then, if we want to prove that limε→0 Iε
exists, we have to prove the existence of

lim
ε→0

∫
t∈[0,2π ]

(ξ,η)=(x,y)+ε(cos t,sin t)

u
(
(∂ξ Em) cos t + (∂η Em) sin t

)
ε dt,

and this limit will be equal to the limit of Iε.
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Now, assume that Re m ≥ 1. Denote by Jε the integral in the previous expression.
A computation gives

Jε = −
m

2π

∫
t∈[0,2π ]

(ξ,η)=(x,y)+ε(cos t,sin t)

u
ξm−1

εm

∫ π

0

sinm−1 θ dθ

(1 + k sin2 θ/2)m/2
ε cos t dt

︸ ︷︷ ︸
Jε,1

+
m

2π

∫
t∈[0,2π ]

(ξ,η)=(x,y)+ε(cos t,sin t)

u
ξm

εm+2

∫ π

0

sinm−1 θ dθ

(1 + k sin2 θ/2)m/2+1
ε2dt

︸ ︷︷ ︸
Jε,2

+
m

2π

∫
t∈[0,2π ]

(ξ,η)=(x,y)+ε(cos t,sin t)

u
ξm

εm+2

∫ π

0

2x sin2 θ/2 sinm−1 θ dθ

(1 + k sin2 θ/2)m/2+1
ε cos t dt

︸ ︷︷ ︸
Jε,3

,

where k = 4xξ/ε2.

Claim 4.5

∫ π

0

sin2 θ/2 sinm−1 θ dθ

(1 + k sin2 θ/2)m/2+1
∼

2m−1

km/2+1 ln k as k → +∞.

Proof We put u = sin θ/2, then

∫ π

0

sin2 θ/2 sinm−1 θ dθ

(1 + k sin2 θ/2)m/2+1
= 2m

∫ 1

0

um+1(1 − u2)(m−2)/2du

(1 + ku2)m/2+1

=
2m

km/2+1

∫ 1

0

um+1(1 − u2)(m−2)/2du

(1/k + u2)m/2+1 .

Note that

∫ 1

0

um+1(1 − u2)(m−2)/2du

(1/k + u2)m/2+1 −
∫ 1

0

um+1du

(1/k + u2)m/2+1

= −
∫ 1

0

um+1

(1/k + u2)m/2+1

(
1 − (1 − u2)(m−2)/2) du

→ −
∫ 1

0

um+1

(u2)m/2+1

(
1 − (1 − u2)(m−2)/2) du

= −
∫ 1

0

1 − (1 − u2)(m−2)/2

u
du
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as k → +∞. The change of variable u = sh t/
√

k gives us

∫ 1

0

um+1du

(1/k + u2)m/2+1 =
∫ argsh

√
k

0
thm+1t dt.

Since thm+1t tends to 1 as t → +∞, it follows that as k → +∞

∫ argsh
√

k

0
thm+1t dt ∼

∫ argsh
√

k

0
dt = argsh

√
k ∼

1

2
ln k. �

Claim 4.6

∫ π

0

sinm−1 θ dθ

(1 + k sin2 θ/2)m/2+1
∼

2m

mkm/2 as k → +∞.

Proof Putting as previously u = sin θ/2, we have

∫ π

0

sinm−1 θ dθ

(1 + k sin2 θ/2)m/2+1
= 2m

∫ 1

0

um−1(1 − u2)(m−2)/2du

(1 + ku2)m/2+1

=
2m

km/2+1

∫ 1

0

um−1(1 − u2)(m−2)/2du

(1/k + u2)m/2+1 .

Note that

∫ 1

0

um−1(1 − u2)(m−2)/2du

(1/k + u2)m/2+1 −
∫ 1

0

um−1du

(1/k + u2)m/2+1

= −
∫ 1

0

um−1
(
1 − (1 − u2)(m−2)/2

)

(1/k + u2)m/2+1 du.

Let us estimate the right-hand side of this equality:

∫ 1

0

um−1
(
1 − (1 − u2)(m−2)/2

)
du

(1/k + u2)m/2+1 −
∫ 1

0

um−1

(1/k + u2)m/2+1

(
m − 2

2
u2
)

du

=
∫ 1

0

um−1

(1/k + u2)m/2+1

(
1 −

m − 2

2
u2 − (1 − u2)(m−2)/2

)
du

→
∫ 1

0

um−1

(u2)m/2+1

(
1 −

m − 2

2
u2 − (1 − u2)(m−2)/2

)
du (⋆)

=
∫ 1

0

1 − (m − 2)u2/2 − (1 − u2)(m−2)/2

u3 du

as k → +∞. As seen in the proof of Claim 4.5, we have

m − 2

2

∫ 1

0

um+1

(1/k + u2)m/2+1 du ∼
m − 2

4
ln k (⋆⋆)
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as k → +∞. Due to (⋆) and (⋆⋆), we have

∫ 1

0

um−1

(1/k + u2)m/2+1

(
1 − (1 − u2)(m−2)/2) du ∼

m − 2

4
ln k

as k → +∞. The change of variable u = sh t/
√

k gives

∫ 1

0

um−1du

(1/k + u2)m/2+1 = k

∫ argsh
√

k

0

thm−1t

ch2t
dt =

k

m
thm
(
argsh

√
k
)
.

It follows that as k → +∞,

∫ 1

0

um−1du

(1/k + u2)m/2+1 ∼
k

m
.

Thus

∫ 1

0

um−1(1 − u2)(m−2)/2du

(1/k + u2)m/2+1 ∼
k

m

and

∫ π

0

sinm−1 θ dθ

(1 + k sin2 θ/2)m/2+1
∼

2m

mkm/2

as k → +∞. This completes the proof. �

Let us return to the proof of Theorem 4.4. Claim 4.3 implies

Jε,1 ∼ −
m

2π

∫
t∈[0,2π ]

(ξ,η)=(x,y)+ε(cos t,sin t)

u
xm−1

εm

2m−1

km/2 ln k ε cos t dt

∼ +
m

2πx
ε ln ε

∫
t∈[0,2π ]

(ξ,η)=(x,y)+ε(cos t,sin t)

u(x +ε cos t, y+ε sin t) cos t dt

which tends to 0 as ε → 0+.
Claim 4.5 implies

Jε,3 ∼
m

2π

∫
t∈[0,2π ]

(ξ,η)=(x,y)+ε(cos t,sin t)

u
xm

εm+2 2x
2m−1

km/2+1 ln k ε cos t dt

∼ −
m

4πx
ε ln ε

∫
t∈[0,2π ]

(ξ,η)=(x,y)+ε(cos t,sin t)

u(x +ε cos t, y+ε sin t) cos t dt

which tends to 0 as ε → 0+.
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Finally, Claim 4.6 implies

Jε,2 ∼
m

2π

∫
t∈[0,2π ]

(ξ,η)=(x,y)+ε(cos t,sin t)

u
xm

εm+2

2m

mkm/2 ε2dt

∼
1

2π

∫
t∈[0,2π ]

(ξ,η)=(x,y)+ε(cos t,sin t)

u(x +ε cos t, y+ε sin t) dt

which tends to u(x, y) as ε → 0+.
So we have proved that for all m ∈ C such that Re m > 0,

lim
ε→0+

∫

H+\D((x,y),ε)

Lm(u)(ξ, η)Em(x, y, ξ, η) dξdη

=
∫

H+
Lm(u)(ξ, η)Em(x, y, ξ, η) dξdη = u(x, y),

therefore Em indeed is a fundamental solution for the operator L⋆
m for all m ∈ C with

Re m > 0. The case m ∈ C with Re m ≤ 1 is similar.
Due to Proposition 2.1, we also have dual assertions for fundamental solutions for

the operator Lm . ⊓⊔
The following proposition is roughly a consequence of the previous theorem. Of

course, it is a classical statement, but we would like to present its short proof.

Proposition 4.7 Let m ∈ C and let 	 be a relatively compact open set in H+ whose

boundary is piecewise C1-differentiable. Then, for (x, y) ∈ 	 and u ∈ C2(	), we

have

u(x, y) =
∫

	

Lm(u)Em dξdη

−
∫

∂	

[
(∂ξ u)Em − u(∂ξ Em) +

m

ξ
uEm, (∂ηu)Em − u(∂η Em)

]
·n ds,

where u = u(ξ, η), Em = Em(x, y, ξ, η), n is the outer unit normal vector to ∂	 and

ds is the arc length element on ∂	 (positively oriented).

Proof Indeed, if u ∈ C2(	), for (x, y) ∈ 	 and ε > 0 such that D((x, y), ε) ⊂ 	,
we have

∫

	\D((x,y),ε)

Lm(u)Emdξ dη =
∫

	\D((x,y),ε)

(
Lm(u)Em − L⋆

m(Em)u
)

dξdη.
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By the Green formula, the latter integral is equal to

∫

∂	

[
(∂ξ u)Em − u(∂ξ Em) +

m

ξ
uEm, (∂ηu)Em − u(∂η Em)

]
·n ds

−
∫

t∈[0,2π ]
(ξ,η)=(x,y)+ε(cos t,sin t)

((
(∂ξ u)Em − u(∂ξ Em) +

m

ξ
uEm

)
cos t

+
(
(∂ηu)Em − u(∂η Em)

)
sin t

)
ε dt,

and, as we saw in the previous proof, it tends to

∫

∂	

[
(∂ξ u)Em − u(∂ξ Em) +

m

ξ
uEm, (∂ηu)Em − u(∂η Em)

]
·n ds + u(x, y),

as ε → 0. Due to integrability of Em near (x, y) we have

lim
ε→0

∫

	\D((x,y),ε)

Lm(u)Em dξdη =
∫

	

Lm(u)Em dξdη,

and the proof is complete. ⊓⊔

5 Liouville-type result and decomposition theorem for axisymmetric
potentials

In the previous section, we have seen that fundamental solutions Em in the complex
case have different expressions depending on whether Re m < 1 or Re m ≥ 1. Hence
the behavior of Em will be different in each case.

We will modify fundamental solutions so that they vanish at the boundary of H+,
which means that they tend to zero on the y-axis and at infinity. Expression (4) satisfies
this property: Em(x, y, ·, ·) tends to 0 as x → 0+ and ‖(x, y)‖ → +∞; whereas (3)
does not. Consider

Em(x, y, ξ, η) − Em(−x, y, ξ, η), Re m ≥ 1.

It is also a fundamental solution on H+ and it satisfies the required property. Let us
put

• for Re m < 1,

Fm(x, y, ξ, η) = Em(x, y, ξ, η),

• for Re m ≥ 1,

Fm(x, y, ξ, η) = Em(x, y, ξ, η) − Em(−x, y, ξ, η).
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We will need the following definition of convergence on the boundary of H+.

Definition 5.1 Let u : H+ → R be a function defined on H+. We write

lim
∂H+

u = 0

if and only if for all ε > 0 there exists N ∈ N such that for all n > N and all
(x, y) ∈ H+, x ≤ 1/n or ‖(x, y)‖ ≥ n implies |u(x, y)| ≤ ε.

Proposition 5.2 Let u : H+ → C. We have lim∂H+ u = 0 if and only if

lim
‖(x,y)‖→+∞

u(x, y) = 0 and lim
(0,y)

u = 0, y ∈ R.

Proof The direct implication is easy. Conversely, assume lim‖(x,y)‖→+∞ u(x, y) = 0
and lim(0,y) u = 0, y ∈ R. Let ε > 0, then there is A > 0 such that for all (ξ, η) ∈ H+,√

ξ2 + η2 ≥ A implies |u(ξ, η)| ≤ ε. Similarly, for all y ∈ R, there is αy ∈ (0, 1)

such that for all (ξ, η) ∈ H+,
√

ξ2 + (η − y)2 < αy implies |u(ξ, η)| ≤ ε.
The interval [−A, A] is compact. By the Lebesgue covering lemma, there is α > 0

such that for all y′ ∈ [−A, A], the ball B(y′, α) is included in one of the balls
B(y, αy) with y ∈ [−A, A]. In particular, if (ξ, η) ∈ H+ is such that 0 < ξ < α, then
|u(ξ, η)| ≤ ε. This completes the proof. ⊓⊔

The following proposition is a Liouville-type result for axisymmetric potentials in the
right half-plane. As we mentioned in the introduction, this result is not trivial due to
the loss of strict ellipticity of the Weinstein operator on the y-axis. Let us mention that
in [5, Theorem 7.1] one can find an interesting result on the description of a class of
non-strictly elliptic equations with unbounded coefficients.

