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Eindhoven University of Technology (The Netherlands) 

Abstract - One of the most important steps in the design of finite 

state machines is the assignment of values to the binary state 

variables to represent the symbolic internal states of the machine. 

The complexity of the resulting implementation can vary extensively 

from assignment to assignment. 

From our experiments with more than 20 sequential machines 

follows, that the silicon area for the best assignment that we 

found, was typically about half that for the worst assignment. 

The problem of finding an optimal state assignment is 

computationally complex. It is NP-hard. In a strict sense, it has 

never been solved, except for exhaustive search, which for large 

machines is unpractical or impossible, even using a computer. In 

this situation, some approximated heuristic approaches must be used. 

Using some knowledge about the internal structure of a sequential 

machine, these approaches try to reduce the search space to a 

manageable size and to keep the high quality solutions in that 

reduced space. They produce often very good solutions, but they do 

not guarantee the strict optimality for them. 

Most of the known heuristic state assignment methods work better 

for small than for large machines. 

For the above reasons, decompositional state assignment 

approaches are interesting. 
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If the specification of a given sequential machine (or its part) 

is strongly similar to the specification of a 

then there is a great chance to reach 

decompositional implementation. 

given standard machine 

a better solution by 

Constructing a modified version of the method of maximal 

adjacencies [1], we answered the question; how to find the (sub-) 

optimal sequential decomposition of 

number of sub-machines defining 

sequential sub-machine. 

a given sequential 

counters and a 

machine into a 

small general 

The precise algorithm for computing the (sub-) optimal state 

chains and the (sub-) optimal state codes is described in the report 

and illustrated with examples. 

Index Terms - Automata theory, logic minimization, logic system 

design, sequential machines. 
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1. Introduction 

The methodology for digital circuits 

growing complexity of modern IC's. 

computer-aided synthesis techniques 

have changed because of the 

To manage this complexity 

are used. They ensure 

functional, logical, electrical and geometrical correctness and 

allow a decrease in the design time. But often these techniques lead 

to integrated circuits, which require a large silicon area. 

Therefore design optimization procedures should be used to yield 

area-effective circuits. 

Basic architecture of a digital system consists of two parts: a 

processing unit and a control unit. The control unit can often 

require more than half of the total area, so it is very important to 

reduce the amount of hardware used by it. Serial processing units 

constitute also an important class of digital hardware. 

Control units and serial processing units can be represented by 

a finite state machine (FSM) (sequential machine, finite automaton). 

Traditional hardware implementation of a FSM consists of two 

parts: a combinational logic and a state memory (fig. 1.1). 

I·PRI MARY INPUT S ________ _ 

~===+t====~1 OUTPUTAFUNCTION 

~====> NEXT STATE 
FUNCTION <5 

~=======>~--------~ 
COMBINATIONAL LOGIC 

STATE 
MEMORY 

NEXT: STATE 

Fig. I. I General model of a hardware implementation 

for a sequential machine 

OUTPUTS 

The combinational logic realizes the next-state function <5 and 

the output function A. Depending on the present state and the values 
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of primary inputs, t5 generates the next state and A generates the 

values for the primary outputs. 

Because of the regular structure of the PLAs they are often 

used to implement the combinational logic of the FSM in modern 

designs. 

State memory is implemented through binary memory elements 

(flip-flops). 

One of the most important steps in the design of finite state 

machines is the assignment of values to the binary state variables 

to represent the symbolic internal states of the machine. The 

complexity of the resulting implementation can vary extensively from 

assignment to assignment. 

From our experiments with more than 20 sequential machines 

follows, that the silicon area for the best assignment that we 

found, was typically about half that for the worst assignment. 

The problem of finding an optimal state assignment is 

computationally complex. It is NP-hard. In a strict sense, it has 

never been solved, except for exhaustive search, which for large 

machines is unpractical or impossible, even using a computer. In 

this situation, some approximated heuristic approaches must be used. 

U sing some knowledge about the internal structure of a sequential 

machine, these approaches try to reduce the search space to a 

manageable size and to keep the high quality solutions in that 

reduced space. They produce often very good solutions, but they do 

not guarantee the strict optimality for them. 

Most of the known heuristic state assignment methods work better 

for small than for large machines. 

For the above reasons, decompositional state assignment 

approaches are interesting. 
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2. Basic definitions 

A sequential machine is a 5-tuple 

M = (I,S,O,o,A), 

with the following specifications: 

I - finite nonempty set of inputs 

S - finite nonempty set of internal states ; 

o - finite set of outputs ; 

o - a mapping, called the next state function, 

0: S x I -----7 S ; 

A - a mapping, called the output function, 

A: S x I -----7 0 (a Mealy machine) ; 

A: S -----7 0 (a Moore machine). 

Sequential machines can be represented by their graphs. The 

states are represented by the nodes of the graph and the transitions 

- by the arcs. The arcs are directed. Two nodes may be connected by 

more than one arc. When two or more arcs have the same start node 

and the same end node, they are called mUltiple and the transitions 

which they represent, are called multiple transitions. 

Multiple transitions are 

which contain exclusively 

checked and the largest 

the inputs from a 

input subspaces 

given multiple 

transition and don't have any common elements between each other, 

are found. The multiple transitions between two given states will be 

implemented together: all of them will be realized by a counter or 

all by PLA. 

When two 

they are called 

opposite arcs 

states, which 

states. 

arcs connect two nodes and have opposite directions, 

opposite arcs. The nodes which are connected through 

are called directly interconnected nodes and the 

they represent are called directly interconnected 
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Every node can be described as a start node, when only the arcs 

that are coming out of it are concerned. When, only the arcs that 

are coming into the nodes are concerned, then the node is described 

as a terminal node. 

All the arcs coming out of a certain start node form the start 

set of the node. All the arcs that are coming into a certain 

terminal node form the end set of the node. 

The two opposite arcs, which connect two directly interconnected 

nodes form directly interconnected pair. 

When an arc starts and ends at the same node, it is called 

cyclic, and the transition - cyclic transition. 

Every transition can be described by a start node - Si' a 

terminal node - T i and an input vector - Xi. 

So, single transitions are described by a triple of parameters 

(Si' Ti, Xi)· Multiple transitions are described by a start node Si' 

a terminal node Ti and a group of separate input subspaces Xi ... X
m

. 

So, multiple transitions are described by the n-tuple 

(Si' Ti, Xi···Xm)· 

An example for a graph structure of a sequential machine is 

given on fig.2.1. 
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cyclic transition 

directly 
interconnected 
states 

node 

start set of node 3 

node 

arc 

terminal 
node 

end set of node 8 

Fig.iT GraPh-structure of as~uential m~~hine 
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3. Decompositional implementation for a sequential machine 

Two sorts of decompositions are feasible for sequential 

machines: 

- simultaneous decompositions; 

and 

- sequential decompositions. 

Simultaneous decompositions divide the process described by a 

given sequential machine into a number of interacting parallel 

processes, each implemented by one partial machine. All the partial 

processes are active simultaneously and together they realize the 

decomposed process. 

Sequential decomposition divide the process described by a given 

sequential machine into a number of sequential sub-processes, each 

implemented by one sub-machine. Only one of the sub-processes is 

active at a given time and all the sub-processes together realize 

the decomposed process. 

In our previous works, we considered simultaneous decompositions 

with general partial machines [4],[5],[6],[7],[8]. The term 

"general" means that a partial machine can be any sequential 

machine. We considered also sequential decompositions with general 

partial machines. Our results in the last field will be published in 

the nearest future. 

In this work , we will consider some decompositions with special 

partial machines, i.e. partial machines which are (more or less) 

predefined. 

This sort of decompositions is very important, because it allows 

reuse of earlier designs. 

A limited reuse of earlier designs can be obtained by using 

parameterized generators, which describe some classes of circuits, 

e.g. k-bit long counter of the natural binary code, k-bit Gray-code 

counter, parameterized filter, parameterized CRC coder or checker 

etc. In this case, reuse of a design is limited to a given class of 
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circuits defined by a given generator. 

Often the specification of a circuit to design (or its part) 

does not meet completely the specification of a special machine 

designed previously, but it is only very similar to the special 

machine. In such case, the earlier design can still be reused but 

not as the only circuit. 

newly designed circuit 

The second circuit must be constructed. The 

together 

designed earlier must realize 

specification of a circuit to design. 

with a given special machine 

a machine which meets the 

Generally, in order to reuse the earlier designs a given 

sequential machine must be decomposed into a number of special 

partial machines (representing the earlier designs) and a number of 

general partial machines (representing the new part of the design). 

All the partial machines together must realize the decomposed 

machine. 

Reuse 

decreases 

important 

carefully. 

of earlier 

the design 

to reuse the 

Such designs 

designs is 

time and 

standard 

ensure the 

important not only because it 

design costs. It is specially 

designs which are designed very 

correctness and are optimal or 

near-optimal from the complexity point of view. 

If a large enough part of a circuit will be constructed using 

standard optimal designs and a small part of it will be constructed 

in the form of a general machine, it is a great chance to reach an 

optimal or near optimal solution. There is a chance to reach better 

solution than that offered by the heuristic state assignment tools 

applied to a general sequential machine on a whole. One reason for 

it is the fact that one large part of a circuit will be optimal due 

to using the optimal standard design; the second one is the fact 

that the second (general) part will be much smaller than the whole 

circuit and therefore easier to optimize. However, one must remember 

that the standard part and the general part will be optimized in 

separation. So, the eventual common parts of the logic cannot be 

shared in this case. It means, that having ideal optimization tools 

(e.g. state assignment tools), it will be always possible to find no 

worse general solution than any solution obtained by reusing of 

earlier designs. 
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So, the only reason, for the solution obtained by reusing the 

earlier designs to be better (from the complexity point of view) 

than the best solution found in a general way, is the unideal 

heuristic character of the optimization tools. 

If only a small part of a circuit will be implemented by reusing 

the standard designs, then the chance to reach a better solution 

will be small. The impossibility to share the logic by the standard 

and the general part as well as the necessity to implement a piece 

of hardware that will ensure the proper cooperation of those two 

parts, will probably cause the hardware overhead greater than the 

overhead caused by the unideal character of the optimization tools. 

So, the following two problems have to be solved: 

- to discover that the specification of a given design (or a part of 

it) is strongly similar to the specification of a given standard 

design (i.e. the chance to reach a better solution is high enough); 

- to find the optimal decomposition of a given design into standard 

and general parts. 

In this work, we tried to analyze and to solve the above 

described problems using a counter as an example of a standard 

(special) machine. The choice of this example was not random. 

Counters itself constitute a very important class of sequential 

circuits and, what is more important in this context, many practical 

controllers can be designed as modified counters quite well. 

We were interested in the decompositional implementation for a 

sequential machine using sequential decomposition into a number of 

counters (standard machines) and one general machine. (Since we 

developed earlier a method for sequential decomposition of a general 

machine into a number of general machines, the above formulated 

problem is general enough). 

Sequential decomposition consists in partitioning 

sequential machine into a number of sub-machines and 

a given 

ensuring the 

proper cooperation of this sub-machines in order to realize the 

behaviour of the machine to decompose. 

We considered the one state realization of the state and output 

behaviour in the sense of the definition given in [4]. "Sub-machine" 

is understood here in the sense defined by the algebraic theory of 

sequential machines. 
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A machine M' = (I', S', 0', J', ;") is a sub-machine of a 

machine M = (I, S, 0, J, ;.) if and only if: 

S' :s S, I' :5 I, 0' :5 0, 

J' = J restricted to S' x I' (J': S' x I' -----7 S' ), 

;.' =;. restricted to S' x I' or S' 

( ;.' : S' x I' -----70' or ;.' : S' -----70'). 

In other words, sequential decomposition partitions the graph of 

a given sequential machine into a number of sub-graphs. Each 

sub-graph is implemented then as a separated sub-machine. One must 

ensure that only one of the sub-machines is active at a given time. 

So, if a given sub-machine is in one of its active states and from 

this state for a given input value another sub-machine should be 

activated, the active sub-machine must suspend his work and, at the 

same time, it must activate another sub-machine. From this time on, 

the activated sub-machine must keep itself active up to a similar 

situation as described above (i.e. it must perform its normal work) 

and each suspended sub-machine (also the newly suspended) will be 

suspended up to the activation by a sub-machine which is active at 

the moment of the activation. 

Since sequential decomposition partitions the graph of a 

sequential machine into a number of sub-graphs, the graph of a 

sequential machine will be a very useful tool in considering 

sequential decompositions. 

The machine's graph is defined as 

MG = < V, E, L(V), L(E) > 

where 

V - the set of vertices corresponding to the set of machine's 

states; 

E - the set of edges corresponding to the set of transitions 

between the states; 

L(V) - a set of labels attached to each vertex; this set is 

empty for a Mealy machine and each label represents the 

output value in a given state for a Moore machine; 
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L(E) - a set of labels attached to edges; each label represents 

the input value of the machine (for Moore machine) or 

the input and the output value (for Mealy machine) 

corresponding to a given transition represented by the 

edge. 

The transitions in the machine's graph represent the actions 

performed by a sequential machine. 

The only action that can be performed by a counter is "go to the 

next state". So, the only type of a sequential machine that can be 

realized using a counter consists of a sequence of successive states 

and is represented by a path in the machine's graph. 

Since we considered here only the one state realizations, only 

one state can be made successive and only one state can be made 

previous to a given state. In general, we can have more than one 

next state for a. given state and different inputs ("fork" splitting 

in a machine's graph) and transitions to a given state can have an 

origin in more than one state ("join" action in a machine's graph). 

It follows immediately that not every sequential machine can be 

implemented by composing only some counters (only counters can be 

implemented using only counters) and that at most one transition 

from a given "fork" or "join" group can be implemented by a counter. 

So, in order to construct a one state realization of a 

sequential machine in the decompositional form using a sequential 

decomposition into counters we must use also a general sequential 

machine as one of the sub-machines (the only exception is the case 

of a counter itself). 

The optimal choice of transitions from the "fork" and "join" 

groups to be implemented by a counter will be considered in the next 

chapters. All the transitions which will be realized by a counter 

will be referred to as counting transitions. The counting 

transitions can form a number of counting chains (paths in a 

graph). Each counting chain describes a sub-machine that can be 

realized by a counter. However, instead of implementing each counter 

representing a sub-machine in separate, we will implement all of 

them together using one larger counter and differentiate its 

sub-ranges to implement different counters - sub-machines. 

10 



A general sub-machine can be implemented using a PLA (for a 

combinational logic) and a register (for a state memory). However, 

in a sequential decomposition only one of the sub-machines is active 

at a given time. So, it is possible to share the flip-flops of a 

counter and to use them one time in the counter configuration (if 

one of the counters - sub-machines is active) and another time in a 

register configuration (if a general sub-machine is active). In 

consequence, in order to implement the counter - sub-machines and 

the memory of the general sub-machine a loadable binary counter wiII 

be used. The load signal (L) wiII distinguish between the active 

states of a general sub-machine and the active states of one of the 

counter - sub-machines. 

The aim of our decomposition is to minimize the total silicon 

area for implementation. 

The silicon area for PLA grows with the number of state 

variables k and with the number of product terms used for realizing 

the next-state and output functions [1]. 

The silicon area for a counter grows with the number of state 

variables which for the minimum-length assignments grows logarithmic 

with the number of states implemented in a counter (k = r lo~ I S I 1). 

We decide to use a counter if most of the transitions (and 

states) can be implemented using it. So, we can expect in the 

practice at most one-bit growth of a counter due to the extra 

transitions and states of a general sub-machine. Therefore, we wiII 

not consider minimization of a counter. 

In the sequel we present a method which heuristically minimizes 

the area used for the PLA implementation of the combinatorial logic 

by replacing some of the state transitions by counting transitions. 

These counting transitions will then be realized by a loadable 

binary counter, which replaces the traditional feedback register of 

the FSM. Selecting of the counting transitions has been considered 

for the first time in [2]; however, it has been done in relation to 

the very low quality state assignment algorithm - KISS [3]. In order 

to select the counting transitions we developed a special edition of 

the method of maximal adjacencies [1] . Figure 3.1 shows the basic 

counter-based PLA structure using a loadable counter. 

11 
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PRIMARY,)' Y II~ 
INPUTS ] SEQUENCINO 

AND - ARRAY OR - ARRAY PLA 

Fig.3.! Basic counter-based PLA structure 

This structure implements FSM's with Moore specification, since 

the output vector depends only on the actual state Z T; however, very 

similar structure implementing Mealy machine can be constructed 

also. 

In the next chapters, the suboptimal selection of counting 

transitions and suboptimal state assignment will be considered. 

4. A new method for state assignment 

To solve the problem of sub-optimal state assignment for an 

implementation of a sequential machine using a counter and a PLA, we 

have developed a method, which is a combination of the method of 

maximal adjacencies (MMA) [1] with the concept of using a counter as 

a state memory . 

The MMA [1] has been developed, based upon the observation, that 

the information contained in the next-state and the output tables of 

sequential machines instructs the input-state, present state- next 

state and output-state dependencies for adjacency conditions. The 

adjacency conditions are ordered according to the number of adjacent 

"1" sand "0" s in the binary functions representing ~ and A reached 
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when a given condition is satisfied by the assignment. Then, the 

conditions are considered and combined in their order constructing 

some "suboptimal" assignments. Combining the maximal number of the 

best adjacency conditions makes an order in the Karnaugh tables 

which represent the binary next state and output functions by 

accumulating " 1 "s together and "0" s together, i.e. by constructing 

small number of large product terms. These "suboptimal" assignments 

lead to small PLA area. 

