

Decompositional state assignment with reuse of standard
designs : using counters as sub-machines and using the
method of maximal adjacencies to select the state chains and
the state codes
Citation for published version (APA):
Jozwiak, L., & Kwaaitaal-Spassova, T. G. (1990). Decompositional state assignment with reuse of standard
designs : using counters as sub-machines and using the method of maximal adjacencies to select the state
chains and the state codes. (EUT report. E, Fac. of Electrical Engineering; Vol. 90-E-247). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/1990

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/dc607da2-6b18-49e5-b13d-8e437fc2b17c

~ --- --- -:-- ----=-~----':: - ---- -
. - --

- - - - - --

- - - - -- '" -- -- -- = - -

- -- ----~~-- -

- - - ---- - -- - - - -=----
, -~ - -- --- -

I -._- ~--- -..:::::"=_- __ ~ --.~-- _ •

-
- --- ---=----- --- --= ~~-

Decompositional State
Assignment with Reuse of
Standard Designs:
Using Counters as Sub-Machines and Using
the Method of Maximal Adjacencies to Select
the State Chains and the State Codes

by
L. J6zwiak and T. Spassova-Kwaaitaal

EUT Report 9O-E-247
ISBN 90-6144-247-8
September 1990

Eindhoven University of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering

Eindhoven The Netherlands

ISSN 0167-9708 Coden:TEUEDE

DECOMPOSlTIONAL STATE ASSIGNMENT

WITH REUSE OF STANDARD DESIGNS:

USING COUNTERS AS SUB-MACHINES AND USING

THE METHOD OF MAXIMAL ADJACENCIES TO SELECT THE

ST ATE CHAINS AND THE STATE CODES

by

L. Jozwiak

and

T. Spassova-Kwaaitaal

EDT Report 90-E-247

ISBN 90·6144-247-8

Eindhoven

September 1990

CIP·GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

J oiwiak, L.

Oecompositional state assignments with reuse of standard designs: using
counters as sub· machines and using the method of maximal adjacencies to
select the state chains and the state codes / by L. Jozwiak and T.
Spassova·Kwaaitaal. . Eindhoven: Eindhoven University of Technology,
Faculty of Electrical Engineering. . Fig., tab. . (EUT report, ISSN
0167·9708; 90-E-247)
Met lit. opg., reg.
ISBN 90-6144-247-8
SISO 664 UOC 681.325.65:519.6 NUGI 832
Trefw.: automatentheorie.

iii

DECOMPOSITIONAL STATE ASSIGNMENT

WITH REUSE OF STANDARD DESIGNS:

USING COUNTERS AS SUB-MACHINES AND USING

THE METHOD OF MAXIMAL ADJACENCIES TO SELECT THE

STATE CHAINS AND THE STATE CODES

Lech Jozwiak, T.Spassova-Kwaaitaal

Group Digital Systems, Faculty of Electrical Engineering,

Eindhoven University of Technology (The Netherlands)

Abstract - One of the most important steps in the design of finite

state machines is the assignment of values to the binary state

variables to represent the symbolic internal states of the machine.

The complexity of the resulting implementation can vary extensively

from assignment to assignment.

From our experiments with more than 20 sequential machines

follows, that the silicon area for the best assignment that we

found, was typically about half that for the worst assignment.

The problem of finding an optimal state assignment is

computationally complex. It is NP-hard. In a strict sense, it has

never been solved, except for exhaustive search, which for large

machines is unpractical or impossible, even using a computer. In

this situation, some approximated heuristic approaches must be used.

Using some knowledge about the internal structure of a sequential

machine, these approaches try to reduce the search space to a

manageable size and to keep the high quality solutions in that

reduced space. They produce often very good solutions, but they do

not guarantee the strict optimality for them.

Most of the known heuristic state assignment methods work better

for small than for large machines.

For the above reasons, decompositional state assignment

approaches are interesting.

iv

If the specification of a given sequential machine (or its part)

is strongly similar to the specification of a

then there is a great chance to reach

decompositional implementation.

given standard machine

a better solution by

Constructing a modified version of the method of maximal

adjacencies [1], we answered the question; how to find the (sub-)

optimal sequential decomposition of

number of sub-machines defining

sequential sub-machine.

a given sequential

counters and a

machine into a

small general

The precise algorithm for computing the (sub-) optimal state

chains and the (sub-) optimal state codes is described in the report

and illustrated with examples.

Index Terms - Automata theory, logic minimization, logic system

design, sequential machines.

Acknowledgement - The authors are indebted to Prof.ir.A.Heetman and

Prof.ir.M.P.J.Stevens for making it possible to perform this work.

v

CONTENTS

page

1. Introduction 1

2. Basic definitions 3

3. Decompositional implementation for a sequential 6

machine

4. A new method for state assignment 12

5. Evaluation of transitions in relation to 21

adjacency conditions

6. Algorithm description 25

7. Examples 29

7.1 Example I 29

7.2 Example II 46

8. Conclusions 72

LITERATURE 74

APPENDIX 76

1. Introduction

The methodology for digital circuits

growing complexity of modern IC's.

computer-aided synthesis techniques

have changed because of the

To manage this complexity

are used. They ensure

functional, logical, electrical and geometrical correctness and

allow a decrease in the design time. But often these techniques lead

to integrated circuits, which require a large silicon area.

Therefore design optimization procedures should be used to yield

area-effective circuits.

Basic architecture of a digital system consists of two parts: a

processing unit and a control unit. The control unit can often

require more than half of the total area, so it is very important to

reduce the amount of hardware used by it. Serial processing units

constitute also an important class of digital hardware.

Control units and serial processing units can be represented by

a finite state machine (FSM) (sequential machine, finite automaton).

Traditional hardware implementation of a FSM consists of two

parts: a combinational logic and a state memory (fig. 1.1).

I·PRI MARY INPUT S ________ _

~===+t====~1 OUTPUTAFUNCTION

~====> NEXT STATE
FUNCTION <5

~=======>~--------~
COMBINATIONAL LOGIC

STATE
MEMORY

NEXT: STATE

Fig. I. I General model of a hardware implementation

for a sequential machine

OUTPUTS

The combinational logic realizes the next-state function <5 and

the output function A. Depending on the present state and the values

1

of primary inputs, t5 generates the next state and A generates the

values for the primary outputs.

Because of the regular structure of the PLAs they are often

used to implement the combinational logic of the FSM in modern

designs.

State memory is implemented through binary memory elements

(flip-flops).

One of the most important steps in the design of finite state

machines is the assignment of values to the binary state variables

to represent the symbolic internal states of the machine. The

complexity of the resulting implementation can vary extensively from

assignment to assignment.

From our experiments with more than 20 sequential machines

follows, that the silicon area for the best assignment that we

found, was typically about half that for the worst assignment.

The problem of finding an optimal state assignment is

computationally complex. It is NP-hard. In a strict sense, it has

never been solved, except for exhaustive search, which for large

machines is unpractical or impossible, even using a computer. In

this situation, some approximated heuristic approaches must be used.

U sing some knowledge about the internal structure of a sequential

machine, these approaches try to reduce the search space to a

manageable size and to keep the high quality solutions in that

reduced space. They produce often very good solutions, but they do

not guarantee the strict optimality for them.

Most of the known heuristic state assignment methods work better

for small than for large machines.

For the above reasons, decompositional state assignment

approaches are interesting.

2

2. Basic definitions

A sequential machine is a 5-tuple

M = (I,S,O,o,A),

with the following specifications:

I - finite nonempty set of inputs

S - finite nonempty set of internal states ;

o - finite set of outputs ;

o - a mapping, called the next state function,

0: S x I -----7 S ;

A - a mapping, called the output function,

A: S x I -----7 0 (a Mealy machine) ;

A: S -----7 0 (a Moore machine).

Sequential machines can be represented by their graphs. The

states are represented by the nodes of the graph and the transitions

- by the arcs. The arcs are directed. Two nodes may be connected by

more than one arc. When two or more arcs have the same start node

and the same end node, they are called mUltiple and the transitions

which they represent, are called multiple transitions.

Multiple transitions are

which contain exclusively

checked and the largest

the inputs from a

input subspaces

given multiple

transition and don't have any common elements between each other,

are found. The multiple transitions between two given states will be

implemented together: all of them will be realized by a counter or

all by PLA.

When two

they are called

opposite arcs

states, which

states.

arcs connect two nodes and have opposite directions,

opposite arcs. The nodes which are connected through

are called directly interconnected nodes and the

they represent are called directly interconnected

3

Every node can be described as a start node, when only the arcs

that are coming out of it are concerned. When, only the arcs that

are coming into the nodes are concerned, then the node is described

as a terminal node.

All the arcs coming out of a certain start node form the start

set of the node. All the arcs that are coming into a certain

terminal node form the end set of the node.

The two opposite arcs, which connect two directly interconnected

nodes form directly interconnected pair.

When an arc starts and ends at the same node, it is called

cyclic, and the transition - cyclic transition.

Every transition can be described by a start node - Si' a

terminal node - T i and an input vector - Xi.

So, single transitions are described by a triple of parameters

(Si' Ti, Xi)· Multiple transitions are described by a start node Si'

a terminal node Ti and a group of separate input subspaces Xi ... X
m

.

So, multiple transitions are described by the n-tuple

(Si' Ti, Xi···Xm)·

An example for a graph structure of a sequential machine is

given on fig.2.1.

4

cyclic transition

directly
interconnected
states

node

start set of node 3

node

arc

terminal
node

end set of node 8

Fig.iT GraPh-structure of as~uential m~~hine

5

3. Decompositional implementation for a sequential machine

Two sorts of decompositions are feasible for sequential

machines:

- simultaneous decompositions;

and

- sequential decompositions.

Simultaneous decompositions divide the process described by a

given sequential machine into a number of interacting parallel

processes, each implemented by one partial machine. All the partial

processes are active simultaneously and together they realize the

decomposed process.

Sequential decomposition divide the process described by a given

sequential machine into a number of sequential sub-processes, each

implemented by one sub-machine. Only one of the sub-processes is

active at a given time and all the sub-processes together realize

the decomposed process.

In our previous works, we considered simultaneous decompositions

with general partial machines [4],[5],[6],[7],[8]. The term

"general" means that a partial machine can be any sequential

machine. We considered also sequential decompositions with general

partial machines. Our results in the last field will be published in

the nearest future.

In this work , we will consider some decompositions with special

partial machines, i.e. partial machines which are (more or less)

predefined.

This sort of decompositions is very important, because it allows

reuse of earlier designs.

A limited reuse of earlier designs can be obtained by using

parameterized generators, which describe some classes of circuits,

e.g. k-bit long counter of the natural binary code, k-bit Gray-code

counter, parameterized filter, parameterized CRC coder or checker

etc. In this case, reuse of a design is limited to a given class of

6

circuits defined by a given generator.

Often the specification of a circuit to design (or its part)

does not meet completely the specification of a special machine

designed previously, but it is only very similar to the special

machine. In such case, the earlier design can still be reused but

not as the only circuit.

newly designed circuit

The second circuit must be constructed. The

together

designed earlier must realize

specification of a circuit to design.

with a given special machine

a machine which meets the

Generally, in order to reuse the earlier designs a given

sequential machine must be decomposed into a number of special

partial machines (representing the earlier designs) and a number of

general partial machines (representing the new part of the design).

All the partial machines together must realize the decomposed

machine.

Reuse

decreases

important

carefully.

of earlier

the design

to reuse the

Such designs

designs is

time and

standard

ensure the

important not only because it

design costs. It is specially

designs which are designed very

correctness and are optimal or

near-optimal from the complexity point of view.