Proposition 5.3 Let u ∈ C2(H+) be such that Lmu = 0 and lim∂H+ u = 0. Then

u ≡ 0 on H+.

Proof For (ξ, η) ∈ H+ and N ∈ N∗, define

φN (ξ, η) = θ1(Nξ)θ2

(
ξ

N

)
θ2

(
η

N

)
,

where θ1 and θ2 are smooth functions on R, valued on [0, 1] and such that θ1(t) = 1
for t ≥ 1, θ1(t) = 0 for t ≤ 1/2, θ2(t) = 1 for t ∈ [−1/2, 1/2], and θ2(t) = 0 for
t ∈ R\(−1, 1). Assume also that all derivatives of θ1 and θ2 vanish at {−1,−1/2,

1/2, 1} (Fig. 2).
If u ∈ C2(H+) satisfies Lmu = 0, then uφN ∈ C2(H+) and it is compactly

supported on H+. Throughout the following, we fix (x, y) ∈ H+. For N sufficiently
large, due to Proposition 4.7 (true if Em is replaced by Fm), we have

u(x, y) = u(x, y)φN (x, y) =
∫

H+
Lm(uφN )Fm dξdη

123



604 S. Chaabi, S. Rigat

Fig. 2 The functions θ1 and θ2

(because the function Lm(uφN ) is identically zero in a neighborhood of the singularity
of Fm), thus

u(x, y) =
∫

H+

[
Lm(u)φN + uLm(φN ) + 2∇u ·∇φN

]
Fm dξdη

=
∫

H+
u
[
Lm(φN )Fm − 2div(Fm∇φN )

]
dξdη

=
∫

D1∪···∪D8

u
[
Lm(φN )Fm − 2div(Fm∇φN )

]
dξdη

= −
∫

D1∪···∪D8

u
[
L−m(φN )Fm + 2∇Fm ·∇φN

]
dξdη,

where D1, . . . , D8 are the following domains (which depend on N ) (Fig. 3):

D1 =
[

1

2N
,

1

N

]
×
[
−

N

2
,

N

2

]
, D2 =

[
1

N
,

N

2

]
×
[

N

2
, N

]
,

Fig. 3 Domains Di
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D3 =
[

N

2
, N

]
×
[
−

N

2
,

N

2

]
, D4 =

[
1

N
,

N

2

]
×
[
−N ,−

N

2

]
,

D5 =
[

1

2N
,

1

N

]
×
[

N

2
, N

]
, D6 =

[
N

2
, N

]
×
[

N

2
, N

]
,

D7 =
[

N

2
, N

]
×
[
−N ,−

N

2

]
, D8 =

[
1

2N
,

1

N

]
×
[
−N ,−

N

2

]
.

Since lim∂H+u = 0,

uN = sup
(ξ,η)∈D1∪···∪D8

|u(ξ, η)| → 0 as N → +∞.

We will estimate integrals over sets D1, . . . , D8 separately, see auxiliary lemmas
below. Recall that, if (uN )N and (vN )N are complex sequences, uN = O(vN ) means
that there exists a constant M such that, for every N sufficiently large, |uN | ≤ M |vN |;
uN = o(vN ) means that for every ε > 0, for every N sufficiently large, |uN | ≤ ε|vN |.

Lemma 5.4 On D1, we have

sup

∣∣∣∣
∂φN

∂ξ

∣∣∣∣ = O(N ) and sup

∣∣∣∣
∂φN

∂η

∣∣∣∣ = 0.

On D2 ∪ D4, we have

sup

∣∣∣∣
∂φN

∂ξ

∣∣∣∣ = 0 and sup

∣∣∣∣
∂φN

∂η

∣∣∣∣ = O

(
1

N

)
.

On D3, we have

sup

∣∣∣∣
∂φN

∂ξ

∣∣∣∣ = O

(
1

N

)
and sup

∣∣∣∣
∂φN

∂η

∣∣∣∣ = 0.

On D5 ∪ D8, we have

sup

∣∣∣∣
∂φN

∂ξ

∣∣∣∣ = O(N ) and sup

∣∣∣∣
∂φN

∂η

∣∣∣∣ = O

(
1

N

)
.

On D6 ∪ D7, we have

sup

∣∣∣∣
∂φN

∂ξ

∣∣∣∣ = O

(
1

N

)
and sup

∣∣∣∣
∂φN

∂η

∣∣∣∣ = O

(
1

N

)
.

On D1 ∪ D5 ∪ D8, we have

sup |L−m(φN )| = O(N 2).
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On D2 ∪ D3 ∪ D4 ∪ D6 ∪ D7, we have

sup |L−m(φN )| = O

(
1

N 2

)
.

Proof For (ξ, η) ∈ D1, φN (ξ, η) = θ1(Nξ) and thus

∂φN

∂ξ
(ξ, η) = Nθ ′

1(Nξ),
∂φN

∂η
(ξ, η) = 0,

L−m φN (ξ, η) = N 2θ ′′
1 (Nξ) −

m N

ξ
θ ′

1(Nξ),

which give us

sup
D1

∣∣∣∣
∂φN

∂ξ

∣∣∣∣ = O(N ), sup
D1

∣∣∣∣
∂φN

∂η

∣∣∣∣ = 0, sup
D1

|L−m(φN )| = O(N 2)

since the derivatives of θ1 are bounded and for (ξ, η) ∈ D1 one gets ξ ≥ 1/(2N ).

For (ξ, η) ∈ D2, φN (ξ, η) = θ2(η/N ) and thus

∂φN

∂ξ
(ξ, η) = 0,

∂φN

∂η
(ξ, η) =

1

N
θ ′

2

(
η

N

)
,

L−mφN (ξ, η) =
1

N 2 θ ′′
2

(
η

N

)
,

which give us

sup
D2

∣∣∣∣
∂φN

∂ξ

∣∣∣∣ = 0, sup
D2

∣∣∣∣
∂φN

∂η

∣∣∣∣ = O

(
1

N

)
, sup

D2

|L−m(φN )| = O

(
1

N 2

)
.

The same works for D4.

For (ξ, η) ∈ D3, φN (ξ, η) = θ2(ξ/N ) and thus

∂φN

∂ξ
(ξ, η) =

1

N
θ ′

2

(
ξ

N

)
,

∂φN

∂η
(ξ, η) = 0,

L−m φN (ξ, η) =
1

N 2 θ ′′
2

(
ξ

N

)
−

1

N

m

ξ
θ ′

2

(
ξ

N

)
,

which give us

sup
D3

∣∣∣∣
∂φN

∂ξ

∣∣∣∣ = O

(
1

N

)
, sup

D3

∣∣∣∣
∂φN

∂η

∣∣∣∣ = 0, sup
D3

|L−m(φN )| = O

(
1

N 2

)
.

For (ξ, η) ∈ D5, φN (ξ, η) = θ1(Nξ)θ2(η/N ) and thus
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∂φN

∂ξ
(ξ, η) = Nθ ′

1(Nξ)θ2

(
η

N

)
,

∂φN

∂η
(ξ, η) =

1

N
θ1(Nξ)θ ′

2

(
η

N

)
,

L−m φN (ξ, η) = N 2θ ′′
1 (Nξ)θ2

(
η

N

)
+

1

N 2 θ1(Nξ)θ ′′
2

(
η

N

)

−
m

ξ
Nθ ′

1(Nξ)θ2

(
η

N

)
,

which give us

sup
D5

∣∣∣∣
∂φN

∂ξ

∣∣∣∣ = O(N ), sup
D5

∣∣∣∣
∂φN

∂η

∣∣∣∣ = O

(
1

N

)
, sup

D5

|L−m(φN )| = O(N 2).

The same works for D8.

For (ξ, η) ∈ D6, φN (ξ, η) = θ2(ξ/N )θ2(η/N ) and thus

∂φN

∂ξ
(ξ, η) =

1

N
θ ′

2

(
ξ

N

)
θ2

(
η

N

)
,

∂φN

∂η
(ξ, η) =

1

N
θ2

(
ξ

N

)
θ ′

2

(
η

N

)
,

L−m φN (ξ, η) =
1

N 2 θ ′′
2

(
ξ

N

)
θ2

(
η

N

)
+

1

N 2 θ2

(
ξ

N

)
θ ′′

2

(
η

N

)

−
m

Nξ
θ ′

2

(
ξ

N

)
θ2

(
η

N

)
,

which give us

sup
D6

∣∣∣∣
∂φN

∂ξ

∣∣∣∣ = O

(
1

N

)
, sup

D6

∣∣∣∣
∂φN

∂η

∣∣∣∣ = O

(
1

N

)
, sup

D6

|L−m(φN )| = O

(
1

N 2

)
.

The same works for D7. �

We now estimate the following quantities for i ∈ {1, . . . , 8}:
∫

Di

|Fm | dξdη,

∫

Di

|∂ξ Fm | dξdη

∫

Di

|∂η Fm | dξdη.

Lemma 5.5 For Re m < 1, we have:

• for i = 1,

∫

Di

|Fm | dξdη = O

(
1

N 2

)
,

∫

Di

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ dξdη = O

(
1

N

)
;

• for i = 2, 4,

∫

Di

|Fm | dξdη = O(N 2),

∫

Di

∣∣∣∣
∂ Fm

∂η

∣∣∣∣ dξdη = O(N );
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• for i = 3,

∫

Di

|Fm | dξdη = O(N 2),

∫

Di

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ dξdη = O(N );

• for i = 5, 8,

∫

Di

|Fm | dξdη = O

(
1

N 2

)
,

∫

Di

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ dξdη = O

(
1

N

)
,

∫

Di

∣∣∣∣
∂ Fm

∂η

∣∣∣∣ dξdη = O

(
1

N 2

)
;

• for i = 6, 7,

∫

Di

|Fm | dξdη = O(N 2),

∫

Di

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ dξdη = O(N ),

∫

Di

∣∣∣∣
∂ Fm

∂η

∣∣∣∣ dξdη = O(N ).

Proof By definition, for Re m < 1,

Fm(ξ, η) = −
ξ x1−m

2π

∫ π

0

sin1−m θ dθ
[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]1−m/2 .

Therefore there is a constant C1 such that for all (ξ, η) ∈ H+, we have

|Fm(ξ, η)| ≤
C1ξ[

(x − ξ)2 + (η − y)2
]1−Re m/2 . (5)

Similarly, we have

∂ Fm

∂ξ
=

Fm

ξ
−

ξ x1−m

2π
(m − 2)

∫ π

0

[
(ξ − x) + 2x sin2 θ/2

]
sin1−m θ dθ

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]2−m/2 ,

and as before, as for all θ ∈ [0, π ],
∣∣∣∣∣

[
(ξ − x) + 2x sin2 θ/2

]
sin1−m θ

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]2−m/2

∣∣∣∣∣ ≤
∣∣(ξ − x) + 2x sin2 θ/2

∣∣
[
(x − ξ)2 + (η − y)2

]2−Re m/2

=
|ξ − x cos θ |

[
(x − ξ)2 + (η − y)2

]2−Re m/2 ≤
ξ + x

[
(x − ξ)2 + (η − y)2

]2−Re m/2 ,
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there exists a constant C2 such that for all N large enough and all (ξ, η) ∈ H+, we
have

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ ≤ C2

[
1

[
(x − ξ)2 + (η − y)2

]1−Re m/2

+
ξ(x + ξ)

[
(x − ξ)2 + (η − y)2

]2−Re m/2

]
.

(6)

Finally, as

∂ Fm

∂η
= (2 − m)(η − y)

ξ x1−m

2π

∫ π

0

sin1−m θ dθ
[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]2−m/2 ,

there exists a constant C3 such that for all N large enough and all (ξ, η) ∈ H+, we
have ∣∣∣∣

∂ Fm

∂η

∣∣∣∣ ≤
C3ξ

|η − y|3−Re m
. (7)

Using these inequalities, we estimate integrals on domains Di .

On D1: Inequality (5) implies

∫

D1

|Fm | dξdη = O(1)

∫ 1/N

1/2N

dξ

∫ N/2

−N/2

ξ dη
[
(x − ξ)2 + (η − y)2

]1−Re m/2

= O

(
1

N 2

)∫ N/2

−N/2

dη
[
(x − 1/N )2 + (η − y)2

]1−Re m/2 = O

(
1

N 2

)
.

Then, thanks to (6), we have

∫

D1

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ dξdη = O(1)

∫ 1/N

1/2N

dξ

∫ N/2

−N/2

[
1

[
(x − ξ)2 + (η − y)2

]1−Re m/2

+
ξ(x + ξ)

[
(x − ξ)2 + (η − y)2

]2−Re m/2

]
dη

= O

(
1

N

)∫ N/2

−N/2

dη
[
(x − 1/N )2 + (η − y)2

]1−Re m/2 + O

(
1

N 2

)

= O

(
1

N

)
.