Using a counter [2] makes it possible to realize a number of 

state transitions by a counter. Counting transitions need not be 

implemented by a PLA. This saves the PLA area. The feedback register 

of the FSM is replaced by a loadable binary counter, which is 

controlled by a load variable L. Hence, an extra output called 

"load" is generated by the combinatorial logic of the FSM. In each 

cycle the counter offers a binary code word. If the next state of 

the sequential machine is identical to the next counting state, the 

counter has only to be incremented, while L = O. Otherwise, the 

counter has to be loaded from the PLA due to L = 1. 

Our method uses the basic ideas of the method of maximal 

adjacencies in order to find the transitions that should be realized 

by the counter in order to minimize the PLA area. 

Two main objectives are taken in mind: 

1. Since each transition, which is generated by the counter 

allows "don't cares" in the next state table for the transitions 

that are left to be realized by PLA and therefore an additional 

potential for further minimization, we have to look for as many 

counting transitions as possible. 

2. In order to be realized by PLA, each transition has a certain 

cost. The idea is to implement the transitions as cheap as possible. 

That means, that the most expensive transitions should be realized 

by the counter and the cheapest ones - by PLA. 

13 



We consider that when we choose a certain transition to be 

realized by a counter, the neighbouring transitions (from the same 

start set, the same end set 

pair) should be realized by 

5 parameters. 

and the same directly 

PLA. On that base 

interconnected 

we calculate 

1. Cc -
max· 

1 

maximal cost of a given transition i, when realized by 

a counter. 

n 
C = I C 

cmax. . 1 PLAmax. 
1 J = J 

C - maximal cost of a given transition to be realized in 
PLAmax

j PLA 

n - number of neighbouring transitions 

The maximal cost is calculated as a sum of the maximal costs of 

the neighbouring transitions, which are left to be realized in PLA. 

It is calculated as the number of product terms that are necessary 

to be realized for a given transition without satisfying any 

restrictions or adjacency conditions. 

2. Ccmin i -

C . = 
cmm i 

n 

minimal cost of a given transition i when realized by 

a counter. 

n 
I 

j =1 

- number of neighbouring transitions 

minimal cost of a given transition j to be realized 

in PLA 

C . is calculated as a sum of the minimal costs of the 
CmlR 

neighbouring transitions which should be realized in PLA. The 

minimal cost is calculated as the number of product terms, that are 

necessary to be realized for a given transition when certain 

adjacency conditions and restrictions are satisfied. 
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3. CpLAmax. - maximal cost of a given transition i to be realized in 
1 PLA 

It is calculated as the number of product terms that are 

necessary to realize a given transition without satisfying any 

restrictions or adjacency conditions. 

4. CPLAmini 
- minimal cost of a given transition i to be realized in 

PLA 

It is calculated as the number of product terms that are 

necessary to realize a given transition when certain adjacency 

conditions and restrictions are satisfied. 

5. AdjRestr - adjacency restrictions 

It is defined as the number of 

should be satisfied in order to reach 

given transition. 

adjacency restrictions 

the calculated C . 
cmm 

which 

for a 

These 5 parameters are estimated and based on their values and 

the weights preliminary given for each one of the parameters, an 

order of the transitions is made using a multicriterial optimization 

method. 

The quality factor which is calculated for each transition is 

highest in value for the transition which is best to be realized by 

counter. So in the final list, the transitions are ordered according 

to their quality factors and the transitions with the highest 

quality factor is first on the list. 

From all the transitions in the list the 

realized by the counter are chosen. They 

transitions, because they are not implemented by 

one that should be 

are called counting 

a PLA but they are 

realized by only incrementing the value in the counter. 

When choosing the counting transitions two objectives are taken 

in mind: 
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1. Every transition realized by a counter saves the PLA area. 

So, as much as possible transitions should be realized by the 

counter, i.e. the number of the counting transitions should be as 

large as possible. 

2. From all the transitions in 

transitions should be chosen the one 

the 

with 

list, 

the 

for counting 

highest quality 

factors, that means, the one which are the most expensive when 

implemented in PLA. 

The basic activities of a sequential machine can be described 

formally as a "sequence", "spread choice" and "join choice". 

A "sequence" is when for a given present state there is only one 

next state and both states are not interconnected. That means that 

the two nodes are connected only by one arc. In this case, the 

transition is always realized by a counter which gives the code of 

the next state. 

"Spread choice" is an activity when from a given present state 

there is a possibility to go to two or more different next states. 

In this case one of the transitions can be realized by the counter 

and the rest are implemented by a decision logic in PLA which gives 

the code of the next state. 

"Join choice" is an activity when a given state can be reached 

by a number (more then one) previous states. In this case one of the 

transitions can be realized by the counter and the rest are 

implemented by a decision logic in PLA which gives the code of the 

next state. 

A sequential machine can be decomposed into a number of partial 

machines which realize the activities described above. 
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We assume that the "sequence" machines and some of the 

transitions of "spread choice" and "join choice" machines are 

realized by one counter. The rest of the transitions of "spread 

choice" and "join choice" machines are realized with one 

combinational logic block. 

Determining the counting transitions 

and 

For every state we can form two sets. 

Previous state set which is defined as follows: 

PREVSS = { PREVSi I PREVS
i 

is a previous state of the given 

state } 

Next state set which is defined as: 

NSS = { NEXTS
i 

I NEXTS
i 

is a next state of the given state } 

From these two sets for a given state we have to choose one 

previous state and one next state, which define the two transitions 

from the "join choice" and "spread choice" machines which will be 

realized by the counter. 

Using the list with the ordered transitions according to their 

quality factor and a beam search algorithm one or more lists of 

counting transitions are made. 

In the beam search algorithm two parameters are used: 

MaxBeams - maximum number of beams 

QC - quality coefficient 

QFait 
QC =---­

QFbestalt 
where 

QFait - quality factor for the alternative transition 

QFbestalt - quality factor for the best alternative transition 
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MaxBeams and QC should be chosen experimentally. After the first 

experiments good results were obtained when 

MaxBeams = 3 and QC = 0.9 

When a given transition is chosen to be realized by a counter, 

some of the neighbouring transitions become noncounting, i.e. they 

can't be used as counting transitions. Noncounting transitions are 

the transitions from the same NSS for the start node of the chosen 

counting transition and the same PRESS for the end node of the 

transition and the other transition from the interconnected pair. 

The set of counting transitions is determined as 

SCT = { CT
i 

I CT
i 

is a counting transition } 

and is created in the following manner: 

1. All the transitions which construct the "sequence" machines 

are put in the set SCT and are taken away from the list of the 

ordered transitions. 

2. The best transition from the list of ordered transitions is 

taken and put into the SCT. 

3. The noncounting transitions are determined and are removed 

from the list of the ordered transitions. 

4. The algorithm continues with the next best transition until 

the list of ordered transitions is empty. 

Choosing the type of the counter 

In general, each type of counter can be used to implement the 

counting transitions and the best counter should be chosen; however, 

counters of different types impose different requirements on 

"successive" states and codes. For example, for the natural binary 

code counter, "successive" means the next binary coded number. In 

the future, we are going to give possibility to use different 

counters; however,at the moment, the reflected binary (Gray code) 

counter is used. This decision is imposed by the fact that in the 

Gray code only one digit change occurs when passing from anyone 

combination to the next. That means that the successive states are 

also adjacent, or the succession condition for the 

counting transitions from one chain is given by the adjacency 
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condition for the successive states from the chain. 

These adjacency conditions should be satisfied obligatory and 

they are called primary adjacency conditions. 

Using the adjacency conditions instead of succession conditions 

allows applying a slightly modified version of the method of 

maximal adjacencies [1] for the state assignment. 

Constructing the chains 

The counting transitions are combined in chains in the following 

manner. 

We begin by taking one of the counting transitions. It forms the 

first chain. We try to connect to it the next of the counting 

transitions. If this is not possible we form a new chain. When a 

counting transition is connected to already existing chain, before 

proceeding with the next transition we check whether the extended 

chain can be connected to any of the other chains. 

When all chains are constructed they are checked if they are 

closed, i.e. if the start node of the chain is connected to the end 

node of the same. If such transition exists it is removed from the 

chain. 

Using MAXAD for state assignment 

MAXAD is a program which has been developed on the base of 

method of maximal adjacencies (MMA). This method [1] creates for a 

given assignment length k, a set of final families of partitions 

that maximize the adj acency level of " I "s and "0" s of Boolean 

functions obtained with a given family used for state assignment. 

Calculations are based only on the information from the next state 

and output tables. First the adjacency conditions for input - state, 

present state - next state and state output dependencies are 

determined. Then these three sorts of adjacency conditions are 

combined together and ordered, according to the offered level of 

adjacency, forming the ordered list of adjacency conditions. The 

last step consists of creating the final families of partitions 

based on the ordered list of adjacency conditions. In 

this step the adjacency conditions are considered in the order of 

their ordered list and the final families of partitions are created 
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that satisfy the greatest number of compatible adjacency conditions. 

After the determination of the counting transitions the state 

transition table, describing the sequential machine is changed as 

all the transitions which will be realized by the counter are 

replaced by don't cares. Further an additional variable called 

"load" is included in the state transition table. The load variable 

is set to one only for the transitions, which cannot be replaced by 

counting transitions. The next state code word is provided by the 

PLA and is loaded into the counter. For all counting transitions L 

is zero and the next state code is provided by simply incrementing 

the counter. 

The modified description of the sequential machine is used as an 

input file for MAXAD. The adjacency conditions for input-state, 

present state-next state and state-output dependencies are 

determined. The adjacency conditions are combined and an ordered 

list is formed. These adjacency conditions are additional to the 

primary adjacency conditions which follow from the already generated 

counting chains and they are called secondary adjacency conditions. 

The primary adjacency conditions should be satisfied obligatory, 

while from the secondary adjacency conditions we have to satisfy as 

much as possible. 

The satisfaction of the adjacency conditions is done while we 

construct the final families of partitions(FFP). While 

adjacency conditions in order to form FFP's 

constraints should be taken into account[l]: 

combining the 

the following 

1. If two states Sk I SI have to be adjacent, then they must be 

contained in two different blocks of just one two-block partition, 

which is a member of a FFP. In all other partitions from the FFP, 

they must be contained in one block. 

2. Each pair of incompatible states (Sm,Sn) must be separated in 

at least one partition from a FFP (separate condition). 

3. Only proper partitions are useful for state assignment and 

only they can be members of FFP's. 

4. The FFP for a minimal machine is an orthogonal family of 

proper partitions. 

5. Each state Sk:Sk E S may be adjacent with at most k other 

states SI:SI E S. 
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The mechanism of constructing a limited set of near optimal 

length k, SNOFFP(k) families of final partitions for an 

is described in [1]. 

Each FFP E SNOFFP(k) must 

two-block partitions containing at 

their blocks. 

assignment 

contain k proper partitions i.e. k 

most 2
k

- l elements in each of 

We start by constructing partial proper partitions which satisfy 

all primary adjacency conditions. And after that by trying to 

satisfy as much as possible secondary adjacency conditions we build 

the SNOFFP. For every FFP from this set by changing the blocks 

within the partitions and the places of the partitions we find a 

construction for which the states which are members of the counting 

chains can be assigned with codes which correspond to the Gray code 

sequence. 

5. Evaluation of transitions in relation to adjacency conditions. 

At present, we evaluate transitions taking into account only the 

adjacency conditions for the next-state function; however, the 

adjacency conditions for the output function can be taken into 

account in a very similar way. 

We estimate the cost to realize in PLA for each transition in 

relation to the surrounding transitions. Cyclic transitions must be 

realized by PLA, because it's not possible to realize them by 

counter. If some of the other transitions are related to them, they 

can be realized in PLA cost free or for a very low cost. In this 

case some adjacency conditions should be fulfilled. 

Single transitions are described by the triple of parameters 

(S.T.X.) where 
1 1 1 

Si - start node 

T i-terminal node 

Xi - input vector 

MUltiple transitions are described by the n-tuple of parameters 

Si - start node 

T i-terminal node 

Xi" ,Xm - separate input subspaces 
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In connection to adjacency conditions the following cases are 

possible: 

5.1 S ... T. 
1 1 

and S ... S. 
1 J 

cost = n 

5.1.2.2 cost = k(n-l) + 1 

k - number of variables 

used for state coding 

5.1.2.3 If X·I X. 
1 J 

and Xm I Xn 1- adjacencies 

cost = k(n-l)+1 

For these cases the adjacency condition is Sj I Tj 

5.2 

5.2.1 

5.2.2 

5.2.2.1 

S ... S. 
1 J 

The transitions are SiTiXi and Sj TjXj 

cost = k+ 1 
2 

The transitions are S.T.X. and S.T.X .... X 
III JJJ n 

C st= kn+l 
o n+ 1 
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5.2.2.2 

5.2.3.1 

5.2.3.2 

5.2.3.3 

If Xi and Xj",Xn form one subspace 

k+n 
cost = 1 +n 

If X·I x. 
I J 

ost = k(m+n)-k+1 
c m+n 

If X·I x. 
I J 

and Xm I Xn /- adjacencies 

cost =( k-1 +m+n) m 
m+n 

For these cases the adjacency condition is Til T
j 

5.3 S. '" T. and T. '" T. 
1 1 1 J 

5.3.1 The transitions are S.T.X. and S.T.X. 
III JJJ 

If X. '" X. 
1 J 

cost = 0 

5.3.2 The transitions are S.T.X .... X and S.T.X .... X 
III m JJJ n 

cost = 0 

The adjacency condition for these cases is Si I Sj 

5.4 S. '" T. 
1 J 

T. '" S. 
I J 
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5.4.1 

If X. = X. 
I J 

cost = !.}!-

5.4.2 The transitions are SiTiXi and S?jXj",Xn 

If X .... X. 
I J 

If X. = X. 
I J 

kn+1 
n+l cost = 

Xm ... Xn in 1 cases 

cost = ( k(m- 1 +n)+1 ) m 
n+m 

The adjacency condition for these cases is Si I Sj 

5.5 T .... T. 
I J 

5.5.1 The transitions are S.T.X. and S.T.X. 
III JJJ 

5.5.2 

If X. = X. 
I J 

If X .... X. 
I J 

k 
cost = 2 

cost = kn 
n+l 

cost =( (m- 1 +n)k ) m 
m+n 

The adjacency condition for these cases is Si I Sj 
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6. Algorithm description. 

6.1 Read the transition table. 

6.2 Check the multiple transitions. Find the largest input subspaces 

which contain exclusively the inputs from a given mUltiple 

transition and don't have any common elements between each other. 

6.3 For each state a set of next states to which that state leads is 

found. If S is the number of states, Ns sets are constructed 

For i = 1 to S 

= {nexLstate.,times. inpuLvectors. I 
J J, J 

nexLstaternext state for present state i, 

timesrnumber of inpuL vectorsj , 

inpuL vectorsrinput vectors for a transition 

from presenLstate to nexLstate.} 
i J 

6.4 For each state, a set of previous states leading to that state 

is found. Ns sets are constructed. 

For i = 1 to S 

Previous_state_set (i) = {previouLstatej,timesj'inpuLvectors
j 

I 
previouLstateJ.-previous state of state. 

1, 

timesrnumber of inpuL vectors
j
, 

inpuLvectorsrinput vectors for a transi­

tion from pre v iouLstate
j 

to state
i
} 

6.5 Check for each state if there exists a directly interconnected 

state. 

If S. "" T. and S. "" T. 
1 J J 1 

then make Interconnected_pair. . 
I,J 

Interconnected_pairi,j = {statei,statej ,inpuLvectors; 

state
j 
,statei'inpuL vectors} 
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6.6 Make a set of cyclic transitions. 

Cyclic_transitiolLse\ = {statei'inpuL vectorsi I staterstate with 

cyclic transition} 

6.7 Generation of subgraphs. 

6.7.1 Read one transition. 

6.7.2 For the start 

6.7.3 For the end 

previouLstate_set. 

state of the 

state of the 

6.7.4 Check for directly interconnected pairs. 

transition 

transition 

6.7.5 Combine the three sets. They form one subgraph. 

take the 

take the 

6.8 Calculation of the cost of each transition to be realized in 

PLA. 

6.8.1 Calculation of the maximal cost. 

6.8.2 Calculation of the minimal cost. 

It is based on the condition that some of the states are coded 

with adjacent codes and is calculated according to p.S . 

For every transition check if it is related to 

1. Cyclic transition - T i == Si 

a) check if T. == T. and X. .. X. 
I J I J 

then S·I S. 
I J 

b) check if S. '" S. and X·I X. 
I J I J 

then Sj I Tj 

2. Another transition 

a) check if Si = S. and X·I X. 
J I J 

then Ti I T
j 

b) check if Ti e T. and X. "" X. 
J I J 

then Si I Sj 

3. To directly interconnected transitions 

Check if S. '" T. and T. '" S. and X. sa XJ' 
I J J J I 

then Si l Sj 
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6.9 Calculation of the cost for each transition to be realized by a 

counter. 

6.9.1 Calculation of maximal cost - it is calculated as a sum of the 

maximal costs that are necessary for all noncyclic transitions from 

the same subgraph to be realized by PLA. 

6.9.1.1 Take one subgraph. 

6.9.1.2 Choose one transition. 

6.9.1.3 For the rest of the transitions calculate the maximal 

cost C as follows 
cmax· 

1 
n 

= I C 
j =1 PLAmaxj 

CpLAmax. - maximal cost of a given transition to be realized in 

J PLA 

n - number of neighbouring transitions 

6.9.2 Calculation of minimal cost 

6.10 Calculation of the number of adjacency restrictions - AdjRestr 

6.11 Estimate Ccmax' Ccmin' CpLAmax' CPLAmin and AdjRestr for every 

transition and using a multicriterial optimization method make one 

suboptimal order of the transitions. The quality factor will be 

highest for the transition which is best to be realized by a 

counter. 

