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1. Introduction. The classical structure theorems of algebraic systems
usually assume some type of finiteness condition. The most common finite-
ness restriction is a chain condition. Thus the proofs of the fundamental struc-
ture and decomposition theorems for lattices have customarily required the
ascending chain condition. Moreover, these theorems generally fail to hold
in arbitrary lattices. Nevertheless, there are important examples of decom-
position theorems for lattices associated with abelian groups and rings in
which the ascending chain condition does not hold. These lattices have in
common another distinctive property—they are compactly generated.
Namely, the lattice is generated by a collection of elements which are finitely
dependent in the sense that any such element is contained in the union of a
set of lattice elements if and only if it is contained in the union of a finite
subset. The compact elements of the lattice of ideals of a ring are the finitely
generated ideals. Likewise the compact elements of a lattice of congruence
relations are the congruence relations generated by collapsing a finite collec-
tion of element pairs. More generally, the lattice of congruence relations and
the lattice of subsystems of a universal algebra are compactly generated.
Since structure theorems for an algebraic system correspond to decomposi-
tion theorems in the lattice of congruence relations, this strongly suggests
that compactly generated lattices are the appropriate domain in which to
study decomposition theory. Furthermore, since every lattice satisfying the
ascending chain condition is trivially compactly generated, it follows that
the classical case will be subsumed in the more general theory.

In the present paper we shall make the further restriction that the lattice
is atomic, that is, that every quotient contains minimal elements. Thus this
case generalizes the finite dimensional theory (Dilworth [2; 3]) in that the
ascending chain condition is replaced by compact generation and the descend-
ing chain condition, by atomicity. Now the basic technique in the classical
case consisted in establishing a relationship between the properties of the
decompositions of an element a of the lattice and the structure of the finite
dimensional quotient lattice generated by the elements covering a. In the
present case, the quotient lattice is no longer finite dimensional and the de-
compositions are no longer finite. Nevertheless, compact generation and
atomicity imply sufficient regularity in the structure of the quotient lattices
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and the decompositions that a relationship can be established which preserves
many of the properties of the finite dimensional case.

It should be noted that there are many important examples of compactly
generated atomic lattices which do not satisfy the ascending chain condition.
Some of these examples are the lattice of subgroups of an infinite torsion
abelian group, the lattice of congruences of a weakly atomic modular lattice,
the lattices of subspaces of an infinite dimensional vector space, and any in-
finite dimensional exchange lattice.

The decomposition theory for nonatomic compactly generated lattices
requires a quite different approach and will be treated by one of us elsewhere.

2. Preliminaries. Lattice elements will be denoted by lower case latin
letters while sets of lattice elements will be denoted by latin capitals. If a is
an element of the lattice L and 5 is a subset of L, af~\S will denote the set of
elements aC\s where sES. a*US is similarly defined. The covering relation in
L will be denoted by a > b. SA T and SV T will denote set-intersection and
union respectively.

Definition 2.1. An element cof a lattice L is said to be compact if c^US
implies cSUS' for a finite subset S' of S.

li Ci and c2 are compact, then CiWc2§US implies Ci^US and c2^U5.
Hence there exist finite subsets Si and S2 of S such that Ci^USi and c2^US2.
But then CiDc2Si)(Si\/S2). Thus we have the following lemma.

Lemma 2.1. The compact elements of a lattice are closed under finite union.

The compact elements of L will be denoted by C(L).
Definition 2.2. A lattice L is compactly generated if L is complete and

a = \J{cEC(L)\cSa} for all aEL.
A complete lattice is thus compactly generated if the compact elements

generate the lattice under unrestricted joins. If every element is compact,
the lattice is trivially compactly generated.

Lemma 2.2. Let A be an ideal of a complete lattice L. Then if UA is compact,
A is principal.

For if c = \JA is compact, then cSiiS' where S' is a finite subset of A.
But then cG-<4 and hence A =(c).

Corollary. Every element of a complete lattice L is compact if and only if
L satisfies the ascending chain condition.

The following lemmas develop some of the properties of lattices satisfying
the ascending chain condition which also hold in compactly generated lattices.

Lemma 2.3. Every compactly generated lattice is join continuous; that is,
afMlF = U(af\B) for every ideal B of L.

For let cSa(~\{JB where cEC(L). Then cSilB and hence cSiiB' where
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B' is a finite subset of 75. But then cCB and hence c = af\cS\J(aC\B). Thus
ar\U73 = U{cGC(7)|c^anU73}gU(an73). Since aCWiB^U(af\B) holds
trivially, it follows that ar\\JB = \}(aC\B).

Definition 2.3. An element a of a lattice L is completely meet irreducible
if for all SQL, q = f)S implies qCS.

Clearly every completely meet irreducible element is meet irreducible.
For atomic(1) lattices the two concepts coincide.

Lemma 2.4. Every meet irreducible element of a complete atomic lattice is
completely meet irreducible.

For if a is a meet irreducible element, let q = f)S and suppose that s>q
all sCS. Then by atomicity there exist p such that p>q. If s^p for some
sCS, then s(~\p = q contrary to the meet irreducibility of g. Thus s^p all
sCS and hence q = i]S^p contrary to p>g. It follows that q = sCS tor some
5 and hence q is completely meet irreducible.

Lemma 2.5. If L is a compactly generated lattice and a, b are elements of L
such that a^b, then there exists a completely meet irreducible element q such
that aSq and bSq.

For since a ^ b and b = U {cCC(L) \ c Sb}, there exists a compact element
cSb such that cSa. But then cC(a) where (a) is the principal ideal generated
by a. By the Maximal Principle there exists a maximal ideal A such that
aG^4 and cCA. Let g = lL4. If cSq, then cSVA and hence cSVA' where A'
is a finite subset of A, and thus cCA contrary to assumption. It follows that
c£q and hence o^g. If q = (]S and 5>g all sCS, then since A C(s) we have
cSs all 5 by the maximal property of A. Hence c^D5 = g contrary to c^q.
Thus q = sCS for some 5 and g is completely meet irreducible.

Corollary. Each element of a compactly generated lattice can be represented
as a meet of completely meet irreducible elements.

For if b is the meet of all completely meet irreducibles containing a and
b%a, then according to Lemma 2.5 there would exist a completely meet
irreducible q such that a^g and b%q contrary to the definition of b.

It is evident from the corollary that a compactly generated lattice con-
tains sufficiently many completely meet irreducibles to give substance to a
decomposition theory. Indeed it is likely that the additional assumption of
atomicity is sufficient to insure the existence of irredundant decompositions.
However, we shall begin our study with the consideration of semimodular
lattices (2).

P) A lattice is atomic if a>b implies aSc>-6 for some cCL.
(*) At the present time, an adequate decomposition theory does not exist for lattices more

general than semimodular lattices even in the finite dimensional case.
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3. Semimodular lattices. Throughout this section L will denote a com-
pactly generated atomic lattice. Completely meet irreducible elements of L
will simply be called "irreducibles." For each aEL let Pa denote the set of
elements covering a. We set ua = \JPa, and define ua/a= {x\aSxSua}.

Lemma 3.1. ua/a is a compactly generated atomic lattice. Furthermore the
elements of Pa are compact elements of ua/a.

For if xGUa/a, then x = U {cE C(L) | c S x}. But then

x= U {aLJ c\cE C(L), c Sx}.

a\Jc is compact in ua/a since if oWc^US where SQua/a, then eg US and
hence eg US' where S' is a finite subset of S. But then aWcgUS'. Since ua/a
is a quotient lattice of an atomic lattice, it is atomic. Finally if p>a and
p^c, where a^c and cGC(F), then p = aWc and hence p is compact in uja.

Definition 3.1. An element sEua/a is a relative (meet) irreducible of
Ua/a if there exists a completely meet irreducible q oi L such that q^a and
gF\tt(I = 5.

Corollary. Each irreducible of ua/a is a relative irreducible.

For if s is an irreducible of ua/a, by the corollary to Lemma 2.5, s — C\Q
where Q is a set of irreducible of L. But then s = 0(Qr\ua) and Qaf^UaQUa/a.
Hence 5 = qC~\ua for some q and thus 5 is a relative irreducible.