123



610 S. Chaabi, S. Rigat

On D2: Due to inequality (5), we have

∫

D2

|Fm | dξdη = O(1)

∫ N/2

1/N

dξ

∫ N

N/2

ξ dη
[
(x − ξ)2 + (η − y)2

]1−Re m/2

= O(1)

∫ N/2

1/N

dξ

∫ N

N/2

ξ dη

|η − y|2−Re m

= O(N 2)

∫ N

N/2

dη

|η − y|2−Re m

= O(N 2)

[
1

(N − y)1−Re m
−

1

(N/2 − y)1−Re m

]
= O

(
N Re m+1).

Then, thanks to (7), we have

∫

D2

∣∣∣∣
∂ Fm

∂η

∣∣∣∣ dξdη = O(1)

∫ N/2

1/N

dξ

∫ N

N/2

ξ dη

|η − y|3−Re m

= O(N 2)

∫ N

N/2

dη

|η − y|3−Re m
= O

(
N Re m

)
.

On D3: Due to inequality (5), we have

∫

D3

|Fm | dξdη = O(1)

∫ N

N/2
dξ

∫ N/2

−N/2

ξ dη
[
(x − ξ)2 + (η − y)2

]1−Re m/2

= O(1)

∫ N

N/2
dξ

∫ N/2

−N/2

ξ dη
[
(x − N/2)2 + (η − y)2

]1−Re m/2

= O(N 2)

∫ N/2

−N/2

dη
[
(x − N/2)2 + (η − y)2

]1−Re m/2

= O(N 2)

∫ N/2

−N/2

dη

[1 + (η − y)2]1−Re m/2 = O(N 2).

Then, thanks to (6), we have

∫

D3

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ dξdη = O(1)

∫ N

N/2
dξ

∫ N/2

−N/2

[
1

[
(x − ξ)2 + (η − y)2

]1−Re m/2

+
ξ(x + ξ)

[
(x − ξ)2 + (η − y)2

]2−Re m/2

]
dη

= O(N )

∫ N/2

−N/2

dη
[
(x − N/2)2 + (η − y)2

]1−Re m/2
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+ O(N 3)

∫ N/2

−N/2

dη
[
(x − N/2)2 + (η − y)2

]2−Re m/2

= O(N ) + O(N 3)

∫ N/2

−N/2

dη

(x − N/2)4−Re m

= O(N ) + O
(
N Re m

)
= O(N ).

On D4: This case is analogous to the case D2.

On D5: Due to inequality (5), we have

∫

D5

|Fm | dξdη = O(1)

∫ 1/N

1/2N

dξ

∫ N

N/2

ξ dη
[
(x − ξ)2 + (η − y)2

]1−Re m/2

= O

(
1

N 2

)∫ N

N/2

dη

(η − y)2−Re m

= O

(
1

N 2

)[
1

(N − y)1−Re m
−

1

(N/2 − y)1−Re m

]
= O

(
1

N 3−Re m

)
.

Then, thanks to (6), we have

∫

D5

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ dξdη = O(1)

∫ 1/N

1/2N

dξ

∫ N

N/2

[
1

[
(x − ξ)2 + (η − y)2

]1−Re m/2

+
ξ(x + ξ)

[
(x − ξ)2 + (η − y)2

]2−Re m/2

]
dη

= O(1)

∫ 1/N

1/2N

dξ

∫ N

N/2

[
1

[
(x − 1/N )2 + (η − y)2

]1−Re m/2

+
ξ(x + ξ)

[
(x − 1/N )2 + (η − y)2

]2−Re m/2

]
dη

= O

(
1

N

)
.

Estimate (7) gives

∫

D5

∣∣∣∣
∂ Fm

∂η

∣∣∣∣ dξdη = O(1)

∫ 1/N

1/2N

dξ

∫ N

N/2

ξ dη

|η − y|3−Re m
= O

(
1

N 2

)
.
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On D6: Due to (5), we have

∫

D6

|Fm | dξdη = O(1)

∫ N

N/2
dξ

∫ N

N/2

ξ dη
[
(x − ξ)2 + (η − y)2

]1−Re m/2

= O(N 2)

∫ N

N/2

dη

(η − y)2−Re m

= O(N 2)

[
1

(N − y)1−Re m
−

1

(N/2 − y)1−Re m

]
= O

(
N 1+Re m

)
.

Then, thanks to (6), we have

∫

D6

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ dξdη = O(1)

∫ N

N/2
dξ

∫ N

N/2

[
1

[
(x − ξ)2 + (η − y)2

]1−Re m/2

+
ξ(x + ξ)

[
(x − ξ)2 + (η − y)2

]2−Re m/2

]
dη

= O(1)

∫ N

N/2
dξ

∫ N

N/2

[
1

(η − y)2−Re m
+

ξ(x + ξ)

(η − y)4−Re m

]
dη

= O(N ) + O(N 3)

∫ N

N/2

dη

(η − y)4−Re m
= O(N ) + O

(
N Re m

)

= O(N ).

Estimate (7) gives

∫

D6

∣∣∣∣
∂ Fm

∂η

∣∣∣∣ dξdη = O(1)

∫ N

N/2
dξ

∫ N

N/2

ξ dη

|η − y|3−Re m

= O(N 2)

∫ N

N/2

dη

|η − y|3−Re m
= O

(
N Re m

)
.

On D7, D8: These cases are analogous to the cases D6 and D5, respectively. �

Lemma 5.6 Lemma 5.5 remains true for Re m ≥ 1.

Proof For Re m ≥ 1, we have

Fm(x, y, ξ, η) = −
ξm

2π

∫ π

0
sinm−1 θ

(
1

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2

−
1

[
(x + ξ)2 − 4xξ sin2 θ/2 + (y − η)2

]m/2

)
dθ.
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Since for all (ξ, η) ∈ H+, we have

∣∣∣∣
[
(x+ξ)2−4xξ sin2 θ

2
+(y − η)2

]m/2∣∣∣∣ =
∣∣∣
[
x2 + ξ2 + 2xξ cos θ + (y − η)2]m/2

∣∣∣,

then

∣∣∣∣
[
(x + ξ)2 − 4xξ sin2 θ

2
+ (y − η)2

]m/2∣∣∣∣ ≥
[
(x − ξ)2 + (y − η)2]Re m/2

(8)

and there is a constant C ′
1 such that for all (ξ, η) ∈ H+, we have

|Fm | ≤
C ′

1ξRe m

[
(x − ξ)2 + (y − η)2

]Re m/2 . (9)

This inequality does not suffice to estimate integrals over D1. We shall improve it as
follows. Rewrite Fm as

Fm(x, y, ξ, η) = −
ξm

2π

∫ π

0
sinm−1 θ Km(x, y, ξ, η, θ) dθ,

where

Km(x, y, ξ, η, θ) =
1

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2

−
1

[
(x + ξ)2 − 4xξ sin2 θ/2 + (y − η)2

]m/2 .

For (x, y) ∈ H+, θ ∈ [0, π ] and η ∈ R fixed, define a function gm on [−1/N , 1/N ],
with 1/N < x , by

gm(ξ) =
1

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2 .

This function is well defined because

(x − ξ)2 + 4xξ sin2 θ

2
+ (y − η)2 = x2 + ξ2 − 2xξ cos θ + (y − η)2

≥ (x − |ξ |)2 + (y − η)2

and the last term is greater than (x − 1/N )2 > 0.
We have

Km(x, y, ξ, η, θ) = gm(ξ) − gm(−ξ)
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thus

∣∣Km(x, y, ξ, η, θ)
∣∣ ≤ 2ξ sup

[−ξ,ξ ]
|g′

m | ≤ 2|m|ξ
|ξ − x | + 2x

[
(x − ξ)2 + (y − η)2

]1+Re m/2 ,

which implies that there exists a constant c′
1 such that for all (ξ, η) ∈ D1,

|Fm | ≤ c′
1

ξRe m+1

[
(x − ξ)2 + (η − y)2

]1+Re m/2 . (10)

Similarly, we have

∂ Fm

∂ξ
=

m Fm

ξ

+
mξm

2π

∫ π

0
sinm−1 θ

(
(ξ − x) + 2x sin2 θ/2

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2+1

−
(ξ + x) − 2x sin2 θ/2

[
(x + ξ)2 − 4xξ sin2 θ/2 + (y − η)2

]m/2+1

)
dθ.

(11)

and as before, for all θ ∈ [0, π ],
∣∣∣∣∣

[
(ξ − x) + 2x sin2 θ/2

]
sinm−1 θ

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2+1

∣∣∣∣∣ ≤
∣∣(ξ − x) + 2x sin2 θ/2

∣∣
[
(x − ξ)2 + (y − η)2

]Re m/2+1

=
|ξ − x cos θ |

[
(x − ξ)2 + (y − η)2

]Re m/2+1 ≤
ξ + x

[
(x − ξ)2 + (y − η)2

]Re m/2+1

and thanks to (8), for all θ ∈ [0, π ],
∣∣∣∣∣

[
(ξ + x) − 2x sin2 θ/2

]
sinm−1 θ

[
(x + ξ)2 − 4xξ sin2 θ/2 + (y − η)2

]m/2+1

∣∣∣∣∣ ≤
∣∣(ξ + x) − 2x sin2 θ/2

∣∣
[
(x − ξ)2 + (y − η)2

]Re m/2+1

=
|ξ + x cos θ |

[
(x − ξ)2 + (y − η)2

]Re m/2+1 ≤
ξ + x

[
(x − ξ)2 + (y − η)2

]Re m/2+1 .

These estimates, (11) and (9) show that there is a constant C ′
2 such that for large

enough N and all (ξ, η) ∈ H+, we have

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ ≤ C ′
2

(
ξRe m−1

[
(x − ξ)2 + (y − η)2

]Re m/2

+
ξRe m(ξ + x)

[
(x − ξ)2 + (y − η)2

]Re m/2+1

)
.

(12)
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We can improve this inequality on D1, by using inequality (10) instead of (9), then
there are two constants C ′′

2 and C ′′′
2 (which do not depend on N ) such that for all

(ξ, η) ∈ D1,

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ ≤ C ′′
2

(
ξRe m

[
(x − ξ)2 + (y − η)2

]1+Re m/2

+
ξRe m(ξ + x)

[
(x − ξ)2 + (y − η)2

]Re m/2+1

)

≤ C ′′′
2

ξRe m

[
(x − ξ)2 + (y − η)2

]1+Re m/2 .

(13)

Finally,

∂ Fm

∂η
=

m(η − y)ξm

2π

∫ π

0
sinm−1 θ

(
1

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2+1

−
1

[
(x + ξ)2 − 4xξ sin2 θ/2 + (y − η)2

]m/2+1

)
dθ.

Similarly, there is a constant C ′
3 such that for all N large enough and all (ξ, η) ∈ H+,

we have ∣∣∣∣
∂ Fm

∂η

∣∣∣∣ ≤ C ′
3

|η − y|ξRe m

[
(x − ξ)2 + (y − η)2

]Re m/2+1 . (14)

Thanks to these inequalities, we can now estimate the corresponding integrals over
domains Di .

On D1: Due to (10), we have

∫

D1

|Fm | dξdη = O(1)

∫ 1/N

1/2N

dξ

∫ N/2

−N/2

ξRe m+1dη
[
(x − ξ)2 + (η − y)2

]1+Re m/2

= O(N )

∫ 1/N

1/2N

ξRe m+1dξ = O(N )

[(
1

N

)Re m+2

−
(

1

2N

)Re m+2]

= O

(
1

N Re m+1

)
.

Then thanks to (13),

∫

D1

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ dξdη = O(1)

∫ 1/N

1/2N

dξ

∫ N/2

−N/2

ξRe m dη
[
(x − ξ)2 + (η − y)2

]1+Re m/2

= O(N )

∫ 1/N

1/2N

ξRe m dξ = O

(
1

N Re m

)
.
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On D2: Due to (9), we have

∫

D2

|Fm | dξdη = O(1)

∫ N/2

1/N

dξ

∫ N

N/2

ξRe m dη
[
(x − ξ)2 + (y − η)2

]Re m/2

= O(1)

∫ N/2

1/N

dξ

∫ N

N/2

ξRe m dη

|y − N/2|Re m
= O(N 2),

because we integrate a bounded function (independent of N ) on a domain with measure
controlled by O(N 2).

