DECOMPOSITION THEORY FOR LATTICES WITHOUT
CHAIN CONDITIONS

BY
R. P. DILWORTH AND PETER CRAWLEY

1. Introduction. The classical structure theorems of algebraic systems
usually assume some type of finiteness condition. The most common finite-
ness restriction is a chain condition. Thus the proofs of the fundamental struc-
ture and decomposition theorems for lattices have customarily required the
ascending chain condition. Moreover, these theorems generally fail to hold
in arbitrary lattices. Nevertheless, there are important examples of decom-
position theorems for lattices associated with abelian groups and rings in
which the ascending chain condition does not hold. These lattices have in
common another distinctive property—they are compactly generated.
Namely, the lattice is generated by a collection of elements which are finitely
dependent in the sense that any such element is contained in the union of a
set of lattice elements if and only if it is contained in the union of a finite
subset. The compact elements of the lattice of ideals of a ring are the finitely
generated ideals. Likewise the compact elements of a lattice of congruence
relations are the congruence relations generated by collapsing a finite collec-
tion of element pairs. More generally, the lattice of congruence relations and
the lattice of subsystems of a universal algebra are compactly generated.
Since structure theorems for an algebraic system correspond to decomposi-
tion theorems in the lattice of congruence relations, this strongly suggests
that compactly generated lattices are the appropriate domain in which to
study decomposition theory. Furthermore, since every lattice satisfying the
ascending chain condition is trivially compactly generated, it follows that
the classical case will be subsumed in the more general theory.

In the present paper we shall make the further restriction that the lattice
is atomic, that is, that every quotient contains minimal elements. Thus this
case generalizes the finite dimensional theory (Dilworth [2; 3]) in that the
ascending chain condition is replaced by compact generation and the descend-
ing chain condition, by atomicity. Now the basic technique in the classical
case consisted in establishing a relationship between the properties of the
decompositions of an element a of the lattice and the structure of the finite
dimensional quotient lattice generated by the elements covering a. In the
present case, the quotient lattice is no longer finite dimensional and the de-
compositions are no longer finite. Nevertheless, compact generation and
atomicity imply sufficient regularity in the structure of the quotient lattices
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and the decompositions that a relationship can be established which preserves
many of the properties of the finite dimensional case.

It should be noted that there are many important examples of compactly
generated atomic lattices which do not satisfy the ascending chain condition.
Some of these examples are the lattice of subgroups of an infinite torsion
abelian group, the lattice of congruences of a weakly atomic modular lattice,
the lattices of subspaces of an infinite dimensional vector space, and any in-
finite dimensional exchange lattice.

The decomposition theory for nonatomic compactly generated lattices
requires a quite different approach and will be treated by one of us elsewhere.

2. Preliminaries. Lattice elements will be denoted by lower case latin
letters while sets of lattice elements will be denoted by latin capitals. If ¢ is
an element of the lattice L and S is a subset of L, a/M\S will denote the set of
elements a/Ms where s&S. a\JS is similarly defined. The covering relation in
L will be denoted by a>b. SAT and SV T will denote set-intersection and
union respectively.

DEFINITION 2.1. An element c of alattice L is said to be compact if cSUS
implies ¢ SUS’ for a finite subset S’ of S.

If ¢, and ¢, are compact, then ¢,\Jc; SUS implies ¢;<US and ¢, sUS.
Hence there exist finite subsets S; and S; of S such that ¢; SUS; and ¢, <US..
But then ¢,\Jc; =U(S1VS:). Thus we have the following lemma.

LeMMA 2.1. The compact elements of a lattice are closed under finite union.

The compact elements of L will be denoted by C(L).

DEFINITION 2.2. A lattice L is compactly generated if L is complete and
a=U{cEC(L)|c<a} for all aE L.

A complete lattice is thus compactly generated if the compact elements
generate the lattice under unrestricted joins. If every element is compact,
the lattice is trivially compactly generated.

LEMMA 2.2. Let A be an ideal of a complete lattice L. Then if UA is compact,
A 1is principal.

For if c¢=U4 is compact, then ¢=US’ where S’ is a finite subset of 4.
But then ¢© A4 and hence 4 =(c).

COROLLARY. Every element of a complete lattice L is compact if and only if
L satisfies the ascending chain condition.

The following lemmas develop some of the properties of lattices satisfying
the ascending chain condition which also hold in compactly generated lattices.

LeMMA 2.3. Every compactly generated lattice is join continuous; that 1s,
aNUB =U(aMB) for every ideal B of L.

For let c£aMUB where ¢&C(L). Then ¢SUB and hence ¢ =UB’ where
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B’ is a finite subset of B, But then ¢€ B and hence c=aMN¢=<U(eMNB). Thus
aNUB=U{cEC(L)|c£aNUB} =U(@NB). Since aNUB=U(aNB) holds
trivially, it follows that aN\UB =U(aMN\B).

DEeFINITION 2.3. An element ¢ of a lattice L is completely meet irreducible
if for all SCL, ¢=0N.S implies ¢ES.

Clearly every completely meet irreducible element is meet irreducible.
For atomic(!) lattices the two concepts coincide.

LeMMA 2.4. Every meet irreducible element of a complete atomic laltice is
completely meet irreducible,

For if ¢ is a meet irreducible element, let =S and suppose that s>g
all s&S. Then by atomicity there exist ¢ such that p>gq. If sZp for some
sES, then sMp=g contrary to the meet irreducibility of ¢. Thus sz all
s&.S and hence ¢=NS2p contrary to p>g. It follows that ¢ =s&.S for some
s and hence ¢ is completely meet irreducible.

LemMma 2.5. If L is a compactly generated lattice and a, b are elements of L
such that a2 b, then there exists a completely meet irreducible element q such
that a<qand b%q.

For since a2 b and b=U{c&€C(L)|c<b}, there exists a compact element
¢ = b such that c£a. But then ¢ € (a) where (a) is the principal ideal generated
by a. By the Maximal Principle there exists a maximal ideal 4 such that
eEA and cFA. Let g=UA. If c<q, then ¢SUA and hence c U4’ where A’
is a finite subset of 4, and thus c€ 4 contrary to assumption. It follows that
cfq and hence b£g. If ¢=NS and s>q all sES, then since 4 C(s) we have
c¢=<s all s by the maximal property of 4. Hence ¢ £NS=¢q contrary to c£q.
Thus ¢g=s&.S for some s and ¢ is completely meet irreducible.

COROLLARY. Each element of a compactly generated lattice can be represented
as a meet of completely meet irreducible elements.

For if b is the meet of all completely meet irreducibles containing ¢ and
b£a, then according to Lemma 2.5 there would exist a completely meet
irreducible ¢ such that a g and b £g¢ contrary to the definition of .

It is evident from the corollary that a compactly generated lattice con-
tains sufficiently many completely meet irreducibles to give substance to a
decomposition theory. Indeed it is likely that the additional assumption of
atomicity is sufficient to insure the existence of irredundant decompositions.
However, we shall begin our study with the consideration of semimodular
lattices(?).

(*) A lattice is atomic if ¢ >b implies @ ¢ > b for some ¢E L.
() At the present time, an adequate decomposition theory does not exist for lattices more
general than semimodular lattices even in the finite dimensional case.
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3. Semimodular lattices. Throughout this section L will denote a com-
pactly generated atomic lattice. Completely meet irreducible elements of L
will simply be called “irreducibles.” For each ¢ ©L let P, denote the set of
elements covering a. We set u,=UP,, and define u,/a = {xlaéxéu.,}.

LeEMMA 3.1, u./a is a compactly generated atomic lattice. Furthermore the
elements of P, are compact elements of u,/a.

For if *Cu,/a, then x=U{c€C(L)|c<x}. But then
x=UlaUclce CL),c < .

a\Uc is compact in #./a since if a\Jc<US where SCu,/a, then ¢<US and
hence ¢ SUS’ where .S’ is a finite subset of .S. But then a\Uc<US’. Since u./a
is a quotient lattice of an atomic lattice, it is atomic. Finally if p>a and
p=c, where atc and ¢&C(L), then p=e'Uc and hence p is compact in #,/a.