If a large enough part of a circuit will be constructed using

standard optimal designs and a small part of it will be constructed

in the form of a general machine, it is a great chance to reach an

optimal or near optimal solution. There is a chance to reach better

solution than that offered by the heuristic state assignment tools

applied to a general sequential machine on a whole. One reason for

it is the fact that one large part of a circuit will be optimal due

to using the optimal standard design; the second one is the fact

that the second (general) part will be much smaller than the whole

circuit and therefore easier to optimize. However, one must remember

that the standard part and the general part will be optimized in

separation. So, the eventual common parts of the logic cannot be

shared in this case. It means, that having ideal optimization tools

(e.g. state assignment tools), it will be always possible to find no

worse general solution than any solution obtained by reusing of

earlier designs.

7

So, the only reason, for the solution obtained by reusing the

earlier designs to be better (from the complexity point of view)

than the best solution found in a general way, is the unideal

heuristic character of the optimization tools.

If only a small part of a circuit will be implemented by reusing

the standard designs, then the chance to reach a better solution

will be small. The impossibility to share the logic by the standard

and the general part as well as the necessity to implement a piece

of hardware that will ensure the proper cooperation of those two

parts, will probably cause the hardware overhead greater than the

overhead caused by the unideal character of the optimization tools.

So, the following two problems have to be solved:

- to discover that the specification of a given design (or a part of

it) is strongly similar to the specification of a given standard

design (i.e. the chance to reach a better solution is high enough);

- to find the optimal decomposition of a given design into standard

and general parts.

In this work, we tried to analyze and to solve the above

described problems using a counter as an example of a standard

(special) machine. The choice of this example was not random.

Counters itself constitute a very important class of sequential

circuits and, what is more important in this context, many practical

controllers can be designed as modified counters quite well.

We were interested in the decompositional implementation for a

sequential machine using sequential decomposition into a number of

counters (standard machines) and one general machine. (Since we

developed earlier a method for sequential decomposition of a general

machine into a number of general machines, the above formulated

problem is general enough).

Sequential decomposition consists in partitioning

sequential machine into a number of sub-machines and

a given

ensuring the

proper cooperation of this sub-machines in order to realize the

behaviour of the machine to decompose.

We considered the one state realization of the state and output

behaviour in the sense of the definition given in [4]. "Sub-machine"

is understood here in the sense defined by the algebraic theory of

sequential machines.

8

A machine M' = (I', S', 0', J', ;") is a sub-machine of a

machine M = (I, S, 0, J, ;.) if and only if:

S' :s S, I' :5 I, 0' :5 0,

J' = J restricted to S' x I' (J': S' x I' -----7 S'),

;.' =;. restricted to S' x I' or S'

(;.' : S' x I' -----70' or ;.' : S' -----70').

In other words, sequential decomposition partitions the graph of

a given sequential machine into a number of sub-graphs. Each

sub-graph is implemented then as a separated sub-machine. One must

ensure that only one of the sub-machines is active at a given time.

So, if a given sub-machine is in one of its active states and from

this state for a given input value another sub-machine should be

activated, the active sub-machine must suspend his work and, at the

same time, it must activate another sub-machine. From this time on,

the activated sub-machine must keep itself active up to a similar

situation as described above (i.e. it must perform its normal work)

and each suspended sub-machine (also the newly suspended) will be

suspended up to the activation by a sub-machine which is active at

the moment of the activation.

Since sequential decomposition partitions the graph of a

sequential machine into a number of sub-graphs, the graph of a

sequential machine will be a very useful tool in considering

sequential decompositions.

The machine's graph is defined as

MG = < V, E, L(V), L(E) >

where

V - the set of vertices corresponding to the set of machine's

states;

E - the set of edges corresponding to the set of transitions

between the states;

L(V) - a set of labels attached to each vertex; this set is

empty for a Mealy machine and each label represents the

output value in a given state for a Moore machine;

9

L(E) - a set of labels attached to edges; each label represents

the input value of the machine (for Moore machine) or

the input and the output value (for Mealy machine)

corresponding to a given transition represented by the

edge.

The transitions in the machine's graph represent the actions

performed by a sequential machine.

The only action that can be performed by a counter is "go to the

next state". So, the only type of a sequential machine that can be

realized using a counter consists of a sequence of successive states

and is represented by a path in the machine's graph.

Since we considered here only the one state realizations, only

one state can be made successive and only one state can be made

previous to a given state. In general, we can have more than one

next state for a. given state and different inputs ("fork" splitting

in a machine's graph) and transitions to a given state can have an

origin in more than one state ("join" action in a machine's graph).

It follows immediately that not every sequential machine can be

implemented by composing only some counters (only counters can be

implemented using only counters) and that at most one transition

from a given "fork" or "join" group can be implemented by a counter.

So, in order to construct a one state realization of a

sequential machine in the decompositional form using a sequential

decomposition into counters we must use also a general sequential

machine as one of the sub-machines (the only exception is the case

of a counter itself).

The optimal choice of transitions from the "fork" and "join"

groups to be implemented by a counter will be considered in the next

chapters. All the transitions which will be realized by a counter

will be referred to as counting transitions. The counting

transitions can form a number of counting chains (paths in a

graph). Each counting chain describes a sub-machine that can be

realized by a counter. However, instead of implementing each counter

representing a sub-machine in separate, we will implement all of

them together using one larger counter and differentiate its

sub-ranges to implement different counters - sub-machines.

10

A general sub-machine can be implemented using a PLA (for a

combinational logic) and a register (for a state memory). However,

in a sequential decomposition only one of the sub-machines is active

at a given time. So, it is possible to share the flip-flops of a

counter and to use them one time in the counter configuration (if

one of the counters - sub-machines is active) and another time in a

register configuration (if a general sub-machine is active). In

consequence, in order to implement the counter - sub-machines and

the memory of the general sub-machine a loadable binary counter wiII

be used. The load signal (L) wiII distinguish between the active

states of a general sub-machine and the active states of one of the

counter - sub-machines.

The aim of our decomposition is to minimize the total silicon

area for implementation.

The silicon area for PLA grows with the number of state

variables k and with the number of product terms used for realizing

the next-state and output functions [1].

The silicon area for a counter grows with the number of state

variables which for the minimum-length assignments grows logarithmic

with the number of states implemented in a counter (k = r lo~ I S I 1).

We decide to use a counter if most of the transitions (and

states) can be implemented using it. So, we can expect in the

practice at most one-bit growth of a counter due to the extra

transitions and states of a general sub-machine. Therefore, we wiII

not consider minimization of a counter.

In the sequel we present a method which heuristically minimizes

the area used for the PLA implementation of the combinatorial logic

by replacing some of the state transitions by counting transitions.

These counting transitions will then be realized by a loadable

binary counter, which replaces the traditional feedback register of

the FSM. Selecting of the counting transitions has been considered

for the first time in [2]; however, it has been done in relation to

the very low quality state assignment algorithm - KISS [3]. In order

to select the counting transitions we developed a special edition of

the method of maximal adjacencies [1] . Figure 3.1 shows the basic

counter-based PLA structure using a loadable counter.

11

COMMAND

P LA

AND -
ARRAY

I
OR -

ARRAY

PR

OU

{MARY

TPUTS

11. _
_ C_L_O_CK ____ ->~I --_ IIIj LOADABLE COUNTER

========:lJ I z T T Z T+ 1.(} ---11 L
PRIMARY,)' Y II~
INPUTS] SEQUENCINO

AND - ARRAY OR - ARRAY PLA

Fig.3.! Basic counter-based PLA structure

This structure implements FSM's with Moore specification, since

the output vector depends only on the actual state Z T; however, very

similar structure implementing Mealy machine can be constructed

also.

In the next chapters, the suboptimal selection of counting

transitions and suboptimal state assignment will be considered.

4. A new method for state assignment

To solve the problem of sub-optimal state assignment for an

implementation of a sequential machine using a counter and a PLA, we

have developed a method, which is a combination of the method of

maximal adjacencies (MMA) [1] with the concept of using a counter as

a state memory .

The MMA [1] has been developed, based upon the observation, that

the information contained in the next-state and the output tables of

sequential machines instructs the input-state, present state- next

state and output-state dependencies for adjacency conditions. The

adjacency conditions are ordered according to the number of adjacent

"1" sand "0" s in the binary functions representing ~ and A reached

12

when a given condition is satisfied by the assignment. Then, the

conditions are considered and combined in their order constructing

some "suboptimal" assignments. Combining the maximal number of the

best adjacency conditions makes an order in the Karnaugh tables

which represent the binary next state and output functions by

accumulating " 1 "s together and "0" s together, i.e. by constructing

small number of large product terms. These "suboptimal" assignments

lead to small PLA area.

Using a counter [2] makes it possible to realize a number of

state transitions by a counter. Counting transitions need not be

implemented by a PLA. This saves the PLA area. The feedback register

of the FSM is replaced by a loadable binary counter, which is

controlled by a load variable L. Hence, an extra output called

"load" is generated by the combinatorial logic of the FSM. In each

cycle the counter offers a binary code word. If the next state of

the sequential machine is identical to the next counting state, the

counter has only to be incremented, while L = O. Otherwise, the

counter has to be loaded from the PLA due to L = 1.

Our method uses the basic ideas of the method of maximal

adjacencies in order to find the transitions that should be realized

by the counter in order to minimize the PLA area.

Two main objectives are taken in mind:

1. Since each transition, which is generated by the counter

allows "don't cares" in the next state table for the transitions

that are left to be realized by PLA and therefore an additional

potential for further minimization, we have to look for as many

counting transitions as possible.

2. In order to be realized by PLA, each transition has a certain

cost. The idea is to implement the transitions as cheap as possible.

That means, that the most expensive transitions should be realized

by the counter and the cheapest ones - by PLA.

13

We consider that when we choose a certain transition to be

realized by a counter, the neighbouring transitions (from the same

start set, the same end set

pair) should be realized by

5 parameters.

and the same directly

PLA. On that base

interconnected

we calculate

1. Cc -
max·

1

maximal cost of a given transition i, when realized by

a counter.

n
C = I C

cmax. . 1 PLAmax.
1 J = J

C - maximal cost of a given transition to be realized in
PLAmax

j PLA

n - number of neighbouring transitions

The maximal cost is calculated as a sum of the maximal costs of

the neighbouring transitions, which are left to be realized in PLA.

It is calculated as the number of product terms that are necessary

to be realized for a given transition without satisfying any

restrictions or adjacency conditions.

2. Ccmin i -

C . =
cmm i

n

minimal cost of a given transition i when realized by

a counter.

n
I

j =1

- number of neighbouring transitions

minimal cost of a given transition j to be realized

in PLA

C . is calculated as a sum of the minimal costs of the
CmlR

neighbouring transitions which should be realized in PLA. The

minimal cost is calculated as the number of product terms, that are

necessary to be realized for a given transition when certain

adjacency conditions and restrictions are satisfied.

14

3. CpLAmax. - maximal cost of a given transition i to be realized in
1 PLA

It is calculated as the number of product terms that are

necessary to realize a given transition without satisfying any

restrictions or adjacency conditions.

4. CPLAmini
- minimal cost of a given transition i to be realized in

PLA

It is calculated as the number of product terms that are

necessary to realize a given transition when certain adjacency

conditions and restrictions are satisfied.

5. AdjRestr - adjacency restrictions

It is defined as the number of

should be satisfied in order to reach

given transition.

adjacency restrictions

the calculated C .
cmm

which

for a

These 5 parameters are estimated and based on their values and

the weights preliminary given for each one of the parameters, an

order of the transitions is made using a multicriterial optimization

method.

The quality factor which is calculated for each transition is

highest in value for the transition which is best to be realized by

counter. So in the final list, the transitions are ordered according

to their quality factors and the transitions with the highest

quality factor is first on the list.