The decompositions of an element a into irreducibles in L are closely
related to the decompositions of a into relative irreducibles in ua/a, as indi-
cated in the following lemma. The proof is left to the reader.

Lemma 3.2. To each decomposition a = V\Q of the element a into irreducibles
in L corresponds the decomposition a = D(Qr\Ua) into relative irreducibles in
ua/a. The decomposition a — V\Q is irredundant if and only if the decomposition
a = f)(Qr\ua) is irredundant. Furthermore each decomposition of a into relative
irreducibles in ua/a can be obtained in this manner from a decomposition into
irreducibles in L.

By means of the correspondence of Lemma 3.2 it is frequently possible
to reduce the study of decompositions in L to the study of decompositions in
Ua/a. This approach is particularly appropriate when the relative irreducibles
of ua/a coincide with the irreducibles of ua/a.

Semimodularity is defined in the usual way.
Definition 3.2. A lattice is (upper) semimodular ii a>af\b implies

a\Jb>b.
A lattice is lower semimodular if its dual is upper semimodular. For finite

dimensional lattices, upper semimodularity is equivalent to the following
weaker condition.

Definition 3.3. A lattice is weakly (upper) semimodular if a, b>af\b
imply aDb>a, b.
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We will now show that these two conditions are equivalent for compactly
generated atomic lattices.

Lemma 3.3. A weakly semimodular, compactly generated, atomic lattice is
semimodular.

For, let a>aC\b and define a subset W as follows:

W = [x\ b ^ x ^ af~\ b, a Wx > x}.   ■

The set W is nonempty since it contains aOfc. Now let X be a chain of W
and let y = l)X. Then b^y^af^b. Also a\Jy>y, since otherwise 6^y = aWy
^a contrary to a>aC\b. Let aAy~^z>y. Since the lattice is compactly gen-
erated there exists a compact element c such that z^c, y^c. Then cSaKJy
= aVJ(UX). Since c is compact there exist xu • ■ ■ , x„ in X such that
cSaKJxi^J ■ ■ ■ Ux,. Since X is a chain, XiW • • • \Jxn=xCX. Hence
cSa\Jx and thus xSA)xSa\Jx. If x = cWxi then y^.x = cKJx^c contrary
to y^c. Thus x<c\JxSa^Jx. Since a\Jx>x we have eWx = aWxsga. But
then z^cKJy^cVJx^a and hence z^aUy. Thus z = a\Jy and hence a\Jy>y.
It follows that UX = yG W. By the Maximal Principle W contains a maximal
element Xo. Suppose 6>Xo. Then by atomicity, b^p>Xo for some p. Since
b^a it follows that p^aVlxo. Also aUxo>Xo since xoCW. Hence pr\(aKJxj)
= xo and by weak semimodularity we have a\Jp = (aV)xo)\Jp>p. But
0 = /> = aM& and hence pCW contrary to the maximal property of x0. Thus
b = Xo and hence aW6=aUxo>-xo = o.

The following generalization of a well known characterization of finite
dimensional modular lattices will be needed.

Lemma 3.4. A compactly generated atomic lattice which is both upper and
lower semimodular is modular.

For let a^b and let V be defined as follows:

V = {x\b\J (aC\c) g x ^ a C\ c, x = a P\ (xKJ c)}.

V is nonempty since it contains aC\c. Now let X be a chain of V and let
y = (JX.ClearlybVJ (a C\ c) ^y^a (~\ c.Also,a C\ (y \J c) = a C\\}(X \J c)
= \}(aC\(XyJc)) =\JX=y since the lattice is continuous. Hence yCV and
thus every chain in V has a bound in V. By the maximal principle V contains
a maximal element x0. If b\J(aC\c)>xo, there exists p such that 6W(af>\c)
=^p>x0. Now XoWcSfcp since otherwise x0 = an(x0VJc) ^p. Thus pfXx0V-7c)
= x0-<p. By upper semimodularity we have pWc = pU(x0Wc) >x0Wc. Now
x0WcS£an(p_Jc) since otherwise Xo = ar\(x0\Jc) ^aH(pWc) ^p. Hence
[aT^(pUc)]U(x0Wc) =pUc>XoWc. By lower semimodularity we have

a n (p U c) > a Pi (p \J c) r\ (x0 W c) = a H (x„ U c) = x0.

But aC\(p\Jc) ~^p>Xo and hence af\(p\Jc) =p. Thus pG F contrary to the
maximal property of x0. It follows that Xo = b\J(aC\c) and hence
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b \J (a n c) = Xo = a C\ (x0 U c) = a C\ (b D (a C\ c) KJ c) = a C~\ (b \J c).

We thus conclude that the lattice is modular.
Definition 3.4. A subset iVof P„ is independent if pr\U(N—p) =a for all

PEN.
Lemma 3.5. A subset N of Pa is independent if and only if every finite sub-

set of N is independent.

If TV is not independent, then for some pEN we have p ^ pP\U (N — p)>a
and hence p = pr^(J(N—p)Sii(N — p). Since p is compact in ua/a we have
P S U (N' — p) where N' is a finite subset of N containing p. Thus N' is not inde-
pendent. Conversely, it is clear that any finite subset of an independent set
is independent.

Lemma 3.6. Let a be an element of a semimodular, compactly generated,
atomic lattice and let N be an independent subset of Pa. Then N is a maximal
independent subset of Pa if and only if UAr = re0.

If UN = ua, then TV is clearly a maximal independent subset of Pa. Now
let N be maximal and let pEPa- Then either DN^p or there exists p'EN
such that \f(N—p')\Jp~^p'. In the second case \J(N — p') =£p since otherwise
U(iV — p')^p' contrary to the independence of N. Thus we have U(N—p')
LJp>U(N-p') by semimodularity. But \J(N-p')\Jp^\J(N-p')L)p' = \J(N)
>[)(N-p'). Thus \J(N)=\i(N-p')KJp^p. Hence UTV^p in either case.
Since p was an arbitrary element of Pa we have i)N^i)Pa = ua.

Lemma 3.7. Let a be an element of a semimodular, compactly generated,
atomic lattice L and let N be an independent subset of Pa. Then the elements of
L which are joins of subsets of N form a complete sublattice of L which is iso-
morphic with the lattice of all subsets of S.

Consider the mapping S—>US. If USi = US2, then pi Si)Si Si)Si all
piESi. Since N is independent it follows that piGS2 all piESi. Thus Si £S2
and similarly S2CSi. The mapping is thus one-to-one. Now let Sa be a col-
lection of subsets of N. Clearly Ua (US„) =U(Va Sa) and hence the mapping
preserves joins. Let 6 = U(A„Sa) and let Ta= {bVJplpESa — A„ Sa}. Then
p'>b ior each p'ETa since N is independent and L is semimodular. Also
UFa = &WU(S0-A„Sa)=U(AaSa)UU(Sa-AaSa)=U(S„).Nowc»Up1 = c)Up2
where pi, piESa — Aa Sa implies that pi = p2 since N is independent. Thus
A« Ta = 0. Let us suppose that na(UF„)> 6. Then no(UF„)^r> 6 by atomicity
and hence rgUF„ all a. But r is compact in u0/b and hence rgUFa' for some
finite subset Tf of Ta for each a. Now pick a fixed a, then by semimodularity
there exists p'ETf such that p'gU(F„' -p')Vr. Since Aa Fa = 0 there
exists 0 such that p'GF„. But then rgUF^ implies p'Si)(Tf -p')\J\JT8
gU(FaVF^-p'). Ii p' = b\Jp, then we have pSi)(SaVSp-p) contrary to
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the independence of TV. Hence we conclude that fla (U5a) = na(U7a) =o
= U(Aa Sj). Thus the mapping preserves meets and the proof of the lemma
is complete.

Corollary. If a is an element of a semimodular, compactly generated,
atomic lattice, then ua/a is complemented and each element of ua/a is a meet of
elements covered by ua.

For if bCua/a, let 5 be a maximal independent set of points of uja con-
tained in b. Extend 5 to a maximal independent set of points P. Then
o_AJ(P-S)=UP = „fl, and clearly br~\U(P-S)=a since l~\SC\l\(P-S)=a.
Now p\Jb > 6 for each p G P - S. Let Pi C P - S be such that the set
{p \J b | p G Pi} is maximal independent. Then if pi G Pi we have
ua>\}{p\Jb\pCPi-pi] and 0P(J{p\Jb\pCPi~p} =b by Lemma 3.7.