Then, inequality (14) implies

∫

D2

∣∣∣∣
∂ Fm

∂η

∣∣∣∣ dξdη = O(1)

∫ N/2

1/N

dξ

∫ N

N/2

|η − y|ξRe m dη
[
(x − ξ)2 + (y − η)2

]Re m/2+1

= O(1)

∫ N/2

1/N

dξ

∫ N

N/2

ξRe m dη

|y − η|Re m+1

= O(1)

∫ N/2

1/N

dξ

∫ N

N/2

N Re m dη

|N/2 − y|Re m+1 = O(N ).

On D3: Due to (9), we have

∫

D3

|Fm | dξdη = O(1)

∫ N

N/2
dξ

∫ N/2

−N/2

ξRe m dη
[
(x − ξ)2 + (y − η)2

]Re m/2

= O(1)

∫ N

N/2
dξ

∫ N/2

−N/2

ξRe m dη
[
(x − N/2)2 + (y − η)2

]Re m/2

= O
(
N Re m+1)

∫ N/2

−N/2

dη
[
(x − N/2)2 + (y − η)2

]Re m/2 = O(N 2).

Then, thanks to (12), we have

∫

D3

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ dξdη = O(1)

∫ N

N/2
dξ

∫ N/2

−N/2

(
ξRe m−1

[
(x − ξ)2 + (y − η)2

]Re m/2

+
ξRe m(ξ + x)

[
(x − ξ)2 + (y − η)2

]Re m/2+1

)
dη

= O(N Re m)

∫ N/2

−N/2

dη
[
(x − N/2)2 + (y − η)2

]Re m/2

+ O
(
N Re m+2)

∫ N/2

−N/2

dη
[
(x − N/2)2 + (y − η)2

]Re m/2+1

= O(N ) + O(N ) = O(N ).
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On D4: This case is analogous to the case D2.

On D5: Due to (9), we have

∫

D5

|Fm | dξdη = O(1)

∫ 1/N

1/2N

dξ

∫ N

N/2

ξRe m dη
[
(x − ξ)2 + (y − η)2

]Re m/2

= O

(
1

N Re m+1

)∫ N

N/2

dη

|y − N/2|Re m
= O

(
1

N 2Re m

)
.

Then, thanks to (12), we have

∫

D5

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ dξdη = O(1)

∫ 1/N

1/2N

dξ

∫ N

N/2

(
ξRe m−1

[
(x − ξ)2 + (y − η)2

]Re m/2

+
ξRe m(ξ + x)

[
(x − ξ)2 + (y − η)2

]Re m/2+1

)
dη

= O(1)

∫ 1N

1/2N

dξ

∫ N

N/2

(
ξRe m−1

|y − η|Re m
+

ξRe m(ξ + x)

|y − η|Re m+2

)
dη

= O

(
1

N 2Re m−1

)
.

Applying inequality (14), we have

∫

D5

∣∣∣∣
∂ Fm

∂η

∣∣∣∣ dξdη = O(1)

∫ 1/N

1/2N

dξ

∫ N

N/2

|η − y|ξRe m dη
[
(x − ξ)2 + (y − η)2

]Re m/2+1

= O(1)

∫ 1/N

1/2N

dξ

∫ N

N/2

ξRe m dη

|y − η|Re m+1 = O

(
1

N 2Re m+1

)
.

On D6: Due to (9), we have

∫

D6

|Fm | dξdη = O(1)

∫ N

N/2
dξ

∫ N

N/2

ξRe m dη
[
(x − ξ)2 + (y − η)2

]Re m/2

= O
(
N Re m+1)

∫ N

N/2

dη

(N/2 − y)Re m
= O(N 2).
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Then, thanks to (12), we obtain

∫

D6

∣∣∣∣
∂ Fm

∂ξ

∣∣∣∣ dξdη = O(1)

∫ N

N/2
dξ

∫ N

N/2

(
ξRe m−1

[
(x − ξ)2 + (y − η)2

]Re m/2

+
ξRe m(ξ + x)

[
(x − ξ)2 + (y − η)2

]Re m/2+1

)
dη

= O(1)

∫ N

N/2
dξ

∫ N

N/2

(
ξRe m−1

|y − η|Re m
+

ξRe m(ξ + x)

|y − η|Re m+2

)
dη

= O(N ) + O
(
N Re m+2)

∫ N

N/2

dη

|y − η|Re m+2 = O(N ).

Finally, inequality (14) implies

∫

D6

∣∣∣∣
∂ Fm

∂η

∣∣∣∣ dξdη = O(1)

∫ N

N/2
dξ

∫ N

N/2

|η − y|ξRe m dη
[
(x − ξ)2 + (y − η)2

]Re m/2+1

= O
(
N Re m+1)

∫ N

N/2

dη

|y − η|Re m+1 = O(N ).

On D7, D8: These cases are analogous to the cases D6 and D8, respectively. �

In the following table, we summarize results obtained on the previous lemmas:

i supDi
|L−m φN |

∫
Di

|Fm | (|∂ξ φN |, |∂ηφN |)
∫

Di
|∂ξ Fm |

∫
Di

|∂η Fm |

1 O(N2) O(1/N2) (O(N ), 0) O(1/N ) ×
2 O(1/N2) O(N2) (0, O(1/N )) × O(N )

3 O(1/N2) O(N2) (O(1/N ), 0) O(N ) ×
4 O(1/N2) O(N2) (0, O(1/N )) × O(N )

5 O(N2) O(1/N2) (O(N ), O(1/N )) O(1/N ) O(1/N2)

6 O(1/N2) O(N2) (O(1/N ), O(1/N )) O(N ) O(N )

7 O(1/N2) O(N2) (O(1/N ), O(1/N )) O(N ) O(N )

8 O(N2) O(1/N2) (O(N ), O(1/N )) O(1/N ) O(1/N2)

We can easily check that for each i ∈ {1, . . . , 8}, the quantities

sup
Di

|L−m φN |
∫

Di

|Fm |, sup
Di

|∂ξφN |
∫

Di

|∂ξ Fm |, sup
Di

|∂ηφN |
∫

Di

|∂η Fm |

are bounded. Therefore,

u(x, y) = o(1) as N → +∞.

Thus u ≡ 0 and this completes the proof of Proposition 5.3. ⊓⊔

123



Decomposition theorem and Riesz basis for axisymmetric... 619

Proposition 5.7 Let u ∈ D(H+) and let (x, y) ∈ H+, define

U (x, y) =
∫

H+
u(ξ, η)Fm(x, y, ξ, η) dξ dη,

then lim‖(x,y)‖→+∞ U = 0, and for all y ∈ R, lim(0,y) U = 0. Moreover, U ∈
C∞(H+\supp u) and for all (x, y) /∈ supp u we have Lm,x,yU (x, y) = 0.

Proof Fix (ξ, η). For Re m < 1,

Fm(x, y, ξ, η) = −
ξ x1−m

2π

∫ π

0

sin1−m θ dθ
[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]1−m/2 ,

hence Fm(x, y, ξ, η) → 0 as ‖(x, y)‖ → +∞. For Re m ≥ 1,

Fm(x, y, ξ, η) = −
ξm

2π

∫ π

0
sinm−1 θ

[
1

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2

−
1

[
(x + ξ)2 − 4xξ sin2 θ/2 + (y − η)2

]m/2

]
dθ,

hence Fm(x, y, ξ, η) → 0 as ‖(x, y)‖ → +∞. So the first statement of the proposition
is shown.

For the second statement, for Re m < 1, we have

Fm(x, y, ξ, η) ∼ −
ξ x1−m

2π
[
ξ2 + (y′ − η)2

]1−m/2

∫ π

0
sin1−m θ dθ

as (x, y) → (0, y′), which implies the desired result.
Now, assume that Re m ≥ 1. Let (ξ, η) be fixed in the support of u, which is a

compact set in H+. In particular, there exist M > 0 and α > 0 which do not depend
on u such that ‖(ξ, η)‖ ≤ M and ξ ≥ 2α. Let y be in R. Denote

fm(x) =
1

[
(x − ξ)2 + 4xξ sin2 θ/2 + (y − η)2

]m/2 , x ∈ [−α, α].

By the mean value inequality, for x > 0 near 0, we have

| fm(x) − fm(0)| ≤ x sup
[0,α]

| f ′
m |

and

| fm(−x) − fm(0)| ≤ x sup
[−α,0]

| f ′
m |,
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then

| fm(x) − fm(−x)| ≤ 2x sup
[−α,α]

| f ′
m | ≤ 2x |m|

3M + α

αRe m+2 .

In particular,

sup
(ξ,η)∈supp u

y∈R

|Fm(x, y)| = O(x)

as x → 0+. The second statement is proved.
The last statement can be deduced from the fact that if (x, y) �= (ξ, η) are both in

H+, then
Lm,x,y Fm(x, y, ξ, η) = 0. ⊓⊔

Remark 5.8 If U ∈ D(H+), then Lm,x,yU = u, but this identity is not necessarily true
if U /∈ D(H+). In particular, we cannot say that in Proposition 5.7 we have LmU = u.

Now, we will prove a decomposition theorem for axisymmetric potentials, it is interest-
ing to compare it with the known result in [6, Section 4, Theorem 2]. The fundamental
difference is that in this paper, the conductivity is not extended by reflection through
the boundary ∂	 to the whole domain.

Note that, due to our construction of fundamental solutions, the proof of this theorem
is more or less the same as the proof of the decomposition theorem in [4, Chapter 9].
Note also that in our situation, the domain of our functions is H+ not C.

Theorem 5.9 Let m ∈ C. Let 	 be an open set in H+ and let K be a compact set in

	. If u ∈ C2(	\ K ) satisfies Lmu = 0 in 	\ K , then u has a unique decomposition

as

u = v + w,

where v ∈ C2(	) satisfies Lmv = 0 in 	 and w ∈ C2(H+\ K ) satisfies Lmw = 0 in

H+\ K with lim∂H+ w = 0.

Proof For E ⊂ C and ρ > 0, define Eρ = {x ∈ C : d(x, E) < ρ}, i.e. Eρ is a
neighborhood of E .

First, assume that 	 is a relatively compact open set in H+. Choose ρ small enough
so that Kρ and (∂	)ρ are disjoint. There is a function ϕρ ∈ D(H+) compactly sup-
ported on 	\ K such that ϕρ ≡ 1 in a neighborhood of 	\(Kρ ∪ (∂	)ρ) (Fig. 4).

For z = x + iy ∈ 	\(Kρ ∪ (∂	)ρ), denote

Fz(ζ ) = Fm(x, y, ξ, η), Lζ = Lm,ξ,η for ζ = ξ + iη.
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Fig. 4 ϕρ ≡ 1 on the grey domain

Thanks to Proposition 4.7, we have

u(z) = uϕρ(z) =
∫

	ρ

Fz(ζ )Lζ (uϕρ)(ζ ) dξdη

=
∫

(∂	)ρ

Fz(ζ )Lζ (uϕρ)(ζ ) dξdη +
∫

Kρ

Fz(ζ )Lζ (uϕρ)(ζ ) dξdη

= vρ(z) + wρ(z).

Then, the last result of Proposition 5.7 shows us that vρ satisfies Lmvρ = 0 on
	\(∂	)ρ and wρ satisfies Lmwρ = 0 on H+\ Kρ . We also have lim∂H+ wρ = 0.

Now, assume that σ < ρ. As previously, we obtain the decomposition u = vσ +wσ

on 	\(Kσ ∪ (∂	)σ ). We claim that vρ = vσ on 	\(∂	)ρ and wρ = wσ on H+\ Kρ .
To see this, note that if z ∈ 	\(Kρ ∪ (∂	)ρ), then vρ(z) + wρ(z) = vσ (z) + wσ (z).

The function wρ − wσ satisfies (1) on H+\ Kρ , which is equal to vσ − vρ on
	\(Kρ ∪(∂	)ρ), therefore vσ −vρ extends to a solution of (1) on 	\(∂	)ρ . Finally,
wρ − wσ extends to a solution of (1) on H+, and lim∂H+(wρ − wσ ) = 0. Due to
Proposition 5.3, we have wρ = wσ , and hence vρ = vσ .

For z ∈ 	, we can define v(z) = vρ(z) for ρ small enough so that z ∈ 	\(∂	)ρ .
Similarly, for z ∈ H+\ K , we put w(z) = wρ(z) for small ρ. Thus we have established
the desired decomposition u = v + w.