From all the transitions in the list the

realized by the counter are chosen. They

transitions, because they are not implemented by

one that should be

are called counting

a PLA but they are

realized by only incrementing the value in the counter.

When choosing the counting transitions two objectives are taken

in mind:

15

1. Every transition realized by a counter saves the PLA area.

So, as much as possible transitions should be realized by the

counter, i.e. the number of the counting transitions should be as

large as possible.

2. From all the transitions in

transitions should be chosen the one

the

with

list,

the

for counting

highest quality

factors, that means, the one which are the most expensive when

implemented in PLA.

The basic activities of a sequential machine can be described

formally as a "sequence", "spread choice" and "join choice".

A "sequence" is when for a given present state there is only one

next state and both states are not interconnected. That means that

the two nodes are connected only by one arc. In this case, the

transition is always realized by a counter which gives the code of

the next state.

"Spread choice" is an activity when from a given present state

there is a possibility to go to two or more different next states.

In this case one of the transitions can be realized by the counter

and the rest are implemented by a decision logic in PLA which gives

the code of the next state.

"Join choice" is an activity when a given state can be reached

by a number (more then one) previous states. In this case one of the

transitions can be realized by the counter and the rest are

implemented by a decision logic in PLA which gives the code of the

next state.

A sequential machine can be decomposed into a number of partial

machines which realize the activities described above.

16

We assume that the "sequence" machines and some of the

transitions of "spread choice" and "join choice" machines are

realized by one counter. The rest of the transitions of "spread

choice" and "join choice" machines are realized with one

combinational logic block.

Determining the counting transitions

and

For every state we can form two sets.

Previous state set which is defined as follows:

PREVSS = { PREVSi I PREVS
i

is a previous state of the given

state }

Next state set which is defined as:

NSS = { NEXTS
i

I NEXTS
i

is a next state of the given state }

From these two sets for a given state we have to choose one

previous state and one next state, which define the two transitions

from the "join choice" and "spread choice" machines which will be

realized by the counter.

Using the list with the ordered transitions according to their

quality factor and a beam search algorithm one or more lists of

counting transitions are made.

In the beam search algorithm two parameters are used:

MaxBeams - maximum number of beams

QC - quality coefficient

QFait
QC =---­

QFbestalt
where

QFait - quality factor for the alternative transition

QFbestalt - quality factor for the best alternative transition

17

MaxBeams and QC should be chosen experimentally. After the first

experiments good results were obtained when

MaxBeams = 3 and QC = 0.9

When a given transition is chosen to be realized by a counter,

some of the neighbouring transitions become noncounting, i.e. they

can't be used as counting transitions. Noncounting transitions are

the transitions from the same NSS for the start node of the chosen

counting transition and the same PRESS for the end node of the

transition and the other transition from the interconnected pair.

The set of counting transitions is determined as

SCT = { CT
i

I CT
i

is a counting transition }

and is created in the following manner:

1. All the transitions which construct the "sequence" machines

are put in the set SCT and are taken away from the list of the

ordered transitions.

2. The best transition from the list of ordered transitions is

taken and put into the SCT.

3. The noncounting transitions are determined and are removed

from the list of the ordered transitions.

4. The algorithm continues with the next best transition until

the list of ordered transitions is empty.

Choosing the type of the counter

In general, each type of counter can be used to implement the

counting transitions and the best counter should be chosen; however,

counters of different types impose different requirements on

"successive" states and codes. For example, for the natural binary

code counter, "successive" means the next binary coded number. In

the future, we are going to give possibility to use different

counters; however,at the moment, the reflected binary (Gray code)

counter is used. This decision is imposed by the fact that in the

Gray code only one digit change occurs when passing from anyone

combination to the next. That means that the successive states are

also adjacent, or the succession condition for the

counting transitions from one chain is given by the adjacency

18

condition for the successive states from the chain.

These adjacency conditions should be satisfied obligatory and

they are called primary adjacency conditions.

Using the adjacency conditions instead of succession conditions

allows applying a slightly modified version of the method of

maximal adjacencies [1] for the state assignment.

Constructing the chains

The counting transitions are combined in chains in the following

manner.

We begin by taking one of the counting transitions. It forms the

first chain. We try to connect to it the next of the counting

transitions. If this is not possible we form a new chain. When a

counting transition is connected to already existing chain, before

proceeding with the next transition we check whether the extended

chain can be connected to any of the other chains.

When all chains are constructed they are checked if they are

closed, i.e. if the start node of the chain is connected to the end

node of the same. If such transition exists it is removed from the

chain.

Using MAXAD for state assignment

MAXAD is a program which has been developed on the base of

method of maximal adjacencies (MMA). This method [1] creates for a

given assignment length k, a set of final families of partitions

that maximize the adj acency level of " I "s and "0" s of Boolean

functions obtained with a given family used for state assignment.

Calculations are based only on the information from the next state

and output tables. First the adjacency conditions for input - state,

present state - next state and state output dependencies are

determined. Then these three sorts of adjacency conditions are

combined together and ordered, according to the offered level of

adjacency, forming the ordered list of adjacency conditions. The

last step consists of creating the final families of partitions

based on the ordered list of adjacency conditions. In

this step the adjacency conditions are considered in the order of

their ordered list and the final families of partitions are created

19

that satisfy the greatest number of compatible adjacency conditions.

After the determination of the counting transitions the state

transition table, describing the sequential machine is changed as

all the transitions which will be realized by the counter are

replaced by don't cares. Further an additional variable called

"load" is included in the state transition table. The load variable

is set to one only for the transitions, which cannot be replaced by

counting transitions. The next state code word is provided by the

PLA and is loaded into the counter. For all counting transitions L

is zero and the next state code is provided by simply incrementing

the counter.

The modified description of the sequential machine is used as an

input file for MAXAD. The adjacency conditions for input-state,

present state-next state and state-output dependencies are

determined. The adjacency conditions are combined and an ordered

list is formed. These adjacency conditions are additional to the

primary adjacency conditions which follow from the already generated

counting chains and they are called secondary adjacency conditions.

The primary adjacency conditions should be satisfied obligatory,

while from the secondary adjacency conditions we have to satisfy as

much as possible.

The satisfaction of the adjacency conditions is done while we

construct the final families of partitions(FFP). While

adjacency conditions in order to form FFP's

constraints should be taken into account[l]:

combining the

the following

1. If two states Sk I SI have to be adjacent, then they must be

contained in two different blocks of just one two-block partition,

which is a member of a FFP. In all other partitions from the FFP,

they must be contained in one block.

2. Each pair of incompatible states (Sm,Sn) must be separated in

at least one partition from a FFP (separate condition).

3. Only proper partitions are useful for state assignment and

only they can be members of FFP's.

4. The FFP for a minimal machine is an orthogonal family of

proper partitions.

5. Each state Sk:Sk E S may be adjacent with at most k other

states SI:SI E S.

20

The mechanism of constructing a limited set of near optimal

length k, SNOFFP(k) families of final partitions for an

is described in [1].

Each FFP E SNOFFP(k) must

two-block partitions containing at

their blocks.

assignment

contain k proper partitions i.e. k

most 2
k

- l elements in each of

We start by constructing partial proper partitions which satisfy

all primary adjacency conditions. And after that by trying to

satisfy as much as possible secondary adjacency conditions we build

the SNOFFP. For every FFP from this set by changing the blocks

within the partitions and the places of the partitions we find a

construction for which the states which are members of the counting

chains can be assigned with codes which correspond to the Gray code

sequence.

5. Evaluation of transitions in relation to adjacency conditions.

At present, we evaluate transitions taking into account only the

adjacency conditions for the next-state function; however, the

adjacency conditions for the output function can be taken into

account in a very similar way.

We estimate the cost to realize in PLA for each transition in

relation to the surrounding transitions. Cyclic transitions must be

realized by PLA, because it's not possible to realize them by

counter. If some of the other transitions are related to them, they

can be realized in PLA cost free or for a very low cost. In this

case some adjacency conditions should be fulfilled.

Single transitions are described by the triple of parameters

(S.T.X.) where
1 1 1

Si - start node

T i-terminal node

Xi - input vector

MUltiple transitions are described by the n-tuple of parameters

Si - start node

T i-terminal node

Xi" ,Xm - separate input subspaces

21

In connection to adjacency conditions the following cases are

possible:

5.1 S ... T.
1 1

and S ... S.
1 J

cost = n

5.1.2.2 cost = k(n-l) + 1

k - number of variables

used for state coding

5.1.2.3 If X·I X.
1 J

and Xm I Xn 1- adjacencies

cost = k(n-l)+1

For these cases the adjacency condition is Sj I Tj

5.2

5.2.1

5.2.2

5.2.2.1

S ... S.
1 J

The transitions are SiTiXi and Sj TjXj

cost = k+ 1
2

The transitions are S.T.X. and S.T.X X
III JJJ n

C st= kn+l
o n+ 1

22

5.2.2.2

5.2.3.1

5.2.3.2

5.2.3.3

If Xi and Xj",Xn form one subspace

k+n
cost = 1 +n

If X·I x.
I J

ost = k(m+n)-k+1
c m+n

If X·I x.
I J

and Xm I Xn /- adjacencies

cost =(k-1 +m+n) m
m+n

For these cases the adjacency condition is Til T
j

5.3 S. '" T. and T. '" T.
1 1 1 J

5.3.1 The transitions are S.T.X. and S.T.X.
III JJJ

If X. '" X.
1 J

cost = 0

5.3.2 The transitions are S.T.X X and S.T.X X
III m JJJ n

cost = 0

The adjacency condition for these cases is Si I Sj

5.4 S. '" T.
1 J

T. '" S.
I J

23

5.4.1

If X. = X.
I J

cost = !.}!-

5.4.2 The transitions are SiTiXi and S?jXj",Xn

If X X.
I J

If X. = X.
I J

kn+1
n+l cost =

Xm ... Xn in 1 cases

cost = (k(m- 1 +n)+1) m
n+m

The adjacency condition for these cases is Si I Sj

5.5 T T.
I J

5.5.1 The transitions are S.T.X. and S.T.X.
III JJJ

5.5.2

If X. = X.
I J

If X X.
I J

k
cost = 2

cost = kn
n+l

cost =((m- 1 +n)k) m
m+n

The adjacency condition for these cases is Si I Sj

24

6. Algorithm description.

6.1 Read the transition table.

6.2 Check the multiple transitions. Find the largest input subspaces

which contain exclusively the inputs from a given mUltiple

transition and don't have any common elements between each other.

6.3 For each state a set of next states to which that state leads is

found. If S is the number of states, Ns sets are constructed

For i = 1 to S

= {nexLstate.,times. inpuLvectors. I
J J, J

nexLstaternext state for present state i,

timesrnumber of inpuL vectorsj ,

inpuL vectorsrinput vectors for a transition

from presenLstate to nexLstate.}
i J

6.4 For each state, a set of previous states leading to that state

is found. Ns sets are constructed.

For i = 1 to S

Previous_state_set (i) = {previouLstatej,timesj'inpuLvectors
j

I
previouLstateJ.-previous state of state.

1,

timesrnumber of inpuL vectors
j
,

inpuLvectorsrinput vectors for a transi­

tion from pre v iouLstate
j

to state
i
}

6.5 Check for each state if there exists a directly interconnected

state.