DEFINITION 3.1. An element sCu,/a is a relative (meet) irreducible of
uq/a if there exists a completely meet irreducible ¢ of L such that ¢=a and
gMu,=s.

CoRrROLLARY. Each irreducible of u./a is a relative irreducible.

For if s is an irreducible of u,/a, by the corollary to Lemma 2.5, s=NQ
where Q is a set of irreducible of L. But then s=N(QMNu,) and 0.Nu.Su,/a.
Hence s =¢Mu, for some g and thus s is a relative irreducible.

The decompositions of an element a into irreducibles in L are closely
related to the decompositions of @ into relative irreducibles in #,/a, as indi-
cated in the following lemma. The proof is left to the reader.

LeEMMA 3.2. To each decomposition a=NQ of the element a into irreducibles
in L corresponds the decomposition a=N(QMu,) into relative irreducibles in
ua/a. The decomposition a=NQ is irredundant if and only if the decomposition
a=0N(QNu,) is irredundant. Furthermore each decomposition of a into relative
irreducibles in u./a can be obtained in this manner from a decomposition into
irreducibles in L.

By means of the correspondence of Lemma 3.2 it is frequently possible
to reduce the study of decompositions in L to the study of decompositions in
u./a. This approach is particularly appropriate when the relative irreducibles
of u./a coincide with the irreducibles of u,/a.

Semimodularity is defined in the usual way.

DEFINITION 3.2. A lattice is (upper) semimodular if a>aMb implies
a\Jb>b.

A lattice is lower semimodular if its dual is upper semimodular. For finite
dimensional lattices, upper semimodularity is equivalent to the following
weaker condition.

DerINITION 3.3. A lattice is weakly (upper) semimodular if a, b>aMb
imply a\Jb>a, b.
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We will now show that these two conditions are equivalent for compactly
generated atomic lattices.

LemMma 3.3. A weakly semimodular, compacily generated, atomic latiice is
semimodular.

For, let a>aMb and define a subset W as follows:
W={z|bzxzaNbalszx> .

The set W is nonempty since it contains a/Mb. Now let X be a chain of W
and let y=UX. Then b= y=aMb. Also a\Jy >y, since otherwise b2 y=a'Uy
Za contrary to a>aMb. Let a\Uy=2z>y. Since the lattice is compactly gen-
erated there exists a compact element ¢ such that z=¢, y&¢. Then cZa\Uy
=a\J(UX). Since ¢ is compact there exist x;, - - -, %, in X such that
c2aJx\J - - - Ux,. Since X is a chain, x,\J - Ux,=x&X. Hence
c£a\Ux and thus x2cUxZ2aUx. If x=cUx; then yZx=c\Ux =¢ contrary
to y&e¢ Thus x <cUx=ae\Jx. Since a\Ux>x we have c\Ux=a\Ux=a. But
then zzc\Jy2¢\Ux =a and hence z2a\Jy. Thus z=a\Uy and hence a\Uy > y.
It follows that UX =y& W. By the Maximal Principle W contains a maximal
element xo. Suppose b>x,. Then by atomicity, b= p > x, for some p. Since
b a it follows that p=a\Ux,. Also a\Uxy > x, since xo& W. Hence pM\(a\Uxo)
=x9 and by weak semimodularity we have a\Up=(aUx,)\Up>p. But
bz pZaMb and hence pEW contrary to the maximal property of xo. Thus
b=1x¢ and hence a\Jb=a\Uxo> xo=b.

The following generalization of a well known characterization of finite
dimensional modular lattices will be needed.

LeMMa 3.4. A compactly generated atomic lattice which is both upper and
lower semimodular 1s modular.

For let a=b and let V be defined as follows:
V={z{bUGNozrzaeNcr=aN (o)}

V is nonempty since it contains a/M\¢. Now let X be a chain of V and let
y=UX.Clearlyb\U (@aNc)zyzaNc.Also,a N\ (yUc)=a NUX U
=U(@MN(X\Uc))=UX =y since the lattice is continuous. Hence yEV and
thus every chain in V has a bound in V. By the maximal principle V contains
a maximal element xo. If 5\J(aMc) >x,, there exists p such that 5\ (aMc)
Zp > xo. Now xo\Jc 2 p since otherwise xo=aM(x,\Jc) = p. Thus pM\(xs\Jc)
=x9<p. By upper semimodularity we have p\Uc=p\U(x,\Jc) > x5\ Jc. Now
xo\JcEaM(p\Jc) since otherwise xo=aM(x\Jc)=aN(p\Jc)Zp. Hence
[aN(p\Je) [\ (x0Uc) = pUc > xoUc. By lower semimodularity we have

aN (U >aN(GU)N U =aN (2\Je) =

But aM(p\Jc) 2 p > x0 and hence aM(p\Jc) =p. Thus pE V contrary to the
maximal property of x,. It follows that xo=5\J(aM¢) and hence
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b U @Ne)=x=aN(xU)=aM B3I (@aNc)Ue) =an (b\Jg).

We thus conclude that the lattice is modular.
DEFINITION 3.4. A subset N of P, is independent if p\U(N —p) =a for all
PEN.

LEMMA 3.5. 4 subset N of P, is independent if and only if every finite sub-
set of N 1is independent.

If N is not independent, then for some pEN we have p=pN\U(N—p)>a
and hence p=pNUN —p) =U(N—p). Since p is compact in u#,/a we have
p=U (N'—p) where N'is a finite subset of N containing p. Thus N’ is not inde-
pendent. Conversely, it is clear that any finite subset of an independent set
is independent.

LeEMMA 3.6. Let a be an element of a semimodular, compactly generated,
atomic lattice and let N be an independent subset of P,. Then N is a maximal
independent subset of P, if and only if UN =u,.

If UN=u,, then N is clearly a maximal independent subset of P,. Now
let N be maximal and let pE&P,. Then either UNZ=p or there exists p' EN
such that U(N—p)Up=p'. In the second case U(N—p') & p since otherwise
U(WN—p')=p’ contrary to the independence of N. Thus we have U(V—p')
Up > U(IV—p") by semimodularity. But U(N—2" )Y Up 2 U(N—p)\Up' =U(N)
>UW—p"). Thus UWN)=U(N—-p")Up=p. Hence UNZp in either case.
Since p was an arbitrary element of P, we have UN2UP,=u,.

LeMMA 3.7. Let a be an element of a semimodular, compactly generated,
atomic lattice L and let N be an independent subset of P,. Then the elements of
L which are joins of subsets of N form a complete sublattice of L which is is0-
morphic with the lattice of all subsets of S.

Consider the mapping S—US. If US,=US;, then p;=US =US, all
p1E S1. Since N is independent it follows that p1 &S, all pES;. Thus S; ©5.
and similarly S;CS:. The mapping is thus one-to-one. Now let S, be a col-
lection of subsets of N. Clearly U, (US.) =U(V. S.) and hence the mapping
preserves joins. Let b=U(A. S.) and let To={b\Up|pESa—As Sa}. Then
p'>b for each p'ET, since N is independent and L is semimodular. Also
UT =S~ A Se) =U(AL Sa) UU(Sa— Ay So) =U(Sa). Now b\Up1 =b\Up,
where p1, p2ESa— A« S, implies that p1=p, since N is independent. Thus
A To=&. Let ussuppose that Ne(UT) >b. Then N (UT ) 27> b by atomicity
and hence r<U7T, all a. But 7 is compact in u,/b and hence r SUT. for some
finite subset T+ of T, for each a. Now pick a fixed «, then by semimodularity
there exists p’E T4 such that p'<U(TS —p')Ur. Since A, To= there
exists 8 such that p'€& Ts. But then r<UT}; implies p' SU(TY —p")JUT;
sU(T.V/Ts—2"). If p'=bUp, then we have p ZU(S,V Ss—p) contrary to
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the independence of N. Hence we conclude that N, (US,) =N (UT.)=b
=U(A. S.). Thus the mapping preserves meets and the proof of the lemma
is complete.

CoroLLARY. If a is an element of a semimodular, compactly generated,
atomic lattice, then u./a is complemented and each element of u./a is a meet of
elements covered by u,.