Now, assume that 	 is an arbitrary domain of H+ and let u be a solution of Lmu = 0
on 	\ K . Choose a ∈ H+ and R large enough so that K ⊂ D(a, R) and D(a, R) is a
relatively compact set in H+. Let ω = 	 ∩ D(a, R). Note that K is a compact set in
ω which is a relatively compact open set in H+ and u satisfies (1) on ω\ K . Applying
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the results demonstrated for relatively compact open sets, we obtain

u(z) = ṽ(z) + w̃(z)

for z ∈ ω\ K , where ṽ satisfies (1) on the set ω and w̃ satisfies (1) on H+\ K with
lim∂H+ w̃ = 0. Note that V = u − w̃ satisfies (1) on 	\ K and V can be extended to
a solution of (1) in a neighborhood of K because V = ṽ on ω. The sum u = V + w̃

provides with the desired decomposition of u.
If we have another decomposition u = v + w with v ∈ C2(	), Lmv = 0 and with

w ∈ C2(H+\ K ), Lmw = 0 and lim∂H+ w = 0, then we have V − v = w − w̃ on
	\ K . The function w − w̃ can be extended on H+ to a solution of Lm(w − w̃) = 0
on H+ with lim∂H+(w − w̃) = 0. Thanks to Proposition 5.3, we obtain w = w̃, then
V = v, which completes the proof of the decomposition theorem. ⊓⊔

The following proposition is a Poisson formula for axisymmetric potentials in H+.

Proposition 5.10 Let m ∈ C be such that Re m < 1 and u : R → R be a continuous

and bounded function. Then there is a unique axisymmetric potential U ∈ C2(H+)

such that lim‖(x,y)‖→+∞ U (x, y) = 0 and for all y ∈ R,

lim
(0,y)

U = u(y).

Moreover, we have for all (x, y) ∈ H+,

U (x, y) = Cm x1−m

∫ ∞

−∞

u(η) dη

(x2 + (y − η)2)1−m/2 , (15)

where

Cm =
1 − m

2π

∫ π

0
sin1−m θ dθ =

1

2mπ

Ŵ2(1 − m/2)

Ŵ(1 − m)
.

Proof Let us first show that (15) is a solution of LmU = 0. Let f (x, y) = x1−m/(x2+
(y − η)2)1−m/2. Interchanging differentiation and integration, it suffices to prove that
Lm f = 0. We have

∂x f =
(1 − m)x−m

(x2 + (y − η)2)1−m/2 −
(2 − m)x2−m

(x2 + (y − η)2)2−m/2 ,

∂xx f = −
m(1 − m)x−m−1

(x2 + (y − η)2)1−m/2
−

(2 − m)(3 − 2m)x1−m

(x2 + (y − η)2)2−m/2

+
(2 − m)(4 − m)x3−m

(x2 + (y − η)2)3−m/2 ,

∂yy f = −
(2 − m)x1−m

(x2 + (y − η)2)2−m/2 +
(2 − m)(4 − m)(y − η)2 x1−m

(x2 + (y − η)2)3−m/2 .
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Then,

� f =
m(2 − m)x1−m

(x2 + (y − η)2)2−m/2 −
m(1 − m)x−m−1

(x2 + (y − η)2)1−m/2

and we deduce that Lm f (x, y) = 0.
We have

U (x, y) = Cm x1−m

∫ ∞

−∞

u(η) dη

(x2 + (y − η)2)1−m/2

=
Cm

x

∫ ∞

−∞

u(η) dη

(1 + ((y − η)/x)2)1−m/2 .

By a change of variable t = (y − η)/x , we obtain

U (x, y) = Cm

∫ ∞

−∞

u(y − t x) dt

(1 + t2)1−m/2 .

Thanks to the dominated convergence theorem, it suffices to show that

Cm

∫ ∞

−∞

dt

(1 + t2)1−m/2 =
1 − m

2π

∫ π

0
sin1−m θ dθ

∫ ∞

−∞

dt

(1 + t2)1−m/2 = 1.

To see this, according [1, p. 258], note that

∫ ∞

−∞

dt

(1 + t2)1−m/2 = B

(
1

2
,

1 − m

2

)
=

Ŵ(1/2)Ŵ((1 − m)/2)

Ŵ(1 − m/2)
,

where B is the Euler beta function and

1 − m

2π

∫ π

0
sin1−m θ dθ =

1 − m

2π
21−m B

(
1 −

m

2
, 1 −

m

2

)

=
1 − m

2π
21−m Ŵ2(1 − m/2)

Ŵ(2 − m)
.

By the duplication formula for the Ŵ function,

Ŵ(2z) = π−1/222z−1Ŵ(z)Ŵ

(
z +

1

2

)
,

and by the recurrence formula Ŵ(z + 1) = zŴ(z), we obtain the desired result:

Ŵ(1/2)Ŵ((1 − m)/2)

Ŵ(1 − m/2)

1 − m

2π
21−m Ŵ2(1 − m/2)

Ŵ(2 − m)
= 1.

The uniqueness follows from Proposition 5.3. The proof is complete. ⊓⊔
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Remark 5.11 One may ask if there is a reproducing formula for the case Re m ≥ 1.
Let m ∈ N∗ and let u ∈ C2(H+) be such that Lmu = 0 on H+, then the function v

defined on Rm+2 by

v(x1, . . . , xm+2) = u
(√

x2
1 + · · · + x2

m+1, xm+2

)

is harmonic on (Rm+1)∗×R. In particular, if m ≥ 2, by [19, Proposition 18, p. 310],
v can be extended to a harmonic function on Rm+2, which tends to 0 at infinity. We
then deduce that v ≡ 0 hence u ≡ 0. This shows that solving Lmu = 0 with u tending
to 0 at infinity and with prescribed values of u on the y-axis is a problem which does
not make sense. In this case, the fact that there is no solution to this Dirichlet problem
is a consequence of the loss of ellipticity of Lm on the boundary of H+. Therefore, we
do not deal with the case Re m ≥ 1.

6 Fourier–Legendre decomposition

First, we will introduce a specific system of coordinates (τ, θ) called bipolar coordi-
nates, see [39]. The numerical applications on extremal bounded problems using this
system of coordinates can be found in [25–27].

Let α > 0. Suppose that there is a positive charge at A = (−α, 0) and a negative
charge at B = (α, 0) (the absolute values of the two charges are identical). The poten-
tial generated by these charges at a point M is ln(M A/M B) (modulo a multiplicative
constant) (Fig. 5).

Definition 6.1 The coordinates

τ = ln
M A

M B
, θ = ÂM B

are called bipolar coordinates.

The bipolar coordinates are related to the Cartesian coordinates by the following
formulas:

x =
α sh τ

ch τ − cos θ
, y =

α sin θ

ch τ − cos θ
.

Fig. 5 Bipolar coordinates
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Let R > 0 and a =
√

R2 + α2, the disk with center (a, 0) and radius R is defined in
terms of bipolar coordinates as

τ ≥ τ0 = ln

(
a

R
+

√
a2

R2 − 1

)
= argch

a

R
.

The right half-plane is defined as

H
+ =

{
(τ, θ) : τ ∈ (0 + ∞], θ ∈ [0, 2π)

}
.

The level lines τ = τ0 are circles with center (α coth τ0, 0) and radii α/sh τ0. This
implies that for all τ0, τ1 such that 0 < τ0 < τ1, the set {(τ, θ) : τ ≥ τ0} is a closed
disk and the set {(τ, θ) : 0 < τ < τ1} is the complement in H+ of the closed disk
{τ ≥ τ1} (Fig. 6).

The following theorem is well known in physics for m = −1 [3,15,42,45,47,48].
We extend it to m ∈ C.

Theorem 6.2 Let u be a solution to Lmu = 0 in an open set in H+. Let

vm(τ, θ) = sh(m−1)/2τ (ch τ − cos θ)−m/2u(τ, θ),

where, by definition,

sh(m−1)/2τ (chτ − cos θ)−m/2 = exp

(
m − 1

2
ln sh τ −

m

2
ln(ch τ − cos θ)

)
.

Then
∂2vm

∂τ 2 +
∂2vm

∂θ2 + coth τ
∂vm

∂τ
+
(

1

4
−

(m − 1)2

4 sh2τ

)
vm = 0. (16)

Fig. 6 Level lines (with α = 1)
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Proof We have

∂u

∂τ
= α

[
1 − ch τ cos θ

(chτ − cos θ)2

∂u

∂x
−

sh τ sin θ

(ch τ − cos θ)2

∂u

∂y

]
,

∂u

∂θ
= α

[
−sh τ sin θ

(ch τ − cos θ)2

∂u

∂x
+

ch τ cos θ − 1

(ch τ − cos θ)2

∂u

∂y

]
.

Thus, we obtain

∂u

∂x
=

1

α

(
(1 − ch τ cos θ)

∂u

∂τ
− sh τ sin θ

∂u

∂θ

)
,

and

∂2u

∂τ 2 =
α2

(chτ − cos θ)4

[
(1 − ch τ cos θ)2 ∂2u

∂x2 + sh2τ sin2 θ
∂2u

∂y2

− 2(1 − ch τ cos θ)sh τ sin θ
∂2u

∂x∂y

]

+
α

(ch τ − cos θ)3

[
sh τ

(
cos2 θ + ch τ cos θ − 2

) ∂u

∂x

+ sin θ
(
ch2τ − 2 + cos θ ch τ

) ∂u

∂y

]

and

∂2u

∂θ2 =
α2

(ch τ − cos θ)4

[
sh2τ sin2 θ

∂2u

∂x2 + (ch τ cos θ − 1)
∂2u

∂y2

+ 2(1 − ch τ cos θ) shτ sin θ
∂2u

∂x∂y

]

+
α

(ch τ − cos θ)3

[
sh τ

(
2 − cos2 θ − cos θ ch τ

) ∂u

∂x

+ sin θ
(
2 − ch2τ − ch τ cos θ

) ∂u

∂y

]
.

In particular, we have

∂2u

∂τ 2 +
∂2u

∂θ2 =
α2

(ch τ − cos θ)2

[
∂2u

∂x2 +
∂2u

∂y2

]
.
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Therefore, we obtain

Lm,x,y u =
(

ch τ − cos θ

α

)2(
∂2u

∂τ 2 +
∂2u

∂θ2 +
m(1 − ch τ cos θ)

sh τ (ch τ − cos θ)

∂u

∂τ

−
m sin θ

ch τ − cos θ

∂u

∂θ

)
.

According to definition of vm ,

u(τ, θ) =
(ch τ − cos θ)m/2

sh(m−1)/2τ
vm(τ, θ).

Denote

rm(τ, θ) =
(ch τ − cos θ)m/2

sh(m−1)/2τ
,

then

∂rm

∂θ
=

m

2

sin θ

ch τ − cos θ
rm,

∂2rm

∂θ2 =
m

4(ch τ − cos θ)2

(
2 cos θ ch τ + m sin2 θ − 2

)
rm

and

∂rm

∂τ
=

1

(ch τ − cos θ) sh τ

(
ch2τ + (m − 1) ch τ cos θ − m

)
rm,

∂2rm

∂τ 2 =
1

4(ch τ − cos θ)2 sh2τ

[
ch4τ − 2ch3τ cos θ + (m − 1)2ch2τ cos2 θ

+ 2(m − 1) ch2τ + (4 − 2m2) ch τ cos θ

+ 2(m − 1) cos2 θ + m(m − 2)
]
rm .

Hence the equation Lm,x,y u = 0 can be rewritten as

rm

(
∂2vm

∂τ 2 +
∂2vm

∂θ2

)
+

∂vm

∂τ

(
2

∂rm

∂τ
+

m

shτ

1 − ch τ cos θ

ch τ − cos θ
rm

)

+
∂vm

∂θ

(
2

∂rm

∂θ
−

m sin θ

ch τ − cos θ
rm

)

+ vm

(
∂2rm

∂τ 2 +
∂2rm

∂θ2 +
m(1 − ch τ cos θ)

sh τ (ch τ − cos θ)

∂rm

∂τ

−
m sin θ

ch τ − cos θ

∂rm

∂θ

)
= 0
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with

2
∂rm

∂τ
+

m

sh τ

1 − ch τ cos θ

ch τ − cos θ
rm = rm coth τ,

2
∂rm

∂θ
−

m sin θ

ch τ − cos θ
rm = 0

and

∂2rm

∂τ 2 +
∂2rm

∂θ2 +
m(1 − ch τ cos θ)

sh τ (ch τ − cos θ)

∂rm

∂τ

−
m sin θ

ch τ − cos θ

∂rm

∂θ
=
(

1

4
−

(m − 1)2

4sh2τ

)
rm .

This completes the proof. ⊓⊔

Let us apply the method of separation of variables, i.e. assume vm has the form
vm(τ, θ) = Am(τ ) Bm(θ). Then (16) becomes

A′′
m

Am

+ coth τ
A′

m

Am

+
1

4
−

(m − 1)2

4 sh2τ
= −

B ′′
m

Bm

.