6.12 Using a beam search algorithm construct one or more suboptimal 

lists of transitions for the counter containing as many transitions 

with the highest quality factors as possible 

6.13 Construct the counting chains and derive the primary adjacency 

conditions. 

6.14 In the next state table describing the sequential machine 

replace with don't cares all the transitions which are members of 

the counting chains. 
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6.15 Include an additional variable called "load" in the state table 

of the machine and set it to 1 only for the transitions which cannot 

be replaced by counting transitions. For the rest of the transitions 

it is set to O. 

6.16 Use the modified description of the machine as an input file 

for MAXAD and determine the adjacency conditions for input-state, 

present state-next state and state-output dependencies. 

6.17 Construct partial proper partitions satisfying all primary 

adjacency conditions. 

6.18 Build the SNOFFP by trying to satisfy as much as possible 

secondary adj acency conditions. 

6.19. By changing the blocks within the partitions and the places of 

the partitions find an appropriate constructions for the FFP from 

the SNOFFP for which the counting states can be assigned with codes 

which correspond to the Gray code sequence. 
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7. EXAMPLES 

All steps of the algorithm wiIl 

lowing two examples. 

be explained using the fol-

7.1 Example I 

7.1.1 The sequential machine is described by the following 

next-state table. 

Tabl e 7.1.1 

x x x x 
0 1 2 3 

I 
00 01 11 10 

S 

1 2 1 3 3 

2 2 3 3 4 

3 1 1 1 4 

4 2 2 2 2 

Next-s tate table 

7.1.2 The multiple transitions are checked and the largest input 

subspaces which contain exclusively the inputs from a given multiple 

transition and don't have any common elements between each other are 

found. By the integer 2 don't care bits in the input vectors are 

represented. The input vectors stand for the largest input subspaces 

and they are given in Table 7.1.2. 
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Table 7.1.2 

present next input 
state state vector 

I 3 12 

1 1 01 

1 2 00 

2 3 21 

2 4 10 

2 2 00 

3 4 10 

3 1 02 
21 

4 2 22 

7.1. 3 For each state a set of next states to which that state leads is 

found. For S=4 (S - number of states) N4 sets are constructed. 

Nl = { 3,1,12; 1,1,01; 2,1,00 } 

N2 = { 3,1,21; 4,1,10; 2,1,00 } 

N3 = { 4,1,10; 1,2,02,21 } 

N4 = { 2,1,22 } 
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7.1.4 For each state, a set of previous states leading to that state 

is found. For S = 4, P 4 sets are constructed. 

PI = { 3,2,02,21; 1,1,01 } 

P
2 = { 4,1,22; 2,1,00; 1,1,00} 

P
3 = { 2,1,21; 1,1,12 } 

P
4 = { 3,1,10; 2,1,10 } 

7.1.5 Check for each state if there exists a directly interconnected 

state and make interconnected pairs. 

IP 13 = { 1,3,12; 3,1,02,21 } 

IP24 = { 2,4,10;4,2,22 } 

7.1.6 Make a set of cyclic transitions 

There are cyclic transitions for states 1 and 2 and the sets are 

the following. 

C1 = { 1,01 } 

C2 = { 2,00 } 

7.1.7 Generation of sub graphs 

For the easier description of the algorithm we shall give names 

to the transitions. They are shown in Table 7.1.3. 
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Table 7.1.3 

present next input trans i tion 
state state vector name 

1 2 00 A 

1 1 01 B 

1 3 12 C 

2 2 00 D 

2 4 10 E 

2 3 21 F 

3 1 02 G 

3 1 21 I 

3 4 10 H 

4 2 22 J 

By combining the next state set for the start state with the 

previous state set for the end state of each noncyclic transition 

and the directly interconnected pairs, the following subgraphs are 

generated. Multiple transitions are considered together and the 

generated subgraph is one for them. 

SG
A 

---) Nl and P 2 are combined 

SG
C 

---) Nl and P 3 and IP 13 are combined 

SG
E 

---) N2 and P 4 and IP 24 are combined 

SGF 
---) N2 and P3 

are combined 

SGm ---) N3 and PI and IP 13 are combined 
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SOH -----7 N3 and P 4 are combined 

SOJ -----7 N4 and P2 and IP24 are combined 

7.1. 8 Calculation of the cost of each transition to be realized in 

PLA. 

7.1.8.1 Calculation of maximal cost. 

It is calculated as the number of product terms that are 

necessary to realize a given noncyclic transition without satisfying 

any restrictions or adjacency conditions. 

The following maximal costs are calculated: 

CPLAMAXA = 2 

CPLAMAXC = 2 

CpLAMAXE = 2 

CpLAMAXF = 2 

C PLAMAX
GI 

= 4 

CPLAMAXH = 2 

CpLAMAXJ = 2 
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7.1.8.2 Calculation of minimal cost 

It is calculated as the number of product terms that are 

necessary to realize a given noncyclic transition when certain 

adjacency conditions and restrictions are satisfied. 

The evaluation of transitions in connection to adjacency 

conditions is explained in p.5. 

The following minimal costs are calculated for the different 

transitions: 

CpLAMIN A = 0 (related to transition D, adjacency condition - 11 2) 

CPLAMINC = 2 (not related to any other transition) 

CpLAMINE = 1 (related to transition D, adjacency condition - 214) 

CpLAMINF = 2 (not related to any other transition) 

CpLAMIN = 2,7 (related to transition H, adjacency condition - 114) 
GI 

CpLAMIN = 1 (related to transition E, adjacency condition - 213) 
H 

CpLAMINJ = 2 (not related to any other transition) 

7.1.9 Calculation of the cost for each transition to be realized by 

a counter. 

7.1.9.1 Calculation of maximal cost 

It is calculated as a sum of the maximal costs that are 

necessary for all noncyclic transitions from the same subgraph to be 

realized by PLA. 
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n 
Ccmax. = I CpLA . 1 max· 

i J = J 

CpLAmax. - maximal cost of a given transition to be realized in 

J PLA 

n - number of neighbouring transitions 

The maximal cost for the transitions is calculated as follows: 

= 4 (in SG A noncyclic transitions G and J are left) 

= 8 (in SG c noncyclic transitions A,F ,G and 1 are left) 

= 6 (in SG
E 

noncyclic transitions F ,H and J are left) 

= 4 (in SG
F 

noncyclic transitions E and C are left) 

CCMAX
G1 

= 4 (in SGGI noncyclic transitions Hand C are left) 

= 6 (in SG
H 

noncyclic transitions G ,I and E are left) 

= 4 (in SG J noncyclic transitions A and E are left) 

7.1.9.2 Calculation of minimal cost 

It is calculated as a sum of the minimal costs that are 

necessary for all noncyclic transitions from the same subgraph to be 

realized by PLA. 
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= 
n 
I 

j=l 

n - number of noncyclic transitions 

CPLAmin. - minimal cost of a given transition j to be realized 

J in PLA 

The following minimal costs are calculated: 

CCMIN A = 4 (in SG A noncyclic transitions C and J are left) 

CCMIN = 4.7 (in SGC noncyclic transitions A,F,G and I are left; 
C 

adjacency conditions 112, 114) 

CCMIN
E 

= 5.3 (in SGE noncyclic transitions F,H and J are left; 

adjacency condition 114) 

CCMIN = 3 (in SGF noncyclic transitions E and C are left; 
F 

adjacency condition 214) 

CCMIN = 3 (in SGGI noncyclic transitions C and H are left; 
GI 

adjacency condition 213) 

CCMIN
H 

= 5 (in SGH noncyclic transitions G,I and E are left; 

adjacency condition 214) 

CCMIN
J 

= 1 (in SG
J 

noncyclic transitions A and E are left; 

adjacency conditions 112, 214) 
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Remark: When we assume that a certain transition should be realized 

by a counter, we should not calculate the minimal cost of any 

neighbouring transition in relation to that transition. We should 

search for relation with another transition. This is done ID 

connection with the calculation of the costs for the transitions E 

and H. 

7.1.10 Calculation of the number of the adjacency restrictions - NAR 

It is calculated as the number of the adjacency restrictions, 

which should be satisfied in order to reach the calculated CCMIN for 

a given transition. 

NARA = 0 

NARC = 2 

NARE = 1 

NARp = 1 

NARGI= 1 

NARH = 1 

NAR
J 

= 2 

7.1.11 Por every transition we have calculated five parameters. By 

using a multicriterial optimization method we make an order of the 

transitions such that the transitions which are best to be realized 

by a counter will be at the top of the list. 
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For the example we have reached the following order. 

present next tran s ition 
state state 

3 1 GI 

2 3 F 

4 2 J 

I 2 A 

3 4 H 

1 3 C 

2 4 E 

7.1.12 By using a beam search algorithm we construct the following 

suboptimal list of counting transitions. 

present next tran s ition 
state state 

3 1 GI 

2 3 F 

4 2 J 

7.1.13 The constructed counting chain is as follows: 

4 -----) 2 -----) 3 -----) 1 

The following primary adjacency conditions are derived. 

21 4 ,21 3 ,11 3 
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We see that all the states of the machine are members of the 

counting chain and they should be coded in such a way as to form a 

Gray code sequence. 

7.1.14 In the next state table we replace by don't cares all the 

transitions which are members of the counting chains. 

x x x x 
0 1 2 3 

I 
00 01 11 10 S 

1 2 1 3 3 

2 2 - - 4 

3 - - - 4 

4 - - - -

7.1.15 Set the additional variable called "load" to 1 only for the 

transitions which cannot be replaced by counting transitions. For 

the rest - set it to zero. 

x x x x 
0 1 2 3 

I 
00 01 11 10 S 

1 1 1 1 1 

2 1 0 0 1 

3 0 0 0 1 

4 0 0 0 0 

L 
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7.1.16 Calculate the adjacency conditions for input-state, present 

state-next state and state-output dependencies using the next state 

table with the counting transitions replaced by "don't cares". This 

is done according to the method described in [1]. 

For our example we obtained the following ordered list of adjacency 

conditions. 

pairs of number of estimation 
next s t a tes un c ondi- of the to-

pa i r of and number tionally tal number number 
adj acent of the i r re ached of ad j a - of "don't 
states occure n cies ad j acencies cenc i e s cares" 

213 ---- 9 9 4 

214 ---- 9 9 4 

31 4 --- 8 8 4 

114 ---- 8 8 4 

11 3 -
314 

1 
7 8 3 

112 -
31 4 

1 
7 8 3 

Ordered list of adjacency conditions 
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7.1.17 Construct partial proper partitions satisfying all primary 

adjacency conditions 

According to 7.1.13 the following primary adjacency conditions 

were calculated 

21 4 ,21 3 ,11 3 

Each FFP E SNOFFP must contain 2 proper partitIOns i.e. 2 two -

block partitions containing at most 2 elements in each of their 

blocks. We consider the adjacency conditions one after the other and 

construct the following FFP. 

214 {2, 4 } { 2,4 , 0 } 

213 {2,3, 4 } { 2,4 , 3 } 

113 {2,3, 1,4 } { 2,4 , 1,3 } 

We have reached only one FFP so it is not possible to satisfy 

any of the secondary adjacency conditions. 

7.1.18 By changing the blocks within the partitions and the places 

of the partitions we find an appropriate construction for the FFP 

for which the counting states can be assigned with codes which 

correspond to the Gray code sequence. 

One possible construction is: 

{ 2,4 , 1,3 } { 1,4 , 2,3 } 
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For the assignment of blocks with 

2,4-0; 1,3-1; 1,4-0; 2.3-1 

the following assignment of states is reached: 

4 - 00 

2 - 01 

3 - 11 

1 - 10 

The Gray code sequence between the counting states is fulfilled. 

The assigned next state table is as follows: 

1 -

2 -

3 -

4 -

S 

10 

01 

11 

00 

x 
0 

I 00 

01 

01 

--

--

x x 
1 2 

01 11 

10 11 

-- --
-- --

-- --
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In the assigned next state table we add an additional variable L 

which has the value of 1 for the transitions which cannot be 

replaced by counting transitions, and 0 otherwise. 

1 -

2 -

3 -

4 -

I 
S 

10 

01 

11 

00 

x 
0 

x 
1 

00 01 

011 101 

011 --0 

--0 --0 

--0 --0 

x x 
2 3 

11 10 

111 111 

--0 001 

--0 001 

--0 --0 

We make the Karnaugh maps in order to calculate the number of 

terms which are necessary to realize SI' S2 and L 

I I I I I I I I 1 2 1 2 1 2 1 2 
I 00 01 11 10 S 

00 - - - LJ 
01 0 - - 0 

2 terms 

11 - - - 0 

10 0 1 1 III 

Karnaugh map of SI 
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I I I I I I I I 1 2 1 2 1 2 1 2 
I 00 01 11 10 

S 

00 ----:- - I - - I 

01 1 - - 0 
2 terms 

11 - - - 0 

10 1 0 I 1 1 I -

Karnaugh map of S2 

II II II II 1 2 1 2 1 2 1 2 
I 00 01 11 10 

S 

00 0 0 0 0 

01 bJ 0 0 Ie 3 terms 

11 0 0 0 ~ 

10 I 1 1 1 1 I 

Karnaugh map of L 

By using a counter-based PLA structure the next-state functions 

can be implemented with 7 terms as shown on fig. 7.1. 
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11 o 0 000 0 Sequencing PLA 

-0> 
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0 Sl 
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OR-array 

Fig. 7.1 Implementation by using 
counter based PLA structure. 
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7,2 Example II 

7.2.1 The sequential machine is described by the following 

next-state table. 

Table 7.2. I 

x x x x 
0 1 2 3 

I 00 01 11 10 
S 

1 2 2 2 2 

2 3 4 5 3 

3 3 3 4 4 

4 1 4 5 1 

5 6 6 5 6 

6 7 7 9 9 

7 1 8 8 1 

8 9 9 9 9 

9 1 1 9 9 

Next-state table 

7.2.2 The multiple transitions are checked and the largest input 

subspaces which contain exclusively the inputs from a given multiple 

transition and don't have any common elements between each other are 

found. By the integer 2 don't care bits in the input vectors are 

represented. The input vectors stand for the largest input subspaces 

and they are given in Table 7.2.2. 
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Table 7.2.2 

present next input 
state state vector 

1 2 22 

2 5 11 

2 4 01 

2 3 20 

3 4 12 

3 3 02 

4 5 11 

4 4 01 

4 1 20 

5 5 11 

5 6 20 
02 

6 9 12 

6 7 02 

7 8 21 

7 1 20 

8 9 22 

9 9 12 

9 1 02 
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7.2.3 For each state a set of next states to which that state leads is 

found. For S=9 (S - number of states) N9 sets are constructed. 

Nl = { 2,1,22 } 

N2 = { 5,1,11; 4,1,01; 3,1,20 } 

N3 = { 4,1,12; 3,1,02 } 

N4 = { 5,1,11; 4,1,01; 1,1,20 } 

N5 = { 5,1,11; 6,2,20,02 } 

N6 = { 9,1,12; 7,1,02 } 

N7 = { 8,1,21; 1,1,20 } 

N8 = { 9,1,22 } 

N9 = { 9,1,12; 1,1,02 } 

7.2.4 For each state, a set of previous states leading to that state 

is found. For S = 9, P
9 

sets are constructed. 

PI = { 9,1,02; 7,1,20; 4,1,20 } 

P
2 = { 1,1,22 } 

P
3 = { 3,1,02; 2,1,20 } 

P4 = { 4,1,01; 3,1,12; 2,1,01 } 

P
5 = { 5,1,11; 4,1,11; 2,1,11 } 

P
6 = { 5,2,20,02 } 

P
7 = { 6,1,02 } 

P8 = { 7,1.21 } 

P
9 = { 9,1,12; 8,1,22; 6,1,12 } 

7.2.5 Check for each state if there exists a directly interconnected 

state and make interconnected pairs. 

For this example directly interconnected pairs don't exist. 
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7.2.6 Make a set of cyclic transitions 

There are cyclic transitions for states 3,4,5 and 9 and the sets 

are the following. 

C3 = { 3,02 } 

C4 = { 4,01 } 

C5 = { 5,11 } 

C9 = { 9,12 } 

7.2.7 Generation of sub graphs 

For the easier description of the algorithm we shall give names 

to the transitions. They are shown in Table 7.2.3. 
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Table 7.2.3 

present next input tran s i tion 
state state vector n arne 

1 2 22 A 

2 5 11 D 

2 4 01 C 

2 3 20 B 

3 4 12 F 

3 3 02 E 

4 5 11 I 

4 4 01 H 

4 1 20 G 

5 5 11 L 

5 6 20 J 

5 6 02 K 

6 9 12 N 

6 7 02 M 

7 8 21 P 

7 1 20 0 

8 9 22 Q 

9 9 12 S 

9 1 02 R 
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By combining the next state set for the start state with the 

previous state set for the end state of each noncyclic transition 

and the directly interconnected pairs, the following subgraphs are 

generated. Multiple transitions are considered together and the 

generated sub graph is one for them. 