For if b&u,/a, let S be a maximal independent set of points of #./a con-
tained in b. Extend S to a maximal independent set of points P. Then
bIU(P—-S)=UP=u,, and clearly bN\U(P—S) =a since NSNN(P—9) =a.
Now p\Jb > b for each p € P — S. Let P; £ P — S be such that the set
{p Ublp € P;} is maximal independent. Then if $, € P; we have
ua>U{pUb| pEP,~p1} and NU{pUBb|pEP,—p} =b by Lemma 3.7.

In order to prove a sufficiently general existence theorem on irredundant
decompositions it is necessary to have a criterion for subsets of such decom-
positions. Let then ¢ =NQ be an irredundant decomposition of ¢ into irre-
ducibles and let RCQ. If ¢ER, we have N(R—¢q) =2N(Q—q) >a. Hence there
exists pE& P, such that N(R—¢) 2N(Q—q) = p. Clearly g p since ¢gNN(Q—q)
=NQ=a. We thus make the following definition:

DEFINITION 3.5. A subset R of L is irredundant over a if for each rER,
there exists > a such that N(R—7)=p and r £ .

We can now state and prove the fundamental existence theorem on
irredundant decompositions.

THEOREM 3.1. Let a be an element of a semimodular, compactly generated,
atomic lattice and let R be a set of completely meet irreducible elements contain-
wmg a. Then R can be extended to an irredundant decomposition of a if and only
if R is irredundant over a.

Proof. We have proved the necessity in the paragraph preceding Defini-
tion 3.5. To prove the sufficiency let R be irredundant over a. Then for each
gE&R, there exists an element p,& P, such that g% p, and N(R—gq) =p,. Let
K, = {pql q & R} and let K, be a maximal independent subset of
{pEP,|p<NR}. Let K=K,;\/K,. Now suppose that U(K —p,) = p, for some
p.€ K,. Then since g2NR=UK,; and ¢2N(R—¢') Zpy all ¢ ER—q we have
g2U(K1—p) VUK, ZU(K —p,) Z pg contrary to gz pg. Thus U(K—~p,) 2 p,
all p,€ K. Next suppose that U(K —p) 2 p for some pEK,. Since P is com-
pact in u,/a there exist finite sets K/ CK; and K{CK,—p such that
U(K{ VK{)zp. Since K, is independent, K is nonempty. Replacing K4 by
a smaller set if necessary we may assume that for some p, € K{,
U(K{ VK{ —p,) 2 p. By semimodularity we have p,<U(K{\VK{ —p)\Up
SU(K —p,) contrary to p,£U(K —p,). Thus U(K —p) 2 p all pEK,and K is
thus an independent subset of P,.

Now for each pEK,, let g, be an irreducible such that ¢,2U(K —p),
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gpp. Such irreducibles exist by Lemma 2.5. Let Q'= {qplpng}. Since
gy ZU{K—p'} Zpall p'p in K, we have N(Q' ~¢,) = p. Now let 0=’V R.
If g&€R, then N(Q—q) =N(R—~g)NNQ'=2N(R—q)NUK 1= p,. If pEK,, then
N(Q—gp) =NRMNN(Q"—gq,) ZUK2NN(Q’ —¢,) = p. Thus if we show that N0 =a
then this decomposition is a fortiori irredundant. Suppose that M1Q >a. Then
NQzp’ for some p' S P,. Since NR=NQ we have ' <NR and hence p' <NK,
by Lemma 3.6. Furthermore p’ £NQ' =g, for all pEK,. If p' £U(K:—p) for
some pcK, then ¢,2U(K,—p)Up'=UK:=p contrary to ¢gp&p. Thus
p’éU(KQ—p) all PEKz But then PlénpU(Kz—P) =U(Ap (Kz—‘P) -_—‘U(Q)
=@ by Lemma 3.7 contrary to p’ >a. Thus NQ=a and the proof of the theo-
rem is complete.
Since the null set is trivially irredundant we have

COROLLARY 1. Every element of a semimodular, compactly generated, atomic
lattice has an irredundant decomposition into completely meet irreducibles.

Let ¢ be an irreducible containing ¢ such that ¢ 2 u,. If R consists of the
single element g, then R is irredundant since (R —¢) =« 2¢. Hence we have

COROLLARY 2. If a is an element of a semimodular, compactly generated,
atomic lattice and q is a completely meet irreducible element such that q 2 u,, then
there exists an irredundant decomposition a=0Q such that ¢=Q.

We conclude this section with the following theorem on the cardinality of
maximal independent sets of P,.

THEOREM 3.2. Let L be a semimodular, compactly generated, atomic lattice.
Then any two maximal independent subsets of P, have the same cardinality.

Proof. Let M and N be two maximal independent subsets of P,. We may
suppose that IMI __<_|N| , wWhere |X{ denotes the cardinality of a set X.
If N is finite, then u,/a is finite dimensional and the number of elements in
any maximal independent set is simply the dimension of #./a. Hence |M|
=|N|. If N is infinite, we have UM =UN =u, and hence for each pC M,
p <UN. But then there exists a finite subset N, N such that p=UN,. Let
S= {N,,lpEM} and let N'=V, ey N,. Then N’ as a subset of N is inde-
pendent. Moreover, pSUN’ for each p& M implies that UN'=UP,=u,.
Hence N’ is a maximal independent subset of P, and thus N'=N. Now for
each p, N, is a finite subset of N, and since S is infinite, it follows that
ISl = l N'| = ! N|. But the mapping p—N, is single valued and hence
|M|=|S| =|N|. Thus | M| =|N|.

4, Modular lattices. Throughout this section L will denote a modular,
compactly generated, atomic lattice.

For modular lattices satisfying the ascending chain condition, the prin-
cipal results on irreducible decompositions concern the replacement of ele-
ments in two irredundant decompositions (Dilworth [5]). Since the decom-
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positions are finite it follows from these replacement theorems, that the num-
ber of elements in an irredundant decomposition is unique. In this section
we shall extend some of these replacement theorems to compactly generated
modular lattices. We shall see that there are many different classes of ir-
redundant decompositions and that replacement properties are dependent
upon the classes of decompositions involved. Moreover, the unicity of the
number of elements in irredundant decompositions does not generalize com-
pletely. Thus, an example of a compactly generated modular lattice is con-
structed in which an element has two irredundant decompositions with differ-
ent cardinalities.

We begin by showing that in modular compactly generated lattices the
existence of irredundant decompositions is equivalent to atomicity.

THEOREM 4.1. Every element of a modular compactly generated L lattice has
an trredundant decomposition into completely irreducible elements if and only if
L is atomic.

Proof. We need only show that if every element of L has an irredundant
decomposition, then L is atomic.

Suppose ¢=MNQ is an irredundant decomposition of a into completely
irreducible elements. Let g&Q and ¢*=0 {xEL] x>q} >q. Then ¢ UN(Q—g)
>gq since N(Q—gq)>a, and hence ¢\JN(Q—q) =¢*. By modularity we have
gV[*NNQ-9)]=g*N[gUN(Q~¢)]=¢*>¢, and hence ¢*\N(Q—gq)>¢
Ng*NN(Q—gq) =a. Hence if every element of L has an irredundant decom-
position, then every element of L is covered by some element.

Now suppose b >a. From the above, pE L exists such that p > a. Suppose
b p. Then b\p=a. Let {x.} be a chain of elements of L such that b \x,=a
for every index «. Then by Lemma 2.4, 8NU, x.=U, 8MNx.=a. Thus by
the Maximal Principle it follows that a maximal element m exists such that
mMb=a. Let s& L be such that s> m. Then b\s>a. Hence (0N\s)Um=s>m,
whence bM\s>bMNsMm =a. Thus under any circumstances r& L exists such
that b=r>a, and hence L is atomic.

Our next theorem is a direct generalization of the classical replacement
theorem.

THEOREM 4.2. If a is an element of a compactly generated, atomic, modular
lattice and a=NQ=NQ’ are two decompositions of a, then for each ¢EQ there
exists ¢ €Q' such that a =N(Q—q)Ng'. If the decomposition a =NQ is irredun-
dant, then the decomposition a=N(Q—q)M\g' is also irredundant.

Proof. Let ¢=Q. For each ¢'€(Q’, define 7, by
re = n @ -9 Ng.