In order to prove a sufficiently general existence theorem on irredundant
decompositions it is necessary to have a criterion for subsets of such decom-
positions. Let then a = f\Q he an irredundant decomposition of a into irre-
ducibles and let RQQ. If qCR, we have D(7?-g) ^0(Q-q) >a. Hence there
exists pCPa such that f)(R-q) '=C)(Q-q) ^p. Clearly g^p since qr\0(Q-q)
= f)Q = a. We thus make the following definition:

Definition 3.5. A subset R of L is irredundant over a if for each rCR,
there exists p>a such that fl(7? — r) ~^p and r}tp.

We can now state and prove the fundamental existence theorem on
irredundant decompositions.

Theorem 3.1. Let a be an element of a semimodular, compactly generated,
atomic lattice and let R be a set of completely meet irreducible elements contain-
ing a. Then R can be extended to an irredundant decomposition of a if and only
if R is irredundant over a.

Proof. We have proved the necessity in the paragraph preceding Defini-
tion 3.5. To prove the sufficiency let R be irredundant over a. Then for each
qCR, there exists an element p,CPa such that g=£p3 and 0(7? —g) ^p,. Let
T^i = {p«|gG7c} and let K2 be a maximal independent subset of
{pCPa\pSr\R}. LetK = KiVKi. Now suppose that (J(K-pq) ^pq for some
pqCKi. Then since g 1% f)R^U7C2 and g^f1(7?-g') ^pq, all q'CR-q we have
q^(J(Ki-pq)yj\JKi^O(K-pq)^pq contrary to q£pq. Thus \J(K-pq)£pq
all pqCKi. Next suppose that (i(K — p) ~^p for some pCKi- Since p is com-
pact in uja there exist finite sets K{ QKi and K2 CK2 — p such that
(i(K{ V7C2) ^p. Since K2 is independent, K2 is nonempty. Replacing K2 by
a smaller set if necessary we may assume that for some pq G K{,
\J(Kj\/K{ -pq)^p. By semimodularity we have pqSV(K2' \JK{ -pq)\Jp
S U (K -pj) contrary to pq£\J(K-pq). Thus \J(K-p)£p all pG7£2and K is
thus an independent subset of P„.

Now for each pCK2, let qp be an irreducible such that qp^.\J(K — p),
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qp£p. Such irreducibles exist by Lemma 2.5. Let Q'={qp\pEKi}. Since
qP>^l){K-p'} ^p all p' ^pin K2wehaveV[(Q' -qp)^p. Now let Q = Q'\/R.
If qER, then (\(Q-q) = r\(R-q)r\nQ'^r\(R-q)r\[}Ki'^pq. If pEK2, then
^(Q-qP) = flRr\f](Q'-qp) S (jKir\r\(Q'-qp) Sp. Thus if we show that t)Q = a
then this decomposition is a fortiori irredundant. Suppose that f)Q>a. Then
nCF^p' for some p'EPa. Since f\R^f)Q we have p'SflR and hence p'S(~\K2
by Lemma 3.6. Furthermore p'SCiQ'SqP for all pEK2. If p'SV(K2-p) for
some pEK2, then gPsU(F'2 — p)LJp'= (JK2^p contrary to qPl£p. Thus
p'SV(Ki-p) all pG-K2. But then p'SV\P\}(K2-p) =U(AP (X2-p) =U(0)
= a by Lemma 3.7 contrary to p'>a. Thus (")() = a and the proof of the theo-
rem is complete.

Since the null set is trivially irredundant we have

Corollary 1. Every element of a semimodular, compactly generated, atomic
lattice has an irredundant decomposition into completely meet irreducibles.

Let q be an irreducible containing a such that qltua. If R consists of the
single element q, then R is irredundant since H(i? — q) =u^q. Hence we have

Corollary 2. If a is an element of a semimodular, compactly generated,
atomic lattice and q is a completely meet irreducible element such that q ^ ua, then
there exists an irredundant decomposition a = C\Q such that qEQ-

We conclude this section with the following theorem on the cardinality of
maximal independent sets of P„.

Theorem 3.2. Let L be a semimodular, compactly generated, atomic lattice.
Then any two maximal independent subsets of Pa have the same cardinality.

Proof. Let M and TV be two maximal independent subsets of Pa. We may
suppose that | M\ S | TV|, where \X\ denotes the cardinality of a set X.
li N is finite, then ua/a is finite dimensional and the number of elements in
any maximal independent set is simply the dimension of ua/a. Hence | M\
= \N\. If iV is infinite, we have UM = i)N=ua and hence for each pEM,
pSiiN. But then there exists a finite subset N„QN such that pSUNv. Let
S={Np\pEM} and let /V" = VpeAf Np. Then N' as a subset of N is inde-
pendent. Moreover, pgUW for each pEM implies that UN'= i)Pa = ua.
Hence N' is a maximal independent subset of Pa and thus AT = N. Now for
each p, Np is a finite subset of N, and since S is infinite, it follows that
|S| = | N'\ = | N\. But the mapping p—>7VP is single valued and hence
|M|S|S| =|7V|. Thus \M\ =\N\.

4. Modular lattices. Throughout this section L will denote a modular,
compactly generated, atomic lattice.

For modular lattices satisfying the ascending chain condition, the prin-
cipal results on irreducible decompositions concern the replacement of ele-
ments in two irredundant decompositions (Dilworth [5]). Since the decom-
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positions are finite it follows from these replacement theorems, that the num-
ber of elements in an irredundant decomposition is unique. In this section
we shall extend some of these replacement theorems to compactly generated
modular lattices. We shall see that there are many different classes of ir-
redundant decompositions and that replacement properties are dependent
upon the classes of decompositions involved. Moreover, the unicity of the
number of elements in irredundant decompositions does not generalize com-
pletely. Thus, an example of a compactly generated modular lattice is con-
structed in which an element has two irredundant decompositions with differ-
ent cardinalities.

We begin by showing that in modular compactly generated lattices the
existence of irredundant decompositions is equivalent to atomicity.

Theorem 4.1. Every element of a modular compactly generated L lattice has
an irredundant decomposition into completely irreducible elements if and only if
L is atomic.

Proof. We need only show that if every element of L has an irredundant
decomposition, then L is atomic.

Suppose a = \\Q is an irredundant decomposition of a into completely
irreducible elements. Let qCQ and g* = n{xG7|x>g) >q. Then gUD(Q — q)
>q since Cl(Q — q)>a, and hence gUCI(<2 — g) ^g*. By modularity we have
qU[q*r\f)(Q-q)]=q*r\[q\J,\(Q-q)]=q*>q, and hence q*r\0(Q-q)>q
r\q*r\i~)(Q — q)=a. Hence if every element of L has an irredundant decom-
position, then every element of L is covered by some element.

Now suppose b>a. From the above, pCL exists such that p>a. Suppose
Osfcp. Then bf~\p=a. Let }xa} be a chain of elements of L such that bC\xa = a
for every index a. Then by Lemma 2.4, bCWJa x„ = Ua bf\xa = a. Thus by
the Maximal Principle it follows that a maximal element m exists such that
m(~\b = a. Let sCL be such that s> m. Then bC\s > a. Hence {bC\s)\Jm = s>m,
whence br\s>br\s(~\m = a. Thus under any circumstances rCL exists such
that b~^r>a, and hence 7 is atomic.

Our next theorem is a direct generalization of the classical replacement
theorem.

Theorem 4.2. If a is an element of a compactly generated, atomic, modular
lattice and a = f\Q = fiQ' are two decompositions of a, then for each qCQ there
exists q'CQ' such that a = f\(Q — q)C\q'. If the decomposition a = f)Q is irredun-
dant, then the decomposition a = f\(Q — q)r\q' is also irredundant.

Proof. Let gGQ- For each q'CQ', define v by
V = 0 (Q - q) r\q'.