SG A --4 N 1 and P 2 are combined 

SGB --4 N2 and P3 are combined 

SGc --4 N2 and P 4 are combined 

SGD --4 N2 and Ps are combined 

SGF --4 N3 and P 4 are combined 

SGG --4 N4 and PI are combined 

SG1 --4 N4 and Ps are combined 

SG]K --> NS and P 6 are combined 

SGM --> N6 and P7 are combined 

SGN --> N6 and P9 are combined 

SGo --> N7 and PI are combined 

SGp --> N7 and P g are combined 

SGQ --> Ng and P
9 

are combined 

SGR --> N9 and PI are combined 

S1 



7.2.8 Calculation of the cost of each transition to be realized in 

PLA. 

7.2.8.1 Calculation of maximal cost. 

It is calculated as the number of product terms that are 

necessary to realize a given noncyclic transition without satisfying 

any restrictions or adjacency conditions. 

The following maximal costs are calculated: 

CpLAMAXA = 4 

CpLAMAXB = 4 

CpLAMAXC = 4 

CpLAMAXD = 4 

CpLAMAXF = 4 

CpLAMAXo = 4 

CpLAMAXr = 4 

C PLAMAX
JK 

= 8 

CpLAMAXM 
= 4 

CpLAMAXN = 4 

CpLAMAXO = 4 

CpLAMAXp = 4 
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7.2.8.2 Calculation of minimal cost 

It is calculated as the number of product terms that are 

necessary to realize a given noncyclic transition when certain 

adjacency conditions and restrictions are satisfied. 

The evaluation of transitions in connection to adjacency 

conditions is explained in p.5. 

The following minimal costs are calculated for the different 

transitions: 

CpLAMIN A = 4 (not related to any other transition) 

CpLAMIN B = 4 (not related to any other transition) 

CpLAMIN C = 0 (related to transition H, adjacency condition - 214) 

CpLAMIN = 0 (related to transition L, adjacency condition - 215) 
D 

CpLAMIN = 1 (related to transition E, adjacency condition - 314) 
F 

CpLAMIN G = 2 (related to transition 0, adjacency condition - 417) 

CpLAMIN = 0 (related to transition L, adjacency condition - 415) 
I 

CpLAMIN = 2 (related to transition L, adjacency condition - 516) 
JK 

CpLAMINM = 2.5 (related to transition N, adjacency condition - 719) 
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CpLAMINN = o (related to transition S, adjacency condition - 619) 

CPLAMINO = 2 (related to transition G, adjacency condition - 714) 

CPLAMINp = 2.5 (related to transition 0, adjacency condition - g 11) 

CpLAMINQ = 4 (not related to any other transition) 

CpLAMINR = 1 (related to transition S, adjacency condition - 119) 

7.2.9 Calculation of the cost for each transition to be realized by 

a counter. 

7.2.9.1 Calculation of maximal cost 

It is calculated as a sum of the maximal costs that are 

necessary for all noncyclic transitions from the same sub graph to be 

realized by PLA. 

C 
cmax· 

1 

n 
= :E 

j = 1 

CpLAmax. maximal cost of a given transition to be realized in 

J PLA 

n - number of neighbouring transitions 

The maximal cost for the transitions is calculated as follows: 

CCMAX A = 0 (SG A contains only the transition A) 

CCMAX
B 

= g (in SGB noncyclic transitions C and D are left) 

CCMAX
C 

= 12 (in SGC noncyc1ic transitions B,F,D are left) 
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CCMAX
D 

= 12 (in SGD noncyclic transitions B,C and I are left) 

CCMAX
p 

= 4 (in SGp noncyclic transition C is left) 

CCMAX
G 

= 12(in SGG noncyclic transitions 1,0 and R are left) 

CCMAX
I 

= 8 (in SGI noncyclic transitions G and D are left) 

CCMAX
JK 

= 0 (SGJK contains only the transition IK) 

CCMAX
M 

= 4 (in SGM noncyclic transition N is left) 

CCMAX
N 

= 8 (in SGN noncyclic transitions M and Q are left) 

CCMAX
O 

= 12 (in SGO noncyclic transitions P,G and R are left) 

CCMAX
p 

= 4 (in SGp noncyclic transition 0 is left) 

CCMAX
R 

= 8 (in SGR noncyclic transitions G and 0 are left) 

CCMAX
Q 

= 4 (in SGQ noncyclic transition N is left) 

7.2.9.2 Calculation of minimal cost 

It is calculated as a sum of the minimal costs that are 

necessary for all noncyclic transitions from the same subgraph to be 

realized by PLA. 
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c . = 
cmm i 

n 

n 
I 

j=l 

- number of noncyclic transitions 

CPLAmin. - minimal cost of a given transition j to be realized 

J in PLA 

The following minimal costs are calculated: 

CCMIN
A 

= 0 ( SG A contains only the transition A ) 

CCMIN
B 

= 0 (in SGB noncyclic transitions C and D are left; 

adjacency conditions 214, 215) 

CCMINC = 5 (in SGC noncyc1ic transitions B,D and F are left; 

adjacency conditions 215, 314) 

CCMIN
D 

= 4 (in SGD noncyc1ic transitions B,C and I are left; 

adjacency conditions 214, 415) 

CCMIN
F 

= 0 (in SGF noncyclic transition C is left; 

adjacency condition 214) 

CCMIN = 3,5 (in SGG noncyclic transitions 1,0 and R are left; 
G 

adjacency conditions 415, 118, 119) 

CCMIN
I 

= 2 (in SGI noncyclic transitions G and D are left; 

adj acency condition 417, 215) 

CCMIN = 0 ( SGJK contains only the transition JK ) 
JK 

CCMIN
M 

= 0 (in SGM noncyclic transition N is left; 

adjacency condition 619) 
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CCMIN
N 

= 8 (in SG
N 

noncyclic transitions M and Q are left; 

CCMINO = 9 (in SG
O 

noncyclic transitions P,G and R are left; 

adjacency condition 119) 

CCMINp = 2 (in SG p non cyclic transition 0 is left; 

adjacency condition 714) 

CCMIN
Q 

= o (in SG Q noncyclic transition N is left; 

adjacency condition 619) 

CCMIN
R 

= 4 (in SG
R 

noncyclic transitions G and 0 are left; 

adjacency condition 714) 

Remark: When we assume that a certain transition should be realized 

by a counter, we should not calculate the minimal cost of any' 

neighbouring transition in relation to that transition. We should 

search for relation with another transition. This is done in 

connection with the calculation of the costs for the transitions 

G, Nand O. 

7.2.10 Calculation of the number of the adjacency restrictions - NAR 

It is calculated as the number of the adj acency restrictions, 

which should be satisfied in order to reach the calculated CCMIN for 

a given transition. 

NARA = 0 

NARB = 2 

NARC = 2 
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NARD = 2 

NARF = 1 

NARa = 3 

NARI = 2 

NAR
JK

= 0 

NARM = 1 

NARN = 0 

NARO = 1 

NARp = 1 

NAR
Q 

= 1 

NARR = 1 

7.2.11 For every transition we have calculated five parameters. By 

using a multicriterial optimization method we make an order of the 

transitions such that the transitions which are best to be realized 

by a counter will be at the top of the list. 
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For the example we have reached the following order. 

present next tran s i tion 
state state 

1 2 A 

5 6 JK 

8 9 Q 

6 7 M 

7 8 P 

2 3 B 

3 4 F 

9 1 R 

4 5 I 

6 9 N 

4 1 G 

7 1 0 

2 5 D 

2 4 C 
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7.2.12 By using a beam search algorithm we construct the fonowing 

suboptimal list of counting transitions. 

present next tran s i tion 
state state 

5 6 JK 

6 7 M 

7 8 P 

8 9 Q 

9 1 R 

1 2 A 

2 3 B 

3 4 F 

7.2.13 The constructed counting chain is as fonows: 

5 ------7 6 ------7 7 ------7 8 ------7 9 -------7 1 -------7 2 ----> 3 -------7 4 

The fonowing primary adjacency conditions are derived. 

5 I 6 , 6 I 7 , 7 I 8 , 8 I 9 , 9 I 1 , 1 I 2 , 2 I 3, 3 I 4 

We see that all the states of the machine are members of the 

counting chain and they should be coded in such a way as to form a 

Gray code sequence. 
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7.2.14 In the next state table we replace by don't cares all the 

transitions which are members of the counting chains. 

x 
0 

x 
1 

x 
2 

x 
3 

I 
00 01 11 10 

S 

1 - - - -
2 - 4 5 -

3 3 3 - -
4 1 4 5 1 

5 - - 5 -

6 - - 9 9 

7 1 - - 1 

8 - - - -

9 - - 9 9 
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7.2.15 Set the additional variable called "load" to 1 only for the 

transitions which cannot be replaced by counting transitions. For 

the rest - set it to zero. 

x 
0 

x 
1 

x 
2 

x 
3 

I 
00 01 11 10 

S 

1 0 0 0 0 

2 0 1 1 0 

3 1 I 0 0 

4 1 1 1 1 

5 0 0 1 0 

6 1 1 0 0 

7 1 0 0 1 

8 0 0 0 0 

9 0 0 1 1 

L 

7.2.16 Calculate the adjacency conditions for input-state, present 

state-next state and state-output dependencies using the next state 

table with the counting transitions replaced by "don't cares· . This 

is done according to the method described in [1]. 

For this example we obtained the following ordered list of adjacency 

conditions. 
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pairs of number of estimation 
next s tat es un c ondi- of the to-

pair of and number tionally tal number number 
adjacent of the i r re ached of ad j a - of "don't 
states occure n C i es ad j acencies cenc i e s cares" 

_1 ~4 t 1,9 
419 6 16 2 

3 

1,9 
416 -

3 
9 15 3 

1, 9 
617 -

3 
9 15 3 

1,9 
71 9 -

3 
9 15 3 

119 ---- 14 14 4 

114 ---- 13 13 4 

112 ---- 12 12 4 

11 3 ---- 12 12 4 

115 --- 12 12 4 

116 --- 12 12 4 

Ordered list of adjacency conditions 
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pairs of number of est ima t ion 
next s t a tes un c ondi- of the to-

pa i r of and number tionally tal number number 
adj acent of the i r re ached of ad j a - of "don't 
states occure n cies ad j acencies cenc i e s cares" 

117 ---- 12 12 4 

11 8 ---- 12 12 4 

214 ---- 12 12 4 

215 ---- 12 12 4 

217 ---- 12 12 4 

21 8 ---- 12 12 4 

31 5 ---- 12 12 4 

31 8 ---- 12 12 4 

316 ---- 12 12 4 

718 ---- 12 12 4 

Ordered list of adjacency conditions (cont.) 
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pairs of number of estimation 
next S tat es uncondi- of the to-

pai r of and number tionally tal number number 
adj acent of the i r re ached of ad j a - of "don't 
states occure n c i es ad j acencies cenc i e s ca res" 

415 ---- 12 12 4 

417 --- 12 12 4 

418 ---- 12 12 4 

517 ---- 12 12 4 

51 8 ---- 12 12 4 

618 ---- 12 12 4 

619 ---- 12 12 4 

819 ---- 12 12 4 

_1 ~4 t 5,9 
219 6 12 2 

1 

3,4 
213 - 9 1 1 2 

1 

Ordered list of adjacency conditions (cont.) 
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pairs of number of estimation 
next S t a tes un c ondi- of the to-

pai r of and number tionally tal number number 
adj acent of the i r re ached of ad j a - of "don't 
states occure n C ies ad j acencies cenc i e s cares" 

5,9 
216 -

1 
9 1 1 3 

1, 3 
317 

1 
9 1 1 3 

5,9 
516 

1 
9 1 1 3 

51 9 --- 11 1 1 3 

1, 3 
319 -

2 
6 10 2 

31 4 -
113 

1 
7 9 2 

Ordered list of adjacency conditions (cont.) 

7.2.17 Construct partial proper partitions satisfying all primary 

adjacency conditions. 

According to 7.2.13 the following primary adjacency conditions 

were calculated 

5 1 6 , 6 1 7 , 7 1 8 , 8 1 9 , 9 1 1 , 1 1 2 , 2 1 3, 3 1 4 

Each FFP E SNOFFP must contain 4 proper partitions i.e. 4 

two-block partitions containing at most 8 elements in each of their 

blocks. We consider the adjacency conditions one after the other and 

construct the following FFP. 
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('I,~.~.U,O 1.2.G. 1)11 .. ;.~I.O Z.J.4,5.6)(1.~.3.4.Q 5,6,7,8)(4 1,2,3,5,6,7.9.8) 
( (, . '., • ~ . 13 1.:::. 3 . 0. 7 ) I -'- • 7 . '1 . (; .::::. J , 4 . 5 . 6) ( J . :: . J • 4 . 9 5. 6. 7 , 8) ( 3 . 4 1, 2 , 5 , 6, 7 . ? . 8 ) 
{ 'i. ~I. r.t J..;'. '~, . ," . ('. '/ ) I , . .', . 7 . ~l . f) Z. J . 5. I) ') (). . ::. ::: . 6. . Sl 5,6, 7.8) (3,4 1, Z • 5.6. 7. Sl . fJ) 
(';.!I,~ 1.2.3.4.0. ;I(). ;.~.D 2.J,4.~.6)(1.2.J.? 4.5,6,7,8)(3,4 1,2,5.6,7,9.8) 
t .". '., ~" ~l. '3 J.. Z. G • 7 ) ( ), . :. J • 7 . 9.8 4.5.6) (1. ::.3.4.? 5,6, 7,8) (2,3,4 1.5,6. 7 , 9.8) 
(:J,~,5,?B 1.Z.6.7)(J .. :.J.4.7.?8 5.6)(1.:.3.9 4,5,6,7,8)(2,3,4 1,5,6.7,?8) 
(~.~,9,O 1,2.3,6.7) rL.:.7,9,B 3,4,5.6)(1,2,3,4,9 5,6,7,8)(2,3,4 l,5,6,7,9.B) 
(~,~,a 1,2,3.4.6.7)(1.:.7.?8 3,4,5.0)(1.2.3,9 4,5,6,7,8)(2,3,4 1,5,6,7,9.8) 
( ~l • 9 , S 1. 2 , 3 . 4 . 6. 7 ) (, .1. • ~ • 7 , 9 ,8 :3, 4 . 5. 6 ) (1. 2 , : .. f~ ,9 5, 6, 7 , 8) (2, 3 1, II , 5 , 6, 7 • 9 , 8 ) 