If S. "" T. and S. "" T.
1 J J 1

then make Interconnected_pair. .
I,J

Interconnected_pairi,j = {statei,statej ,inpuLvectors;

state
j
,statei'inpuL vectors}

25

6.6 Make a set of cyclic transitions.

Cyclic_transitiolLse\ = {statei'inpuL vectorsi I staterstate with

cyclic transition}

6.7 Generation of subgraphs.

6.7.1 Read one transition.

6.7.2 For the start

6.7.3 For the end

previouLstate_set.

state of the

state of the

6.7.4 Check for directly interconnected pairs.

transition

transition

6.7.5 Combine the three sets. They form one subgraph.

take the

take the

6.8 Calculation of the cost of each transition to be realized in

PLA.

6.8.1 Calculation of the maximal cost.

6.8.2 Calculation of the minimal cost.

It is based on the condition that some of the states are coded

with adjacent codes and is calculated according to p.S .

For every transition check if it is related to

1. Cyclic transition - T i == Si

a) check if T. == T. and X. .. X.
I J I J

then S·I S.
I J

b) check if S. '" S. and X·I X.
I J I J

then Sj I Tj

2. Another transition

a) check if Si = S. and X·I X.
J I J

then Ti I T
j

b) check if Ti e T. and X. "" X.
J I J

then Si I Sj

3. To directly interconnected transitions

Check if S. '" T. and T. '" S. and X. sa XJ'
I J J J I

then Si l Sj

26

6.9 Calculation of the cost for each transition to be realized by a

counter.

6.9.1 Calculation of maximal cost - it is calculated as a sum of the

maximal costs that are necessary for all noncyclic transitions from

the same subgraph to be realized by PLA.

6.9.1.1 Take one subgraph.

6.9.1.2 Choose one transition.

6.9.1.3 For the rest of the transitions calculate the maximal

cost C as follows
cmax·

1
n

= I C
j =1 PLAmaxj

CpLAmax. - maximal cost of a given transition to be realized in

J PLA

n - number of neighbouring transitions

6.9.2 Calculation of minimal cost

6.10 Calculation of the number of adjacency restrictions - AdjRestr

6.11 Estimate Ccmax' Ccmin' CpLAmax' CPLAmin and AdjRestr for every

transition and using a multicriterial optimization method make one

suboptimal order of the transitions. The quality factor will be

highest for the transition which is best to be realized by a

counter.

6.12 Using a beam search algorithm construct one or more suboptimal

lists of transitions for the counter containing as many transitions

with the highest quality factors as possible

6.13 Construct the counting chains and derive the primary adjacency

conditions.

6.14 In the next state table describing the sequential machine

replace with don't cares all the transitions which are members of

the counting chains.

27

6.15 Include an additional variable called "load" in the state table

of the machine and set it to 1 only for the transitions which cannot

be replaced by counting transitions. For the rest of the transitions

it is set to O.

6.16 Use the modified description of the machine as an input file

for MAXAD and determine the adjacency conditions for input-state,

present state-next state and state-output dependencies.

6.17 Construct partial proper partitions satisfying all primary

adjacency conditions.

6.18 Build the SNOFFP by trying to satisfy as much as possible

secondary adj acency conditions.

6.19. By changing the blocks within the partitions and the places of

the partitions find an appropriate constructions for the FFP from

the SNOFFP for which the counting states can be assigned with codes

which correspond to the Gray code sequence.

28

7. EXAMPLES

All steps of the algorithm wiIl

lowing two examples.

be explained using the fol-

7.1 Example I

7.1.1 The sequential machine is described by the following

next-state table.

Tabl e 7.1.1

x x x x
0 1 2 3

I
00 01 11 10

S

1 2 1 3 3

2 2 3 3 4

3 1 1 1 4

4 2 2 2 2

Next-s tate table

7.1.2 The multiple transitions are checked and the largest input

subspaces which contain exclusively the inputs from a given multiple

transition and don't have any common elements between each other are

found. By the integer 2 don't care bits in the input vectors are

represented. The input vectors stand for the largest input subspaces

and they are given in Table 7.1.2.

29

Table 7.1.2

present next input
state state vector

I 3 12

1 1 01

1 2 00

2 3 21

2 4 10

2 2 00

3 4 10

3 1 02
21

4 2 22

7.1. 3 For each state a set of next states to which that state leads is

found. For S=4 (S - number of states) N4 sets are constructed.

Nl = { 3,1,12; 1,1,01; 2,1,00 }

N2 = { 3,1,21; 4,1,10; 2,1,00 }

N3 = { 4,1,10; 1,2,02,21 }

N4 = { 2,1,22 }

30

7.1.4 For each state, a set of previous states leading to that state

is found. For S = 4, P 4 sets are constructed.

PI = { 3,2,02,21; 1,1,01 }

P
2 = { 4,1,22; 2,1,00; 1,1,00}

P
3 = { 2,1,21; 1,1,12 }

P
4 = { 3,1,10; 2,1,10 }

7.1.5 Check for each state if there exists a directly interconnected

state and make interconnected pairs.

IP 13 = { 1,3,12; 3,1,02,21 }

IP24 = { 2,4,10;4,2,22 }

7.1.6 Make a set of cyclic transitions

There are cyclic transitions for states 1 and 2 and the sets are

the following.

C1 = { 1,01 }

C2 = { 2,00 }

7.1.7 Generation of sub graphs

For the easier description of the algorithm we shall give names

to the transitions. They are shown in Table 7.1.3.

31

Table 7.1.3

present next input trans i tion
state state vector name

1 2 00 A

1 1 01 B

1 3 12 C

2 2 00 D

2 4 10 E

2 3 21 F

3 1 02 G

3 1 21 I

3 4 10 H

4 2 22 J

By combining the next state set for the start state with the

previous state set for the end state of each noncyclic transition

and the directly interconnected pairs, the following subgraphs are

generated. Multiple transitions are considered together and the

generated subgraph is one for them.

SG
A

---) Nl and P 2 are combined

SG
C

---) Nl and P 3 and IP 13 are combined

SG
E

---) N2 and P 4 and IP 24 are combined

SGF
---) N2 and P3

are combined

SGm ---) N3 and PI and IP 13 are combined

32

SOH -----7 N3 and P 4 are combined

SOJ -----7 N4 and P2 and IP24 are combined

7.1. 8 Calculation of the cost of each transition to be realized in

PLA.

7.1.8.1 Calculation of maximal cost.

It is calculated as the number of product terms that are

necessary to realize a given noncyclic transition without satisfying

any restrictions or adjacency conditions.

The following maximal costs are calculated:

CPLAMAXA = 2

CPLAMAXC = 2

CpLAMAXE = 2

CpLAMAXF = 2

C PLAMAX
GI

= 4

CPLAMAXH = 2

CpLAMAXJ = 2

33

7.1.8.2 Calculation of minimal cost

It is calculated as the number of product terms that are

necessary to realize a given noncyclic transition when certain

adjacency conditions and restrictions are satisfied.

The evaluation of transitions in connection to adjacency

conditions is explained in p.5.

The following minimal costs are calculated for the different

transitions:

CpLAMIN A = 0 (related to transition D, adjacency condition - 11 2)

CPLAMINC = 2 (not related to any other transition)

CpLAMINE = 1 (related to transition D, adjacency condition - 214)

CpLAMINF = 2 (not related to any other transition)

CpLAMIN = 2,7 (related to transition H, adjacency condition - 114)
GI

CpLAMIN = 1 (related to transition E, adjacency condition - 213)
H

CpLAMINJ = 2 (not related to any other transition)

7.1.9 Calculation of the cost for each transition to be realized by

a counter.

7.1.9.1 Calculation of maximal cost

It is calculated as a sum of the maximal costs that are

necessary for all noncyclic transitions from the same subgraph to be

realized by PLA.

34

n
Ccmax. = I CpLA . 1 max·

i J = J

CpLAmax. - maximal cost of a given transition to be realized in

J PLA

n - number of neighbouring transitions

The maximal cost for the transitions is calculated as follows:

= 4 (in SG A noncyclic transitions G and J are left)

= 8 (in SG c noncyclic transitions A,F ,G and 1 are left)

= 6 (in SG
E

noncyclic transitions F ,H and J are left)

= 4 (in SG
F

noncyclic transitions E and C are left)

CCMAX
G1

= 4 (in SGGI noncyclic transitions Hand C are left)

= 6 (in SG
H

noncyclic transitions G ,I and E are left)

= 4 (in SG J noncyclic transitions A and E are left)

7.1.9.2 Calculation of minimal cost

It is calculated as a sum of the minimal costs that are

necessary for all noncyclic transitions from the same subgraph to be

realized by PLA.

3S

=
n
I

j=l

n - number of noncyclic transitions

CPLAmin. - minimal cost of a given transition j to be realized

J in PLA

The following minimal costs are calculated:

CCMIN A = 4 (in SG A noncyclic transitions C and J are left)

CCMIN = 4.7 (in SGC noncyclic transitions A,F,G and I are left;
C

adjacency conditions 112, 114)

CCMIN
E

= 5.3 (in SGE noncyclic transitions F,H and J are left;

adjacency condition 114)

CCMIN = 3 (in SGF noncyclic transitions E and C are left;
F

adjacency condition 214)

CCMIN = 3 (in SGGI noncyclic transitions C and H are left;
GI

adjacency condition 213)

CCMIN
H

= 5 (in SGH noncyclic transitions G,I and E are left;

adjacency condition 214)

CCMIN
J

= 1 (in SG
J

noncyclic transitions A and E are left;

adjacency conditions 112, 214)

36

Remark: When we assume that a certain transition should be realized

by a counter, we should not calculate the minimal cost of any

neighbouring transition in relation to that transition. We should

search for relation with another transition. This is done ID

connection with the calculation of the costs for the transitions E

and H.

7.1.10 Calculation of the number of the adjacency restrictions - NAR

It is calculated as the number of the adjacency restrictions,

which should be satisfied in order to reach the calculated CCMIN for

a given transition.

NARA = 0

NARC = 2

NARE = 1

NARp = 1

NARGI= 1

NARH = 1

NAR
J

= 2

7.1.11 Por every transition we have calculated five parameters. By

using a multicriterial optimization method we make an order of the

transitions such that the transitions which are best to be realized

by a counter will be at the top of the list.

37

For the example we have reached the following order.

present next tran s ition
state state

3 1 GI

2 3 F

4 2 J

I 2 A

3 4 H

1 3 C

2 4 E

7.1.12 By using a beam search algorithm we construct the following

suboptimal list of counting transitions.

present next tran s ition
state state

3 1 GI

2 3 F

4 2 J

7.1.13 The constructed counting chain is as follows:

4 -----) 2 -----) 3 -----) 1

The following primary adjacency conditions are derived.

21 4 ,21 3 ,11 3

38

We see that all the states of the machine are members of the

counting chain and they should be coded in such a way as to form a

Gray code sequence.

7.1.14 In the next state table we replace by don't cares all the

transitions which are members of the counting chains.

x x x x
0 1 2 3

I
00 01 11 10 S

1 2 1 3 3

2 2 - - 4

3 - - - 4

4 - - - -

7.1.15 Set the additional variable called "load" to 1 only for the

transitions which cannot be replaced by counting transitions. For

the rest - set it to zero.

x x x x
0 1 2 3

I
00 01 11 10 S

1 1 1 1 1

2 1 0 0 1

3 0 0 0 1

4 0 0 0 0

L

39

7.1.16 Calculate the adjacency conditions for input-state, present

state-next state and state-output dependencies using the next state

table with the counting transitions replaced by "don't cares". This

is done according to the method described in [1].