Then a = 0q>eQ' ry, and aSrq'S^(Q — q) lor each q'CQ'. Now since L is
modular, the quotient sublattices g\J(f\(Q — q))/q and i\(Q — q)/C\(Q — q)C\q
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= f\(Q — q)/a are isomorphic, q is completely irreducible in L and hence q is
completely irreducible in the quotient qD(f\(Q — q))/q. Thus a is completely
irreducible in the quotient f)(Q — q)/a. But a = C\q'eQ' rq> is a representation
of a as a meet of elements of f\(Q — q)/a, and hence for some q'EQ', a=rq-
=r\(Q-q)r\q'.

Suppose the decomposition a = C\Q is irredundant. Then fl(Q — q)>a, so
that if a = C\(Q — q)(~\q' is a redundant decomposition, there exists an element
qiEQ — qsuch that a = V\(Q— {q, qi})r\q'. Now in this decomposition, q' can
be replaced by some g2G(? giving a decomposition of a. But then either
a = ft(Q — q) or a = C\(Q — qi), contrary to the irredundance of the decomposi-
tion a = (]Q. Hence the decomposition a = C\(Q — q)C\q' is also irredundant.

We note that the theorem holds in any complete modular lattice.
The corollary to Lemma 3.7 can be sharpened in the case of modular lat-

tices to give

Lemma 4.1. The quotient ua/a is complemented point lattice.

For since ua/a is complemented and modular, it is also relatively comple-
mented. Hence if xEua/a and y is the union of the points contained in x,
then the relative complement of y in x/a must be a and thus x=y.

The following lemma relating irreducibles containing a to the elements
covering a will be needed.

Lemma 4.2. Let aEL and let p, p' be two distinct elements covering a. If q
is an irreducible such that q^a and q}£p, p', then qf~\(p\Jp') > a.

For since qlkp, P' we have pC\q = pT\q = a and hence pDq>q and
p'Dq>q. Since q is irreducible it follows that p\Jq = p'\Jq = pDp'\Jq. Thus
(p\Jp')\Jq>q and hence pDp'>qC\(p\Jp'). Since p\Jp'>p>a it follows
that qC\(pyJp')>a.

Definition 4.1. li a — (\Q is a decomposition of a, let

HQ = {p E Fa | H(Q - q) >. p some q E O]    and    hQ = UHq.
Lemma 4.3. Let a = V\Q be a decomposition of a into irreducibles. Then
(1) Hq is an independent subset of Pa.
(2) Hq contains at most one element p such that V\(Q — q)^p.
(3) If a = C\Q is irredundant, then Hq contains exactly one element p such

that i)(Q-q)^p.
In order to see that (2) holds, let 0(Q~q) ^p,p' where p and p' are dis-

tinct. Since a = qr\f\(Q — q) it follows that q£p,p' and hence q(~\(p\Jp')>a
by Lemma 4.2 which contradicts a = qC\C] (Q - q) S qC\ (pDp'). Now if f~l (Q - q)
Sp and p'EHQ-p, then i)(Q-q)£p' and hence ^(Q-q')^p' where jVg.
But then q^f)(Q-q')^p'. Thus q^U(HQ-p). Since q£p it follows that
\J(HQ — p)£p. Thus HQ is independent and (1) holds. (3) follows immediately
from (2).
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According to Theorem 3.1 each element a has at least one irredundant
decomposition into irreducibles. For modular lattices a much stronger exist-
ence theorem holds.

Theorem 4.3. Let a be an element of a compactly generated, atomic, modular
lattice and let a = C\Q be an irredundant decomposition of a into irreducibles.
Then if J is an independent subset of Pa such that 73770, there exists an irre-
dundant decomposition a = f)Q' such that Hq> = J.

Proof. By a trivial application of the Maximal Principle J can be extended
to a maximal independent set MQPa. Let 7i = 7—77Q and Mi = M— Ji. If
we set 6 = UJiandc = Uil7i, then by Lemma 3.6, bUc = 0M=ua and by Lemma
3.7, b(~\c = a. For each PCHq, let qp he the unique element of Q such that
f"H_— qj)'=p. Then qpltp and hence qjAp>qp. Since qp is irreducible,
qvApi = qp\Jp for any other piCMXsuch that gP=£pi. Thus qP\Jc = qp\J\JMi
= qp\Jp> qp. By modularity we have c>cC\qp. Now o _7(cngP)^„a, since
otherwise c = cC\ua = cf~\(byj (cC\qp)) = (cC\b)U(c(~\qp) = cC\qp contrary to
c>cf\qp. Thus ua = b\Jc>bKJ(c(~\qp). Let us set sp = b\J(cC\qP) so that sp is
a maximal element of uja for each PCHq.

Now for each pG7i let us set sp = \J(Ji — p)\Jc. Clearly ua>sp for each
pdi. Furthermore, since Ji is an independent subset of P„ it follows from
Lemma 3.7 that f\p(J(Ji — p)=a. Since L is modular, the mapping x—>xWc
maps the quotient b/a = b/bC\c isomorphically onto b\Jc/c = uJc. Hence
Dps/, sp = c. Thus

iisp= n sPr\ n sp = c r, n (b \j (c n qP)) = n («n 0 u (c n ?J,)»

= n ((c n j) u (c n ?,)) = n (c r\ gP) = c n n <? = a.
Hq Hq

It follows immediately from the definition that if pCJi, then sp^c^UHQ
and if pCHQ, then sp^o^U/i. On the other hand, if pCJi, then sP^U(/i-p)
and if PCHq, then sp^cf^gp^U(770 — p). Thus for each pG7 we have
V=P all p'^p and hence n{sP-|p'^p, pCJ}'=p. By Lemma 2.5 for each
pC J there exists a completely meet irreducible element gP such that gp ^sp
and gp £ua. Let Q'= {gP |pG7}. Then uaC\qP =xP and hence by Lemma 3.2,
f)Q'=a is an irredundant decomposition of a. Clearly 77Q« = 7.

For finite irreducible decompositions it is easily verified that (iJ\(Q — q)
^ua. This property no longer holds for general decompositions. In fact, we
shall show that _/!(£> — q)C\ua = hQ. A preliminary lemma is needed.

Lemma 4.4. Let aCL and let a = \\Q be an irredundant decomposition of a
into irreducibles. Furthermore let Q' = {qi, ■ • ■ , qn} be a finite subset of Q such
that f\(Q — qi)^pi> a, for each i. Then 0(Q-Q')^p implies pjU ■ • ■ \Jpn^p
for each pCPa-

For n — 1, the lemma follows immediately from Lemma 4.3. Now suppose
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that the lemma holds for n = k — 1 and let f)(Q — [qu • • • , qk})^p> a. If
S/t=P, then 0(Q— [qi, • ■ ■ , <Z*-i}) iSp and hence by the induction hypothesis
pxKJ • ■ • Up*>.piU • • • Llpk-i^p. If qk}tp, then since qk%pk we have
qkf\(pVJpk) >a by Lemma 4.2. Now C\(Q-{qi, ■ ■ ■ ,qk-i})^qk^qkr\(p\Jpk)
and by the induction hypothesis we have piD ■ • • Dpk-i^qkr\(pDpk).
Then

px\J ■ ■ ■ \Jpk S pkD(qkC\(p\Jpk)) = (pkDqk)C\(p\Jpk)

= (p\Jqk)r\(p\Jpk)lZp.
The lemma follows by induction.

Theorem 4.4. If aEL and a = f)Qis an irredundant decomposition of a, then
Oqn(Q-q)r\ua = hQ.

Proof. Let UqV\(Q — q) Sp> a. Then since p is compact in ua/a, there exists
a finite subset \qx, ■ • • , q„} of Q such that Ui C\(Q — qf) S p. Thus
n«2-{<Zi, • • • ■ 2n})SU,n(C-5<)Sp. Let n(Q-q,)^pt>a. Then P,EHq
and by Lemma4.4, pxD ■ ■ • Up„Sp. Hence hQ = \lHQSpall pSiiq (.(Q-g).
Since ua/a is a point lattice we have re<}SU? 0(Q — q)f\ua. But \Jgi^(Q — Q)
r\ua^hQ trivially.

In the theorems which follow it will be shown that the replacement
properties of irredundant decompositions are determined by the order prop-
erties of the elements hQ.