Then a=Nyeq 7y, and a<ry SN(Q—g) for each ¢'ESQ’'. Now since L is
modular, the quotient sublattices ¢\J(N(Q—¢))/¢g and N(Q—¢q)/N(Q—q) g
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10 R. P. DILWORTH AND PETER CRAWLEY {July

=M(Q—¢q)/a are isomorphic. ¢ is completely irreducible in L and hence g¢ is
completely irreducible in the quotient ¢\/(N(Q—q))/q. Thus @ is completely
irreducible in the quotient N(Q—gq)/a. But a =Ny cq 7y is a representation
of @ as a meet of elements of N(Q—q)/a, and hence for some ¢ EQ’, a =7,
=N(Q—-9)N¢".

Suppose the decomposition a=1Q is irredundant. Then N(Q—~g) >a, so
that if a=N(Q—¢)N¢' is a redundant decomposition, there exists an element
@& Q—q such that a=N(Q— {q, gl})ﬂq'. Now in this decomposition, ¢’ can
be replaced by some ¢.€Q giving a decomposition of a. But then either
a=N(Q—q) or a=N(Q—q), contrary to the irredundance of the decomposi-
tion a =NQ. Hence the decomposition ¢ =N(Q—q)M\¢’ is also irredundant.

We note that the theorem holds in any complete modular lattice.

The corollary to LLemma 3.7 can be sharpened in the case of modular lat-
tices to give

LeMMA 4.1. The quotient u./a is complemented point lattice.

For since u,/a is complemented and modular, it is also relatively comple-
mented. Hence if x€u,/a and y is the union of the points contained in x,
then the relative complement of y in x/a must be @ and thus x=1y.

The following lemma relating irreducibles containing @ to the elements
covering ¢ will be needed.

LeEMMA 4.2. Let a &L and let p, p' be two distinct elements covering a. If g
is an trreducible such that q=a and g% p, p', then gNM\(P\Jp") > a.

For since g p, »° we have pMNg=2p'MNg=a and hence p\Jg>q and
p'Uqg > q. Since ¢ is irreducible it follows that p\Ug=2p"Ug=p"Up"Ug. Thus
(p\Up')UJg>q and hence p\Jp’ > gM\(p\Jp"). Since p\Up’' > p>a it follows
that gM(p\Up") >a.

DEFINITION 4.1. If a=1Q is a decomposition of g, let

Ho={pE P.JN(Q — q) = p some ¢ € Q} and ke = UH,.

LeEMMA 4.3. Let a=0Q be a decomposition of a into irreducibles. Then

(1) Hg is an independent subset of P,.

(2) Hg contains at most one element p such that N(Q—q) = p.

(3) If a=NQ s irredundant, then Hq contains exactly one element p such

that N(Q—q) = p.

In order to see that (2) holds, let N(Q—q) =p,p’ where p and p’ are dis-
tinct. Since a =gMNN(Q—¢q) it follows that g% p,p’ and hence gMN(p\Jp") >a
by Lemma 4.2 which contradicts a =gMNN(Q—¢q) 2gN(p\Up"). Now if N(Q—¢)
=p and p'EHe—p, then N(Q—¢q) ¢’ and hence N(Q—¢’') =’ where ¢’ #gq.
But then ¢=N(Q—¢')=p". Thus ¢=U(He—p). Since g p it follows that
U(H¢o—p) & p. Thus Hg is independent and (1) holds. (3) follows immediately
from (2).
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According to Theorem 3.1 each element @ has at least one irredundant
decomposition into irreducibles. For modular lattices a much stronger exist-
ence theorem holds.

THEOREM 4.3. Let a be an element of a compactly generated, atomic, modular
lattice and let a=NQ be an irredundant decomposition of a into irreducibles.
Then if J is an independent subset of P, such that JOHg, there exists an irre-
dundant decomposition a =0NQ’ such that Hy =J.

Proof. By a trivial application of the Maximal Principle J can be extended
to a maximal independent set M CP,. Let J1=J—Hg and My=M-—7J,. If
we set b=UJyand ¢ =UM;, then by Lemma 3.6, 5\J¢=UM =u, and by Lemma
3.7, b"c=a. For each p&Hy, let g, be the unique element of Q such that
N(Q—gp)=p. Then g,2p and hence g,\Jp>g, Since ¢, is irreducible,
g,\Ip1=¢,\Jp for any other pi< M;such that g, % p1. Thus g,\Jc=¢q,JUM;
=g,\Jp > ¢g,. By modularity we have ¢>cMg,. Now b\J(cMNg,) #Zu,, since
otherwise c¢=cMNu,=cMNBJI(cMgp)) = (cMb)\J(cMgp) =cMg, contrary to
c> cMgp. Thus u, =b\Uc>b\J(cMg,). Let us set 5,=b\U(cMNg,) so that s, is
a maximal element of u,/a for each p& Hy.

Now for each p&J, let us set s,=U(J1—p)Uc. Clearly u,>s, for each
p&EJ1. Furthermore, since J; is an independent subset of P, it follows from
Lemma 3.7 that NU(J;—p)=a. Since L is modular, the mapping x—x\Uc
maps the quotient b/a=5b/b\c¢ isomorphically onto d\Jc/c=u,/c. Hence
Npes, sy=c. Thus

N, =N 5;NANS,=cNNGEUENG)=NCNGY (N g))

J Iy Hy Hy Hy

=NUcNBHI(NgG)=NENg)=cNNQ=a.
Hy Hy

It follows immediately from the definition that if pE Jy, then s,Zc2UH,
and if p& Ho, then 5,25 2=UJ;. On the other hand, if pE Jy, then s, 2U(J;—p)
and if p&Hyg, then s,ZcMNg,ZU(Hg—p). Thus for each pEJ we have
sprZp all p’#p and hence ﬂ{s,,'lp’;ép, pEJ} zp. By Lemma 2.5 for each
pEJ there exists a completely meet irreducible element ¢; such that ¢ =5,
and g7 Zu, Let Q' = {g,{ [pEJ}. Then u.MNgy =s, and hence by Lemma 3.2,
NQ’=a is an irredundant decomposition of a. Clearly Hg =J.

For finite irreducible decompositions it is easily verified that U, N(Q—g)
Zua. This property no longer holds for general decompositions. In fact, we
shall show that U,N(Q—¢)Nu,=hq. A preliminary lemma is needed.

LeMMA 4.4. Let a €L and let a=NQ be an irredundant decomposition of a
into irreducibles. Furthermore let Q'={qy, - - -, ga} be a finite subset of Q such
that N(Q—q:) Z p: > a, for each 1. Then N(Q— Q') = p implies p,\J - - - Up, =p
for each pEP,.

For n=1, the lemma follows immediately from Lemma 4.3. Now suppose
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that the lemma holds for n=%k—1 and let N(Q— {ql, e, qk})gp>a. If
¢+ =9, then N(Q—{q, - - -, gs_1}) = p and hence by the induction hypothesis
- Uz Y - - Upea2p. If e p, then since grpr we have
GaMN(P\JIpr) >a by Lemma 4.2, Now N(Q— {ql, S ,qk_l})qu ZaM\(P\Jpr)
and by the induction hypothesis we have pi\J - -« Upr a2 @M (P\Ipk).
Then

i\ - - Upe 2 oI (@D (VD0 = (0 @) N (p\Upy)
= (Vg (p\Upr) 2 2.

The lemma follows by induction.

THEOREM 4.4. If a € L and a =NQ is an irredundant decomposition of a, then
UN(Q—=g)Nua=hq.

Proof. Let UN(Q—¢q)=p > a. Then since p is compact in u,/a, there exists
a finite subset {ql, cee, q,.} of Q such that U;N(Q —~ ¢:) = p. Thus
NQ—{g, - -+, ¢.})ZUiN(Q—g:) Zp. Let N(Q—g:)Zp:>a. Then p;EHy
and by Lemma 4.4, p;\J - - - Up,=p. Hence hog=UHyzpall p=U, N(Q—¢q).
Since u#./a is a point lattice we have ho=U, N(Q—q)Nu,. But Y, N(Q—¢q)
Mu, 2 ho trivially.
In the theorems which follow it will be shown that the replacement
properties of irredundant decompositions are determined by the order prop-
erties of the elements hq.