For our example we obtained the following ordered list of adjacency

conditions.

pairs of number of estimation
next s t a tes un c ondi- of the to-

pa i r of and number tionally tal number number
adj acent of the i r re ached of ad j a - of "don't
states occure n cies ad j acencies cenc i e s cares"

213 ---- 9 9 4

214 ---- 9 9 4

31 4 --- 8 8 4

114 ---- 8 8 4

11 3 -
314

1
7 8 3

112 -
31 4

1
7 8 3

Ordered list of adjacency conditions

40

7.1.17 Construct partial proper partitions satisfying all primary

adjacency conditions

According to 7.1.13 the following primary adjacency conditions

were calculated

21 4 ,21 3 ,11 3

Each FFP E SNOFFP must contain 2 proper partitIOns i.e. 2 two -

block partitions containing at most 2 elements in each of their

blocks. We consider the adjacency conditions one after the other and

construct the following FFP.

214 {2, 4 } { 2,4 , 0 }

213 {2,3, 4 } { 2,4 , 3 }

113 {2,3, 1,4 } { 2,4 , 1,3 }

We have reached only one FFP so it is not possible to satisfy

any of the secondary adjacency conditions.

7.1.18 By changing the blocks within the partitions and the places

of the partitions we find an appropriate construction for the FFP

for which the counting states can be assigned with codes which

correspond to the Gray code sequence.

One possible construction is:

{ 2,4 , 1,3 } { 1,4 , 2,3 }

41

For the assignment of blocks with

2,4-0; 1,3-1; 1,4-0; 2.3-1

the following assignment of states is reached:

4 - 00

2 - 01

3 - 11

1 - 10

The Gray code sequence between the counting states is fulfilled.

The assigned next state table is as follows:

1 -

2 -

3 -

4 -

S

10

01

11

00

x
0

I 00

01

01

--

--

x x
1 2

01 11

10 11

-- --
-- --

-- --

42

x
3

10

11

00

00

--

In the assigned next state table we add an additional variable L

which has the value of 1 for the transitions which cannot be

replaced by counting transitions, and 0 otherwise.

1 -

2 -

3 -

4 -

I
S

10

01

11

00

x
0

x
1

00 01

011 101

011 --0

--0 --0

--0 --0

x x
2 3

11 10

111 111

--0 001

--0 001

--0 --0

We make the Karnaugh maps in order to calculate the number of

terms which are necessary to realize SI' S2 and L

I I I I I I I I 1 2 1 2 1 2 1 2
I 00 01 11 10 S

00 - - - LJ
01 0 - - 0

2 terms

11 - - - 0

10 0 1 1 III

Karnaugh map of SI

43

I I I I I I I I 1 2 1 2 1 2 1 2
I 00 01 11 10

S

00 ----:- - I - - I

01 1 - - 0
2 terms

11 - - - 0

10 1 0 I 1 1 I -

Karnaugh map of S2

II II II II 1 2 1 2 1 2 1 2
I 00 01 11 10

S

00 0 0 0 0

01 bJ 0 0 Ie 3 terms

11 0 0 0 ~

10 I 1 1 1 1 I

Karnaugh map of L

By using a counter-based PLA structure the next-state functions

can be implemented with 7 terms as shown on fig. 7.1.

44

+ + + + + + +

11 o 0 000 0 Sequencing PLA

-0>
12

Sl "-0> AND-array

~0>
S2

~0>

0 L

0 Sl

0 S2

OR-array

Fig. 7.1 Implementation by using
counter based PLA structure.

,

Loada ble
ter coun

r--

7,2 Example II

7.2.1 The sequential machine is described by the following

next-state table.

Table 7.2. I

x x x x
0 1 2 3

I 00 01 11 10
S

1 2 2 2 2

2 3 4 5 3

3 3 3 4 4

4 1 4 5 1

5 6 6 5 6

6 7 7 9 9

7 1 8 8 1

8 9 9 9 9

9 1 1 9 9

Next-state table

7.2.2 The multiple transitions are checked and the largest input

subspaces which contain exclusively the inputs from a given multiple

transition and don't have any common elements between each other are

found. By the integer 2 don't care bits in the input vectors are

represented. The input vectors stand for the largest input subspaces

and they are given in Table 7.2.2.

46

Table 7.2.2

present next input
state state vector

1 2 22

2 5 11

2 4 01

2 3 20

3 4 12

3 3 02

4 5 11

4 4 01

4 1 20

5 5 11

5 6 20
02

6 9 12

6 7 02

7 8 21

7 1 20

8 9 22

9 9 12

9 1 02

47

7.2.3 For each state a set of next states to which that state leads is

found. For S=9 (S - number of states) N9 sets are constructed.

Nl = { 2,1,22 }

N2 = { 5,1,11; 4,1,01; 3,1,20 }

N3 = { 4,1,12; 3,1,02 }

N4 = { 5,1,11; 4,1,01; 1,1,20 }

N5 = { 5,1,11; 6,2,20,02 }

N6 = { 9,1,12; 7,1,02 }

N7 = { 8,1,21; 1,1,20 }

N8 = { 9,1,22 }

N9 = { 9,1,12; 1,1,02 }

7.2.4 For each state, a set of previous states leading to that state

is found. For S = 9, P
9

sets are constructed.

PI = { 9,1,02; 7,1,20; 4,1,20 }

P
2 = { 1,1,22 }

P
3 = { 3,1,02; 2,1,20 }

P4 = { 4,1,01; 3,1,12; 2,1,01 }

P
5 = { 5,1,11; 4,1,11; 2,1,11 }

P
6 = { 5,2,20,02 }

P
7 = { 6,1,02 }

P8 = { 7,1.21 }

P
9 = { 9,1,12; 8,1,22; 6,1,12 }

7.2.5 Check for each state if there exists a directly interconnected

state and make interconnected pairs.

For this example directly interconnected pairs don't exist.

48

7.2.6 Make a set of cyclic transitions

There are cyclic transitions for states 3,4,5 and 9 and the sets

are the following.

C3 = { 3,02 }

C4 = { 4,01 }

C5 = { 5,11 }

C9 = { 9,12 }

7.2.7 Generation of sub graphs

For the easier description of the algorithm we shall give names

to the transitions. They are shown in Table 7.2.3.

49

Table 7.2.3

present next input tran s i tion
state state vector n arne

1 2 22 A

2 5 11 D

2 4 01 C

2 3 20 B

3 4 12 F

3 3 02 E

4 5 11 I

4 4 01 H

4 1 20 G

5 5 11 L

5 6 20 J

5 6 02 K

6 9 12 N

6 7 02 M

7 8 21 P

7 1 20 0

8 9 22 Q

9 9 12 S

9 1 02 R

50

By combining the next state set for the start state with the

previous state set for the end state of each noncyclic transition

and the directly interconnected pairs, the following subgraphs are

generated. Multiple transitions are considered together and the

generated sub graph is one for them.

SG A --4 N 1 and P 2 are combined

SGB --4 N2 and P3 are combined

SGc --4 N2 and P 4 are combined

SGD --4 N2 and Ps are combined

SGF --4 N3 and P 4 are combined

SGG --4 N4 and PI are combined

SG1 --4 N4 and Ps are combined

SG]K --> NS and P 6 are combined

SGM --> N6 and P7 are combined

SGN --> N6 and P9 are combined

SGo --> N7 and PI are combined

SGp --> N7 and P g are combined

SGQ --> Ng and P
9

are combined

SGR --> N9 and PI are combined

S1

7.2.8 Calculation of the cost of each transition to be realized in

PLA.

7.2.8.1 Calculation of maximal cost.

It is calculated as the number of product terms that are

necessary to realize a given noncyclic transition without satisfying

any restrictions or adjacency conditions.

The following maximal costs are calculated:

CpLAMAXA = 4

CpLAMAXB = 4

CpLAMAXC = 4

CpLAMAXD = 4

CpLAMAXF = 4

CpLAMAXo = 4

CpLAMAXr = 4

C PLAMAX
JK

= 8

CpLAMAXM
= 4

CpLAMAXN = 4

CpLAMAXO = 4

CpLAMAXp = 4

52

7.2.8.2 Calculation of minimal cost

It is calculated as the number of product terms that are

necessary to realize a given noncyclic transition when certain

adjacency conditions and restrictions are satisfied.

The evaluation of transitions in connection to adjacency

conditions is explained in p.5.

The following minimal costs are calculated for the different

transitions:

CpLAMIN A = 4 (not related to any other transition)

CpLAMIN B = 4 (not related to any other transition)

CpLAMIN C = 0 (related to transition H, adjacency condition - 214)

CpLAMIN = 0 (related to transition L, adjacency condition - 215)
D

CpLAMIN = 1 (related to transition E, adjacency condition - 314)
F

CpLAMIN G = 2 (related to transition 0, adjacency condition - 417)

CpLAMIN = 0 (related to transition L, adjacency condition - 415)
I

CpLAMIN = 2 (related to transition L, adjacency condition - 516)
JK

CpLAMINM = 2.5 (related to transition N, adjacency condition - 719)

53

CpLAMINN = o (related to transition S, adjacency condition - 619)

CPLAMINO = 2 (related to transition G, adjacency condition - 714)

CPLAMINp = 2.5 (related to transition 0, adjacency condition - g 11)

CpLAMINQ = 4 (not related to any other transition)

CpLAMINR = 1 (related to transition S, adjacency condition - 119)

7.2.9 Calculation of the cost for each transition to be realized by

a counter.

7.2.9.1 Calculation of maximal cost

It is calculated as a sum of the maximal costs that are

necessary for all noncyclic transitions from the same sub graph to be

realized by PLA.

C
cmax·

1

n
= :E

j = 1

CpLAmax. maximal cost of a given transition to be realized in

J PLA

n - number of neighbouring transitions

The maximal cost for the transitions is calculated as follows:

CCMAX A = 0 (SG A contains only the transition A)

CCMAX
B

= g (in SGB noncyclic transitions C and D are left)

CCMAX
C

= 12 (in SGC noncyc1ic transitions B,F,D are left)

54

CCMAX
D

= 12 (in SGD noncyclic transitions B,C and I are left)

CCMAX
p

= 4 (in SGp noncyclic transition C is left)

CCMAX
G

= 12(in SGG noncyclic transitions 1,0 and R are left)

CCMAX
I

= 8 (in SGI noncyclic transitions G and D are left)

CCMAX
JK

= 0 (SGJK contains only the transition IK)

CCMAX
M

= 4 (in SGM noncyclic transition N is left)

CCMAX
N

= 8 (in SGN noncyclic transitions M and Q are left)

CCMAX
O

= 12 (in SGO noncyclic transitions P,G and R are left)

CCMAX
p

= 4 (in SGp noncyclic transition 0 is left)

CCMAX
R

= 8 (in SGR noncyclic transitions G and 0 are left)

CCMAX
Q

= 4 (in SGQ noncyclic transition N is left)

7.2.9.2 Calculation of minimal cost

It is calculated as a sum of the minimal costs that are

necessary for all noncyclic transitions from the same subgraph to be

realized by PLA.

55

c . =
cmm i

n

n
I

j=l

- number of noncyclic transitions

CPLAmin. - minimal cost of a given transition j to be realized

J in PLA

The following minimal costs are calculated:

CCMIN
A

= 0 (SG A contains only the transition A)

CCMIN
B

= 0 (in SGB noncyclic transitions C and D are left;

adjacency conditions 214, 215)

CCMINC = 5 (in SGC noncyc1ic transitions B,D and F are left;

adjacency conditions 215, 314)

CCMIN
D

= 4 (in SGD noncyc1ic transitions B,C and I are left;

adjacency conditions 214, 415)

CCMIN
F

= 0 (in SGF noncyclic transition C is left;

adjacency condition 214)

CCMIN = 3,5 (in SGG noncyclic transitions 1,0 and R are left;
G

adjacency conditions 415, 118, 119)

CCMIN
I

= 2 (in SGI noncyclic transitions G and D are left;

adj acency condition 417, 215)

CCMIN = 0 (SGJK contains only the transition JK)
JK

CCMIN
M

= 0 (in SGM noncyclic transition N is left;

adjacency condition 619)

56

CCMIN
N

= 8 (in SG
N

noncyclic transitions M and Q are left;

CCMINO = 9 (in SG
O

noncyclic transitions P,G and R are left;

adjacency condition 119)

CCMINp = 2 (in SG p non cyclic transition 0 is left;

adjacency condition 714)

CCMIN
Q

= o (in SG Q noncyclic transition N is left;

adjacency condition 619)

CCMIN
R

= 4 (in SG
R

noncyclic transitions G and 0 are left;

adjacency condition 714)

Remark: When we assume that a certain transition should be realized

by a counter, we should not calculate the minimal cost of any'

neighbouring transition in relation to that transition. We should

search for relation with another transition. This is done in

connection with the calculation of the costs for the transitions

G, Nand O.