(~.5.9,O 1,2,3.6,7)(1.~.3.~,7,P.8 5.6)(1.2. 0 3.4.5,6,7,8)(2,3.4 1,5,6,7,.,8) 
(5. 0 ,8 l,2,3,4,6.7)(1.~.3.7.9.8 4.5,6)(1.2. 0 3.4,5,6,7,8)(2,3,4 1,5,6,7,9.8) 
11.5,9.B 2,3.4.6.7)13.0.7.9,8 1.2.5.6)(1.2.3,4.9 5,6,7.8)(4 1,2.3,5,6.7.9.8) 
t,L,4,5,9,8 2,3.6.7)(7.~.O 1.2.3.4.5,6)(1,2,3.4,9 5,6,7,8)(3,4 1,2,5,6,7.9.8) 
11,5.9.B 2.3.4.6.7)14.7.9.8 1.2.3,5.6)(1.2.3.4.9 5.6,7,8)(3,4 1,2,5,6,7,9.8) 
(1,5,9,8 2,3,4.6.7)17.9.8 1,2.3,4.5,6)(1,2.3.9 4,5,6,7,8)(3,4 1,2,5,6,7,9,8) 
(1,~.5.9.0 3.4.6.7)14.7.9.8 1.2.3.5.6)(1.2.3.4.9 5,6,7,8)(2,3,4 1,5,6,7,9.8) 
(1,2,5,9.8 3,4,6,7)f7,9.B 1.2,3,4,5.6)(1,2,3,9 4,5,6,7,8)(2,3,4 1,5,6,7,9,8) 
(1,2,5,9,8 3.4,6.7)(7. 0 .8 1,2,3.4.5,6)(1,2.3,4.9 5,6,7,8)(2,3 1,4,5,6,7.9,8) 
11.2.3.5.9,8 4.6.7)13.4.7.9.8 1.2.5.6)(1.2.3.4.9 5,6,7,8)(2,3,4 1,5,6,7.9.8) 
(1,2,3.4.5.9.0 6.7)(3 .•. 7.·.8 1.2.5.6)(1.2.3,9 4,5,6,7.8)(2,3,4 1,5,6,7,9.8) 
(1.2.].5.9.8 ~.ti.7)17 .•. 3 1.2.3.4.5.6)(1.2.9 3,4.5.6,7.8)(2,3,4 1,5,6,7.9.8) 
(1,2,3,4,5,9.8 6.7)(4.7.9.8 1,2,3.5.6)(1,2.9 3,4,5,6,7,8)(2,3,4 1,5,6,7,9.8) 
(1,4,5.9.8 2.3.6.7)(1.2.7,9.8 3.4,5.6)(1.Z.3,4,9 5,6,7,8)(1,2,3,4 5,6,7,9,0) 
(1.5,9,8 2.3,4,6.7)(1.2,7.9.8 3,4.5,6)(1,2.3,9 4,5,6,7,8)(1,2,3,4 5,6,7,9,8) 
(J .• 5.9,8 2,3.4.6,7)(1.2.7,9.8 3,4.5,6)(1,2.3,4,9 5,6,7,8)(1,2,3 4,5,6,7,9,8) 
(1.4,J,9.8 2,J,6,7)(1.~~,J.4,7.9,8 5,6)(1,2,9 3,4,5,6,7,8)(1,2,3,4 5,6,7,9,8) 
(1,5.9,8 2,3,4.6.7)(1,2,3,7,9,8 4.5,6)(1,2,9 3,4,5,6,7,8)(1,2,3,4 5,6,7,9,8) 
(1.5.9,8 2,3,4,6,7)(1,2.3,7.9.8 4,5,6)(1,2,3,4,9 5,6,7,8)(1,2 3,4,5,6,7,9.8) 
(1.2,5.9,8 3,4,6.7)(1.4.7.9,8 2.3.5,6)(1,2,3,4,9 5,6,7,8)(1,2,3,4 5,6,7,9,8) 
(1,2,5,9,8 3,4,6,7)(1,7,9,8 2.3.4,5,6)(1,2.3,9 4,5,6,7,8)(1,2,3,4 5,6,7,9,8) 
(1,2,5. 0 ,8 3,4,6,7)(1. 7 .9.8 2.3.4,5.6)(1,2.3,4,9 5,6,7,8)(1,2,3 4,5,6,7,0,8) 
(1,2,3,5,9.0 4,6,7)(1. 7,9,8 2,3,4,5,6) (1,2,9 3,4,5,6,7,8) (1,2,3,4 5,6,7,9,8) 
(1.2,3,4,5,9,8 6,7)(1,4,7,9.8 2,3,5,6)(1,2,9 3,4,5,6,7,8)(1,2,3,4 5,6,7,9,8) 
(1,2,3,5,9,8 4.6.7)(1.7,9,8 2,3,4,5,6)(1,2,3,4,9 5,6,7,8)(1,2 3,4,5,6,7,9,8) 
(1,2,5,9,8 3,4,6,7)(1.2.3,7,9.8 4,5,6)(1.9 2,3,4,5,6,7,8)(1,2,3,4 5,6,7,9,8) 
(1,2,5,9,8 3,4,6,7)(1,2,3,4,7,9,8 5,6)(1,4,9 2,3,5,6,7,8)(1,2,3,4 5,6,7,9,8) 
(1,2,3,5,9,8 4,6,7)(1,2,7,9,8 3,4,5,6)(1,9 2,3,4,5,6,7,8)(1,2,3,4 5,6,7,9,8) 
(1,2,3,4,5.9,8 6,7)(1,2,7,9,8 3,4,5,6)(1,4,9 2,3,5,6,7,8)(1,2,3,4 5,6,7,9,8) 
(1,4,5,9 2,3,6,7,8)(7.9,8 1,2,3,4,5,6)(1,2,3,4,9.8 5,6,7)(3,4 1,2,5,6,7,9,8) 
(1,5,9 2.3.4,6.7,8)14.7.9.8 1.2.3.5.6)(1,2,3.4,9,8 5,6,7)(3,4 1,2,5,6,7,9.8) 
(1,5.9 2,3,4,6,7,8)(7,9,8 1,2.3,4,5,6)(1,2,3,9.8 4,5,6,7)(3,4 1.2.5.6,7,9,8) 
(1,2,5.9 3,4,6.7.8)(4.7,9.8 1.2.3.5.6)(1,2.3,4,9,8 5,6,7)(2,3,4 1,5,6,7,9,8) 
(1,2,5,9 3,4,6,7,8) (7.9,8 1,2,3.4,5,6) (1,2,3,9,8 4,5,6,7)(2,3,4 1,5,6,7,9,8) 
(1,2,5.9 3,4.6,7.8)17.9.8 1.2.3.4.5.6)11.2,3,4.9,8 5,6,7)(2,3 1,4,5,6,7,9.8) 
'1.2,3,5,9 4,6,7.8)'3,4.7,9.8 1.2.5,6)(1,2,3,4,9,8 5,6,7)(2,3,4 1,5,6,7,9.8) 
(1.2.3.4,5.9 6,7.8)13.4.7.9.@ 1,2.5.6)(1,2,3,9.8 4,5,6,7)(2,3,4 1,5.6.7.9.8) 
(1.2,3,5,9 4.6,7.8)(7. u .8 1.2.3,4,5,6)(1.2:9,8 3,4,5,6.7)(2,3,4 1,5.6.7.9,8) 
(1,2.J.4.5,9 6.7.8'f4.7.?O 1.2.3.5.6)(1.2.9.8 3.4.5,6.7)(2,3.4 1.5.6.7.9.8) 
(1../..5.9 3.4.6.7.fJl(J .. :-'.~~.7.?f.l 4.5.6)(9.8 1.:.3.4.5.6.7)(2.3.4 1.5.6.7.°.8\ 
(1.~,5.9 J.4,6,7,8)~l.~.3.4.7.?D ~.6)(4.9.8 1.Z.3,5,6,7)(Z.3,4 1.5.6.7.9.0) 
(1 .. 2,3.5.9 4.6.7.8)(1.:.7.?O 3.4.5.6)(9.6 1,2,3.4,5.6,7)(2,3,4 1.5.6.7,9.8) 
(J.,2,3,4.5,9 6.7.0)(1.2.7.9.0 3.4.5.6)(4.9.8 I,Z.3,5.6.7)(2.3.4 1.5,6.7,9.8) 
(1.2,3.5.9 4.6.7.8)(1.:.3.4.7,'.0 5.6)(3.4.9.8 1.2,5,6,7)(2,3,4 1,5,6.7,9.8) 
(J.,~,3,4,5,9 6,7,O)(1.~,J.7.9,O 4,5.6)(3,4,9.8 1,2,5,6,7)(2,3,4 1,5,6,7,9,8) 
(J.,4,5,9 2,3,6,7.8)(1.2.7,?,8 3,4,5,6)(1,2,3,4,9,8 5,6,7)(1,2,3,4 5,6.7,9.8) 
(1.5,9 2,3,4,6.7.8)(1.2.7,9,8 3.4.5,6)(1,2.3,9,8 4,5,6,7)(1,2,3,4 5,6,7.9,8) 
11.5.9 2,3.4.6.7.8) n.:. 7. 0 .8 3.4.5.6) (1.2.3.4,9.8 5,6,7)(1,2,3 4.5,6,7.9.8) 
(J.~,5.!1 2.3.6,7.8)!1.Z.3.6..7,9.B 5.6)(1.2.9,8 3,4.5.6,7)(1,2,3,4 5,6.7.?8) 
(1.5.9 2.3.4,6.7.8)(1.2.3.7.9.8 4.5.6)(1,2.9.8 3,4,5.6,7)(1,2.3,4 5.6.7.9.8) 
11.2,5,9 3.4,6.7.8)11.4.7.9.8 2.3.5.6)(1.2.3.4,9,8 5,6,7)(1,2,3,4 5.6,7.9.8) 
11.2,5.· 3.4.6.7.8)11.7.9.8 2.3.4.5.6)(1.2.3.9.8 4.5.6.7)(1.2.3.4 5.6.7.9.8) 
(1,2,~,9 3,4.6.7,8)(1.7.9.8 2.3.4.5.6)(1.:.3,4,9,8 5,6,7)(1,2,3 4.5.6,7,9.8) 
(1,2.3,J.? 4,6.7,8)(1.7.9.0 :.3,4.5.6)(1.2.9.8 3.4,5.6,7)(1.2.3,4 5,6,7,9.8) 
(1,2,3,4,5,9 6,7,8)(1,4,7,9,8 2,3,5.6)(1,2.9,8 3,4,5,6,7)(1,2,3,4 5,6,7,9.8) 
(1,2,3,5,9 4.6.7.8'11.7.9.B 2.3.4.5.6)(1,2.3.4,9.8 5,6.7) (1.2 3.4,5,6,7.9.8) 
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(L,2,~.!1 3,4,6.7,O)(1.~,3.7.9,8 4,5,6)(1,9,8 2,3,4,5,6,7)(1,2,3,4 5,6,7,9,8) 
(J.2.~.9 3,4,6.7,U)(1.:.3,4.7.9.8 5,6)(1.4,9,8 2,3,5,6,7)(1,2,3,4 5,6,7,9.8) 
(1,~,3,5,9 4,6,7,8)(1,2,7.9,8 3,4,5,6)(1,9,8 2,3,4,5,6,7)(1,2,3,4 5,6,7,9,8) 
(1.2,3,4,5,9 6,7.8)(1.2.7,9,8 3.4,5,6)(1,4,9,8 2,3,5,6,7)(1,2,3,4 5,6,7,9,8) 
(1,2,3,4,5 6,7,9.8)(2.3.4,7,8 l,5,6,9}(l,Z,9,8 3,4,5,6,7)(4 1,2,3,5,6,7,9,8) 
(J .• 2,3,5 4,6.7.9.8,1:.3,4,7.8 1.5,6.9)(1,2,3,4,9,8 5,6,7)(3.4 1,2,5,6,7,9.8) 
(1.~.3.4.3 6.7.9.8)(2.J.7.8 1,4.5,6,9)(1.2.3,4,9,8 5,6,7)(3,4 1,2,5,6,7,9,8) 
(1.2.3,4.5 6.7.9.0)(~.3.4.7.8 1.5,6.9)(1,2.3.9.8 4,5,6,7)(3.4 1,2,5,6.7,9,8) 
11.2,5 3,4,6.7.9,8)(4.7.8 1,2,3.5,6,9)(1,2,3,4,9,8 5,6,7)(2,3,4 1,5,6,7,9,8) 
(1,2,5 3,4,6.7.9.8)(7.8 1.2,3,4.5,6.9)(1,2.3,9,8 4,5,6,7)(2,3,4 1,5,6,7,9,8) 
(1.2,3.5 4,6.7.9.8)(3.4.7.8 1.2.5.6.9)(1,2.3,4,9,8 5,6,7)(2,3,4 1,5,6,7,9,8) 
(1.2.3,4.5 6.7.9,8)(J.~.7.8 1.2,5,6.9)(1.2.3.9,8 4,5,6,7)(2.3,4 1,5,6,7,9,8) 
(.L.2,3.4.5 6,7,9,8)(3.4.7.8 1,2.5,6,9)(1,2,3.4,9,8 5,6,7)(2,3 1,4,5,6,7,9.8) 
(1,2.3.5 4,6,7,9,8)(7,8 1,2,3,4,5,6,9)(1,2,9,8 3,4,5,6,7)(2,3,4 1,5,6,7,9,8) 
11.2.3.4.5 6.7.9.8)(4.7.8 1,2,3.5,6,9)(1,2.9,8 3,4,5,6,7)(2,3,4 1,5,6,7,9,8) 
12.3.5 1.4,6.7.9.8)(3,4,7,8 1,2,5,6,9)(1.2,3,4,9,8 5,6,7)(1,2,3,4 5,6,7,9,8) 
(2.3.4.5 1.6.7.9.8)(3.4.7.8 1,2.5.6.9)(1.2.3.9.8 4,5.6,7)(1,2,3.4 5.6,7,9.8) 
(2,3.4,5 1,6,7,9.8)(3.4.7,8 1,2,5.6,9)(1,2,3,4,9,8 5,6,7)(1,2,3 4,5,6,7,9,8) 
(2,3,5 1.4.6,7.9.8)(7.8 1.2,3,4,5,6.9)(1,2.9,8 3,4,5,6,7)(1,2,3,4 5,6,7,9,8) 
(2.3,4,5 1,6,7,9,8)(4.7.8 1,2,3,5,6,9)(1,2,9,8 3,4,5,6,7)(1,2,3,4 5,6,7,9,8) 
(2.3,4.5 1,6,7.9.8)(4.7.8 1,2,3,5,6,9)(1,2,3,4,9,8 5,6,7)(1,2 3,4,5,6,7,9.8) 
(3,4,5 1,2,6,7,9,8)(2,3,7,8 1,4,5,6,9)(1,2,3,4,9,8 5,6,7)(1,2,3,4 5,6,7,9,8) 
(J,4,5 1,2,6,~,9,8)(2,3,4,7,8 1,5,6,9)(1,2,3,9,8 4,5,6,7)(1,2,3,4 5,6,7,9,8) 
(3,4,5 1,2,6,7,9,8}(2.3,4,7,8 1,5,6,9)(1,2,3,4,9,8 5,6,7)(1,2,3 4,5,6,7,9,8) 
(4.~ 1.2,3,6.7,9.8)(2.3.4.7.8 1,5,6,9)(1,2,9,8 3,4,5,6,7)(1,2,3,4 5,6,7,9,8) 
(~ 1.2,3.4,6,7,9,8)(2,3.7.8 1,4.5.6,9)(1,2,9,8 3,4,5,6,7)(1,2,3,4 5,6,7,9,8) 
(3.4,5 1,2,6,7,9,8)(4.7,8 1,2.3.5,6,9)(1,9,82,3,4,5,6,7)(1,2,3,4 5,6,7,9,8) 
(3.4,5 1,2,6,7.9,8)(7.8 1,2,3.4,5,6,9)(1,4,9,8 2,3,5,6,7)(1,2,3,4 5,6,7,9,8) 
(4,5 1,2.3.6,7,9.8)(3.4,7,8 1,2,5,6,9)(1,9,8 2,3,4,5,6,7)(1,2,3,4 5,6,7,9,8) 
(5 1,2.3,4,6.7.9.8)(3.4.7.8 1.2.5.6,9)(1.4.9.8 2,3,5,6,7)(1,2,3,4 5,6,7,9,8) 
(1,2,5 3,4,6,7,9,8)(1.7,9.8 2.3,4,5,6)(1,2,3,9,8 4,5,6,7)(1,2,3,4,9 5,6,7,8) 
(1,2,5 3,4,6,7,9,8)(1.7,9,8 2,3,4,5,6)(1,2.3,4,9,8 5,6,7)(1,2,3,9 4,5,6,7,8) 
(1,2,3,5 4,6,7,9,8)(1.7,9,8 2,3,4,5,6)(1,2,9,8 3,4,5,6,7)(1,2,3,4,9 5,6,7,8) 
(1,2.3.4.5 6.7.9,8)(1.4.7.9,8 2.3,5,6)(1,2,9,8 3,4,5,6,7)(1,2,3,4,9 5,6,7,8) 
(1.2.3.5 4,6.7.9,8)(1.7.9.8 2,3.4.5.6)(1,2,3,4,9,8 5,6,7)(1,2,9 3,4,5,6,7,8) 
(1.2,3,4,5 6.7,9,8)(1,4,7.9,8 2.3,5.6)(1,2,3,4,9,8 5,6,7)(1,2,9 3,4,5,6,7,8) 
(1,2,5 3,4.6,7,9,8)(1,2,3,7,9,8 4,5,6)(1,9,8 2,3,4,5,6,7)(1,2,3,4,9 5,6,7,8) 
(1.2,3,5 4,6,7,9,8)(1.2.7.9,8 3,4,5.6)(1,9,8 2,3,4,5,6,7)(1,2,3,4,9 5,6,7,8) 
(1.2,3,4,5 6,7,9,8)(1,2,7,9,8 3,4,5,6)(1,4,9,8 2,3,5,6,7)(1,2,3,4,9 5,6,7,8) 
(1,2,3,4,5 6,7,9,8)(1.2,3.4,7,9,8 5,6)(1,4.9,8 2,3,5,6,7)(1,2,9 3,4,5,6,7,8) 
(1,2,3,5 4,6,7,9,8)(1,2,7,9,8 3,4,5,6)(1,2,3,4,9,8 5,6,7)(1,9 2,3,4,5,6,7,8) 
(1.2,3.4,5 6,7,9,8)(1,2,7,9,8 3,4,5,6)(1,2,3,4,9,8 5,6,7)(1,4,9 2,3,5,6,7,8) 
(1.2,3,4,5 6,7,9,8)(1,2.3,4,7,9,8 5,6)(1,2,9,8 3,4,5,6,7)(1,4,9 2,3,5,6,7,8) 
(7.3,4.5 1.6,7,9,8)(3.4.7,9.8 1,2,5,6)(1,2,3,9,8 4,5,6,7)(1,2,3,4,9 5,6,7,8) 
(Z.3.4,~ 1.6.7,9.0)(3.4.7.9.8 1.2.5,6)(1.2.3,4,9,8 5,6,7)(1,2,3,9 4,5,6,7,8) 
(7.1.5 1.4.6,7,9.8)(7.9.0 1,2,3,4.5.6)(1,2,9,8 3,4,5,6,7)(1,2,3,4,9 5,6,7,8) 
(2,3,4,~ 1,6,7.9.0)(4.7.9,8 1,2.3,5,6)(1,2,9,8 3,4,5,6,7)(1,2,3,4,9 5,6,7,8) 
(2,3.5 1.4,6.7,9.8)(7.9.8 1,2,3,4.5.6)(1!2,3,4,9,8 5,6,7)(1,2,9 3,4,5,6,7,8) 
(2.1.4,5 1,6,7,9.8)(4.7.9.8 1.2.3.5,6)(1.2,3,4.9,8 5,6,7}(l,2,9 3,4,5,6,7,8) 
(:1,4,5 1,2,6,7,9,8)(4.7.9.8 1,2,3,5,6)(1,9,8 2,3,4,5,6,7)(1,2,3,4,9 5,6,7,8) 
(1,4,5 1,Z,6,7,9,B)(7.~.8 1.2,),4,5,6)(1,4,9,8 2,3,5,6,7)(1,2,3,4,9 5,6,7,8) 

(4,5 1.2,3,6,7,9.8)(3.4,7.9,8 1,2,5,6)(1,9,8 2,3,4,5,6,7)(1,2,3,4,9 5,6,7,B) 
(3.4.5 1.2.6.7,9.8)(4.7.9.8 1.2.3.5.6)(1,2,3,4,9,8 5,6,7)(1,9 2,3,4,5,6,7.8) 
(3.4,5 1.2,6.7,9.8)(7.9.8 1,2.3,4,5,6)(1,2,3.4,9,8 5,6,7)(1,4,9 2,3,5,6,7,8) 
(2,3.5 1,4,6.7,9,8)(1.2.7,9,8 3.4,5.6)(9,8 1,2.3,4,5,6,7)(1,2,3,4,9 5,6,7.8) 
(2.3,4,5 1,6.7.9,8)(1.2.7,9,8 3,4,5,6)(4,9.8 1,2,3,5,6,7)(1,2,3,4,9 5,6,7,8) 
(2.3.4.5 1.6.7.9.8)(1.2.3.7.9.8 4.5.6)(3,4.9.8 1.2.5,6,7)(1.2,3,4,9 5.6,7.8) 
(2.3.4.~ 1.6.7,9.B)(1.2.3.4,7.9.8 5,6)(3,4.9,8 1.2,5,6,7)(1,2,3,9 4,5,6,7,8) 
(2.3.4,5 1.6,7.9,8)(1.2.3.4.7.9,8 5,6)(4,9,8 1,2,3,5,6,7)(1,2,9 3,4,5,6,7,8) 
(J.4,5 1,2,6,7,9,8)(1,4,7,9,8 2,3,5,6)(9,8 1,2,3,4,5,6,7)(1,2,3,4,9 5,6,7.8) 
tJ,4,5 1.2,6,7,9,8)(1,7,9,8 2,3,4,5~6)(4,9,8 1,2,3,5,6,7)(1,2,3,4,9 5,6,7,8) 
(~.S 1.2.3,6,7.9.8)(1.7.9.8 2~3,4,5,6)(3,4,9,8 1,2,5,6,7)(1,2,3,4,9 5,6,7,8) 
(~ 1.2.3.4.6.7.9.8)(1.7.9.8 2,3.4,5,6)(3.4,9.8 1,2,5,6,7)(1,2,3,9 4,5,6.7,8) 
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7.2.18 By taking into account the calculated secondary adjacency 

conditions and by changing the blocks within the partitions and the 

places of the partitions we find an appropriate construction for the 

FFP for which the counting states can be assigned with codes which 

correspond to the Gray code sequence. 