Theorem 4.5. Let a = 0Q be an irredundant decomposition of aEL and let
a = 0Q' where Of is obtained from Q by replacing qEQ by an irreducible q'.
Then /j0' = reg.

Proof. According to Theorem 4.2 the decomposition a = CiQ' is irredun-
dant. Let p be the unique element of Hq such that V\(Q — q) Sp. Now for each
P*EHq~P let q* be the unique element of Q such that fl(() — q*) Sp* and
let p~* be the unique element of HQ> such that H((2'— q*) S^*. Clearly the
correspondence p*—+p* is a one-to-one mapping of Hq~P onto HQ>—p.

Now let p*EHQ — p be such that p*7*p~* and let q* be the unique element
of   Q  ior  which   fl(Q-q*)^p*.   Then  q'^p*  since  otherwise   Cl(Q'-q*)
= C\(Q— {q, g*})P\£7'Sp* and hence p* = p~* contrary to assumption. Also
q'^p  and   hence  by  Lemma  4.2,   qT\(p\Jp*)>a.   But  then   d(Q'-q*)
= D(<3- {q, q*})r\q'^q'r\(p\Jp*) and thus p* = q'C\(p\Jp*). It follows that
pL>p*=p\J(qT\(p\Jp*)) = (p\Jq')r\(p\Jp*)=pDp*. But pKJp* = p\Jp*
holdstriviallyiip* = f>*.Th\isiorallp*EHQ-pweha\epL)p'* = p\Jp*.Th\is

hQ, = U HQ. = U (p D f*) = U (p W p*) = [)HQ = hQ.

This completes the proof of the theorem.
From Lemma 3.6 we get the following corollary to Theorem 4.5.
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Corollary. Under the hypotheses of Theorem 4.5, if HQ is a maximal inde-
pendent set of Pa, then Hq, is also a maximal independent set of Pa.

If the ascending chain condition is satisfied, then ho.=ua for every ir-
redundant decomposition a = C\Q. Thus it is not surprising that an additional
hypothesis is required for a simultaneous replacement theorem in the more
general case.

Theorem 4.6. If a is an element of a compactly generated, atomic, modular,
lattice and a = i\Q = C\Q' are two irredundant decompositions of a with aVq^Aq',
then for each q'CQ' there exists qCQsuch that a = H(Q — q)C\q' = H(Qj — q')Hg.

Proof. Suppose that the irredundant decompositions a = C\Q = r\Q' are
such that hQWhQ,, and that g'G<2'- Let p'CHQ- he such that C\(Q'-q')^p'.
Since UHq^UHq^P', there exists a finite subset {pi, • • • , p„} CKq such
that pjU ■ ■ ■ yjpn^p'. We may assume that {pi, • • • , pn} is a minimal
such subset. Then if g, G Q is such that Ci(Q — qj) ^ pt (i = 1, • • ■ , n),
fi((?-{gi, • • • - gn})^pAJ • • ■ yJpn^P'. Moreover, if for some i, q^p',
then \r)(Q—{qi, • • • , g,-i, g»+i, • • • , gn})_;p', and hence it follows from
Lemma 4.4 that pj^J ■ • ■ \Jpi-.jJpi+jU ■ ■ ■ ̂ Jpn~=p', contrary to the
minimality of {pi, • • • , pn\. Thus for each i= 1, • ■ • , n, g,=£p'. Now
q'}£p', and hence there must exist some p,C{pi, • • • , pn} such that q'^pj.
Suppose 0(Q — qj)C\q'>a. Then since 7 is atomic, pCPa exists such that
fi((? — ai)(~^a'=P- But then C\(Q — qj) ~^p, pj, contradicting Lemma 4.3. Hence
("KG-ii)^0' —a- ^ is also true that q^p', and hence by a similar argument,
("K(?' — °')7^gj=a. The irredundancy of the decompositions a = [)(Q — qj)(~\q'
= fi((?' — a')r\qj follows from Theorem 4.1.

Corollary. Let aCL and a = C\Q be an irredundant decomposition of a.
Then for each irredundant decomposition a = f)Q' and each q'CQ', there exists
qCQ such that a = f\(Q — q)r\q', if and only if /jq = „„.

Proof. If hQ = ua, then for any irredundant decomposition a = C\Q', ha
= ua=\hQ', and hence Theorem 4.6 holds for the decompositions a = \\Q
= fl67'. Suppose hq<ua. Then 77q is not a maximal independent subset of Pa,
and hence there exists an independent subset J<ZPa such that JjJHq. By
Theorem 4.2, there exists an irredundant decomposition a = C\Q' such that
HQ.=J. Let PCHq,-Hq, and let g'G<2' be such that 0(Q'-q')^p. Then
g'_;UTTq, and hence C\(Q — q)C\q'>a for all gG(?- Thus q' can replace none
of the irreducibles in the decomposition a = 0Q.

The replacement property of Theorem 4.2 can be considerably sharpened.
In order to simplify the statement of the theorem we shall introduce the
notion of Q-equivalence.

Let a = Df2 be a decomposition of a, and let SCjQ. A set T of completely
irreducible elements of 7 is said to be Q-equivalent to S if there is a one-one
mapping 0 of 5 onto T such that for each qCQ, a = f)(Q — q)r\d>(q).
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Theorem 4.7. If a is an element of a compactly generated, atomic, modular
lattice and a = C\Q = r\Q' are two irredundant decompositions of a, then for each
finite subset SCQ there exists a subset S'CQ' such that S' is Q-equivalent to S. If
hQs^hQ', then for each finite subset S'CQ' there is a subset S<LQ such that S' is
Q-equivalent to S.

Proof. For re = l, the first statement of this theorem is just that of Theo-
rem 4.1. Let [qi, • • ■ , qn} be a finite subset of Q. For each i = l, •••,«, let
S,- = \q' E Q\a = f](Q — g,) C\q'}. Suppose for some ^-element subset
{(Zm. • • • . <Z»-*}^{ffi. • • • . in}, kSn, S,-,V • • • VS,-t contains m<k ele-
ments, say q-i, • ■ ■ ,q'm. Let p^Giigbesuch that ft(Q — q,,) ^pij (j = L ' • ■ ,k),
and let pj EHQ, be such that 0(Q'-q,!) Wp'i (f=l, ■ • ■ ,m). Then for each
q'EQf —\q[, • • • , q'm}, r\(Q — q,)r\q'>a, and hence, since C\(Q — g.) contains
only one element of Pa, g'Sp< ior each i — 1, • • • , k. Thus

ncc- {qi,---,qfi})^piyj■■■yjpk,
and it follows from Lemma 4.4 that p{\J ■ ■ • \Jp'm^pi\J ■ ■ • Dpk. But this
is impossible, since the dimension m of the quotient pi'W • • • Dp'm/a is
less than the dimension k of the quotient piVJ • • • \Jpk/a. Hence for each
^-element subset \q,v • ■ • , g,-4} C \qu ■ ■ ■ , qn}, S,,V ■ " • VS,t contains
at least k distinct elements. It now follows from P. Hall's theorem on repre-
sentatives of subsets that there are re distinct elements q{, - • • , qf EQ' such
that q^ ESi (i= 1, • • • , re), completing the proof of the first part.

Now let hQ^hQ'. Let {qx , ■ ■ • , q„' } be a finite w-element subset of Of,
and let F;= \qEQ\a = V\(Q — q)C\q,! }. In view of the preceding paragraph,
to prove the second part of the theorem it suffices to show that FiV • • • V Fn
contains at least re distinct elements. Suppose FiV • • • VF„ contains m<n
elements, say qx, ■ ■ • , qm. For each i = l, ■ • • , m, let P,EHq be such that
(")((? —g,-)^p.-. Then if pEHQ- {px, • • • , pm}, ql Sp for each i=i, ■ ■ ■ , re,
and hence q{ f~\ ■ • ■ P\qn' sU(iio— {pi, • • • , pm})- Since regSUifg-, and
since for each i, qi is covered by only one element, AgVJg/ > q[ and hence
hQ>hQr\qtL Furthermore if k<re, then (hQr\q{ f~\ ■ ■ • (~\qk )Dqk+i>qk+u and
hence hQP\qi C\ • • ■ C\qk' > hQC\qx f\ • • • C\qk+i. Thus the quotient sub-
lattice hQ/hQr\q{ C\ ' • • f~\q„' is of dimension re. But now we have a contra-
diction, since the quotient hQ/i}(HQ— [pi, • • • , pm}) is of dimension m<n.
Hence FiV • • • VF„ contains at least re distinct elements, and the proof is
complete.