7.2.10 Calculation of the number of the adjacency restrictions - NAR

It is calculated as the number of the adj acency restrictions,

which should be satisfied in order to reach the calculated CCMIN for

a given transition.

NARA = 0

NARB = 2

NARC = 2

57

NARD = 2

NARF = 1

NARa = 3

NARI = 2

NAR
JK

= 0

NARM = 1

NARN = 0

NARO = 1

NARp = 1

NAR
Q

= 1

NARR = 1

7.2.11 For every transition we have calculated five parameters. By

using a multicriterial optimization method we make an order of the

transitions such that the transitions which are best to be realized

by a counter will be at the top of the list.

58

For the example we have reached the following order.

present next tran s i tion
state state

1 2 A

5 6 JK

8 9 Q

6 7 M

7 8 P

2 3 B

3 4 F

9 1 R

4 5 I

6 9 N

4 1 G

7 1 0

2 5 D

2 4 C

59

7.2.12 By using a beam search algorithm we construct the fonowing

suboptimal list of counting transitions.

present next tran s i tion
state state

5 6 JK

6 7 M

7 8 P

8 9 Q

9 1 R

1 2 A

2 3 B

3 4 F

7.2.13 The constructed counting chain is as fonows:

5 ------7 6 ------7 7 ------7 8 ------7 9 -------7 1 -------7 2 ----> 3 -------7 4

The fonowing primary adjacency conditions are derived.

5 I 6 , 6 I 7 , 7 I 8 , 8 I 9 , 9 I 1 , 1 I 2 , 2 I 3, 3 I 4

We see that all the states of the machine are members of the

counting chain and they should be coded in such a way as to form a

Gray code sequence.

60

7.2.14 In the next state table we replace by don't cares all the

transitions which are members of the counting chains.

x
0

x
1

x
2

x
3

I
00 01 11 10

S

1 - - - -
2 - 4 5 -

3 3 3 - -
4 1 4 5 1

5 - - 5 -

6 - - 9 9

7 1 - - 1

8 - - - -

9 - - 9 9

61

7.2.15 Set the additional variable called "load" to 1 only for the

transitions which cannot be replaced by counting transitions. For

the rest - set it to zero.

x
0

x
1

x
2

x
3

I
00 01 11 10

S

1 0 0 0 0

2 0 1 1 0

3 1 I 0 0

4 1 1 1 1

5 0 0 1 0

6 1 1 0 0

7 1 0 0 1

8 0 0 0 0

9 0 0 1 1

L

7.2.16 Calculate the adjacency conditions for input-state, present

state-next state and state-output dependencies using the next state

table with the counting transitions replaced by "don't cares· . This

is done according to the method described in [1].

For this example we obtained the following ordered list of adjacency

conditions.

62

pairs of number of estimation
next s tat es un c ondi- of the to-

pair of and number tionally tal number number
adjacent of the i r re ached of ad j a - of "don't
states occure n C i es ad j acencies cenc i e s cares"

_1 ~4 t 1,9
419 6 16 2

3

1,9
416 -

3
9 15 3

1, 9
617 -

3
9 15 3

1,9
71 9 -

3
9 15 3

119 ---- 14 14 4

114 ---- 13 13 4

112 ---- 12 12 4

11 3 ---- 12 12 4

115 --- 12 12 4

116 --- 12 12 4

Ordered list of adjacency conditions

63

pairs of number of est ima t ion
next s t a tes un c ondi- of the to-

pa i r of and number tionally tal number number
adj acent of the i r re ached of ad j a - of "don't
states occure n cies ad j acencies cenc i e s cares"

117 ---- 12 12 4

11 8 ---- 12 12 4

214 ---- 12 12 4

215 ---- 12 12 4

217 ---- 12 12 4

21 8 ---- 12 12 4

31 5 ---- 12 12 4

31 8 ---- 12 12 4

316 ---- 12 12 4

718 ---- 12 12 4

Ordered list of adjacency conditions (cont.)

64

pairs of number of estimation
next S tat es uncondi- of the to-

pai r of and number tionally tal number number
adj acent of the i r re ached of ad j a - of "don't
states occure n c i es ad j acencies cenc i e s ca res"

415 ---- 12 12 4

417 --- 12 12 4

418 ---- 12 12 4

517 ---- 12 12 4

51 8 ---- 12 12 4

618 ---- 12 12 4

619 ---- 12 12 4

819 ---- 12 12 4

_1 ~4 t 5,9
219 6 12 2

1

3,4
213 - 9 1 1 2

1

Ordered list of adjacency conditions (cont.)

65

pairs of number of estimation
next S t a tes un c ondi- of the to-

pai r of and number tionally tal number number
adj acent of the i r re ached of ad j a - of "don't
states occure n C ies ad j acencies cenc i e s cares"

5,9
216 -

1
9 1 1 3

1, 3
317

1
9 1 1 3

5,9
516

1
9 1 1 3

51 9 --- 11 1 1 3

1, 3
319 -

2
6 10 2

31 4 -
113

1
7 9 2

Ordered list of adjacency conditions (cont.)

7.2.17 Construct partial proper partitions satisfying all primary

adjacency conditions.

According to 7.2.13 the following primary adjacency conditions

were calculated

5 1 6 , 6 1 7 , 7 1 8 , 8 1 9 , 9 1 1 , 1 1 2 , 2 1 3, 3 1 4

Each FFP E SNOFFP must contain 4 proper partitions i.e. 4

two-block partitions containing at most 8 elements in each of their

blocks. We consider the adjacency conditions one after the other and

construct the following FFP.

66

('I,~.~.U,O 1.2.G. 1)11 .. ;.~I.O Z.J.4,5.6)(1.~.3.4.Q 5,6,7,8)(4 1,2,3,5,6,7.9.8)
((, . '., • ~ . 13 1.:::. 3 . 0. 7) I -'- • 7 . '1 . (; .::::. J , 4 . 5 . 6) (J . :: . J • 4 . 9 5. 6. 7 , 8) (3 . 4 1, 2 , 5 , 6, 7 . ? . 8)
{ 'i. ~I. r.t J..;'. '~, . ," . ('. '/) I , . .', . 7 . ~l . f) Z. J . 5. I) ') (). . ::. ::: . 6. . Sl 5,6, 7.8) (3,4 1, Z • 5.6. 7. Sl . fJ)
(';.!I,~ 1.2.3.4.0. ;I(). ;.~.D 2.J,4.~.6)(1.2.J.? 4.5,6,7,8)(3,4 1,2,5.6,7,9.8)
t .". '., ~" ~l. '3 J.. Z. G • 7) (), . :. J • 7 . 9.8 4.5.6) (1. ::.3.4.? 5,6, 7,8) (2,3,4 1.5,6. 7 , 9.8)
(:J,~,5,?B 1.Z.6.7)(J .. :.J.4.7.?8 5.6)(1.:.3.9 4,5,6,7,8)(2,3,4 1,5,6.7,?8)
(~.~,9,O 1,2.3,6.7) rL.:.7,9,B 3,4,5.6)(1,2,3,4,9 5,6,7,8)(2,3,4 l,5,6,7,9.B)
(~,~,a 1,2,3.4.6.7)(1.:.7.?8 3,4,5.0)(1.2.3,9 4,5,6,7,8)(2,3,4 1,5,6,7,9.8)
(~l • 9 , S 1. 2 , 3 . 4 . 6. 7) (, .1. • ~ • 7 , 9 ,8 :3, 4 . 5. 6) (1. 2 , : .. f~ ,9 5, 6, 7 , 8) (2, 3 1, II , 5 , 6, 7 • 9 , 8)