The term on the right depends only on θ and the left-hand side depends only on τ ,
thus we deduce that both are constant. Let n ∈ C be such that this constant is equal to
n2. Then we have

⎧
⎨
⎩

A′′
m + coth τ A′

m +
(

1

4
−

(m − 1)2

4 sh2τ
− n2

)
Am = 0,

B ′′
m + n2 Bm = 0.

The function Bm is a 2π -periodic function as θ represents an angle, therefore n should
necessarily be an integer.

To examine the equation satisfied by Am , we carry out the following change of
function

Am(τ ) = Cm(ch τ).

Then, Cm satisfies

sh2τ C ′′
m(ch τ) + 2 ch τ C ′

m(ch τ) +
(

1

4
− n2 −

(m − 1)2

4 sh2τ

)
Cm(ch τ) = 0

which can be rewritten as

(1 − ch2τ) C ′′
m(ch τ) − 2 ch τ C ′

m(ch τ)

+
(

n2 −
1

4
−

((m − 1)/2)2

1 − ch2τ

)
Cm(ch τ) = 0.

(LAH)
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This equation is called the hyperbolic associated Legendre equation. Note that if we
put z = ch τ and u(z) = Cm(ch τ), then

(1 − z2)u′′ − 2zu′ +
[
ν(ν + 1) −

μ2

1 − z2

]
u = 0, (LA)

where

ν = n −
1

2
, μ =

m − 1

2
.

This equation is called the associated Legendre equation, and it can be reduced to the
Legendre equation if μ = 0:

(1 − z2)u′′ − 2zu′ + ν(ν + 1)u = 0. (L)

Two independent solutions of (LA) are given in Appendix, where they are denoted by
P

μ
ν (ch τ) and Q

μ
ν (ch τ).

Theorem 6.3 Let m ∈ C and 0 < τ0. Let u be a smooth solution to Lmu = 0 on the

disk τ ≥ τ0 and let v be a smooth solution to Lmv = 0 on H+\{τ > τ0}, which is the

complement in H+ of the disk {τ > τ0}, and assume that lim∂H+ v = 0. Then there

are two sequences (an)n∈Z and (bn)n∈Z of ℓ2(Z) (rapidly decreasing) such that

u =
+∞∑

n=−∞
an Q

(m−1)/2
n−1/2 (ch τ) sh(1−m)/2τ (ch τ − cos θ)m/2einθ,

v =
+∞∑

n=−∞
bn P

(m−1)/2
n−1/2 (ch τ) sh(1−m)/2τ (ch τ − cos θ)m/2einθ.

The sequence (an) is unique. In addition, the convergence of the first series is uniform

on every compact set [τ1, τ2] of the disk τ > τ0 with τ0 ≤ τ1 < τ2. And the convergence

of the second one is uniform on every compact set [τ3, τ4] of the complement of the

disk τ > τ0 in H+ with 0 < τ3 < τ4 ≤ τ0.

If Re m < 1, then the sequence (bn) is unique.

Proof Indeed, decomposing the function

θ �→ u(τ0, θ)(ch τ0 − cos θ)−m/2 sh(m−1)/2τ0

as Fourier series with respect to the variable θ , yields the following Fourier expansion
for u(τ0, ·):

u(τ0, θ) = sh(1−m)/2τ0 (ch τ0 − cos θ)m/2
+∞∑

n=−∞
aneinθ,
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where an ∈ ℓ2(Z) satisfies

an =
1

2π

∫ 2π

0
(ch τ0 − cos θ)−m/2 sh(m−1)/2τ0 u(τ0, s)e−ins ds.

The function u(τ0, ·) is a smooth function of the variable θ , therefore the sequence
(an)n is rapidly decreasing as |n| → +∞.

The function

ũ(τ, θ) = sh(1−m)/2τ (ch τ − cos θ)m/2
+∞∑

n=−∞
an

Q
(m−1)/2
n−1/2 (ch τ)

Q
(m−1)/2
n−1/2 (ch τ0)

einθ

coincides with u on the circle τ = τ0. Let us see that ũ is well defined on the disk
τ ≥ τ0. Indeed, thanks to Proposition 8.1, as |n| → +∞,

Q
(m−1)/2
n−1/2 (ch τ)

Q
(m−1)/2
n−1/2 (ch τ0)

∼
√

sh τ0

sh τ
e|n|(τ0−τ)

and this equivalence is uniform on all compact sets [τ1, τ2] with 0 < τ0 ≤ τ1 < τ2. It
follows that the series which defines ũ is norm convergent on any compact set [τ1, τ2]
of the disk τ ≥ τ0. The same is true for derivatives with respect to τ and θ (which are
also expressed through the associated Legendre functions, see Appendix).

Due to the fact that the solution of an elliptic equation is uniquely determined by
its boundary values (this follows from the maximum principle), we deduce that ũ is
the unique axisymmetric potential on the disk τ ≥ τ0 which coincides with u on the
circle τ = τ0.

For v, the proof is similar. Indeed, decomposing the function

θ �→ v(τ0, θ)(ch τ0 − cos θ)−m/2 sh(m−1)/2τ0

as Fourier series with respect to the variable θ , yields the following Fourier expansion
for v(τ0, ·):

v(τ0, θ) = sh(1−m)/2τ0 (ch τ0 − cos θ)m/2
+∞∑

n=−∞
bn einθ,

where bn ∈ ℓ2(Z) satisfies

bn =
1

2π

∫ 2π

0
(ch τ0 − cos θ)−m/2 sh(m−1)/2τ0 v(τ0, s)e−ins ds.

The function v(τ0, ·) is a smooth function of the variable θ , therefore the sequence
(bn)n is rapidly decreasing as |n| → +∞.
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The function

ṽ(τ, θ) = sh(1−m)/2τ (ch τ − cos θ)m/2
+∞∑

n=−∞
bn

P
(m−1)/2
n−1/2 (ch τ)

P
(m−1)/2
n−1/2 (ch τ0)

einθ

coincides with v on the circle τ = τ0. Let us see that ṽ is well defined on the comple-
ment of the disk τ > τ0. Indeed, thanks to Proposition 8.1, as |n| → +∞,

P
(m−1)/2
n−1/2 (ch τ)

P
(m−1)/2
n−1/2 (ch τ0)

∼
√

sh τ0

sh τ
e|n|(τ−τ0)

and this equivalence is uniform on all compact sets [τ1, τ2] with 0 < τ1 < τ2 ≤ τ0. It
follows that the series which defines ṽ is norm convergent on any compact set [τ1, τ2]
of the complement of the disc τ > τ0. The same is true for derivatives with respect to
τ and θ .

We will show that

lim
τ→0+

ṽ = 0.

If Re m < 1, by formula (18), for n ∈ N we have

P
(m−1)/2
n−1/2 (ch τ) =

2(m−1)/2

√
π Ŵ(1 − m/2)

sh(1−m)/2τ

∫ π

0
(ch τ + sh τ cos θ)n+m/2−1 sin1−m θ dθ,

hence

lim
τ→0+

P
(m−1)/2
n−1/2 (ch τ) = 0.

In addition, for n > 1 − Re m/2, we have

∣∣P(m−1)/2
n−1/2 (ch τ)

∣∣ ≤
2(Re m−1)/2 sh(1−Re m)/2τ

√
π |Ŵ(1 − m/2)|∫ π

0
(ch τ + sh τ cos θ)n+Re m/2−1 sin1−Re m θ dθ

≤
2(Re m−1)/2 sh(1−Re m)/2τ

√
π |Ŵ(1 − m/2)|∫ π

0
(ch τ + sh τ)n+Re m/2−1 sin1−Re m θ dθ

≤ Cm sh(1−Re m)/2τ e(n+Re m/2)τ
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thus

∑

n>1−Re m/2

sup
τ∈[0,τ0/2]

∣∣∣∣bn

P
(m−1)/2
n−1/2 (ch τ)

P
(m−1)/2
n−1/2 (ch τ0)

einθ

∣∣∣∣ < +∞.

By Proposition 8.1, we obtain

P
(m−1)/2
n−1/2 (ch τ0) ∼

nm/2−1

√
2π sh τ0

enτ0 as n → +∞.

So, limτ→0+ ṽ = 0.
The uniqueness of (bn) for Re m < 1 follows from the following fact established

in the next section: the families

A =
(

Q
(m−1)/2
n−1/2 (ch τ)

Q
(m−1)/2
n−1/2 (ch τ0)

(ch τ − cos θ)m/2

sh(m−1)/2τ
einθ

)

n∈Z

= (an)n∈Z,

B =
(

P
(m−1)/2
n−1/2 (ch τ)

P
(m−1)/2
n−1/2 (ch τ1)

(ch τ − cos θ)m/2

sh(m−1)/2τ
einθ

)

n∈Z

= (bn)n∈Z

form a Riesz basis. ⊓⊔

Corollary 6.4 The solution of the Dirichlet problem for Lmu = 0 on D((a, 0), R),

with u = ϕ on ∂ D((a, 0), R), is given by

u(τ, θ) = sh(1−m)/2τ (ch τ − cos θ)m/2
+∞∑

n=−∞
cn

Q
(m−1)/2
n−1/2 (ch τ)

Q
(m−1)/2
n−1/2 (ch τ0)

einθ,

where {τ = τ0} corresponds to the circle with center (a, 0) and radius R and

cn =
1

2π

∫ 2π

0
(ch τ0 − cos θ)−m/2 sh(m−1)/2τ0 ϕ(a+ R cos s, R sin s)e−ins ds.

Similarly, the function

v(τ, θ) = sh(1−m)/2τ (ch τ − cos θ)m/2
+∞∑

n=−∞
cn

P
(m−1)/2
n−1/2 (ch τ)

P
(m−1)/2
n−1/2 (ch τ0)

einθ , (17)

cn =
1

2π

∫ 2π

0
(chτ0 − cos θ)−m/2sh(m−1)/2τ0 ϕ(a+ R cos s, R sin s)e−ins ds,

is a solution to Lmv = 0 on H+\ D((a, 0), R), which is equal to ϕ on ∂ D((a, 0), R).

Moreover, if Re m < 1, then v satisfies lim∂H+v=0, and (17) is the unique solution

of the Dirichlet problem Lmv = 0 on H+\ D((a, 0), R) which vanishes on ∂H+.
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7 Riesz basis

We will prove that the first group of functions of the following family:

(
(ch τ − cos θ)m/2

sh(m−1)/2τ

{
cos(nθ)

sin(nθ)

}{
P

(m−1)/2
n−1/2 (ch τ)

Q
(m−1)/2
n−1/2 (ch τ)

})

n∈Z

is a basis of solutions on the disk τ ≥ τ1 and the second one is a basis of solutions on
τ ≤ τ0, which is the complement on H+ of some disk, with 0 < τ0 < τ1. This fact is
known for m = −1, namely, for μ = 1. We extend this result for complex m.

Let us recall the definition of a Riesz basis. The sequence (xn)n∈N is called a quasi-

orthogonal or Riesz sequence of a Hilbert space X if there are two constants c, C > 0
such that for all sequences (an)n∈Z in ℓ2, we have

c2
∑

n

|an|2 ≤
∥∥∥∥
∑

n

an xn

∥∥∥∥
2

≤ C2
∑

n

|an|2.

If the family (xn)n∈Z is complete, it is called a Riesz basis. The matrix of scalar
products {〈xi , x j 〉}i, j is called the Gram matrix associated to {xi }i . Let us recall the
following characterization of a Riesz basis by the Gram matrix.

Property ([43, p. 170]) A family {xi }i is a Riesz basis for some Hilbert space X if

{xi }i is complete in X and the Gram matrix associated to {xi }i defines a bounded and

invertible operator on ℓ2(N).

Let A and B be the families of solutions to Lmu = 0, respectively, inside the disk
τ > τ0 and outside the disk τ > τ1, with 0 < τ0 < τ1:

A =

⎛
⎝ Q

(m−1)/2
n−1/2 (ch τ)

Q
(m−1)/2
n−1/2 (ch τ0)

(ch τ − cos θ)m/2

sh(m−1)/2τ
einθ

⎞
⎠

n∈Z

= (an)n∈Z,

B =

⎛
⎝ P

(m−1)/2
n−1/2 (ch τ)

P
(m−1)/2
n−1/2 (ch τ1)

(ch τ − cos θ)m/2

sh(m−1)/2τ
einθ

⎞
⎠

n∈Z

= (bn)n∈Z.