Corollary. If a is an element of a compactly generated, atomic, modular
lattice and a = \~\Q = C\Q' are two irredundant decompositions of a with ftog/tg',
then there exists a subset S'QQ' such that S' is Q-equivalent to Q.

Proof. For each qEQ, let St=°{q'EQ'\a = r\(Q-q)niq'}. Then from
Theorem 4.7 it follows that for any finite subset {gi, • • • , g„} (LQ, S„V ■ • ■
VSj„ contains at least re distinct elements. Now suppose qEQ and pEHQ
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is such that n(()-g)^g. Since hQShQ,,pS U77Q, and hence pSpi^J • • -^Jpi
for some finite subset {pi', • • • , pi } QQ'. If g,' is such that f)(Q'— qi)
>pl (7=1, • • • ,k),then(\(Q'-{q(, ■ • • , qj }) ̂ p, and thus {gi, • • • , qj }
1J>Sq. Hence for each qCQ, Sq is finite. The corollary now follows from the
Marshall Hall theorem (Hall [6]) on representatives of subsets.

Corollary. If a = r\Q = f\Q' are two irredundant decompositions of aCL
such that hQ = hQ>, then Q and Q' have the same cardinality.

We conclude this section with an example of a compactly generated,
atomic, modular lattice in which the null element has two irredundant de-
compositions into irreducibles of different cardinalities.

For each integer i, let Ai be a group isomorphic with the additive group
of integers modulo a fixed prime p, and let G be the complete direct sum of
the groups Ai, that is, the set of all functions / on the integers such that
f(i)CA{, with addition defined componentwise. Then G is an (additive)
abelian group every element of which has order p. Let L be the lattice of
subgroups of G. L is then compactly generated and modular, and since every
element of G has finite order, L is also atomic. For each i, let Qi be that sub-
group of G consisting of all functions fCG for which/(i) is the zero element of
Ai. Then G/Qi is isomorphic with At and hence Qi is a maximal subgroup of
G. Thus Qi is a completely irreducible element of L for each i. Since G is the
complete direct sum of the Ai, it follows that 0 = fl,- Q, (0 denoting the zero
subgroup of G). Moreover, for each i, Qi<J(0j*i Qj)=G, and hence the de-
composition 0 = F\iQi is irredundant. Now G can be considered as a vector
space over the field of integers modulo p, and accordingly, G has a basis {/„}.
Since G has cardinality 2*°, the number of fa must also be 2 °. For each index
a, let Qj he that subgroup of G generated by the set {/^|j3^_]. Then each
Qj is a maximal subgroup of G, and just as above, it follows that 0 = Ha Qj
is-an irredundant decomposition of 0. Thus 0G7 has two irredundant decom-
positions with different cardinalities.

5. Distributive lattices. Under the hypothesis of the ascending chain con-
dition, each element of a distributive lattice has a unique irredundant decom-
position into irreducibles (Birkhoff [l, p. 142]). This decomposition is neces-
sarily finite. In this section, we shall show that there exists a unique (though
possibly infinite) irredundant decomposition for each element of a compactly
generated atomic distributive lattice.

We begin with a theorem concerning irreducibles in semimodular lattices.

Theorem 5.1. Let a be an element of a semimodular, compactly generated,
atomic lattice. Then an irreducible q appears in every irredundant decomposition
of a if and only if there exists p>a with p%q such that p(~\(x\Jy) = (p(~\x)
VJ(p(~\y) for all x, y^a.

Proof. Suppose such a p exists. Let q' be an irreducible with g'=£p. Then
pr\q = pr\q'=a, and hence a = (pr\q)\J(pr\q')=pr\(qVJq'). Now if q^q',

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



16 R. P. DILWORTH AND PETER CRAWLEY [July

then gWg'Sw0Sp contrary to p%qDq'. Thus q = q', and g is the only ir-
reducible not containing p. Hence q appears in every decomposition of a.

Suppose q appears in every irredundant decomposition of a. Let p be an
element covering a such that g=fep. Let x, ySa, and suppose x(~\p=yC\p = a.
By Lemma 2.5 an irreducible element gx exists such that gxJp and gxSx.
Similarly an irreducible element qy exists. Thus by Theorem 3.1 there are
irredundant decompositions of a which contain gx and qy, respectively. But
g appears in every irredundant decomposition of a and g=£p, whence it follows
that q = qx = qy- Hence gSxWy, so that xDy^p. Thus p(~\(x\Jy) = (pf~\x)
D(pf\y), and the theorem follows.

Combining Theorems 3.1 and 5.1 we have the following theorem.

Theorem 5.2. Every element of a compactly generated, atomic, distributive
lattice has a unique irredundant decomposition into irreducibles.

For distributive lattices satisfying the ascending chain condition it is easy
to show that g'So implies g'Sg where g belongs to the unique irredundant
decomposition of a. This property does not generalize to compactly generated,
atomic, distributive lattices. Consider, for example, the collection of all sub-
sets S of the set I of positive integers such that either S^I — {1} or I — S is
finite. It can be easily verified that this collection is closed under arbitrary
union and finite intersection and thus is a complete distributive lattice. The
compact elements of this lattice are the finite subsets of I— {l} and the
sets S such that 1GS. These sets clearly generate the lattice under arbi-
trary union and hence the lattice is compactly generated. The lattice is
obviously atomic. Now the unique irredundant decomposition of the null set
is 0 = fl"_2 Qn where Qn = I— {n}. Note that this lattice meet is not set inter-
section since A "-2 Qn = {1} ■ On the other hand, Qi = I— {1} is an irreducible
containing 0 such that QfQQn for every re^l.

6. Unique decompositions. In the previous section we have shown that
each element of a distributive, compactly generated, atomic lattice has a
unique irredundant decomposition into irreducibles. This section will be
devoted to a characterization of lattices having unique irredundant decom-
positions into irreducibles. The characterization will be analogous to the
finite dimensional case (Dilworth [2]), though quite different techniques of
proof are required. We begin with the definition of the relevant concepts.

Definition 6.1. An atomic lattice L is locally distributive (locally modular)
if ua/a is distributive (modular) for each aEL.

Clearly a locally distributive or locally modular lattice is weakly semi-
modular. Hence from Lemma 3.3 we have

Lemma 6.1. A locally distributive or locally modular, compactly generated,
atomic lattice is semimodular.

We first show that for compactly generated atomic lattices, unique ir-
redundant decompositions imply that the lattice is semimodular.
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Lemma 6.2. Let L be a compactly generated atomic lattice. Then if every ele-
ment of L has a unique irredundant decomposition into irreducibles, L is semi-
modular.

For let p>a, b^a, and 0=£p. Suppose pVJb does not cover b. Then x
exists such that p\Jb>x>b. By Lemma 2.5 there exists an irreducible g
such that g=S& and g=fcx. Similarly there exists an irreducible g' such that
g'Sjx and q'^p\Jb. Now a = p(~^q = pr\q'. By the Maximal Principal ele-
ments m and m' exist which are maximal such that m(~\q = a, m^p, and
m'C\q' =a, m'^p. By assumption m and m' have irredundant decomposi-
tions m = f\Mand m' = f\M'. Clearly gG-^7' and g' (£M. However, a = qC\f\M
= q'(~\r\M' are two different irredundant decompositions of a, contrary to
uniqueness. Thus pVJb>b, and L is semimodular.

The next lemma is a direct consequence of Theorem 5.1 and Lemma 3.7
(and its corollary).

Lemma 6.3. Let L be a semimodular, compactly generated, atomic lattice.
If aCL has a unique irredundant decomposition into irreducibles, then uja
is distributive.

It should be noted that in any compactly generated atomic lattice, uja
will be a complete atomic, Boolean algebra if it is distributive. We now turn
to the converse of the above lemma.