(~.5.9,O 1,2,3.6,7)(1.~.3.~,7,P.8 5.6)(1.2. 0 3.4.5,6,7,8)(2,3.4 1,5,6,7,.,8)
(5. 0 ,8 l,2,3,4,6.7)(1.~.3.7.9.8 4.5,6)(1.2. 0 3.4,5,6,7,8)(2,3,4 1,5,6,7,9.8)
11.5,9.B 2,3.4.6.7)13.0.7.9,8 1.2.5.6)(1.2.3,4.9 5,6,7.8)(4 1,2.3,5,6.7.9.8)
t,L,4,5,9,8 2,3.6.7)(7.~.O 1.2.3.4.5,6)(1,2,3.4,9 5,6,7,8)(3,4 1,2,5,6,7.9.8)
11,5.9.B 2.3.4.6.7)14.7.9.8 1.2.3,5.6)(1.2.3.4.9 5.6,7,8)(3,4 1,2,5,6,7,9.8)
(1,5,9,8 2,3,4.6.7)17.9.8 1,2.3,4.5,6)(1,2.3.9 4,5,6,7,8)(3,4 1,2,5,6,7,9,8)
(1,~.5.9.0 3.4.6.7)14.7.9.8 1.2.3.5.6)(1.2.3.4.9 5,6,7,8)(2,3,4 1,5,6,7,9.8)
(1,2,5,9.8 3,4,6,7)f7,9.B 1.2,3,4,5.6)(1,2,3,9 4,5,6,7,8)(2,3,4 1,5,6,7,9,8)
(1,2,5,9,8 3.4,6.7)(7. 0 .8 1,2,3.4.5,6)(1,2.3,4.9 5,6,7,8)(2,3 1,4,5,6,7.9,8)
11.2.3.5.9,8 4.6.7)13.4.7.9.8 1.2.5.6)(1.2.3.4.9 5,6,7,8)(2,3,4 1,5,6,7.9.8)
(1,2,3.4.5.9.0 6.7)(3 .•. 7.·.8 1.2.5.6)(1.2.3,9 4,5,6,7.8)(2,3,4 1,5,6,7,9.8)
(1.2.].5.9.8 ~.ti.7)17 .•. 3 1.2.3.4.5.6)(1.2.9 3,4.5.6,7.8)(2,3,4 1,5,6,7.9.8)
(1,2,3,4,5,9.8 6.7)(4.7.9.8 1,2,3.5.6)(1,2.9 3,4,5,6,7,8)(2,3,4 1,5,6,7,9.8)
(1,4,5.9.8 2.3.6.7)(1.2.7,9.8 3.4,5.6)(1.Z.3,4,9 5,6,7,8)(1,2,3,4 5,6,7,9,0)
(1.5,9,8 2.3,4,6.7)(1.2,7.9.8 3,4.5,6)(1,2.3,9 4,5,6,7,8)(1,2,3,4 5,6,7,9,8)
(J .• 5.9,8 2,3.4.6,7)(1.2.7,9.8 3,4.5,6)(1,2.3,4,9 5,6,7,8)(1,2,3 4,5,6,7,9,8)
(1.4,J,9.8 2,J,6,7)(1.~~,J.4,7.9,8 5,6)(1,2,9 3,4,5,6,7,8)(1,2,3,4 5,6,7,9,8)
(1,5.9,8 2,3,4.6.7)(1,2,3,7,9,8 4.5,6)(1,2,9 3,4,5,6,7,8)(1,2,3,4 5,6,7,9,8)
(1.5.9,8 2,3,4,6,7)(1,2.3,7.9.8 4,5,6)(1,2,3,4,9 5,6,7,8)(1,2 3,4,5,6,7,9.8)
(1.2,5.9,8 3,4,6.7)(1.4.7.9,8 2.3.5,6)(1,2,3,4,9 5,6,7,8)(1,2,3,4 5,6,7,9,8)
(1,2,5,9,8 3,4,6,7)(1,7,9,8 2.3.4,5,6)(1,2.3,9 4,5,6,7,8)(1,2,3,4 5,6,7,9,8)
(1,2,5. 0 ,8 3,4,6,7)(1. 7 .9.8 2.3.4,5.6)(1,2.3,4,9 5,6,7,8)(1,2,3 4,5,6,7,0,8)
(1,2,3,5,9.0 4,6,7)(1. 7,9,8 2,3,4,5,6) (1,2,9 3,4,5,6,7,8) (1,2,3,4 5,6,7,9,8)
(1.2,3,4,5,9,8 6,7)(1,4,7,9.8 2,3,5,6)(1,2,9 3,4,5,6,7,8)(1,2,3,4 5,6,7,9,8)
(1,2,3,5,9,8 4.6.7)(1.7,9,8 2,3,4,5,6)(1,2,3,4,9 5,6,7,8)(1,2 3,4,5,6,7,9,8)
(1,2,5,9,8 3,4,6,7)(1.2.3,7,9.8 4,5,6)(1.9 2,3,4,5,6,7,8)(1,2,3,4 5,6,7,9,8)
(1,2,5,9,8 3,4,6,7)(1,2,3,4,7,9,8 5,6)(1,4,9 2,3,5,6,7,8)(1,2,3,4 5,6,7,9,8)
(1,2,3,5,9,8 4,6,7)(1,2,7,9,8 3,4,5,6)(1,9 2,3,4,5,6,7,8)(1,2,3,4 5,6,7,9,8)
(1,2,3,4,5.9,8 6,7)(1,2,7,9,8 3,4,5,6)(1,4,9 2,3,5,6,7,8)(1,2,3,4 5,6,7,9,8)
(1,4,5,9 2,3,6,7,8)(7.9,8 1,2,3,4,5,6)(1,2,3,4,9.8 5,6,7)(3,4 1,2,5,6,7,9,8)
(1,5,9 2.3.4,6.7,8)14.7.9.8 1.2.3.5.6)(1,2,3.4,9,8 5,6,7)(3,4 1,2,5,6,7,9.8)
(1,5.9 2,3,4,6,7,8)(7,9,8 1,2.3,4,5,6)(1,2,3,9.8 4,5,6,7)(3,4 1.2.5.6,7,9,8)
(1,2,5.9 3,4,6.7.8)(4.7,9.8 1.2.3.5.6)(1,2.3,4,9,8 5,6,7)(2,3,4 1,5,6,7,9,8)
(1,2,5,9 3,4,6,7,8) (7.9,8 1,2,3.4,5,6) (1,2,3,9,8 4,5,6,7)(2,3,4 1,5,6,7,9,8)
(1,2,5.9 3,4.6,7.8)17.9.8 1.2.3.4.5.6)11.2,3,4.9,8 5,6,7)(2,3 1,4,5,6,7,9.8)
'1.2,3,5,9 4,6,7.8)'3,4.7,9.8 1.2.5,6)(1,2,3,4,9,8 5,6,7)(2,3,4 1,5,6,7,9.8)
(1.2.3.4,5.9 6,7.8)13.4.7.9.@ 1,2.5.6)(1,2,3,9.8 4,5,6,7)(2,3,4 1,5.6.7.9.8)
(1.2,3,5,9 4.6,7.8)(7. u .8 1.2.3,4,5,6)(1.2:9,8 3,4,5,6.7)(2,3,4 1,5.6.7.9,8)
(1,2.J.4.5,9 6.7.8'f4.7.?O 1.2.3.5.6)(1.2.9.8 3.4.5,6.7)(2,3.4 1.5.6.7.9.8)
(1../..5.9 3.4.6.7.fJl(J .. :-'.~~.7.?f.l 4.5.6)(9.8 1.:.3.4.5.6.7)(2.3.4 1.5.6.7.°.8\
(1.~,5.9 J.4,6,7,8)~l.~.3.4.7.?D ~.6)(4.9.8 1.Z.3,5,6,7)(Z.3,4 1.5.6.7.9.0)
(1 .. 2,3.5.9 4.6.7.8)(1.:.7.?O 3.4.5.6)(9.6 1,2,3.4,5.6,7)(2,3,4 1.5.6.7,9.8)
(J.,2,3,4.5,9 6.7.0)(1.2.7.9.0 3.4.5.6)(4.9.8 I,Z.3,5.6.7)(2.3.4 1.5,6.7,9.8)
(1.2,3.5.9 4.6.7.8)(1.:.3.4.7,'.0 5.6)(3.4.9.8 1.2,5,6,7)(2,3,4 1,5,6.7,9.8)
(J.,~,3,4,5,9 6,7,O)(1.~,J.7.9,O 4,5.6)(3,4,9.8 1,2,5,6,7)(2,3,4 1,5,6,7,9,8)
(J.,4,5,9 2,3,6,7.8)(1.2.7,?,8 3,4,5,6)(1,2,3,4,9,8 5,6,7)(1,2,3,4 5,6.7,9.8)
(1.5,9 2,3,4,6.7.8)(1.2.7,9,8 3.4.5,6)(1,2.3,9,8 4,5,6,7)(1,2,3,4 5,6,7.9,8)
11.5.9 2,3.4.6.7.8) n.:. 7. 0 .8 3.4.5.6) (1.2.3.4,9.8 5,6,7)(1,2,3 4.5,6,7.9.8)
(J.~,5.!1 2.3.6,7.8)!1.Z.3.6..7,9.B 5.6)(1.2.9,8 3,4.5.6,7)(1,2,3,4 5,6.7.?8)
(1.5.9 2.3.4,6.7.8)(1.2.3.7.9.8 4.5.6)(1,2.9.8 3,4,5.6,7)(1,2.3,4 5.6.7.9.8)
11.2,5,9 3.4,6.7.8)11.4.7.9.8 2.3.5.6)(1.2.3.4,9,8 5,6,7)(1,2,3,4 5.6,7.9.8)
11.2,5.· 3.4.6.7.8)11.7.9.8 2.3.4.5.6)(1.2.3.9.8 4.5.6.7)(1.2.3.4 5.6.7.9.8)
(1,2,~,9 3,4.6.7,8)(1.7.9.8 2.3.4.5.6)(1.:.3,4,9,8 5,6,7)(1,2,3 4.5.6,7,9.8)
(1,2.3,J.? 4,6.7,8)(1.7.9.0 :.3,4.5.6)(1.2.9.8 3.4,5.6,7)(1.2.3,4 5,6,7,9.8)
(1,2,3,4,5,9 6,7,8)(1,4,7,9,8 2,3,5.6)(1,2.9,8 3,4,5,6,7)(1,2,3,4 5,6,7,9.8)
(1,2,3,5,9 4.6.7.8'11.7.9.B 2.3.4.5.6)(1,2.3.4,9.8 5,6.7) (1.2 3.4,5,6,7.9.8)