THEOREM 4.5. Let a =NQ be an irredundant decomposition of a L and let
a=NQ where Q' is obtained from Q by replacing ¢S Q by an irreducible ¢'.
Then hQ' = hQ.

Proof. According to Theorem 4.2 the decomposition ¢ =Q’ is irredun-
dant. Let p be the unique element of Hy such that N(Q—gq) = p. Now for each
p*C Hg—p let ¢* be the unique element of Q such that N(Q—g¢*)=p* and
let $* be the unique element of Hg  such that N(Q'—g¢*) = p*. Clearly the
correspondence p*—$* is a one-to-one mapping of Ho—p onto Hy —p.

Now let p*E Hg—p be such that p* p* and let ¢* be the unique element
of Q for which N(Q—g¢*)=p*. Then ¢ Zp* since otherwise N(Q'—g*)
=MN(Q—{g, ¢*})Ng Zp* and hence p*=p* contrary to assumption. Also
¢'%p and hence by Lemma 4.2, ¢'N(p\Jp*)>a. But then N(Q'—g*)
=NQ~{g, ¢*HNg ZgN(P\Ip*) and thus §*=g'N(p\Jp*). It follows that
PIB* = p (g N(PIp¥)) = (PG )N (p\Ip*) = pUp*. But p\Up* = pUp*
holds trivially if p* = $*. Thus for all p* € Hq—p we have p\Jp*=pUp*. Thus

ho =UHe = U (pUp) =U (p\Jp") = UHe = he

This completes the proof of the theorem.
From Lemma 3.6 we get the following corollary to Theorem 4.5.
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COROLLARY. Under the hypotheses of Theorem 4.5, if Hq is a maximal inde-
pendent set of P,, them Hy is also a maximal independent set of P,.

If the ascending chain condition is satisfied, then kg=wu, for every ir-
redundant decomposition @ =0(. Thus it is not surprising that an additional
hypothesis is required for a simultaneous replacement theorem in the more
general case.

THEOREM 4.6. If a is an element of a compactly generated, atomic, modular,
lattice and a=NQ=NQ’ are two irredundant decompositions of a with hq=hq,
then for each ¢’ ©Q' there exists g Q such that a=N(Q—q)Ng' =N(Q"'—¢')Ng.

Proof. Suppose that the irredundant decompositions a=NQ=NQ’ are
such that kg2 he/, and that ¢’ &(Q’. Let p’ S Hg be such that N(Q'—¢') =7’

Since UHo=UH, Z p’, there exists a finite subset {pl, SR pn} C Kq such
that p)\J - - - Up,=p’. We may assume that {pl, I p,.} is a minimal
such subset. Then if ¢; © Q is such that N(Q —gq) = p: =1, - -, n),
NQe-1{aq, -, qn})gplu - - Up,zp’. Moreover, if for some 7, ¢.= 9/,
then N(Q—{qn, -+ -, @ic1, Gixr, * * + Ga}) 22", and hence it follows from
Lemma 4.4 that p\J - - - Up;\UpinJ - - - Up,=p’, contrary to the
minimality of {pl, S, p,.}. Thus for each ¢=1, .-, n, ¢.Zp". Now
¢’ %', and hence there must exist some p,C {p1, - - -, pa} such that ¢’ % p;.

Suppose N(Q—g;)N\g’>a. Then since L is atomic, pE P, exists such that
NQ—q,)Ng = p. But then N(Q—gq;) 2 p, p;, contradicting Lemma 4.3. Hence
NQ—gq;)MN¢g =a. It is also true that ¢; & p’, and hence by a similar argument,
N(Q'—¢')MNg;=a. The irredundancy of the decompositions a=N(Q—g;)MN\¢
=N{(Q'—¢')Mg; follows from Theorem 4.1.

COROLLARY. Let a S L and a=0Q be an irredundant decomposition of a.
Then for each irredundant decomposition a =NQ’ and each ¢ SQ’, there exists
g€ Q such that a=0(Q—q)N\¢, if and only if hg=1ua.

Proof. If hg=u,, then for any irredundant decomposition a=NQ’, ke
=u,2hg, and hence Theorem 4.6 holds for the decompositions a=NQ
=Q’. Suppose hg <u,. Then Hyg is not a maximal independent subset of P,,
and hence there exists an independent subset JC P, such that JDHg. By
Theorem 4.2, there exists an irredundant decomposition a =NQ’ such that
Hy =J. Let pEHg — Hyg, and let ¢ €Q’ be such that N(Q'—~¢q’) =p. Then
¢’ 2UHyg, and hence N(Q—¢)M\¢’ >a for all ¢&Q. Thus ¢’ can replace none
of the irreducibles in the decomposition a =Q.

The replacement property of Theorem 4.2 can be considerably sharpened.
In order to simplify the statement of the theorem we shall introduce the
notion of Q-equivalence.

Let ¢ =NQ be a decomposition of ¢, and let SCQ. A set T of completely
irreducible elements of L is said to be Q-equivalent to S if there is a one-one
mapping ¢ of S onto T such that for each ¢&Q, a =N(Q—g)N¢(q).
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14 R. P. DILWORTH AND PETER CRAWLEY [July

THEOREM 4.7. If a is an element of a compactly generated, atomic, modular
lattice and a=NQ=NQ’ are two irredundant decompositions of a, then for each
finite subset ST Q there exists a subset S’ CQ’ such that S’ is Q-equivalent to S. If
hq 2= hg-, then for each finite subset S’ Q' there is a subset SCQ such that S’ is
Q-equivalent to S.

Proof. For n=1, the first statement of this theorem is just that of Theo-
rem 4.1, Let {q;, ce e, q,.} be a finite subset of Q. For each =1, - - -, n, let
S; = {q’ c Q[a =N(Q — ¢) N q'}. Suppose for some k-element subset
{qﬁ, <o, q;k}_g{ql, e, qn}, k=n, S;,V - - - VS, contains m<k ele-
ments,say gy, * - - ,¢m Let p;;& Hgbesuchthat N(Q—g.)) Zp,; (=1, - - - , k),
and let p/ ©Hyg be such that N(Q'—¢/)Y=p! (=1, - - -, m). Then for each
¢CQ =g, -, gn}, N(Q—g)Ng' >a, and hence, since N(Q—g¢.) contains
only one element of P,, ¢’ = p; for each 2=1, - - -, k. Thus

N —fgf, @) zpY--Up,

and it follows from Lemma 4.4 that p/\U - - - Uppzp\J - - - Up.. But this
is impossible, since the dimension m of the quotient p{\J - - - UpL/a is
less than the dimension 2 of the quotient $,\J - - - Upi/a. Hence for each
k-element subset {q:, - - -, ¢} Sian, - - - @}, SuV - - - VS, contains
at least k distinct elements. It now follows from P. Hall's theorem on repre-
sentatives of subsets that there are # distinct elements g/, - - - , ¢ €Q’ such
that ¢/ €S, (=1, - - -, n), completing the proof of the first part.

Now let kg=hq.. Let {gi, - - -, ¢/} be a finite n-element subset of Q’,
and let T;= {qEQ|a=ﬂ(Q-—q)f\q,~' } In view of the preceding paragraph,
to prove the second part of the theorem it suffices to show that 71V - - - VT,
contains at least # distinct elements. Suppose 71V - - - \/ T, contains m <n
elements, say g1, *+ *+ *, gm. For each =1, - - -, m, let p;& Hg be such that
N(Q—g:) = p:. Then if pEHg—{p1, - -+, Pm}, ¢l 2p for each i=1, .- -, n,
and hence ¢/ M - - - Ng. ZUHe—{p1, - - *, Pm}). Since hq=zUHyg, and
since for each 7, ¢/ is covered by only one element, ho'\Jg! > ¢! and hence
ho> koMq! . Furthermore if k<, then (heMg{ M - - - Mgl )\ Jgi11> gi41, and
hence koMl M+« « Ngd > hoMgi N+ + - Mgd41. Thus the quotient sub-
lattice hgo/heMgi{ M - - - Mg, is of dimension #. But now we have a contra-
diction, since the quotient kqo/U(Hq— {pl, s, p,,,}) is of dimension m <n.
Hence T,V - - - VT, contains at least n distinct elements, and the proof is
complete.