One FFP which can be used for state assignment is: 

(3,4,5,8,9 1,2,6,7)(1,7,8,9 2,3,4,5,6) 

(1,2,3,4,9 5,6,7,8)(4 1,2,3,5,6,7,8,9) 

We change the places of the partitions in the following manner: 

(4 1,2,3,5,6,7,8,9)(1,2,3,4,9 5,6,7,8) 

(1,7,8,9 2,3,4,5,6)(3,4,5,8,9 1,2,6,7) 

For the assignment of blocks with 

4 - 1 

1,2,3,5,6,7,8,9 - 0 

1,2,3,4,9 - 1 

5,6,7,8 - 0 

1,7,8,9 - 1 

2,3,4,5,6 - 0 

3,4,5,8,9 - 0 

1,2,6,7 - 1 
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The following assignment of states is reached: 

5 - 0000 

6 - 0001 

7 - 0011 

8 - 0010 

9 - 0110 

1 - 0111 

2 - 0101 

3 - 0100 

4 - 1100 

The Gray code sequence between the counting states is fulfilled. 

The assigned next state table is as follows: 

S 
I 00 01 11 10 

1 - 0111 .. .. .. .. ........ .. .... .. ........ 
. 

2 - 0101 .. .... .. 1100 0000 ........ 

3 - 0100 0100 0100 .. ...... ........ 

4 - 1100 0111 1100 0000 0111 

5 - 0000 ...... .. .. ...... 0000 ......... 

6 - 0001 .... .. .. ........ 0110 0110 

7 - 0011 0111 .. .. .. .. ........ 0111 

8 - 0010 .... .. .. ...... .. .. .. .... ........ 

9 - 0110 .. .... .. ........ 0110 0110 
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In the assigned next state table we add an ad4itional variable L 

which has the value of I for the transitions which cannot be 

replaced by counting transitions, and 0 otherwise. 

S 
I 00 01 11 10 

1 - 0111 ----0 ----0 ----0 ----0 

2 - 0101 ----0 11001 00001 ----0 

3 - 0100 01001 01001 ----0 ----0 

4 - 1100 01111 11001 00001 01111 

5 - 0000 ----0 ----0 00001 ----0 

6 - 0001 ----0 ----0 01101 01101 

7 - 0011 01111 ----0 ----0 01111 

8 - 0010 ----0 ----0 ----0 ----0 

9 - 0110 ----0 ----0 01101 01101 

By using a counter-based PLA structure SI' 52' S3' S4 and 

L should be implemented as shown in example 1. 
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8.Conclusions 

In the report the decompositional state assignment with reuse of 

standard designs has been discussed. Since the state assignment 

methods that consider a sequential machine on the whole are all 

heuristic, they produce often good solutions but they do not 

guarantee the strict optimality for them and they can fail sometimes. 

Most of them work better for small than for large machines. For this 

reason, decompositional implementations of sequential machines with 

reuse of 

superior. 

part) is 

standard carefully optimized sub-machines can sometimes be 

If the specification of a given sequential machine (or its 

strongly similar to the specification of 

machine then there is a great chance to reach a 

decompositional implementation. 

a given standard 

better solution by 

In the second part of the report, we focused our attention on 

counters as standard machines. We made this choice, because many 

practical controllers can be designed quite well as modified 

counters. 

Constructing a modified 

adjacencies [1], we answered 

version of the method of maximal 

the question: how to find the (sub-) 

optimal sequential decomposition of 

number of sub-machines defining 

sequential sub-machine. 

a given sequential 

counters and a 

machine 

small 

into a 

general 

The precise algorithm for computing the (sub-) optimal state 

chains and the (sub-) optimal state codes is described in the report 

and illustrated with examples. 

We are now developing software that will implement this 

algorithms. In the appendix, the first results are provided which 

were obtained using the first part of the software in order to 

process the machine from the examples. 
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The work described in this report should be continued in the 

following directions; 

finishing the implementation of the software and checking the 

practical usefulness of the decompositional state assignment with 

reuse of standard designs; 

- considering other types of standard sub-machines than counters; 

- considering the simultaneous decompositions with reuse of standard 

designs. 
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P.g~ 1 09/05/90 12,48 PH 

:.itntf:!Range 4 

J.nputBitRange 2 

Pt:"ndl1ctTeI."m~ 10 

\ 

" 

~;TATENAHETABLE (F gives the relationship between the internal 
and the external Hemes of the machine. 
Fl.u:thl'?T." the internal names are used.) 

1 
-, 
" 3 
4 

pr~~entstate nex.tGt.::'lt.e times inputvector 

.I. - 1 12 

.1. .1. 1 01 

.I. /: 1 00 

pI. f:' !'H:~lLts La te nextsteLe times inputvector 

L 3 1 21 
;2 4 1 10 
Z 2 1 00 

p.t:esentstate next{~tate times inpuLvector 

-J 
" 

1 10 , 
1 -' < 02 

21 

1 22 

PREVSTATETABLE 

presents tate pre·.r~t.l;I.t:e time~ inputvector 

1 3 2 02 

21 



1 

l!r'~!-;~ntst~t_E' Pl"€V8tB.t'? 

Z 4 

2 0 

" 
i 

pt"~!';ent ~:tate l-'t"~vstate 

J ,. 

prE'vst<:lte 

I, 

I, 

ltJTf.P,CONNECT I ONT ABLE 

~Htltf:' 1-> 3 
~lJh~rElce(st: 12 

:.1"Rt.P 1<- 3 
~;u"3pa,-,e (s) ~ 02 

21 

~;I :H.~ ;"~-." 4 

!~UIH-lpaCe (s): 10 
!:t:ate 2<- 4 

!:lIh~pa'.:e (s) 1 22 

(: YCL I CTRAIITABLE 

!:l at~: 1 

::ubslJa(..:e{s): 01 

ntate: Z 
!wiJspace (s): 00 

cnSTTABLE 

Page 2 

1 

times 

1 
1 
1 

times 

1 
1 

times 

1 
1 

01 

inputvector 

22 
00 
00 

inputvector 

21 
12 

inputvector 

10 
10 

J. ne'rtstate = 

11:.0 :d'LA 
11l. nl'LA 
1\1.15. ~;t~tf'!S 

"03xl.:nUllt 

I U nC'_lUlJ t 

2.0E+(I(! 

(! . O.E+I-"-I 
1 2 
'f.OE+tJ(I 
4.0E+On 
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::pn::novlJ : ~x.f.lmrJYl 

t\1.t.i. Stt'ltes : 

presentstate 

HI1Y."PLA 

f1inPLA 
t\dj .Stat.es 
HaxCount 
J1J.nCOUflt. 
Adj.States 

MR.xPLA 

HJuPLA 
J\di .States 
l1axCol1nt 
MJ.nCol1nt 
Adj.States 

prpsentst.ate 

I"e "'LA 
Hl" I.'LA 
t\d:j.Sl:ates 
l-faxGollot 
IHnC0l111 t 
Adj .!";tateR 

Hex-Pl..A 
I'/j"PLA 
At.l"j . States 
MaxConnt 
MinCol1nt 
A!.q. States 

l1axPLA 
l1inPLA 
Adi .StCltes 
HaxCount 
HinConnt 
Adj .Sta.tes 

1'."PtA 
IHurLA 
Adj. ~H.ates 
f.1nx-Cnunt 
f1 i.nCouJlt 
i\dj .~3t.:1t.P.f~ 

1 nE'Y.tstate 

2 .OT;: .. j.fHl 

2.0E+OO 

8.0E+O(l 
It.7E+flO 

1 2 

l. " 

2. ne::~tstate 

2.0F.+Of) 

1.0E+OI.1 

2 4 
6.0E+(1I) 

5.3EtOO 

" 1 

2 llE'xtstate 

2.0ft1lO 
Z . tJJ::+ '.I n 

4.0E-J-f.10 

3.0E+OfJ 

2 4 

:. nextstate 

".(IF-tOO 
2.7EtOO 
1 4 
4.0EtOO 
3.0EtOO 
3 2 

!, n".?xtstato:> 

2.0E+'}O 

l.. OEt 00 

G.OE+fJ f.1 
5.0E+IJ!J 

2 It 

2.0f+OtJ 
2.0Etl)fI 

4.IJE+nf! 

1.0E+00 
1 ~' 

2. I, 

09/05/90 1Z.48 nl 
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'~;U"1I11' 1. '; J 09/05/90 12,48 PH 

E'II.p( I.he wei~IJt. f."n.l:· '.'"I~x.FLA 1.2E+OO 

Epl "'~ the weigllt {<"II: I UllPLA 1.0E+00 
EIlI ..... th17 weigh ~ ft.·,: l.1;:,xCO'JOt:. 1.2E+OO 
EIII~r tho? ~l~if2.ht f <::.Il- HJnCount 1.0E+OO 
F,lIt"Pt" the weight fl)r J\.fJj Nr a.OE-Ol 

TI\p!l~ at·~ thl':! 0n:.lered transistions according to ELECTRE I 

Jlt:~~€nt8tat:e 3 Il~x:t.st.ete 1 1.4E+01 
pr:esentstate 0 nextstate 3 l.2E+!)! 

" 
pr~nent.nt.D.te 4 nf~x:tstate 2 l.OE+Ol 
pJ:esent.state 1 nextstate 2 a.DEfOO 
II ':'~!;etl t s t.ate J next state 4 6.0E+OO 
I' 1"<::' ~~QIl t, S tEl. t.~ J 1l.extstate 3 4.0E+OO 
1'1:"~~nt~tBte 2 IIp.xtstate 4 2.0E+OO 

'I'''f:'~H'> 8.t:f? t.he n['det'~fJ tn:4.l1sistions according to ELECTRE II 

1"·"~~f.>lItGt,8te 3 t.J.':"!xtstpte 1 2.0"+01 
l"'P~f?III.st,8t-,.=:' c P.,=xtstClt.€ 3 1.7E+Ol 
11""s"?Tlt:state I, ll".!xtst_8 t_e ,. l.7E+Ol 
I" ,j'l>-'Ilt !:tpt'7 l. IIext.st8:te Z 1.2EH11 
I" ~":Pllt:!:t.:;ltl? 1 Tlf:?xtstc\'tf:? 3 7.0E+OO 
1'1 "~:"'lItSt81:.~ " H'"?xtstate 4 7.0E+OO 
I" !-'~Pllt ~,tRtl-:' ., n,:,xtstat~ 4 4.0E+OO 

VIII.III'S CALClILATED r.Y ELECTRE-II 
EIII".I71: the max n 1.uniJBr uf beams 3 
P.;lItyl:' the min qualityfactor 0.90 

Th*~ 1;0Ilte11t8 of the t.ransitiontable 

1'1"f-,~~pt St:.a.te lIo:.:-xt St8t~ Value 

, 1 2.(1. 

4 " 
17. 

'. " 17. 

.1 c 12_ 

., 
-' I, 7. 

.1 3 7. 

2 I, 4. 

",-"P<:"'l1t Stat~ f.lext State 

1 

4 



Adjacpncy 
I\d \Rc~n(:y 
Adj /:WP.HCY 

2 
3 

412 2. 3 
3 1. 

(1,1,2,3)(1,3 Z,4) 

3 
1. 

,'fir,'r,',,'r* ASSIGNHENTFOUND **,'r*,'r,'r 

Ttl(-; assignments al: p 
: 

:31. fl t.e I -.-> 1.1) 

~": 1 fl t" p :~ OJ. 
!:t":l tr~ " " L1, 

" 

~:Ull " I, (1(1 

"Xf'f'ltt" inll t.ime : 

EN)) OF TIlE PROGRAt'1 
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I!:1) Un: FSI1 defitlitinll tile name ~ example2. 

~.: 1:8 teRange 9 

IllputBitRange 2 

ProductTerms 19 

STATENAMETABLE (It gives the relationship hetween the internal 
alII.! the exterllsl names of the machine. 

t, 

5 
6 
7 
9 
8 
1 
2 
3 
t, 

NEXTSTIITETAELE 

Fllrth p r th"" internal names aloe used.) 

pt"Rsentstate nextstate times inptttvector 

1 2 1 22 

)nesentstate nextstate times inputvector 

2 5 1 11 
2 4 1 01 
2 3 1 20 

pu':"!,entHtate next~t<3te times input.vector 

", f, 1 12 
" J 1 02 -' 

present.state next~l:ate t:tn.le~ .i.nputvectol 

4 ~ 1 11 
~ ~ 1 01 

'-4 1 :::1.1 

I'I.I-:'~-lent.st.at~ tlext~tat~ t.imes inputv€ctor 

s S 1 11 
:; (, Z 02 

20 



l'I"~~eut:f~tat~ 

pH~sentstat~ nextnt.[lt.e 

"1 co 

7 J. 

l'I'~!~~ntstEtte n~:x.tst8.t.e 

(' " '.' 

'J I 

nE'xtstflt:e 

PREVSTIITETABLE 

presentstate prevstate 

J. 8 
.l 7 

J. 4 

I" ''''ri~llt.~lt.8tf:' 

" 

J11'P!~f:'t1t~tRt'" pn~"s ta t~ 

., 

. ., 
.' "i 

tim<::'s 

I 
I 

times 

I 
1 

times 

1 
1 

times 

1. 

times 

1 
J. 
1 

t.lllle~ 

I 

t. ime ~ 

J. 
J. 

inputvector 

12 
02 

inputvector 

21 
20 

inpl1tvector 

12 
02 

inputvector 

22 

inputvector 

02 
ZO 

20 

input:vector 

illpl.1 tvec tor 

l12 

ZQ 

l!1:I~!:ellU;tate prf?vstflt.e times inputvector 
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'~pn!~!~lqrn "'x.qmp1 t., ! r:;.gp '. 

I, I, J. (lJ. 
I, 1. 12 
I, 1 I.Jl 

IH·egent.state pr~VGt.3.tf? times inputvector 

5 5 1 11 
5 " 1 11 

" 1 11 

6 5 2 02 

p[eB~l\tstate vp~vst.at~ times 

761 

p[~~;entntat~ pl'evstat~ times 

8 0 J. 
8 9 1 
8 6 1 

vresentstate prevstate times 

971 

IIlTERCONNECTIOllTAB[.E 

, :yr;LICTRANTIIBLE 

r.:t.ntE': 'J 

BulHlpace (s,: 02 

::tnt.l'?: Q 

f\l\bn1>t\(·~ (s): OJ. 

:1 t ::ll:e : ~) 

!;"bspacp, (s): 11 

!ll·.ah~: D 

nl1h~"F.lf.·P, ($): 12 

20 

inputvector 

n" _ L 

Inputvector 

12 
"0 

"" 
12 

inputvector 

21 



cr..::l.InpJ ~< 

t1~xrLA 

1·!.i.tl,'LA 
Ad i . St.n.tes 
lJaxGutl11 t 
~tlIlC"I.l1I t 
Adj.States 

l-laxFLA 

I·' i.ltPLA 
I\d i . Stat,es 
1-t~~(.>l\llIt 

11.1 nC!Jtll).t 

AdJ. StF.l.tes 

"I.·~ :;~nt: fl ta t~ 

IIRxt'L/\ 

IH"t'L/\ 
Ad i. 8t.ates 
HrtxCoullt 

H.t'ICf')unt ~ 

I\dj . ~.ltates 

I)J:~sentstate 

HaxPLA 
J1:i.nPLA 
Adj.States 
!-I:1:xC(Junt 

HJllCOUllt 
Adj. States 

pIY~~€ntstate 

Hl.lxT'LA 

Iii "I'L/\ 
Ad';. Y.~t3t.e!-l 
t1nxC0l1Jlt 

HI nCoI.1ll t 

Adj. :.:t·nt·p~ 

r 1:1 ~ "I.A 

!linl'I.A 

/\,Ji .~,;t"::lt·,?,s 

rlll~I:!""!1 

t'illl:'IIIIII 

Adi .~;I·;,lt.~~ 

4 . Of, Hl!.l 
4 .OE+llf) 

Q.OE+Of) 

O.OE+lln 

2 n~x.t.statl? 