Lemma 6.4. Let L be a locally distributive, compactly generated, atomic lat-
tice. Then each element of L has a unique irredundant decomposition into ir-
reducibles.

From Lemma 6.1 it follows that L is semimodular. We will show first that
it p>a and if gi and g2 are irreducibles such that gi, g2_;a and gi, q2ltP, then
gi = g2. If qi9^q2, then gi=£g2 since otherwise gi^g2V7p^p contrary to gisfep.
Thus q2>qi(~\q2 and hence there exists b2 such that g2^b2>qiC\q2. Since
g2 ̂  p we have b2 J p. Now let S = {s \ qi ^ s ^ qiC\q2, s*Ub2 =£ p J. 5 is nonempty
since qi(~\q2CS. Furthermore, since p is compact in qja, S is inductive. Let
s* he a maximal element of 5. If gi>5*, then there exists _>i such that
gi^Wi>s*. Since s*}£p and s*^a we have w2 = s*KJp> s* by semimodular-
ity. Also s*£b2, since otherwise gi^s*^62 and hence giT^g^Oi! contrary to
02>-giP\g2. Since s*^qiC\q2 we have w3 = s*{Jb2> s* by semimodularity. Now
wi^w2 since gisfcp; Wit^w3 since gi=fco2; and w2t±Wz since s*\Jb2 Jp. By local
distributivity wjUw^Wi. But then wjUb2 = wjUs*VJb2 = wjUwi'^p and
hence WiCS contrary to the maximal property of 5*. Thus we must have
gi = 5* and hence qjOb2^p. But then gi_Jo2 = gi, since otherwise gA-7o2>"gi,
qjjp>qi and qjJbi^qi^Jp contrary to the irreducibility of gi. Thus gi^o2,
and hence gi^g2^o2 contrary to bi>qiC^\q2. It follows that our original as-
sumption is untenable and hence gi = g2.

Now let g be irredundant in the decomposition a = ClQ and let g^ 0(Q'— q')
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in the decomposition a = P\Q'. Then g J.psomepGF0. Now if q" 5*q all q"EQ'
we have q" Sp all q"EQ' by the result of the preceding paragraph. But then
a = n(FSp contrary to p>a. Hence q = q" some q"EQ'- But if q"^q' we
have gS(~l((F — g'). Thus g = g' and a has a unique decomposition into ir-
reducibles. This completes the proof of the lemma.

Combining Lemmas 6.1-6.4 we have

Theorem 6.1. A compactly generated, atomic lattice has unique irreducible
decompositions if and only if it is locally distributive.

An examination of the proof of Lemma 6.4 shows that the only conditions
required for the sufficiency argument are weak semimodularity and the fact
that every three distinct elements covering an element of the lattice are inde-
pendent. Thus we have the following corollary.

Corollary. A compactly generated atomic lattice is locally distributive if
and only if every three distinct covering elements generate a dense Boolean algebra
of order eight.

A further characterization analogous to that of Theorem 1.1 of [2] is the
following:

Corollary. A semimodular, compactly generated, atomic lattice is locally
distributive if and only if every modular sublattice is distributive.

If every modular sublattice is distributive then every three distinct cover-
ing elements must be independent and hence by the first corollary to Theorem
6.1, the lattice is locally distributive.

Now let L be locally distributive and let M be a modular sublattice which
is not distributive. We may clearly suppose that M is the modular, non-
distributive lattice of order five. Hence there exist elements a, b, c, d, e such
that bKJc = bL>d = cKJd = e and br\c = bC\d = cr\d = a. It now follows (see
Lemma 7.2 below) that there exist two irredundant decompositions a = C\Q
= C\Q' such that for each qEQ either gS& or gSc, and for each q'EQ' either
g'Sfr or g'Sd. Let qEQ be such that ql£b. By Theorem 6.1, qEQ' and hence
gSd. But then gScUcFSi>, a contradiction. Thus every modular sublattice
of L is distributive.

7. Locally modular lattices. The problem of the characterization of lat-
tices in which the number of components in the irredundant decompositions
of elements is unique is much more complex than the uniqueness problem
treated in §6. In fact it is easy to give examples of nonsemimodular lattices
in which the number of components is unique. Since a decomposition theory
for lattices which are not semimodular has not yet been developed we will
restrict our discussion to the semimodular case.

When a semimodular lattice satisfies the ascending chain condition the
decompositions are finite and the basic result states that the number of com-
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ponents in the irredundant representations is unique if and only if L is locally
modular (Dilworth [4]). For infinite decompositions, the example given at
the end of §4 seems to indicate that questions concerning the invariance of
the cardinality of decompositions are primarily set theoretic in nature. On
the other hand, in the finite case, the invariance of the number of components
is always obtained in terms of replacement properties and these properties
are of a lattice theoretic character. Accordingly in this section we shall in-
vestigate the structure of semimodular, compactly generated, atomic lattices
in which the fundamental replacement property of Theorem 4.2 holds. It
will turn out that the lattices satisfying this replacement property will be
precisely the locally modular lattices.

Definition 7.1. A lattice is said to have replaceable decompositions if for
every element a of the lattice, each irreducible in one irredundant decomposi-
tion of a can be replaced by a suitable irreducible in any other irredundant
decomposition of a.

The following lemma and its corollary show the sufficiency of local modu-
larity for replaceability.

Lemma 7.1. Let L be a locally modular, compactly generated, atomic lattice.
Then q^a and q=tua imply ua>qC\ua for each irreducible q.

For suppose that tta> qC\ua does not hold. Then there exist two distinct
elements pi and p2 in Pa such that (qC\uj)C\(pi\Jp2) =a and hence qf\(pA)pj)
= a. Now let X he a chain of elements x such that q^x^a, qC\(x^JpjUpj) = x,
xKJpitpi- Then q^UX^a and by continuity UX = gHUt (x\JpjJpj)
= qC\((}XVJpi\Jp2). Also 0XKJpi^p2 since p2 is compact in uja. Thus UX
satisfies the condition on x and since a trivially satisfies the conditions, it
follows from the Maximal Principle that there is a maximal element m for
which q^m^a. qr\(m\JpjUpj)=m, m\Jpi^p2. Now clearly mSJpiT^mSJpi
and m\Jpi>m, mSJp2>m. Thus m = (m\Jpj)r\(m\Jp2) and hence is reduci-
ble. It follows that q>m and by atomicity we have q^mi>m. If mJSJpi~=pr,
then mi\Jpi = mSJpjUp2 and m = qr\(myjpjUpj)=qr\(mjJpj)'^.mi con-
trary to mj>m. Thus mjUpi^p2. Since q^mi^a, by the maximal property
of m we must have qC\(miWpiL7p2)>wz. From mj<Jpj<Jp2>mjUpi>mi we
conclude that mj^JpjUp2>q(~\(mi\Jpjdpj). But m-jJpjOp2Cum/m and
since um/m is modular by hypothesis, we have m\Jpx\Jp2>gP>(wWpi _Jp2)
= m. Hence m\Jpi = m\JpjJp2'^p2 contrary to mWpi=£p2. It follows from
this final contradiction that ua > qC\ua.

Corollary. A locally modular, compactly generated, atomic lattice has re-
placeable decompositions.

For, by Lemma 7.1, each irreducible containing a is such that qC\ua is an
irreducible element of uja. But by Theorem 4.2 decompositions in uja are
replaceable. Hence by Lemma 3.2 decompositions in 7 are replaceable.
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The necessity of local modularity is a considerably deeper result. We
begin with two preliminary lemmas which will be needed later in the proof.
The second lemma concerning finite dimensional semimodular lattices is of
interest as a generalization of a well known classical theorem.

Lemma 7.2. Let L be a compactly generated, atomic lattice in which each ele-
ment has an irredundant decomposition into irreducibles. Then if a= aiC~\ ■ ■ ■
Pian is an irredundant finite representation of a, there exists an irredundant
decomposition a = f\Q such that for each qEQ, gS^/or some i.