COROLLARY. If a is an element of a compactly generated, atomic, modular
lattice and a =NQ=NQ’ are two irredundant decompositions of a with hq=hq,
then there exists a subset S'CQ’ such that S’ is Q-equivalent to Q.

Proof. For each ¢&Q, let Sq={q’EQ'la=n(Q—q)f\q’}. Then from
Theorem 4.7 it follows that for any finite subset {ql, SR q,,} CQ, S,V -
V' S,, contains at least » distinct elements. Now suppose ¢ Q and p&Hpg
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is such that N{Q —¢q) = ¢. Since ko Shqg, p SUHy, and hence p=p{\J - - - Up{
for some finite subset {p;’, ce, p,:}gQ'. If ¢! is such that N(Q'—gq{)
2p! (i=1,---,k), then N(Q" —{qf, -, })=p,and thus {¢}, - - -, g/}
2.S,. Hence for each ¢q&Q, S, is finite. The corollary now follows from the
Marshall Hall theorem (Hall {6]) on representatives of subsets.

CorOLLARY. If a=NQ=NQ’ are two irredundant decompositions of aSL
such that ho=hg, then Q and Q' have the same cardinality.

We conclude this section with an example of a compactly generated,
atomic, modular lattice in which the null element has two irredundant de-
compositions into irreducibles of different cardinalities.

For each integer 7, let 4; be a group isomorphic with the additive group
of integers modulo a fixed prime ¢, and let G be the complete direct sum of
the groups 4, that is, the set of all functions f on the integers such that
f(@)EA,;, with addition defined componentwise. Then G is an (additive)
abelian group every element of which has order p. Let L be the lattice of
subgroups of G. L is then compactly generated and modular, and since every
element of G has finite order, L is also atomic. For each 7, let Q; be that sub-
group of G consisting of all functions fEG for which f(2) is the zero element of
A;. Then G/Q; is isomorphic with 4; and hence Q; is a maximal subgroup of
G. Thus Q; is a completely irreducible element of L for each <. Since G is the
complete direct sum of the 4;, it follows that 0=0; Q; (0 denoting the zero
subgroup of G). Moreover, for each 7, 0;\J(N,.; Q;) =G, and hence the de-
composition 0=0; Q; is irredundant. Now G can be considered as a vector
space over the field of integers modulo p, and accordingly, G has a basis { f..} .
Since G has cardinality 2%, the number of f« must also be 2%, For each index
o, let Q4 be that subgroup of G generated by the set {fﬁlﬁ;fa}. Then each
Q. is a maximal subgroup of G, and just as above, it follows that 0=, Q.
isan irredundant decomposition of 0. Thus 0E€ L has two irredundant decom-
positions with different cardinalities.

5. Distributive lattices. Under the hypothesis of the ascending chain con-
dition, each element of a distributive lattice has a unique irredundant decom-
position into irreducibles (Birkhoff [1, p. 142]). This decomposition is neces-
sarily finite. In this section, we shall show that there exists a unique (though
possibly infinite) irredundant decomposition for each element of a compactly
generated atomic distributive lattice.

We begin with a theorem concerning irreducibles in semimodular lattices.

THEOREM 5.1. Let a be an element of a semimodular, compactly generated,
atomic lattice. Then an irreducible q appears in every irredundant decomposition
of a if and only if there exists p>a with p£q such that pO\(x\Jy) = (pMx)
J(pNy) for all x, y=a.

Proof. Suppose such a p exists. Let ¢’ be an irreducible with ¢’ % p. Then
pNg=pMNg’'=a, and hence a=(pNg)\J(pNg’') =pMN(g\Uq’). Now if g=¢’,
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then ¢\Uq' Zu,=p contrary to p£q\Jq’. Thus ¢=¢’, and ¢ is the only ir-
reducible not containing p. Hence ¢ appears in every decomposition of a.

Suppose ¢ appears in every irredundant decomposition of a. Let p be an
element covering a such that g2 p. Let x, y=a, and suppose xN\p=yM\p=a.
By Lemma 2.5 an irreducible element g, exists such that ¢, and ¢,=x.
Similarly an irreducible element g, exists. Thus by Theorem 3.1 there are
irredundant decompositions of ¢ which contain ¢, and ¢,, respectively. But
g appears in every irredundant decomposition of @ and ¢ % p, whence it follows
that ¢=¢.=¢,. Hence g=x\Uy, so that x\UyZp. Thus pMN(xUy) =(pMNx)
U(pMy), and the theorem follows.

Combining Theorems 3.1 and 5.1 we have the following theorem.

THEOREM 5.2. Every element of a compactly generated, atomic, distributive
lattice has a unique irredundant decomposition into irreducibles.

For distributive lattices satisfying the ascending chain condition it is easy
to show that ¢’ =2a implies ¢’ Z¢ where ¢ belongs to the unique irredundant
decomposition of a. This property does not generalize to compactly generated,
atomic, distributive lattices. Consider, for example, the collection of all sub-
sets S of the set I of positive integers such that either SCI— {1} or I—Sis
finite. It can be easily verified that this collection is closed under arbitrary
union and finite intersection and thus is a complete distributive lattice. The
compact elements of this lattice are the finite subsets of I— {1} and the
sets S such that 1ES. These sets clearly generate the lattice under arbi-
trary union and hence the lattice is compactly generated. The lattice is
obviously atomic. Now the unique irredundant decomposition of the null set
is & =Ni, Q, where Q,=I— {n } Note that this lattice meet is not set inter-
section since Aj-; Qn={1}. On the other hand, Q;=7— {1} is an irreducible
containing & such that Q;2Q, for every n#1.

6. Unique decompositions. In the previous section we have shown that
each element of a distributive, compactly generated, atomic lattice has a
unique irredundant decomposition into irreducibles. This section will be
devoted to a characterization of lattices having unique irredundant decom-
positions into irreducibles. The characterization will be analogous to the
finite dimensional case (Dilworth [2]), though quite different techniques of
proof are required. We begin with the definition of the relevant concepts.

DEFINITION 6.1. An atomic lattice L is locally distributive (locally modular)
if u./a is distributive (modular) for each a & L.

Clearly a locally distributive or locally modular lattice is weakly semi-
modular. Hence from Lemma 3.3 we have

LeEMMA 6.1. A locally distributive or locally modular, compactly generated,
atomic lattice is semimodular.

We first show that for compactly generated atomic lattices, unique ir-
redundant decompositions imply that the lattice is semimodular.
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LEMMA 6.2. Let L be a compactly generated atomic lattice. Then if every ele-
ment of L has a unique irredundant decomposition into irreducibles, L is semi-
modular.

For let p>a, b=a, and b p. Suppose p\Jb does not cover b. Then x
exists such that p\Ub>x>b. By Lemma 2.5 there exists an irreducible ¢
such that ¢=b and ¢Zx. Similarly there exists an irreducible ¢’ such that
q'=x and ¢'2pUb. Now a=pMg=pMgq’. By the Maximal Principal ele-
ments m and m’ exist which are maximal such that mMg=a, m=p, and
m'Mq’'=a, m' Zp. By assumption m and m’' have irredundant decomposi-
tions m =M and m’ =N M’. Clearly ¢&E M’ and ¢’ & M. However, a =q¢ "\ M
=¢'MNM' are two different irredundant decompositions of a, contrary to
uniqueness. Thus p\Jb> b, and L is semimodular.

The next lemma is a direct consequence of Theorem 5.1 and Lemma 3.7
(and its corollary).

LeMMA 6.3. Let L be a semimodular, compactly gemerated, atomic latiice.
If a& L has a unique irredundant decomposition into irreducibles, then u,/a
is distributive.

It should be noted that in any compactly generated atomic lattice, #,/a
will be a complete atomic, Boolean algebra if it is distributive. We now turn
to the converse of the above lemma.

LEMMA 6.4. Let L be a locally distributive, compactly generated, atomic lat-
tice. Then each element of L has a unique irredundant decomposition into ir-
reductbles.