4.0E+O(l 

4.0E+(l!l 

8.01':+0') 
f). f).F.+!H,l 

2 (, 

:2 Il~~)~.tstate 

4. (JE+ UI.' 
U.OE+OII 
Z lj 

1.2F.+OJ. 
S.OEfun 

3 " 

2 nextstate 

4.0EtOO 
O.OE+OO 
2 5 
1.2E+OJ. 
4.0E+UO 
Z 4 
4 5 

3 l1J.!x.tstate 

4.0Ff-on 
J . !.IF.+II!.I 

3 4 
4.0F.+!.1(1 

11.1).1::+1.111 

;: 4 

4 ll<:'xtstate 

I! . f)J::·t (II I 

:~ .I)Ef-OIl 

" 7 
J . ZE+I.l1 
~~.:;r::tfln 

4 ~ 

D J 
J ~l 

09/05/90 12,48 NI 
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ply!:pntGtat':' I, !l,,'''I:~~tElt_<::, :; 

Mfl :f.f'LA 4 .IIE+nn 

HluPLA n. (lp:+nn 

Ad; .E)t~te8 4 c, 

HnxCol.1Jl t 8.0E+OlJ 
MlllGount. 2.0E-IOO 

Ad-j .States 4 7 

:~ S 

I'r~sentstate 5 next~tate 6 

l-i:nd".JA n.(lf.+nn 
If 1.11 ~lLi\ Z.OE+()fI 
Ad i. ~;tates 5 (; 

H;I X.CIIIJll t. (I.OE+f)n 

11 i "C01.111 t. 1).r)E+Ofl 

I\d.i.Stat~s 

pl:esent:st8t~ (, H~':-:-.ts ta t~ 7 

Hi;l X I'LA 4.0[:;+1111 

'" i ",',1.1\ 2.:;f.~f)n 

Ad i. ~3'.flt~s 7 0 
HllxC"tI"t 4.0EHIfJ 

t1.1.11CUttIlt O. !JE-I '.HI 

Adi .~tlJtes " 
0 ., 

l)J:fo>sentstate [> nextstate 8 

t1nw.PL1\ 4. nEttl!.' 

H.l.nPLA O.OEtOO 
Ad; .States 6 e 
11axColtIJ t a.DEtOO 
IHnCOltnt. O.OgtOO 
t\dj. ~t~,tes 

l'r~~~l':'ntGtatp 7 nex.tstate 1 

Il.l}( 1'1..1\ I, . liE .-110 

!Hnl'I.A ;~. or: I (1) 

A,li .~_~t;:'ltf'f1 7 /, 

H:nf.CIJItIl l- I. ::F.+ II J. 
HJ.1I.(;u ... 1.I1. Q .0£+'"'' 
Ad j. States I) 1. 

,""-'!: f,,~llt_ S t 8. t.p I 11.~;~.tstat<:' Q 

l'lsxf'LA 4.0E+(10 
H.l"PLA 2.5E+on 
Adj .GtRt.es 9 1 
HaxCol1nt 4. l'E+O(1 
HlnConnt 2.0E+fJf) 

Adj. States 7 /, 

1" f.'~r·'nt.~tate I! fI'?Xt stat.e 1 

tln )f J' 1..,1\ t • . Of,·I!.IO 

ttl "f'LIl J..oEHlfl 



i\d i. ~j, ;Jte~ 

11;1 !tC !.II 11,1 t 

Hi "Conn I; 
Adj.fjt.:::Ites 

II:1XI-'LA 

, IJIlJ'J .. t\ 
A,f; .~a.~t. ... s 
1-18 x.CnPIl t 

n i IlCCll1Ut 

Adi .:;U:'Itp.s 

f\ J 
fl.lJ'~-1 (Ill 

4.0EtlJil 
7 I, 

l, .111~ !-lIt) 

{, . 'JE+I)II 

q .OE+I)H 

O.OE+(11l 
6 fJ 

F,,,, PI" t.!, p 1oTeJ.ght (= f_ll: lIe"PLA 
Ell t <-, t" till-:! wf-!ight fIJI. I,UnPLiI 

I~" t "I I h.:, vl·dgbt. ff) '_' tbx.'-:>Junt 
Foil I 1"" thl.:' we j.ght i '.n: I,JJnCUlttlt 

13:11' .' '" t:h~ weight f fl t' /I-:liN.r 
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8 

1.2E+OI) 
I.OEtOI) 
1.2Et!)O 
I.OEtOO 
B.OE-OJ. 

Th"!:0 ;::I l~'.l t.h r.' OJ:d,,-,t''?d tt'ansistions according to ELECTRE I 

prf-'!:f-'IlI: !:t:atf::' J. 11~xtst8te Z Z. lEtOl 
III-.~ sellt. s til t~ 5 nextstate (i 2. lEtfJ! 
Jl 1'1> ~l~1l t.!~ ti3 t~ ~1 1I~x:t8tate 3 Z.4EtOl 
I'I"P.!:; ell t f; t.;3- te (i li~xtstate 7 2.2EtOl 
P' 1'!:f'~II'.!:t1:1t.F:' 7 TI~XU:t8,tf::' 9 1..9EtOI 
pr€sentstate " nextstate 3 I.BEtOl 
l'I·Pr.~llt~t.l:It~ " next.state 4 1.7EtOl ,. 
1""::'Sf>lIt,state fJ Tl~xtstate 1 J. . 4E Hll 
p':I'~PTlI ~1·.Rte 4 nAxt.state 5 1.J.1':t01 
I' I"~" ~H~n 1- ~ ta te (, nextst.at.e 8 1.IEtOl 
l,n·~l~ntstl'lt.F::' 4 lI.~xtstate 1 7.0EtOO 
I'n,,~pl1t RtF.lt.~ 7 Jl~xtstClt€ 1. 7.0E+00 
1'1.1---'~;~nl'8t-at.e 2 uext.~ t~,te 5 4.0EtOO 
pI ":-lI--;'IIt::;t:fltl-:' 2 li':!xt.st~te 4 2.0EtOO 

OJ:rJ'"'J:,::'d trans;.stio:.qJs accQrding t.o ELECTRE II 

I'I-"~:""J!t:~:tat(::' ", '"'~xt8t8te 6 4.lEH'1 " 

J' "p ~:~Il t":: t.C1 t ~ J. 1J~x.tstCl.te 
" 3.3EtOl " 

1"'I'~:~nt:~;t;;lte (, I!~~xt St.8,tp 7 '·.3EHl1 
pl"pnent:.(lt.i"It<::' " ,,~::"tst~,t'? 8 3.2EtOl 
J' '"",' !;Pl1. '-!l t8 tP ':. 11'-':::_ t.~: t~CI t: e 4 3.0EtOI 
PI"~~f::'llt.~jtate I\ext.state 3 Z.7E·IOl 
1""" f:en t. 81;13 te 7 nextstate 9 Z.6Et01 
I''''':' ~:f--~JJ t G ta te .. lJ<:'xtste,te ). Z.6E~Ol '.' 

J' I"'~!;I--:'n t f: to t~ 4 l\~xt8tat.e 5 2.1E+!)1 
1"-"!If::'ll I' :~tClte I, tI.~xtstat€ 1. 1.ZE+Ol 
I' '"" :1 I--? II I. :: tPl t.':' ,; IIp~~.t~t:at:e ~ J.,2EtOl 
I" "!lpnl'!~t,;;I"P 7 IIp)tt~tat<=:! ). Q .OE+OfJ 
pI P!H>lIt~I,Rt f" Il Pxt:st.ate r, 7.0E+OO 
1)1 pSf"nl.!~tC'lte , 1I~:x.t.state I, 6.0EtOO 



VA!."":; (:ALCll!.AT"[I f,", ''',Ef:TRE-JT 
'~1l1 PI' U'l'~ max 111.1mhpr flf b~ams 

ElIl. ... r: IJII7 mIll quallt,yf~''':'-(JI':-

J 

0.90 

Th" contents of thl? transltiontable 

PI."I-!r.:f.:'t ~jtlJt.e H":'xt Stfl.te 

" 
,; 

G 7 
.I. " ~ 
') 8 
"' f, .' 
" 

" " n 
7 q 

I, .. 
(, :') 

I, 

1 .I. 
"' -, 
2 4 

H~xt $t.ate 

l:hl1il\ 1. 

5 6 
6 7 

7 9 
9 8 
8 J. 
.I. " 

" 
L } , J., 

Ad ;at-.-.'"t-y :. G 
Ad j:JI'P''':y " 7 
l\djnt:l-~n':y 7 u 

I\d j :t'·'~I\t·y Q !3 

I\d; :wl-'l)'7 ~ 1 
I\d'jf.l':f?TWY 1 2 
I\d j ~lf:f~JlI.:y "J " 
I\d j;w P 1WY 1 4 

Val l Je 

41-
33 
33 
',., 
:.' L. 

~11J 

')..7 

26 
Z6 
~1. 

12 
12. 

Q 

7 
c 

I.:\ . I, • J. it. ~l J.. 2.6 . ., ) 11. 1. e. 9 2..3.4. S. 6) ( 1. 2..3.4.8 5.6. 7 • 9) (4 1.2.3. 5 . 6. 1.8.1,.1 ) 



(~.~.A.~' 1.2,3.G.7)(1.7.g.~ 2.3.4.5.6)(1.2.3,4.8 5,6,7,9)(3,4 1,2,5,6,7,8,9) 
( " • ~l • '_1 J.:2. 3 . II . C,. 7 ) I 1 . fl • 7 . rJ • ~l 2. 3 . 5 . 6) (1 , Z • 3 , 4 ,8 5, 6 , 7 , 9) (3 ,4 1. 2 , 5 , 6, 7 • 8 . 9 ) 
(~.D.~' 1.2,J,4.6.7'(1.!.B.~ 2,3,4,5,6)(1,2,3,8 4,5,6,7,9)(3,4 1,2,5,6,7,8.9) 
(·I.~.~.ll.9 1.2.6.7)f1.~.3.7.8.9 4.5.6)(1.2.3.4.8 5,6,7,9)(2,3,4 1,5,6,7.8.9) 
(J.~.S.8.u 1.2.6.7)(1.2.3.4.7.8. 0 5.6)(1.2.3,8 4,5,6,7,9)(2,3,4 1,5.6,7.8,9) 
(~.~.U.~ 1,2.3.6.7)11.2.7.8.9 3.4,5.6)(1.2.3.4,8 5,6,7,9)(2,3,4 1,5,6,7,8,9) 
( :; . II ." 1.. 2 . 3 . 4 . 6. 7 ) ( 1. Z. 7 . 8 . 9 3. 4 . 5 . 6) (1 • Z • 3 ,8 4, 5 , 6, 7 . 9) ( 2 , 3 ,4 1. 5 , 6, 7 , 8 . 9 ) 
('.8.9 1.2.3.4.6.7)11.2.7.8.93.4.5.61(1.2.3.4,8 5,6,7,9)(2.3 1.4,5,6,7.8.9) 
1~.5.D.:) 1.2.3.6.7)ll.2.3.4.7.B,9 5.6)(1.2.8 3,4,5.6.7,9)(2,3,4 1,5,6,7,8,9) 
( ~" 1t.:..1 :1.. ~2. :; . /, . (,. 7) (:I. . ~ . J . 7.8. :-) 4,5. G) ( 1. Z. 8 3,4.5,6, 7 . 9.1 (2,3.4 1,5.6,7.0.9) 
!.I .. "·.n.'.' ;1 .• J.l~.6.7)(:·' .. I •. 7.n.9 1,2.5,6)(1,~2,3,4,8 5,6,7,9)(4 1,2,3,5,6,7,8,9) 
(J .• ~.S.O.~ Z.J.G.7)(7.0.? 1,2,3.4,5,6) (1,2.3,4,8 5,6,7,9)(3.4 1,2,5,6.7,8,9) 
I I • :, , H. q ;2, 3 , 4 , 6 . 7.l I. Q • 7,8, ~l I, 2, ?, , 5 I 6) (1, .2, 3, l~, 8 5,6, 7 , 9) (3, 4 l, 2, 5,6, 7 , 8 , 9) 
(I .5,O.~ 2.3.4.6.7)17.~,9 1.2.3.4.5.6)(1.2,3,8 4,5,6,7,9)(3,4 1,2.5,6.7,8.9) 
(I .~.~.O.q 3.4.~,7)(4.7,n.g 1,2,3,5,6)(1.2.3,4,8 5,6,7,9)(2,3,4 1,5,6,7,8,9) 
(l.Z.~.~.Y 3.4.6.7)(7.8." I.Z.3.4.~.6)(1.2.3,8 4.5.6,7,9)(2,3.4 1.5.6.7,8.9) 
(1 .~.S.0.9 3.4,0.7)(7.8.9 1.2.3.4.S.6)(1.Z.3,4,8 5,6,7,9)(2,3 1,4,5,6,7,8.9) 
( I . ; .. J . ~; . I) • 9 (,. 6 . "7 ) ( ~ • h. 7 . [\ .? 1. Z . :; • (, , ( J, • Z • 3 . 4 . 8 5. 6 , 7 . 9) (2. 3 • 4 1. 5 , 6, 7 , 0 • 9 ) 
( 1 . ;.: . J . I, . ~, • e .? r;. 7 ) ('1 . ,', . 7 . 8 . 9 1., Z . :-' • (. ) ( .1. • L. • J I 8 4 I 5 , 6, 7 . 9) (2 , 3 ,4 1, 5 , 6. 7 • 8 . 9 ) 
( 1 . / . J . ') . l.l . 9 i •• (i. 7 ) ( 'i . 0 . ~I 1, Z , :: • I~ , :; • () (J. ...... [\ 3, 4 , 5 • 6, 7 . 9) (2 , 3 ,4 1, 5 , 6 • 7 , 8 • 9 ) 
( I .. : .. :', . .', . .':"' . e . 9 G. 7 ) ( /, . 7 . ~1 . 0 l. 2. . 3 , .5 • 6 ) ( 1. :2 . 8 3, 4 • 5 , 6, 7 • 9) (2 . 3 I 4 1, 5 , 6 • 7 , 8 , 9 ) 
( I . i l . :' . n . ~.) ~2.;'. ti. 7 ) (.I.. :..: . 7 , B ,~I :.. 4 . .5 • f' (1, 2. • 3 • 4 ,8: .5, 6, 7 I 9) (1 , 2 f 3 ,4 5, 6, 7 , 8 • ~ ) 
fl. ~;.13. ',I :!.. 3. I~ .6.7) (J,. 2..7.8.9 3.4,5, (5, (1.:2.3.8 4,5,6 I 7 ,9) (1,2,3, I~ 5.6,7,8.9) 
1 .I .. 'i . ~ .~, 2. J . 4 . 6 . 7 ) (. J. • :~ , 7 . 8 , 9 3, it , 5 , 6 ) (1, Z , 3 I 4 I 8 5, 6, 7 , 9) ( 1 , 2 , 3 4, 5 , 6, 7 , 8 , 9 ) 
(I.~.~.~.~I 1.3.6.7)(J .. Z.3.4.7.B.9 5.f)(1.2.B 3,4 • .5.6.7,9)(1.2.3.4 5,6.7.8.9) 
( 1 . :-' . ~3 . ! 1 :!. ~', . I, . f.. 7 ) ( J. ' ':' • _' .• 7 . P. • ~l 4 . .5, 6 ) (.t, 2 . 8 3, 4, 5, 6, 7, 9, ( 1 • 2, 3 . 4 5, 6. 7 , 8 , ? ) 
( I .. :; . f..l • ~I 2. J . i, . ('. 1 , ( J. . 2 . ~~ . i • $3 • 9 4. 5 . () ) ( .t . 2 . 3 . 4 , 8 5. 6, 7 . 9) ( 1 ,2 3. l~ • 5 , 6 • 7 • 8 . 9 ) 
(1.2.~.D.9 3.4.6,7)(1.~.7.8,9 2.3,5.6)(1,2.3,4.8 5,6,7,9)(1,2,3,4 5,6,7,8,9) 
1 (.~.~.8.9 3.4.6.7111.7.8.9 2.3.4.5.6)(1.2.3.8 4,5,6,7,9)(1,2,3,4 5,6,7,8,9) 
11.2.~.U.Y 3,4.6.7)(1.7.D.9 2.3.4.5,6)(1.2.3,4,8 5,6,7,9)(1,2,3 4,5,6,7,8,9) 
( 1 . ;' . 'I, , .... ,. :; .~. 1,.6. 7 , I J. . ., .. n •• ~I ~,J. 4 , 5. G) ( 1,2.8 3,4,5,6, 7,9) (1.2,3, 4 5.6, 7 , 8,9) 