Let C be the union of these two families,

C = (cn)n∈Z =
(
c2n = an and c2n+1 = bn

)
n∈Z

.

Denote the annulus defined in terms of bipolar coordinates {0 < τ0 < τ < τ1} by A.
The space L2(∂A) is equipped with the following inner product: for f, g ∈ L2(∂A),

〈 f, g〉 =
1

2π

∫ 2π

0
f (τ0, θ)g(τ0, θ)

shRe m−1τ0

(ch τ0 − cos θ)Re m
dθ

+
1

2π

∫ 2π

0
f (τ1, θ)g(τ1, θ)

shRe m−1τ1

(ch τ1 − cos θ)Re m
dθ.

123



634 S. Chaabi, S. Rigat

Proposition 7.1 C is a Riesz basis in the Hilbert space L2(∂A).

Proof To find the Gram matrix for C, first calculate all its elements. For n ∈ Z,

〈c2n, c2n〉 = 1 +
∣∣∣∣

Q
(m−1)/2
n−1/2 (ch τ1)

Q
(m−1)/2
n−1/2 (ch τ0)

∣∣∣∣
2

,

〈c2n+1, c2n+1〉 = 1 +
∣∣∣∣

P
(m−1)/2
n−1/2 (ch τ0)

P
(m−1)/2
n−1/2 (ch τ1)

∣∣∣∣
2

,

〈c2n, c2n+1〉 =
P

(m−1)/2
n−1/2 (ch τ0)

P
(m−1)/2
n−1/2 (ch τ1)

+
Q

(m−1)/2
n−1/2 (ch τ1)

Q
(m−1)/2
n−1/2 (ch τ0)

,

〈c2n+1, c2n〉 = 〈c2n, c2n+1〉.

In all other cases, the inner product is zero, hence the Gram matrix is diagonal by
blocks and each block is the following 2×2 matrix:

Mn =

⎛
⎜⎜⎜⎜⎜⎝

1 +
∣∣∣∣

Q
(m−1)/2
n−1/2 (ch τ1)

Q
(m−1)/2
n−1/2 (ch τ0)

∣∣∣∣
2

P
(m−1)/2
n−1/2 (ch τ0)

P
(m−1)/2
n−1/2 (ch τ1)

+
Q

(m−1)/2
n−1/2 (ch τ1)

Q
(m−1)/2
n−1/2 (ch τ0)

P
(m−1)/2
n−1/2 (ch τ0)

P
(m−1)/2
n−1/2 (ch τ1)

+
Q

(m−1)/2
n−1/2 (ch τ1)

Q
(m−1)/2
n−1/2 (ch τ0)

1 +
∣∣∣∣

P
(m−1)/2
n−1/2 (ch τ0)

P
(m−1)/2
n−1/2 (ch τ1)

∣∣∣∣
2

⎞
⎟⎟⎟⎟⎟⎠

.

The Gram matrix G has the form

G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M0 0 · · · · · · · · · · · · · · · · · ·
0 M−1 0 · · · · · · · · · · · · · · ·
... 0 M1 0 · · · · · · · · · · · ·
...

. . . 0 M−2 0 · · · · · · · · ·
...

. . .
. . . 0

. . .
. . . · · · · · ·

...
. . .

. . .
. . .

. . . M−n

. . . · · ·
...

. . .
. . .

. . .
. . .

. . . Mn

. . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The determinant of Mn is

det Mn =
∣∣∣∣1 −

Q
(m−1)/2
n−1/2 (ch τ1)

Q
(m−1)/2
n−1/2 (ch τ0)

P
(m−1)/2
n−1/2 (ch τ0)

P
(m−1)/2
n−1/2 (ch τ1)

∣∣∣∣
2

.
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Let us show that Mn is invertible. Suppose the contrary, then det Mn = 0, which is
equivalent to

Q
(m−1)/2
n−1/2 (ch τ1) P

(m−1)/2
n−1/2 (ch τ0) = Q

(m−1)/2
n−1/2 (ch τ0) P

(m−1)/2
n−1/2 (ch τ1).

It can be rewritten as

∣∣∣∣∣∣

Q
(m−1)/2
n−1/2 (ch τ0) P

(m−1)/2
n−1/2 (ch τ0)

Q
(m−1)/2
n−1/2 (ch τ1) P

(m−1)/2
n−1/2 (ch τ1)

∣∣∣∣∣∣
= 0,

with P
(m−1)/2
n−1/2 (ch τ0), Q

(m−1)/2
n−1/2 (ch τ1) �= 0. Therefore, there is λ ∈ C\{0} (which

depends on m, n, τ0 and τ1) such that

⎧
⎨
⎩

Q
(m−1)/2
n−1/2 (ch τ0) = λP

(m−1)/2
n−1/2 (ch τ0),

Q
(m−1)/2
n−1/2 (ch τ1) = λP

(m−1)/2
n−1/2 (ch τ1).

Then, by the asymptotic behavior of associated Legendre functions (see Proposition 8.1
in Appendix), on the one hand, we have

λ ∼πeiπ(m−1)/2 e−2nτ0 as n → +∞,

and on the other hand, we have

λ ∼πeiπ(m−1)/2 e−2nτ1 as n → +∞,

what implies that τ0 = τ1, whereas it is not possible. Hence the matrix Mn is invertible
and this completes the proof. ⊓⊔

8 Appendix: Associated Legendre functions of first and second kind

In this section, we provide formulas of integral representation for the associated Legen-
dre functions of the first and the second kind with z = ch τ > 1, see [2,39,50].

Pμ
ν (ch τ) =

2−ν sh−μτ

Ŵ(−μ − ν)Ŵ(ν + 1)

∫ ∞

0
(ch τ + ch θ)μ−ν−1 sh2ν+1θ dθ

with Re ν > −1 and Re (μ + ν) < 0.

Pμ
ν (ch τ) =

2μ sh−μτ
√

π Ŵ(1/2 − μ)

∫ π

0

(ch τ + sh τ cos θ)μ+ν

sin2μ θ
dθ (18)
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with Re μ < 1/2.

Pμ
ν (chτ) =

√
2

π

shμτ

Ŵ(1/2 − μ)

∫ τ

0

ch [(ν + 1/2)θ ]
(ch τ − ch θ)μ+1/2 dθ

with Re μ < 1/2.

Qμ
ν (ch τ) =

eiπμ
√

π

2μ

shμτ Ŵ(ν + μ + 1)

Ŵ(ν − μ + 1) Ŵ(μ + 1/2)

∫ ∞

0

sh2μθ

(ch τ + sh τ ch θ)ν+μ+1 dθ

with Re μ > −1/2, Re (ν − μ + 1) < 0 and Re (ν + μ + 1) > 0.

Qμ
ν (ch τ) =

√
π

2
eiπμ shμτ

Ŵ(1/2 − μ)

∫ ∞

τ

e−(ν+1/2)θ

(ch θ − ch τ)μ+1/2 dθ

with Re μ < 1/2 and Re (μ + ν + 1) > 0.

Qμ
ν (ch τ) = eiπμ2−ν−1 Ŵ(ν + μ + 1)

Ŵ(ν + 1)
sh−μτ

∫ π

0
(chτ + cos θ)μ−ν−1 sin2ν+1 θ dθ

with Re ν > −1 and Re (μ + ν + 1) > 0, see [50, pp. 4–6].
There are the following relations between the Legendre functions, see [50, p. 6]

and [2, Formula 8.2.2]:

Pμ
ν = P

μ
−ν−1,

Q
μ
−ν−1(z) =

−π eiπμ cos(πν)P
μ
ν + sin[π(ν+μ)] Q

μ
ν

sin[π(ν−μ)]

for ν − μ /∈ Z. In particular, for ν = n − 1/2 and n ∈ Z, we have

Q
μ
−ν−1 = Qμ

ν , μ ∈ C,

eiπμŴ(ν + μ + 1) Q−μ
ν = e−iπμŴ(ν − μ + 1) Qμ

ν ,

P−μ
ν =

Ŵ(ν − μ + 1)

Ŵ(ν + μ + 1)

[
Pμ

ν −
2

π
e−iπμ sin(πμ)Qμ

ν

]
.

There hold the following Whipple formulas relating the associated Legendre functions
of first and second kind, see [50, p. 6]:

Qμ
ν (ch τ) = eiπμ

√
π

2

Ŵ(μ + ν + 1)
√

shτ
P

−ν−1/2
−μ−1/2(coth τ),

Pμ
ν (ch τ) =

ieiπν

Ŵ(−ν − μ)

√
2

π

1
√

shτ
Q

−ν−1/2
−μ−1/2(coth τ).
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There hold the following recursion formulas, see [50, pp. 6–7]:

Pμ+1
ν (ch τ) =

(ν − μ)ch τ P
μ
ν (ch τ) − (ν + μ) P

μ
ν−1(ch τ)

sh τ
,

(ν − μ + 1) P
μ
ν+1(ch τ) = (2ν + 1)ch τ Pμ

ν (ch τ) − (ν + μ) P
μ
ν−1(ch τ),

(z2 − 1)
d P

μ
ν (z)

dz
= (ν + μ)(ν − μ + 1)(z2 − 1)1/2 Pμ−1

ν (z) − μz Pμ
ν (z).

(z2 − 1)
d P

μ
ν (z)

dz
= νz Pμ

ν (z) − (ν + μ) P
μ
ν−1(z).

All of these formulas are used to calculate the values P
μ
ν (ch τ) and Q

μ
ν (ch τ) for all

τ > 0 and (μ, ν) ∈ C2.
If μ and τ are fixed, the following proposition describes the behavior of associated

Legendre functions of the first and second kind when ν = n − 1/2, n ∈ Z, as
|n| → +∞.

Proposition 8.1 Fix τ > 0 and μ ∈ C. Then if ν = n − 1/2 and n ∈ Z, we have:

Pμ
ν (ch τ) ∼

eτ/2

√
2π sh τ

νμ−1/2 eτν as ν → +∞,

Pμ
ν (ch τ) ∼

e−τ/2

√
2π sh τ

(−ν)μ−1/2 e−τν as ν → −∞,

Qμ
ν (ch τ) ∼ eiπμe−τ/2

√
π

2 sh τ
νμ−1/2 e−τν as ν → +∞,

Qμ
ν (ch τ) ∼ eiπμeτ/2

√
π

2 sh τ
(−ν)μ−1/2 eτν as ν → −∞.

These equivalences are locally uniform with respect to the variable τ , i.e. uniform on

the whole interval [τ0, τ1] with 0 < τ0 < τ1.

Proof If ν = n − 1/2 and n ∈ N, see [50, p. 48], we have

Pμ
ν (ch τ) =

Ŵ(ν + 1)

Ŵ(ν − μ + 1)

1
√

2π(ν + 1)sh τ

[
e(ν+1/2)τ + e−π i(μ−1/2)−(ν+1/2)τ

]

·
[

1 + O

(
1

ν

)]
.

By the Stirling formula as ν → +∞

Ŵ(ν + 1)

Ŵ(ν − μ + 1)
∼

√
2π νν+1/2 e−ν

√
2π (ν − μ)ν−μ+1/2 e−ν+μ

=
(

ν

ν − μ

)ν+1/2

(ν − μ)μe−μ

= (ν − μ)μe−μ exp

(
−
(

ν +
1

2

)
ln

(
1 −

μ

ν

))
∼ νμ,
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consequently,

Pμ
ν (ch τ) ∼ νμ 1

√
2πνsh τ

eτ/2 eτν =
eτ/2

√
2π sh τ

νμ−1/2eτν,

which gives us the first estimate.
The second estimate is obtained thanks to the relation P

μ
ν = P

μ
−ν−1. The third

estimate follows from [50, Formula (8.3)]:

Qμ
ν (ch τ) ∼

√
π

2 sh τ
νμ−1/2 eiπμe−τ(ν+1/2),

and the last estimate follows from the fact that for ν = n − 1/2 and n ∈ Z, we have

Q
μ
−ν−1 = Qμ

ν .

The local uniformity of these equivalences implies from explicit expressions of P
μ
ν and

Q
μ
ν in terms of hypergeometric functions available in [21, pp. 124–138] and estimates

of these hypergeometric functions which are locally uniform [50, pp. 178–182]. ⊓⊔

Acknowledgments Both authors thank Laurent Baratchart and Alexander Borichev for very useful dis-
cussions and remarks on the preliminary version of this paper.

References

1. Ablowitz, M.J., Fokas, A.S.: Complex Variables. Cambridge Texts in Applied Mathematics. Cambridge
University Press, Cambridge (1997)

2. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York (1992)
3. Alladio, F., Crisanti, F.: Analysis of MHD equilibria by toroidal multipolar expansions. Nuclear Fusion

26(9), 1143–1164 (1986)
4. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Graduate Texts in Mathematics, vol.