From Lemma 6.1 it follows that L is semimodular. We will show first that
if p>a and if ¢; and ¢. are irreducibles such that ¢, gz=a and qi, g2 2 p, then
g1=¢s. If g15%¢,, then ¢ Z ¢, since otherwise ¢1=¢,\Jp = p contrary to ¢ p.
Thus ¢:>¢1/MN\g: and hence there exists b, such that g=b:> ¢1/M\qa. Since
g:2 p we have bo2d p. Now let S= {s| G=sZqiMNgs, s\Uby 2 p}. Sis nonempty
since ¢1M\¢g:&.S. Furthermore, since p is compact in qi1/a, S is inductive. Let
s* be a maximal element of S. If ¢1>s*, then there exists w; such that
@G Zw > s*. Since s*Zp and s*2a we have w,=s*Up > s* by semimodular-
ity. Also s* b, since otherwise ¢; =s*=b; and hence ¢:/MN\g:= b, contrary to
by > ¢1M\gs. Since s* Z¢1Mqe we have w;=s*\Ub,> s* by semimodularity. Now
w1 W, since 1 p; wy = w; since g1 by; and we#w; since s*\Uby & p. By local
distributivity wi\Jw;%w,. But then w,\Uby=uw\Us*Uby=w\JwsZp and
hence €S contrary to the maximal property of s*. Thus we must have
g:=s* and hence ¢;\Ub: % p. But then ¢,\Uby=g¢, since otherwise ¢;\Jb:> g1,
@\ Jp> g and ¢i\Ub.2¢:\Jp contrary to the irreducibility of ¢;.. Thus g1 b,
and hence ¢iM\ga= b2 contrary to b> ¢igs. It follows that our original as-
sumption is untenable and hence ¢1=g¢,.

Now let ¢ be irredundant in the decomposition a =NQ and let ¢ 2N (Q'—¢")
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in the decomposition a =NQ’. Then g% p some pEP,. Now if ¢’ ¢g all ¢’' €Q’
we have ¢’' 2 p all ¢’' €Q’ by the result of the preceding paragraph. But then
a=0NQ’Zp contrary to p>a. Hence g=¢’’ some ¢’'<Q’. But if ¢''5%q" we
have ¢=N(Q’—¢'). Thus ¢g=¢’ and ¢ has a unique decomposition into ir-
reducibles. This completes the proof of the lemma.

Combining Lemmas 6.1-6.4 we have

THEOREM 6.1. A compactly generated, atomic lattice has unique irreducible
decompositions if and only if it is locally distributive.

An examination of the proof of Lemma 6.4 shows that the only conditions
required for the sufficiency argument are weak semimodularity and the fact
that every three distinct elements covering an element of the lattice are inde-
pendent. Thus we have the following corollary.

CoROLLARY. A compactly generated atomic lattice is locally distributive if
and only if every three distinct covering elements generate a dense Boolean algebra
of order eight.

A further characterization analogous to that of Theorem 1.1 of [2] is the
following:

COROLLARY. A semimodular, compactly generated, atomic lattice is locally
distributive if and only if every modular sublattice is distributive.

If every modular sublattice is distributive then every three distinct cover-
ing elements must be independent and hence by the first corollary to Theorem
6.1, the lattice is locally distributive.

Now let L be locally distributive and let M be a modular sublattice which
is not distributive. We may clearly suppose that M is the modular, non-
distributive lattice of order five. Hence there exist elements a, b, ¢, 4, ¢ such
that b\Jc=bUd=cUd=¢ and dbN\c=bNd=cNd=a. It now follows (see
Lemma 7.2 below) that there exist two irredundant decompositions a=NQ
=Q’ such that for each ¢&Q either ¢=b or ¢=c¢, and for each ¢’ € Q’ either
¢’ =bor ¢’ =d. Let g€Q be such that g% b. By Theorem 6.1, ¢&Q’ and hence
g=d. But then ¢=c\Jd2b, a contradiction. Thus every modular sublattice
of L is distributive.

7. Locally modular lattices. The problem of the characterization of lat-
tices in which the number of components in the irredundant decompositions
of elements is unique is much more complex than the uniqueness problem
treated in §6. In fact it is easy to give examples of nonsemimodular lattices
in which the number of components is unique. Since a decomposition theory
for lattices which are not semimodular has not yet been developed we will
restrict our discussion to the semimodular case.

When a semimodular lattice satisfies the ascending chain condition the
decompositions are finite and the basic result states that the number of com-
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ponents in the irredundant representations is unique if and only if L is locally
modular (Dilworth [4]). For infinite decompositions, the example given at
the end of §4 seems to indicate that questions concerning the invariance of
the cardinality of decompositions are primarily set theoretic in nature. On
the other hand, in the finite case, the invariance of the number of components
is always obtained in terms of replacement properties and these properties
are of a lattice theoretic character. Accordingly in this section we shall in-
vestigate the structure of semimodular, compactly generated, atomic lattices
in which the fundamental replacement property of Theorem 4.2 holds. It
will turn out that the lattices satisfying this replacement property will be
precisely the locally modular lattices.

DeriNiTION 7.1. A lattice is said to have replaceable decompositions if for
every element ¢ of the lattice, each irreducible in one irredundant decomposi-
tion of a can be replaced by a suitable irreducible in any other irredundant
decomposition of a.

The following lemma and its corollary show the sufficiency of local modu-
larity for replaceability.

LeEMMA 7.1. Let L be a locally modular, compactly generated, atomic lattice.
Then g=a and g u, imply u, > gMiu, for each irreducible q.

For suppose that #,> ¢Mu, does not hold. Then there exist two distinct
elements p; and p, in P, such that (¢gMu )M (p1\Jp.) =a and hence ¢gM(p1\J ps)
=¢g. Now let X be a chain of elements x such that ¢=x=ea, gN\(x\Up,\Up,) =x,
¥\ Upr12p,. Then ¢=UX=e¢ and by continuity UX=¢gNU, (x\Up,\Up.)
=gNUXUp;\Up,). Also UXUp, 2 p, since p; is compact in u,/a. Thus UX
satisfies the condition on x and since a trivially satisfies the conditions, it
follows from the Maximal Principle that there is a maximal element m for
which gzmza. gN\(mM\Ip)\Jps) =m, m\Up1 & ps. Now clearly m\Up, =m\Up,
and m\Jp, > m, m\Jps > m. Thus m=(m\JUp,)M(m\Jp:) and hence is reduci-
ble. It follows that ¢>m and by atomicity we have g=m > m. If m,\Up = ps,
then m\Upr=m\Up;\Up, and m=g"\(m\Jp,\Ups) =g\ (mi\Up:) Zm; con-
trary to mi> m. Thus m,\Up, & p.. Since ¢ = m,=a, by the maximal property
of m we must have gM\(m\Up1\Ups) >m. From m,\Up,\Jpy > m\Up: > m; we
conclude that m\Jpi\Ups>gM(m\Up\Ups). But m\Jp\Up.Cu,/m and
since #m/m is modular by hypothesis, we have m\Up,\Up. > gM\(m\Jp,\Jps)
=m. Hence m\Up,=m\Up,\Up, = py contrary to m\Up1 & ps. It follows from
this final contradiction that u,> ¢Mu,.

COROLLARY. 4 locally modular, compactly generated, atomic lattice has re-
placeable decompositions.

For, by Lemma 7.1, each irreducible containing a is such that gMu, is an
irreducible element of u,/a. But by Theorem 4.2 decompositions in u,/a are
replaceable. Hence by Lemma 3.2 decompositions in L are replaceable.
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The necessity of local modularity is a considerably deeper result. We
begin with two preliminary lemmas which will be needed later in the proof.
The second lemma concerning finite dimensional semimodular lattices is of
interest as a generalization of a well known classical theorem.

LeMMA 7.2. Let L be a compactly generated, atomic lattice in which each ele-
ment has an irredundant decomposition into irreducibles. Then if a=a,/ - - -
MNan 1s an wrredundant finite representation of a, there exists an irredundant
decomposition a =0Q such that for each ¢<=Q, g=a; for some 1.