I 1 .. :~.J.~.S.8,9 6,7'(1.~,7,8.9 ~,J,5!6)(1.2.8 3,4,5,6,7,9)(1,2,3,4 5,6,7,8,9) 
(I .;.J.~.~.~' 4.6.7)(1.7.0.:' 2,3.4,5,6)(1.2.3,4,8 5,6,7,9)(.l,2 3,4,5,6,7.8,9) 
(.I..;~.:).tl.~1 ~',.{I.G,7)(J..2.3.7.fj.,? 4.5,6)(1,8 2,3,4,5,6,7,9)(1,2,3 14 5,6,7,8,9) 
(1.~.5.e.y 3.4.6.7JII.Z.3.4.7.B.9 5.6)(1.4.8 2,3,5.6,7,9)(1,2.3.4 5.6,7.8.0) 
(I .~.J.~.8.Y 4.G.71 (1.2.7.8.9 3.4.5.6)(1.8 2.3.4.5,6,7,9)(1,2,3,4 5,6,7,8.9) 
(1 ,:~.J,4.5.0.9 6.7)11.2.7.0.9 3.4.5,6)(1.4.8 2,3.5.6,7,9)(1,2.3,4 5,6,7,8.9) 
(1.4.5.0 2,3.6.7.9)(7.8.9 1.2,3,4,5,6)(1,2,3,4,8,9 5,6,7)(3,4 1,2,5,6,7,8,9) 
(.I .5.0 2.3,4.6,7.9)(4.7.8,9 1,Z.3.5,6)(1.2.3,4,8,9 5,6,7)(3,4 1.,2,5,6,7,8.9) 
(1.5.0 2.J,4,6.7.9)(7.B.? 1.2.3,4,5.6)(1,2.3,8,9 4,5,6,7)(3.4 1,2,5,6,7,8,9) 
(l.~,~,e 3,4,6,7,9)(4.7,8,9 1,2,3.5.6)(1,2,3,4,8,9 5,6,7)(2,3,4 1,5,6,7,8,9) 
(I ,~.5,D J,4.6.7.~)(7.8.? 1,2,3,4.5,6)(1,2,3,8,9 4,5,6,7)(2,3,4 1,5,6,7,8,9) 
(1.2.5." 3.4.6.7.9)(7.0.9 1.2,3,4,5,6)(1,2,3,4,8,9 5,6,7)(2,3 1,4,5,6,7,8,9) 
(1.2.3,: •. 0 1~.6.7.~)(·),1.'.7.1J.? 1.2,5,6)(1,2.3,4.8,9 5.6.7)(2.3,/~ 1.5.6,7.S.?) 
(1.~:.3./,.:;.~J 6.7,~1.i'.-::.!1.7,B,~ 1.:.5.6)(1,2,3,8,9 4,5,6,7)(2,3,4 1,5.6,7.8,9) 
(J.~.j.~.O 4.6.7.~)(7.0.? 1.2.3.h.S.6)(1.2.8.9 3,4.5.6.7)(2,3.4 1.5.6.7.8.9) 
(.I .. ::.J.4.~.O 6.7.?)(4.7.D.? 1.Z.3.5,6)(1.2.8,9 3,4,5,6,7)(2.3,4 1,5.6,7,8.9) 
(1.2.~.e 1.~.~.7.~')'1.~.3.7.8.? 4.5.6)(B.? 1.2.3.4.5,6,7)(2.3,4 1.5,6.7,8.9) 
( I • :.: • .) • r3 '3. / •. ( .• 7 . ? ) I. J . :: • 3 . !, • 7 : C· . ~l :', G) ( 4 . 8 ,? 1, Z I 3 , 5 , 6 I 7 ) (2 ! 3 I 4 1, 5 , 6 , 7 , 8 , 9 ) 

(1 .. 2,J.~.B ~,6.7.~I)ll.:.7.D.0 ~.4.~,G'(3.~ 1.2.3.4,5.6,7)(2,3,4 1,5.6,7,8,0) 
(.' .. ~.J.4.~.8 G,7.~) (1.2.7.8,9 3,4,5.6)(4,8.9 1.2,3,5,6,7)(2,3,4 1,5,6,7,8,9) 
tl.·'.~.',.A ~.G.7.~)(1.2.3.4.7.e,9 5,6)(3.4.8,9 1,2,5,6,7)(2,3,4 1,5,6,7,8,9) 
(I.'~.~.~.~.B 6.7.9)'1.2.3.7.8.9 4.S.6)lJ.4.8.9 1,2.5,6.7)(2.3,4 1,5,6.7,8,9) 
t 1.~.5." 2.J.G.7.~1(1.2.7.0.9 3.4.5.6)(1.2.3.4,8,9 5,6,7)(1,2,3.4 5.6.7,8.9) 
(1.'.112.3.4.6.7.·)(1.2.7.8.9 3.4.5.6)11.2.3,8.9 4.5,6.7)(1.2,3.4 5,6,7.8.9) 
(1.~.n ~.3.4.6.7.9)ll.Z.7.8.9 3.4.5.6)(J..Z.3,4.8,9 5.6,7)(1,2.3 4,5.6,7,8,9) 
t I .• ~.~.~J 2.J.6.7.~)(1.Z.J.4.7.8.~ 5.6)11.2.8.9 3.4.5.6.7)(1,2.3.4 5.6,7,8.9) 
( I . " .:1 .~. 3 . I, , (l. 7 . ~l) , 1. :2. 3 . 7.8. 5l 4.5.6) (J.. 2 . 8.9 3.4. 5. 6, 7) (1.2.3. 4 5.6, 7.8.9) 
, 1 .. , . r; • II :3. 'I . l;. 7 • ~I) (]. . 4 . 7 . 8.9 2.3.:;. (;) ( J,. ::.3.4,8,9 5,6, 7) (1,2.3, 4 5.6, 7.8. ~I) 
(I.), ,8 J.4.6.7.~I)(J.:7,O.9 2.3,4.5.6)(1.2.3,8,9 4.5,6,7)(1,2,3,4 5,6,7.8,9) 
(J.2 .. U J.4.6.7.9)(1. I.B.9 2.3.4,5.6)(1.2,3.4,8.9 5.6.7)(1,2,3 4,5.6.7.8.9) 
(.I .2 .. 5.8 4.6.7.9) (1.7.~.~ 2.3.4.5.6)(1.2.8,9 3,4,5.6,7)(1.2,3,4 5,6,7.8,9) 
I I .. ~ .. ~.5.0 G.7.?) (1.~.7.8.? 2.3.5.6)(1.2.8.9 3.4.5.6.7)(1.2.3,4 5,6,7.B.9) 
(I.~: .. :'.n 4,6,7.~')(1.1.Fj,? Z.3,1 ... S.6)(l,:":,3,4,8,9 5,6,7)(1.2 3,4,5,6,7,8,~) 
(I .~:. "J.4.G.7,~'ll.Z.~.7.0.q 4.S.6)(:I..n.9 2.3.4.5.6,7)(1,2,3,4 5.6,7.B.9) 



(l.;:.~,ll J,4.fi.l,~I)(1.:.·~.4.7.0.~ ~,6J(1.4.0.? Z,3.5,6.7)(1,2,},4 5.6.7.B.O) 
(I ,~,J,~.O 4.G.7.~I)(1.~.7,O.9 3,4.5.6)(1.0.9 2,3,4,5,6,7)(1,2.3,4 5,6.7.0.9) 
(1.?3.4,~.U G.7.~1'(1.=.7.0!9 3,4,5,6)(1,4.8,9 2,3,S,6,7}(l,2,3,4 5.6.7,0.0) 
(1 ,~,3,4.5 6,7,0,0) (2.~,4.7.9 1,5.6,8)(1.2,8,~ 3,4,5.6,7)(4 1.2,3.5,fi.7,r,~I) 
(I ,2,3,5 4,G,7,3,~)(2,3,4,7,9 1,5,6,8)(1,2.3,4,8,9 5,6,7)(3,4 1,2,5,6,7,B,O) 
(1,2,3,4,5 6,7,3,9)(2.3,7,9 1,4,5,6.8)(1,2,3,4,8.9 5,6,7)(3,4 1,2,5,6,7,8.9) 
( 1. , 2 , 3 , I, ,:, I). 7 . 8 . (I) (~ • ~~ , 4. 7 ,9 1. 5 , 6 . 8) ( J. , Z . 3 . 8 . 9 4, S • 6, 7) (3 • 4 1, 2 , 5 , 6. 7 . 0 . 9 ) 
( I • ~' . 'i -1. 4 , G, 7 , n . ~) ) ( I~. 7 ,~-) l. 2 , J • .5 , G • 8 ) ( J. , 2 . :) , fl , fJ ,9 5, 6 , 7 ) (2 , 3 • 4 J,:;, 6 • 7 . f.l . OJ ) 

(I ,Z.5 :\.4,6.7.0.~') (7. 0 1,2.3.4.5.6.0)11.2.3,8.9 4,5.6.7)(2.3.4 1.5,6.7.".~) 
(1,2,3.;; 4,6.7.0.9)(3,4.7.9 1,2.J,Ci.0)f1.2.3,"',8,9 5.6,7)(2,3,4 1.5,6.7,0.9) 
(1.2,3,4,5 6.7,0,9)(3.4.7.9 1,2.5,6.8)(1.2.3.8.9 4,5,6.7)(2,3,4 1,5,6,7.8.9) 
(1,2,3,4,S 6,7,8,9)(3.4.7,9 1,2.S~6,8)(1.2.3,4,8,9 5,6,7)(2,3 1,4,5,6,7,8.9) 
(1,2,3,5 4,6,7,e,0)(7,~ 1,2,3,4,5.6,8)(1,2.8,9 3,4,5,6,7)(2,3,4 1,5,6,7,8.9) 
(1,2,3,4,5 6,7,8,9)(~,7,9 1,2,3,5,6,8)(1,2,8,9 3,4.5,6,7)(2,3,4 1,5,6,7,8,0) 
(2.3.5 1.4.6.7.8.9)(3.4.7.9 1.2.5.6.8)(1.2.3,4,8,9 5.6.7)(1.2.3.4 5,6.7.8.9) 
(l.3,~,5 1,6.7.0,~)(3.6.7,9 1,2,5,6,8)(1,2.3,8,9 4,5,6.7)(1,2,3,4 5,6,7,8.9) 
(Z,3.4.~ J.,6.7.8.?)(3.4,7,9 1.Z.5.6.8)(1.Z.3.4.8,9 5.6.7)11.2.3 4.5.6.7.B.~) 
(Z,~,5 J.~.6.7.0.{I)(7.!1 1.2.3.4.5.6.8)(1.:.8.9 3.4,5,6.7)(1.2.3.4 5,6.7.B.91 
(2.:',4.~ 1.fi.7,0.9)1~.7.9 1.Z,3.5.6.0)(I.Z.8.? 3.4.S.6.7)(1.2.3.4 5.6.7,0.9) 
( ;' .• :\ , I, • S J, (, . 7 • !J • :1 ) ( I,. 7 .:1 1, 2: , 3 . S . 6 . I'J ,) ( J. . ;_ .. J . I .. • 0 . 9 5, 6, 7 ) ( 1 . 2 3, 4 . 5 , 6. 7 , B . 9 ) 
('.1 , i, • J t. ~~, (;. 7. f! •• ~l ) (~.'. •. " • 7 .~, .t. 1./ • :;. (). e) ( J .• ~ • :3 , i, .8,9 5.6, 7 ) ( 1. 2,3. I, 5, G. 1. n . q) 

(J.~.S 1.2.6.7.8.~')(::.J.4.7.9 1.S.6.0)(I.~.3.8.9 4.5.6.7)(1.2.3.4 5.6.1.8.~) 
(J, 1".) J, 2.,6, -, . S. ~I) £. ~ • :'. , 4. 7 , 9 1,5,6,8) (J., Z, :3, 4 , 8,9 5,6, 7) (1,2, 3 4, 5 ,6. 7. e . n) 

(~.S 1,~.J.6.7.U,!)'{Z.J.4,7.9 1.5,6,8)(1,2.8,9 3,4,5,6,7)(1.2.3,4 5,6.7.B.!') 
(5 1.2.3.4,6.7.3.9)(2.3.7.9 1,4,5.6.8)(1.2,0.9 3,4,5.6,7)(1,2,3.4 5,6.7.B.9) 
( 3 . I~ • ~ 1, 2 , 6. 7 • IJ , ~I ) ( I, . 7 ,9 1. Z , J . 5 . 6 . [l) ( 1 . 13 ,? Z, 3 , 4 , 5 , 6, 7) ( 1 . 2 , :. , 4 5, 6. 7 . 0 . ~ ) 
( 'J • f, ,~) '1,~:. (i , 7 , e . 9 ) ( "1 . ~l 1, Z . :. , 4 , 5 , 6 , 8 ) (.-'- , il , 8 ,9 2.'~" 5 , 6, 7) '- 1 , Z, J ,4 5, Ii, 7 . n , q) 

(4.5 I,Z.3.6.7.8.9)(3.4.7,9 1.2.5,6,8)(1.8,9 2,3,4,5,6,7)(1,2,3,4 S,6.7.0.Q) 
(~ J.,2,J,4,fi,7,8,9)(3.4.7,9 1.2,5.6,8)(1,4.8,9 2,3,5,6,7)(1,2,3,4 5.6,7,8.9) 
(1.2.5 3.4.6.7.8.9)(1.7.0.9 2.J.4.5,6)(1.2.3,8.9 4.5,6,7)(1,2.3.4.8 5.6.7.0) 
(1,2,5 3,4.~,7,8,9)(l,7.a,? :.3,4,5,6)(1,2,3,4,8,9 5.6,7)(1,2,3,8 4,5,6,7.9) 
(1,2,3,5 4,~,7,8,9)(1,7,O,9 2,3,4.5.6)(1,2,8,9 3,4,5,6,7)(1,2,3,4,8 5,6.7.0) 
(J.,2,3,~,5 6,7,8,9)(1,4.7,0,9 2,3,5,6)(1,2,8,9 3,4,5,6,7)(1,2,3,4,8 5,6,7,9) 
(J .2,3,5 4,6,7.8,9)(1,7,8,9 2,3,4,5,6)(1.2,3,4,8,9 5,6,7) (1,2,8 3,4,5,6,7,9) 
(1,2,3,4,5 6,7,8,9)(1,4.7,8.9 Z,3,5,6){1,2,3,4,8,9 5,6,7)(1,2,8 3,4,5,6,7,9) 
(1.2,5 3,4.6,7,8,9)(1.2,3.7.8,9 4,5.6)(1.8,9 2,3,4,5.6,7)(1.2,3,4,8 5,6.7.9) 
(t,2.3,5 4,6,7,8,9)l1,2,7,O.9 3,4,5,6)(1,8,9 2,3,4,5,6,7)(1,2,3,4,8 5,6,7.9) 
(1.2,3,4.5 6,7,8,9)(1,2.7,8,9 3.4,5.6)(1,4,8,9 2.3,5,6,7)(1,2,3,4,8 5,6.7.9) 
(1.2,3,4,5 6.7.8,9)(1.2,3.4,7.8,9 5.6)(1.4.8.9 2,3,5.6,7)(1.2,8 3,4,5.6.7.9) 
(1,2,3,5 4,6.7.8.9)(1.2.7,8,9 3.4,5,6)(1.2,3.4,8,9 5.6,7)(1,8 '.0.4.5.6.7.9) 
(l,2,3,~.5 5,7,8.9)(1.2.7,8.9 3.4,5,6)(1,2.3,4.8,9 5,6,7)(1,4.8 ~,3.5.6.7,~) 
(J.,~,3,4,5 6,7,8,9)(1.:,3.4,7.8,9 5,6)(1,2.8,9 3,4,5,6,7)(1,4,8 2,3,5,6,7.9) 
(2,3. /',5 J.,6,7.8.~,(}./~.7,8.~1 J .. 2,5,6)(J..2,3,8.~ 4,5,6.7,(1.2.3./1.8 5.6,"1.0' 
(2.J.~.5 1.6.7.8.9)(3.4.7.0.9 1.2.5.6)(1,2.3.4.8.9 5.6.7) (1.2.3.8 ~.5.G."1.9) 

(;~.J.5 1.4,6.7.0.?)(7.U.~ 1.Z.3.4.S.6)'1.Z.O.? 3,4.5.6.7)11.2.3.4.8 5.0. l.~) 
(;!,J.~.5 1,G.7,8.9! (4.7.~.? 1,Z.3.5.6)(1.2.8.9 3.4,5,6.7)(1.2,3.4.8 5.6.7.?) 
(2.:3.5 J .• 4.6.7.8,9)(7.0.9 1.2.].4.~.6){1.2.3,4.8,9 5.6.7)(1.2.8 3.4.S.6.7.?) 
(2,J.4.~ 1.G,7.B.9)(~.7.8.9 1.2.3.5.6)(1.2.3.4.8,9 5.6.7)(1.Z.8 J.~.5.G.7.9) 
( :~ • I, , .... ) 1., 2 • (,. 7 . D . ~) ( I~ • 7 . :] . ~"I 1.:2.?,. ~ . (1) ( 1 . IJ .? 2.. J . I~ • 5 . 6. 7) 1 1 . ': . ,; .. ,I, • ~ 5. ('. 7 . ~I ) 

( :J • I, ,:i 1.. Z . (, • 7 , (l • :;1 ) ( 7 . fJ . ~l 1.:':'. :_~ . I, • ~ • 6) (1 . I~ . 8 .? 2, 3 . S . (.. 7) ( 1 . :.:. .. ~ . /, . 8 :.. (. . 7 . ~) ) 
( II • fJ J, ~~ . J , (i, 7 . n . ~I ) ( '~ •. II . 7 . g ,'.) J.,~', ~ . 6) (l . [1 .~.j 2.:3. 4 , 5 , 6, 7 1 (1 • 2. , 3 . I, . 8 5. f;. 7 , () ) 
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