137, 2nd edn. Springer, New York (2001)
5. Baratchart, L., Borichev, A., Chaabi, S.: Pseudo-holomorphic functions at the critical exponent. J. Eur.

Math. Soc. (2013, to appear). arXiv:1309.3079
6. Baratchart, L., Fischer, Y., Leblond, J.: Dirichlet/Neumann problems and Hardy classes for the planar

conductivity equation. Complex Var. Elliptic Equ. 59(4), 504–538 (2014)
7. Baratchart, L., Leblond, J., Rigat, S., Russ, E.: Hardy spaces of the conjugate Beltrami equation. J.

Funct. Anal. 259(2), 384–427 (2010)
8. Blum, J.: Numerical Simulation and Optimal Control in Plasma Physics. Wiley/Gauthier-Villars Series

in Modern Applied Mathematics. John Wiley & Sons, Chichester (1989)
9. Blum, J., Boulbe, C., Faugeras, B.: Reconstruction of the equilibrium of the plasma in a Tokamak and

identification of the current density profile in real time. J. Comput. Phys. 231(3), 960–980 (2012)
10. Brelot, M.: Équation de Weinstein et potentiels de Marcel Riesz. In: Hirsch, E., Mokobodzki, G. (eds.)

Séminaire de Theorie du Potentiel 3. Lecture Notes in Mathematics, vol. 681, pp. 18–38. Springer,
Berlin (1978)

11. Brelot-Collin, B., Brelot, M.: Représentation intégrale des solutions positives de l’équation Lk (u) =∑n
1 ∂2u/∂x2

i
+(k/xn)∂u/∂xn = 0 (k constante réelle) dans le demi-espace E (xn > 0), de R

n . Acad.
Roy. Belg. Bull. Cl. Sci. (5) 58, 317–326 (1972)

12. Brelot-Collin, B., Brelot, M.: Allure à la frontière des solutions positives de l’équation de Weinstein
Lk (u) = �u + (k/xn)∂u/∂xn = 0 dans le demi-espace E (xn > 0) de R

n (n ≥ 2). Acad. Roy. Belg.
Bull. Cl. Sci. (5) 59, 1100–1117 (1973)

123

http://arxiv.org/abs/1309.3079


Decomposition theorem and Riesz basis for axisymmetric... 639

13. Brelot-Collin, B., Brelot, M.: Étude à la frontière des solutions locales positives de l’équation (1)
Lk (u) = �u + (k/xn)∂u/∂xn = 0 dans le demi-espace E (xn > 0) de R

n (n ≥ 2). Acad. Roy. Belg.
Bull. Cl. Sci. (5) 62, 322–340 (1976)

14. Chalendar, I., Partington, J.R.: Phragmén–Lindelöf principles for generalized analytic functions on
unbounded domains. Complex Anal. Oper. Theory. doi:10.1007/s11785-015-0453-z

15. Cohl, H.S., Tohline, J.E., Rau, A.R.P., Srivastava, H.M.: Developments in determining the gravitational
potential using toroidal functions. Astron. Nachr. 321(5–6), 363–372 (2000)

16. Copson, E.T.: On sound waves of finite amplitude. Proc. Roy. Soc. London. Ser. A. 216(1127), 539–547
(1953)

17. Copson, E.T.: On Hadamard’s elementary solution. Proc. Roy. Soc. Edinburgh. Sect. A 69(1), 19–27
(1970)

18. Copson, E.T.: Partial Differential Equations. Cambridge University Press, Cambridge (1975)
19. Dautray, R., Lions, J.-L.: Analyse Mathématique et Calcul Numérique pour les Sciences et les Tech-

niques, vol. II. Collection Enseignement, Masson, Paris (1987)
20. Diaz, J.B., Weinstein, A.: On the fundamental solutions of a singular Beltrami operator. In: Studies in

Mathematics and Mechanics Presented to Richard von Mises, pp. 97–102. Academic Press, New York
(1954)

21. Erdélyi, A. (ed.): Higher Transcendental Functions, vol. I. McGraw-Hill, New York (1953)
22. Erdélyi, A.: Singularities of generalized axially symmetric potentials. Commun. Pure Appl. Math.

9(3), 403–414 (1956)
23. Erdélyi, A.: An application of fractional integrals. J. Anal. Math. 14, 113–126 (1965)
24. Erdélyi, A.: Axially symmetric potentials and fractional integration. J. Soc. Indust. Appl. Math. 13(1),

216–228 (1965)
25. Fischer, Y., Leblond, J.: Solutions to conjugate Beltrami equations and approximation in generalized

Hardy spaces. Adv. Pure Appl. Math. 2(1), 47–63 (2011)
26. Fischer, Y., Leblond, J., Partington, J.R., Sincich, E.: Bounded extremal problems in Hardy spaces for

the conjugate Beltrami equation in simply-connected domains. Appl. Comput. Harmon. Anal. 31(2),
264–285 (2011)

27. Fischer, Y., Marteau, B., Privat, Y.: Some inverse problems around the tokamak Tore Supra. Commun.
Pure Appl. Anal. 11(6), 2327–2349 (2012)

28. Garabedian, P.R.: Partial Differential Equations. AMS Chelsea, Providence (1998)
29. Gilbert, R.P.: Some properties of generalized axially symmetric potentials. Amer. J. Math. 84(3),

475–484 (1962)
30. Gilbert, R.P.: On generalized axially symmetric potentials. J. Reine Angew. Math. 212, 158–168 (1963)
31. Gilbert, R.P.: Poisson’s equation and generalized axially symmetric potential theory. Ann. Mat. Pura

Appl. 61, 337–348 (1963)
32. Gilbert, R.P.: Bergman’s integral operator method in generalized axially symmetric potential theory.

J. Math. Phys. 5, 983–997 (1964)
33. Hall, N.S., Quinn, D.W., Weinacht, R.J.: Poisson integral formulas in generalized bi-axially symmetric

potential theory. SIAM J. Math. Anal. 5(1), 111–118 (1974)
34. Henrici, P.: On the domain of regularity of generalized axially symmetric potentials. Proc. Amer. Math.

Soc. 8(1), 29–31 (1957)
35. Hörmander, L.: The Analysis of Linear Partial Differential Operators, Vol. I. Grundlehren der Mathe-

matischen Wissenschaften, vol. 256. Springer, Berlin (1990)
36. Huber, A.: A theorem of Phragmén–Lindelöf type. Proc. Amer. Math. Soc. 4(6), 852–857 (1953)
37. Huber, A.: On the uniqueness of generalized axially symmetric potentials. Ann. Math. 60(2), 351–358

(1954)
38. Huber, A.: Some results on generalized axially symmetric potentials. In: Proceedings of the Conference

on Differential Equations, pp. 147–155. University of Maryland Book Store, College Park (1956)
39. Lebedev, N.N.: Special Functions and their Applications. Prentice-Hall, Englewood Cliffs (1965)
40. Lenells, J., Fokas, A.S.: Boundary-value problems for the stationary axisymmetric Einstein equations:

a rotating disc. Nonlinearity 24(1), 177–206 (2011)
41. Liu, H.: The Cauchy problem for an axially symmetric equation and the Schwarz potential conjecture

for the torus. J. Math. Anal. Appl. 250(2), 387–405 (2000)
42. Love, J.D.: The dielectric ring in a uniform, axial, electrostatic field. J. Math. Phys. 13, 1297–1304

(1972)

123

http://dx.doi.org/10.1007/s11785-015-0453-z


640 S. Chaabi, S. Rigat

43. Nikolski, N.K.: Operators, Functions, and Systems, Vol. II. Mathematical Surveys and Monographs,
vol. 93. American Mathematical Society, Providence (2002)

44. Savina, T.V.: On splitting up singularities of fundamental solutions to elliptic equations in C
2. Cent.

Eur. J. Math. 5(4), 733–740 (2007)
45. Segura, J., Gil, A.: Evaluation of toroidal harmonics. Comput. Phys. Commun. 124(1), 104–122 (2000)
46. Shafranov, V.D.: On magnetohydrodynamical equilibrium configurations. Soviet Phys. JETP 6(3),

545–554 (1958)
47. Shushkevich, G.Ch.: Electrostatic problem for a torus and a disk. Technical Phys. 42(4), 436–438

(1997)
48. van Milligen, B.Ph., Lopez Fraguas, A.: Expansion of vacuum magnetic fields in toiroidal harmonics.

Comput. Phys. Commun. 81(1–2), 74–90 (1994)
49. Vekua, I.N.: New Methods for Solving Elliptic Equations. North-Holland Series in Applied Mathe-

matics and Mechanics, vol. 1. North-Holland, Amsterdam (1967)
50. Virchenko, N., Fedotova, I.: Generalized Associated Legendre Functions and their Applications. World

Scientific, River Edge (2001)
51. Weinacht, R.J.: Fundamental solutions for a class of singular equations. Contributions to Differential

Equations 3, 43–55 (1964)
52. Weinacht, R.J.: A mean value theorem in generalized axially symmetric potential theory. Atti Accad.

Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 8(38), 610–613 (1965)
53. Weinacht, R.J.: Fundamental solutions for a class of equations with several singular coefficients. J.

Austral. Math. Soc. 8(3), 575–583 (1968)
54. Weinstein, A.: Discontinuous integrals and generalized potential theory. Trans. Amer. Math. Soc. 63(2),

342–354 (1948)
55. Weinstein, A.: On generalized potential theory and on the torsion of shafts. In: Studies and Essays

Presented to R. Courant on his 60th Birthday, pp. 451–460. Interscience, New York (1948)
56. Weinstein, A.: On the torsion of shafts of revolution. In: Proceedings of the Seventh International

Congress on Applied Mechanics, vol. 1, pp. 108–119 (1948)
57. Weinstein, A.: Transonic flow and generalized axially symmetric potential theory. In: Symposium on

Theoretical Compressible Flow, pp. 73–82. Naval Ordnance Laboratory, White Oak (1950)
58. Weinstein, A.: On Tricomi’s equation and generalized axially symmetric potential theory. Acad. Roy.

Belgique. Bull. Cl. Sci. 5(37), 348–358 (1951)
59. Weinstein, A.: Generalized axially symmetric potential theory. Bull. Amer. Math. Soc. 59(1), 20–38

(1953)
60. Weinstein, A.: The singular solutions and the Cauchy problem for generalized Tricomi equations.

Commun. Pure Appl. Math. 7(1), 105–116 (1954)
61. Weinstein, A.: On a class of partial differential equations of even order. Ann. Mat. Pura Appl. 39,

245–254 (1955)
62. Weinstein, A.: The generalized radiation problem and the Euler–Poisson–Darboux equation. Summa

Brasil. Math. 3, 125–147 (1955)
63. Weinstein, A.: The method of axial symmetry in partial differential equations. In: Convegno Inter-

nazionale sulle Equationi Lineari alle Derivate Parziali, pp. 86–96. Edizioni Cremonese, Roma (1955)
64. Weinstein, A.: Elliptic and hyperbolic axially symmetric problems. In: Proceedings of the International

Congress of Mathematicians, vol. 3, pp. 264–269. North-Holland, Amsterdam (1956)
65. Weinstein, A.: Sur une classe d’équations aux dérivées partielles singulières. In: Colloques Interna-

tionaux du Centre National de la Recherche Scientifique, vol. 71, pp. 179–186. Centre National de la
recherche Scientifique, Paris (1956)

66. Weinstein, A.: On a singular differential operator. Ann. Mat. Pura Appl. 49, 359–365 (1960)
67. Weinstein, A.: Singular partial differential equations and their applications. In: Fluid Dynamics and

Applied Mathematics, pp. 29–49. Gordon and Breach, New York (1962)
68. Weinstein, A.: Some applications of generalized axially symmetric potential theory to continuum

mechanics. Applications of the Theory of Functions in Continuum Mechanics, vol. 2, pp. 440–453.
Nauka, Tbilisi (1965)

123


	Decomposition theorem and Riesz basis for axisymmetric potentials in the right half-plane
	Abstract
	1 Introduction
	2 Notations and preliminaries
	3 Integral expressions of fundamental solutions for integer values of m
	4 Fundamental solutions for the Weinstein equation with complex coefficients
	5 Liouville-type result and decomposition theorem for axisymmetric potentials
	6 Fourier--Legendre decomposition
	7 Riesz basis
	8 Appendix: Associated Legendre functions of first and second kind
	Acknowledgments
	References