For since L is continuous there exists a maximal element m; = a; such that
a=miMNayN\ - + - Ma,. Similarly there exists a maximal element m.2a. such
that ¢ =myMmaeMaz M - - - Ma,. By induction we get a =m N -+ - M,
where m; is maximal such that a=m" - - - MmNa; M -+ - Ma,. Thus
mi{ >m; implies my/ - - - NmiaMNm! MmN - - - Nm,>a. Now  let
m;=0NQ; be an irredundant decomposition of m, into irreducibles and let
Q= Vi Q,’. Then ﬂQ=ﬂ,~ ﬂQ, =ﬂi m;=a. Let QiEQi then ﬂ(Q,—g,) >m;.
Hence N(Q—q)znmMN -+ Nmi aMNV(Qi—g) MmN\ -« - Mimy>a. Thus
the decomposition ¢ =Q is irredundant.

LemMma 7.3. Let L be a finite dimensional semimodular lattice in which the
unit element u is a join of points. Let B denote the set of elements of L which are
joins of points. Then if u>s, s b imply b> si\b for all bE B, L is modular.

Proof. Let us suppose that L contains an element which is not a join of
points. Then by finite dimensionality there exists a minimal element b&B
such that b/z contains an element x which is not a join of points. Let >y =x.
By the minimal property of b, ¥ is not a join of points. Let b, be the union
of points in y. Then b> y>b,. Since every element of L distinct from u is a
meet of maximal elements, it follows that there exists s such that «>s,
s%b and s=v. Thus sMb=1y. Now let S be a maximal independent set of
points in b;. Then b;=US by Lemma 3.6. Let S be extended to a maximal
independent set T of points in b. Then b=UT. S—T clearly contains at least
two distinct points since otherwise b=UT7>US =5, contrary to >y >b:. Let
p, g be distinct points of S—T. Then s p, ¢ since otherwise y=bN\sZp, ¢
and b,=US=p, ¢, contrary to the independence of 7. By the hypothesis of
the lemma p\Jg> sM(p\Ugq) =sNbM(p\Jqg) =y (p\Jg). Thus yM(p\Jg) is a
point contained in y. Hence b =yMN(b\Jg). But then yM\(p\Jg) SyMb
N(pUqg) =U(S)N(p\Ugq) =z since T is independent contrary to yM\(p\Ug) > z.
In view of this contradiction we conclude that every element of L is a join of
points. Now let a\Jb>b for a, b&L. Let u>s, s2b, s 2a'\Ub. Then sM(a\Jb)
=b. Clearly s%a and since a is a join of points we have a> sMa=sM(a\Jbd)
MNa=aNb. Then L is lower semimodular and since it is upper semimodular
by hypothesis, it is modular. This completes the proof of the lemma.

It will now be shown that the modularity of #,/a follows from the replace-
ment property for the irredundant decompositions of a.
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LEMMA 7.4. Let L be a semimodular, compactly generated, atomic latiice
such that the replacement property holds for the irredundant decompositions of a.
Then us/a is modular.

It will first be shown that u,> s, s&b, where b is a join of elements of P,
imply that b> sMb.

Let us suppose that this is not the case and hence that u,>s, s b while
b> sMb does not hold for some b which is a join of elements of P,. Now let
T be a maximal independent set of elements of P, contained in sM\b. Extend
T to a maximal independent set S of elements of P, contained in b. Then by
Lemma 3.6, US=b5. Finally extend S to a maximal independent set P of
points in P,. For each pEP let ¢, be an irreducible such that ¢g,=2U(P —p),
@o % ta. Set Q= {g,| pEP}. Then by Lemma 3.7, a=NQ is an irredundant
decomposition of a into irreducibles. Now consider the case when s/M\b=a.
Then by Lemma 7.2 there exists an irredundant decomposition a =NQ’ such
that ¢’2s or ¢’ =b for each ¢’&Q’. Since b>~a, there exists at least one
g’ €Q’ such that ¢’ =s. Suppose that there is another ¢’’€Q’ such that
¢'’' 2 5. Thenu,MN\g' =s=u,MNq’’ and hence u, Q' —q’) =u.Ng"'NN(Q’ —¢")
=u,Ng'NN(Q’ —¢') =u.NNQ’' =a. Whence N(Q’ —¢’) =a contrary to the ir-
redundancy of Q'. Thus there is exactly one ¢’ ©Q’ such that ¢’ = s and hence
N(Q'—¢’) Zb. According to the hypothesis of the lemma ¢’ can be replaced
by ¢, for some pEP. Thus a=¢, Q' —¢’). Hence a2g,Nb=U(P—p)
NU(S) =U(SA(P—p)) and thus SA(P—p)=. Since SCP it follows that
S= {p} and thus b=U(S)=p>a=sMNb contrary to hypothesis. Hence we
may suppose that s/M\ba. Next let t*=U(P —T) and suppose that sM\¢t*=a.
Again there exists an irredundant decomposition a ={1Q’ such that ¢’ =s or
g’ zt* for each ¢’ € Q’. Also there is a unique ¢’ such that ¢’ =s. For this ¢’ we
have N(Q’—¢’) Zt*. Since by hypothesis ¢’ can be replaced by ¢, for some
PEP we get a=UP—-p)NU(P-T)=U(P—p)A(P—T)). Thus (P—p)
N(P—-T)=F and hence T=P—p. But then u,>U(P—p)=UT and hence
s=sMb contrary to s£b. We may thus assume that s/Mbsa and sMt*=a.
Furthermore dM\t* 4. For since US=56>sMNbz=U(T) it follows that U(S—T)
>a and hence bN\t*2U(S—T) >a. On the other hand a=sMNbNt*. Since if
sObMNt*Zp>a, we have s'\b=p and hence UT = p which implies a=UT
NU(P—T)=p contrary to p>a. Thus the representation a=sMNbNt* is
irredundant and by Lemma 7.2, there exists an irredundant decomposition
into irreducibles a=NQ’ such that either ¢’=s, ¢’2b, or ¢’ Zt* for each
q¢’&€Q’. By the argument given above there is a unique ¢’ in Q' such that
¢’ Zs. By the replacement property we have ¢ =¢,MN\(Q’' —¢) for some pEP.
But then

azUP—-p)NENM =UP - pNUSAP-T1)
=U(@P-HASAEP-D]) =US - (TV ).
Thus S—TVp=¢ and thus S=TVp. Hence b=U(S)=UTUp>UT. But
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b>sMb=UT. Thus b> s/Mb contrary to hypothesis. The proof of the above
statement is thus complete.

Now let x be an arbitrary element of #,/a, and let ¢ be a compact element
such that x = ¢. Then UP, =2 x = ¢ and hence there exists a finite set
{p1, - = -, Pa} of elements of P, such that p1\J - - - Up, Zc. We show next
that pi\J - - - Up,/a satisfies the conditions of Lemma 7.3. It is clearly a
finite dimensional semimodular lattice in which the unit element is a join of
points. Now let pi\J - - - Up>t, p1\J -+ - UpZw and tZw where w is a
join of elements of P,. By Lemma 3.7, there exists v such that u,>v, vZ¢ and
vZw. By the first part of the proof we have w>vNw=v"\(p,\J - - - Up,)Nw
=tMNw. Thus all of the conditions of Lemma 3.7 are satisfied and hence
U - - - Up,/a is modular. Since a <a\Je<p\J - - - Up, we conclude that
a@\Uc is a join of points of p;\J - - - Up./a and hence is a join of the elements
of P.. But since L is compactly generated, x=U{c|c=x}=U{a\Uc|c=x}
and thus x is a join of elements of P,. It follows that #,/a is a point lattice.
Now if x\Jy>y in u,/a, by Lemma 3.7 there exists s such that u.>s,s2y,
and sZx\Uy. Then sZx and since x is a join of points, the first part of the
proof implies that x>xMs. But then x> xMs=aM(x\Jy)MNs=xMy. Thus
u,/a is lower semimodular and we conclude from Lemma 3.4 that u./a is
modular. Hence the proof of the lemma is complete.

Lemmas 7.1-7.4 give the following theorem.

THEOREM 7.1. A semimodular, compactly generated, atomic lattice has re-
placeable decompositions if and only if it is locally modular.
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