For since L is continuous there exists a maximal element ?reiSai such that
a = »reif>\a2A • • • r\an. Similarly there exists a maximal element 7W2Sa2 such
that a = 7WiP\rej2P\a3fA • ■ • (~\an. By induction we get a = WiP\?re2P\ • • • C\mn
where mi is maximal such that a = mi(~\ ■ ■ ■ F\»w,P\a1+iA • • • P»o„. Thus
m'i>mi implies miC\ ■ ■ ■ r\mi-iC\ml f^m.+iFi • • • r\mn>a. Now let
mi = r\Qi be an irredundant decomposition of mi into irreducibles and let
Q=ViQi. Then DQ = f\idQi = Climi = a. Let qtEQi then fl((?,—g,-) >m{.
Hence C\(Q — qi) SmiC\ ■ ■ ■ P\mi-iC\(Qi — qi)r\mi+ir\ ■ ■ ■ C\mn>a. Thus
the decomposition a = f\Q is irredundant.

Lemma 7.3. Let L be a finite dimensional semimodular lattice in which the
unit element u is a join of points. Let B denote the set of elements of L which are
joins of points. Then if u>s, sSb imply b> sC\b for all bEB, L is modular.

Proof. Let us suppose that L contains an element which is not a join of
points. Then by finite dimensionality there exists a minimal element bEB
such that b/z contains an element x which is not a join of points. Let b > y S x.
By the minimal property of b, y is not a join of points. Let bi be the union
of points in y. Then t>>y>c>i. Since every element of L distinct from re is a
meet of maximal elements, it follows that there exists 5 such that u>s,
s}£b and sSy. Thus sf~^b = y. Now let S be a maximal independent set of
points in bt. Then &i = US by Lemma 3.6. Let S be extended to a maximal
independent set F of points in b. Then b = i)T. S—T clearly contains at least
two distinct points since otherwise b = UF> US = bi contrary to b>y>bi. Let
p, q be distinct points of S—T. Then s^p, q since otherwise y = bC\s^p, q
and &i = USSp, g, contrary to the independence of F. By the hypothesis of
the lemma pDq>sC\(p\Jq) = sC\br\(pKJq) =yf\(p\Jq). Thus yH(pWg) is a
point contained in y. Hence c>iSyf^(&Wg). But then yr\(pVJq) SyC\h
H\(pDq) =\J(S)f~\(p\Jq) =z since F is independent contrary to yC\(pVJq) >z.
In view of this contradiction we conclude that every element of L is a join of
points. Now let a\Jb>b for a, bEL. Let u>s, s^b, s^aVJb. Then sFi(aUi)
= b. Clearly s]£a and since a is a join of points we have a> sC\a = s(~\(a\Jb)
r\a = a(~\b. Then L is lower semimodular and since it is upper semimodular
by hypothesis, it is modular. This completes the proof of the lemma.

It will now be shown that the modularity of ua/a follows from the replace-
ment property for the irredundant decompositions of a.
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Lemma 7.4. Let L be a semimodular, compactly generated, atomic lattice
such that the replacement property holds for the irredundant decompositions of a.
Then uja is modular.

It will first be shown that Ua^s, s=£o, where b is a join of elements of Pa
imply that b > sf\b.

Let us suppose that this is not the case and hence that ua>s, s^b while
b>sC^b does not hold for some b which is a join of elements of P„. Now let
7 be a maximal independent set of elements of Pa contained in sC\b. Extend
7 to a maximal independent set 5 of elements of Pa contained in 6. Then by
Lemma 3.6, US = 6. Finally extend 5 to a maximal independent set P of
points in Pa. For each pCP let gp be an irreducible such that g„^U(P — p),
qp}£ua. Set Q= {gp|pGP}. Then by Lemma 3.7, a = C\Q is an irredundant
decomposition of a into irreducibles. Now consider the case when sC\b = a.
Then by Lemma 7.2 there exists an irredundant decomposition a = C\Q' such
that g'2:s or g'2^6 for each q'CQ'- Since b^a, there exists at least one
q'CQ' such that q'^s. Suppose that there is another q"CQ' such that
q"^s.Thenuar\q' = s = uanq"and henceuar\C\(Q'-q')=uar\q"r^r\(Q'-q')
= uar\qT\(\(Q'-q')=uar\[\Q'=a. Whence 0(Q'-q')=a contrary to the ir-
redundancy of Q'. Thus there is exactly one q'CQ' such that q'^s and hence
("K(?' — q')=b. According to the hypothesis of the lemma g' can be replaced
by gp for some pCP. Thus a = qpC\0(Q'-q'). Hence a^qpr\b = \J(P-p)
r\\J(S)=U(SA(P-p)) and thus SA(P~P) = 0. Since SQP it follows that
5={p} and thus b = \J(S) =p>a = s(~\b contrary to hypothesis. Hence we
may suppose that sC\b^a. Next let t* = (J(P—T) and suppose that sCM*=a.
Again there exists an irredundant decomposition a = f\Q' such that q's^s or
q'^t* for each q'CQ'- Also there is a unique q' such that q'^s. For this q' we
have f\(Q' —q')^t*. Since by hypothesis q' can be replaced by qp tor some
pCP we get a = U(P-p)nU(P-7)=U((P-p)A(P-7)). Thus (P-p)
A(P-T)=0 and hence T = P-p. But then wa> U(P-p) =U7 and hence
s = s(~\b contrary to s£b. We may thus assume that sC\b^a and sr\t*7^a.
Furthermore bC\t*^a. For since \JS = b>sl^b^\J(T) it follows that U(5- 7)
>a and hence 6P\/*^U(5- 7) >a. On the other hand a = sr\bn>t*. Since if
sr}bf}t*l±p>a, we have sr\b}zp and hence U7^p which implies a = U7
f"\U (P — 7) 2: p contrary to p>a. Thus the representation a = s(~\bC\t* is
irredundant and by Lemma 7.2, there exists an irredundant decomposition
into irreducibles a = 0Q' such that either q'^s, q'^b, or q'Wt* for each
q'CQ'- By the argument given above there is a unique q' in Q' such that
q'^s. By the replacement property we have a = qvr\\\(Q' — q) for some pCP-
But then

a ^ U(p - p) r\ (b r\ t*) = U(p - p) r\ (J(s a (p - t))
= U((P - p) A [S A (P - T)]) = U(S - (T V P)).

Thus S-T\jp = 0 and thus 5=7Vp- Hence o = U(S) =U7Up>U7. But
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Z>>sPibSUF. Thus b> sC\b contrary to hypothesis. The proof of the above
statement is thus complete.

Now let x be an arbitrary element of ua/a, and let c be a compact element
such that x S c. Then UF„ S x S c and hence there exists a finite set
{pi, " • • i Pn} of elements of F0 such that pfU ■ ■ ■ Up„Sc. We show next
that piD ■ ■ ■ Dpn/a satisfies the conditions of Lemma 7.3. It is clearly a
finite dimensional semimodular lattice in which the unit element is a join of
points. Now let pxD • • • Dpn>t, pxD • ■ ■ WpnSw and t}£w where w is a
join of elements of Pa- By Lemma 3.7, there exists v such that ua>v, v^t and
v^kw. By the first part of the proof we have w>vr\w = vC\(pi\J ■ • ■ \Jpn)C\w
= tC\w. Thus all of the conditions of Lemma 3.7 are satisfied and hence
piD ■ ■ ■ Dpn/a is modular. Since a<ayJc<pi\J ■ ■ ■ Dpn we conclude that
aKJc is a join of points of piD ■ ■ • \Jpn/a and hence is a join of the elements
of Pa. But since L is compactly generated, x = U{c|cgx} =U{aUc|cf£x}
and thus x is a join of elements of Pa. It follows that ua/a is a point lattice.
Now if xDy>y in ua/a, by Lemma 3.7 there exists 5 such that ua> s, s^y,
and j^xUy. Then s^x and since x is a join of points, the first part of the
proof implies that x>xC\s. But then x>xr\s = xr\(xL>y)r\s = xr\y. Thus
ua/a is lower semimodular and we conclude from Lemma 3.4 that ua/a is
modular. Hence the proof of the lemma is complete.

Lemmas 7.1-7.4 give the following theorem.

Theorem 7.1. A semimodular, compactly generated, atomic lattice has re-
placeable decompositions if and only if it is locally modular.
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