67

(L,2,~.!1 3,4,6.7,O)(1.~,3.7.9,8 4,5,6)(1,9,8 2,3,4,5,6,7)(1,2,3,4 5,6,7,9,8)
(J.2.~.9 3,4,6.7,U)(1.:.3,4.7.9.8 5,6)(1.4,9,8 2,3,5,6,7)(1,2,3,4 5,6,7,9.8)
(1,~,3,5,9 4,6,7,8)(1,2,7.9,8 3,4,5,6)(1,9,8 2,3,4,5,6,7)(1,2,3,4 5,6,7,9,8)
(1.2,3,4,5,9 6,7.8)(1.2.7,9,8 3.4,5,6)(1,4,9,8 2,3,5,6,7)(1,2,3,4 5,6,7,9,8)
(1,2,3,4,5 6,7,9.8)(2.3.4,7,8 l,5,6,9}(l,Z,9,8 3,4,5,6,7)(4 1,2,3,5,6,7,9,8)
(J .• 2,3,5 4,6.7.9.8,1:.3,4,7.8 1.5,6.9)(1,2,3,4,9,8 5,6,7)(3.4 1,2,5,6,7,9.8)
(1.~.3.4.3 6.7.9.8)(2.J.7.8 1,4.5,6,9)(1.2.3,4,9,8 5,6,7)(3,4 1,2,5,6,7,9,8)
(1.2.3,4.5 6.7.9.0)(~.3.4.7.8 1.5,6.9)(1,2.3.9.8 4,5,6,7)(3.4 1,2,5,6.7,9,8)
11.2,5 3,4,6.7.9,8)(4.7.8 1,2,3.5,6,9)(1,2,3,4,9,8 5,6,7)(2,3,4 1,5,6,7,9,8)
(1,2,5 3,4,6.7.9.8)(7.8 1.2,3,4.5,6.9)(1,2.3,9,8 4,5,6,7)(2,3,4 1,5,6,7,9,8)
(1.2,3.5 4,6.7.9.8)(3.4.7.8 1.2.5.6.9)(1,2.3,4,9,8 5,6,7)(2,3,4 1,5,6,7,9,8)
(1.2.3,4.5 6.7.9,8)(J.~.7.8 1.2,5,6.9)(1.2.3.9,8 4,5,6,7)(2.3,4 1,5,6,7,9,8)
(.L.2,3.4.5 6,7,9,8)(3.4.7.8 1,2.5,6,9)(1,2,3.4,9,8 5,6,7)(2,3 1,4,5,6,7,9.8)
(1,2.3.5 4,6,7,9,8)(7,8 1,2,3,4,5,6,9)(1,2,9,8 3,4,5,6,7)(2,3,4 1,5,6,7,9,8)
11.2.3.4.5 6.7.9.8)(4.7.8 1,2,3.5,6,9)(1,2.9,8 3,4,5,6,7)(2,3,4 1,5,6,7,9,8)
12.3.5 1.4,6.7.9.8)(3,4,7,8 1,2,5,6,9)(1.2,3,4,9,8 5,6,7)(1,2,3,4 5,6,7,9,8)
(2.3.4.5 1.6.7.9.8)(3.4.7.8 1,2.5.6.9)(1.2.3.9.8 4,5.6,7)(1,2,3.4 5.6,7,9.8)
(2,3.4,5 1,6,7,9.8)(3.4.7,8 1,2,5.6,9)(1,2,3,4,9,8 5,6,7)(1,2,3 4,5,6,7,9,8)
(2,3,5 1.4.6,7.9.8)(7.8 1.2,3,4,5,6.9)(1,2.9,8 3,4,5,6,7)(1,2,3,4 5,6,7,9,8)
(2.3,4,5 1,6,7,9,8)(4.7.8 1,2,3,5,6,9)(1,2,9,8 3,4,5,6,7)(1,2,3,4 5,6,7,9,8)
(2.3,4.5 1,6,7.9.8)(4.7.8 1,2,3,5,6,9)(1,2,3,4,9,8 5,6,7)(1,2 3,4,5,6,7,9.8)
(3,4,5 1,2,6,7,9,8)(2,3,7,8 1,4,5,6,9)(1,2,3,4,9,8 5,6,7)(1,2,3,4 5,6,7,9,8)
(J,4,5 1,2,6,~,9,8)(2,3,4,7,8 1,5,6,9)(1,2,3,9,8 4,5,6,7)(1,2,3,4 5,6,7,9,8)
(3,4,5 1,2,6,7,9,8}(2.3,4,7,8 1,5,6,9)(1,2,3,4,9,8 5,6,7)(1,2,3 4,5,6,7,9,8)
(4.~ 1.2,3,6.7,9.8)(2.3.4.7.8 1,5,6,9)(1,2,9,8 3,4,5,6,7)(1,2,3,4 5,6,7,9,8)
(~ 1.2,3.4,6,7,9,8)(2,3.7.8 1,4.5.6,9)(1,2,9,8 3,4,5,6,7)(1,2,3,4 5,6,7,9,8)
(3.4,5 1,2,6,7,9,8)(4.7,8 1,2.3.5,6,9)(1,9,82,3,4,5,6,7)(1,2,3,4 5,6,7,9,8)
(3.4,5 1,2,6,7.9,8)(7.8 1,2,3.4,5,6,9)(1,4,9,8 2,3,5,6,7)(1,2,3,4 5,6,7,9,8)
(4,5 1,2.3.6,7,9.8)(3.4,7,8 1,2,5,6,9)(1,9,8 2,3,4,5,6,7)(1,2,3,4 5,6,7,9,8)
(5 1,2.3,4,6.7.9.8)(3.4.7.8 1.2.5.6,9)(1.4.9.8 2,3,5,6,7)(1,2,3,4 5,6,7,9,8)
(1,2,5 3,4,6,7,9,8)(1.7,9.8 2.3,4,5,6)(1,2,3,9,8 4,5,6,7)(1,2,3,4,9 5,6,7,8)
(1,2,5 3,4,6,7,9,8)(1.7,9,8 2,3,4,5,6)(1,2.3,4,9,8 5,6,7)(1,2,3,9 4,5,6,7,8)
(1,2,3,5 4,6,7,9,8)(1.7,9,8 2,3,4,5,6)(1,2,9,8 3,4,5,6,7)(1,2,3,4,9 5,6,7,8)
(1,2.3.4.5 6.7.9,8)(1.4.7.9,8 2.3,5,6)(1,2,9,8 3,4,5,6,7)(1,2,3,4,9 5,6,7,8)
(1.2.3.5 4,6.7.9,8)(1.7.9.8 2,3.4.5.6)(1,2,3,4,9,8 5,6,7)(1,2,9 3,4,5,6,7,8)
(1.2,3,4,5 6.7,9,8)(1,4,7.9,8 2.3,5.6)(1,2,3,4,9,8 5,6,7)(1,2,9 3,4,5,6,7,8)
(1,2,5 3,4.6,7,9,8)(1,2,3,7,9,8 4,5,6)(1,9,8 2,3,4,5,6,7)(1,2,3,4,9 5,6,7,8)
(1.2,3,5 4,6,7,9,8)(1.2.7.9,8 3,4,5.6)(1,9,8 2,3,4,5,6,7)(1,2,3,4,9 5,6,7,8)
(1.2,3,4,5 6,7,9,8)(1,2,7,9,8 3,4,5,6)(1,4,9,8 2,3,5,6,7)(1,2,3,4,9 5,6,7,8)
(1,2,3,4,5 6,7,9,8)(1.2,3.4,7,9,8 5,6)(1,4.9,8 2,3,5,6,7)(1,2,9 3,4,5,6,7,8)
(1,2,3,5 4,6,7,9,8)(1,2,7,9,8 3,4,5,6)(1,2,3,4,9,8 5,6,7)(1,9 2,3,4,5,6,7,8)
(1.2,3.4,5 6,7,9,8)(1,2,7,9,8 3,4,5,6)(1,2,3,4,9,8 5,6,7)(1,4,9 2,3,5,6,7,8)
(1.2,3,4,5 6,7,9,8)(1,2.3,4,7,9,8 5,6)(1,2,9,8 3,4,5,6,7)(1,4,9 2,3,5,6,7,8)
(7.3,4.5 1.6,7,9,8)(3.4.7,9.8 1,2,5,6)(1,2,3,9,8 4,5,6,7)(1,2,3,4,9 5,6,7,8)
(Z.3.4,~ 1.6.7,9.0)(3.4.7.9.8 1.2.5,6)(1.2.3,4,9,8 5,6,7)(1,2,3,9 4,5,6,7,8)
(7.1.5 1.4.6,7,9.8)(7.9.0 1,2,3,4.5.6)(1,2,9,8 3,4,5,6,7)(1,2,3,4,9 5,6,7,8)
(2,3,4,~ 1,6,7.9.0)(4.7.9,8 1,2.3,5,6)(1,2,9,8 3,4,5,6,7)(1,2,3,4,9 5,6,7,8)
(2,3.5 1.4,6.7,9.8)(7.9.8 1,2,3,4.5.6)(1!2,3,4,9,8 5,6,7)(1,2,9 3,4,5,6,7,8)
(2.1.4,5 1,6,7,9.8)(4.7.9.8 1.2.3.5,6)(1.2,3,4.9,8 5,6,7}(l,2,9 3,4,5,6,7,8)
(:1,4,5 1,2,6,7,9,8)(4.7.9.8 1,2,3,5,6)(1,9,8 2,3,4,5,6,7)(1,2,3,4,9 5,6,7,8)
(1,4,5 1,Z,6,7,9,B)(7.~.8 1.2,),4,5,6)(1,4,9,8 2,3,5,6,7)(1,2,3,4,9 5,6,7,8)

(4,5 1.2,3,6,7,9.8)(3.4,7.9,8 1,2,5,6)(1,9,8 2,3,4,5,6,7)(1,2,3,4,9 5,6,7,B)
(3.4.5 1.2.6.7,9.8)(4.7.9.8 1.2.3.5.6)(1,2,3,4,9,8 5,6,7)(1,9 2,3,4,5,6,7.8)
(3.4,5 1.2,6.7,9.8)(7.9.8 1,2.3,4,5,6)(1,2,3.4,9,8 5,6,7)(1,4,9 2,3,5,6,7,8)
(2,3.5 1,4,6.7,9,8)(1.2.7,9,8 3.4,5.6)(9,8 1,2.3,4,5,6,7)(1,2,3,4,9 5,6,7.8)
(2.3,4,5 1,6.7.9,8)(1.2.7,9,8 3,4,5,6)(4,9.8 1,2,3,5,6,7)(1,2,3,4,9 5,6,7,8)
(2.3.4.5 1.6.7.9.8)(1.2.3.7.9.8 4.5.6)(3,4.9.8 1.2.5,6,7)(1.2,3,4,9 5.6,7.8)
(2.3.4.~ 1.6.7,9.B)(1.2.3.4,7.9.8 5,6)(3,4.9,8 1.2,5,6,7)(1,2,3,9 4,5,6,7,8)
(2.3.4,5 1.6,7.9,8)(1.2.3.4.7.9,8 5,6)(4,9,8 1,2,3,5,6,7)(1,2,9 3,4,5,6,7,8)
(J.4,5 1,2,6,7,9,8)(1,4,7,9,8 2,3,5,6)(9,8 1,2,3,4,5,6,7)(1,2,3,4,9 5,6,7.8)
tJ,4,5 1.2,6,7,9,8)(1,7,9,8 2,3,4,5~6)(4,9,8 1,2,3,5,6,7)(1,2,3,4,9 5,6,7,8)
(~.S 1.2.3,6,7.9.8)(1.7.9.8 2~3,4,5,6)(3,4,9,8 1,2,5,6,7)(1,2,3,4,9 5,6,7,8)
(~ 1.2.3.4.6.7.9.8)(1.7.9.8 2,3.4,5,6)(3.4,9.8 1,2,5,6,7)(1,2,3,9 4,5,6.7,8)

68

7.2.18 By taking into account the calculated secondary adjacency

conditions and by changing the blocks within the partitions and the

places of the partitions we find an appropriate construction for the

FFP for which the counting states can be assigned with codes which

correspond to the Gray code sequence.

One FFP which can be used for state assignment is:

(3,4,5,8,9 1,2,6,7)(1,7,8,9 2,3,4,5,6)

(1,2,3,4,9 5,6,7,8)(4 1,2,3,5,6,7,8,9)

We change the places of the partitions in the following manner:

(4 1,2,3,5,6,7,8,9)(1,2,3,4,9 5,6,7,8)

(1,7,8,9 2,3,4,5,6)(3,4,5,8,9 1,2,6,7)

For the assignment of blocks with

4 - 1

1,2,3,5,6,7,8,9 - 0

1,2,3,4,9 - 1

5,6,7,8 - 0

1,7,8,9 - 1

2,3,4,5,6 - 0

3,4,5,8,9 - 0

1,2,6,7 - 1

69

The following assignment of states is reached:

5 - 0000

6 - 0001

7 - 0011

8 - 0010

9 - 0110

1 - 0111

2 - 0101

3 - 0100

4 - 1100

The Gray code sequence between the counting states is fulfilled.

The assigned next state table is as follows:

S
I 00 01 11 10

1 - 0111
.

2 - 0101 1100 0000

3 - 0100 0100 0100

4 - 1100 0111 1100 0000 0111

5 - 0000 0000

6 - 0001 0110 0110

7 - 0011 0111 0111

8 - 0010

9 - 0110 0110 0110

70

In the assigned next state table we add an ad4itional variable L

which has the value of I for the transitions which cannot be

replaced by counting transitions, and 0 otherwise.

S
I 00 01 11 10

1 - 0111 ----0 ----0 ----0 ----0

2 - 0101 ----0 11001 00001 ----0

3 - 0100 01001 01001 ----0 ----0

4 - 1100 01111 11001 00001 01111

5 - 0000 ----0 ----0 00001 ----0

6 - 0001 ----0 ----0 01101 01101

7 - 0011 01111 ----0 ----0 01111

8 - 0010 ----0 ----0 ----0 ----0

9 - 0110 ----0 ----0 01101 01101

By using a counter-based PLA structure SI' 52' S3' S4 and

L should be implemented as shown in example 1.

71

8.Conclusions

In the report the decompositional state assignment with reuse of

standard designs has been discussed. Since the state assignment

methods that consider a sequential machine on the whole are all

heuristic, they produce often good solutions but they do not

guarantee the strict optimality for them and they can fail sometimes.

Most of them work better for small than for large machines. For this

reason, decompositional implementations of sequential machines with

reuse of

superior.

part) is

standard carefully optimized sub-machines can sometimes be

If the specification of a given sequential machine (or its

strongly similar to the specification of

machine then there is a great chance to reach a

decompositional implementation.

a given standard

better solution by

In the second part of the report, we focused our attention on

counters as standard machines. We made this choice, because many

practical controllers can be designed quite well as modified

counters.

Constructing a modified

adjacencies [1], we answered

version of the method of maximal

the question: how to find the (sub-)

optimal sequential decomposition of

number of sub-machines defining

sequential sub-machine.

a given sequential

counters and a

machine

small

into a

general

The precise algorithm for computing the (sub-) optimal state

chains and the (sub-) optimal state codes is described in the report

and illustrated with examples.

We are now developing software that will implement this

algorithms. In the appendix, the first results are provided which

were obtained using the first part of the software in order to

process the machine from the examples.

72

The work described in this report should be continued in the

following directions;

finishing the implementation of the software and checking the

practical usefulness of the decompositional state assignment with

reuse of standard designs;

- considering other types of standard sub-machines than counters;

- considering the simultaneous decompositions with reuse of standard

designs.

73

LITERATURE

[I] Jozwiak, L.

Minimal realization of sequential machines:

The method of maximal adjacencies.

EUT Report 88-E-209, Eindhoven University of Technology,

The Netherlands, 1988.

[2] Amann, R. and U.G.Baitinger

Optimal state chains and state codes in finite state machines.

IEEE Trans.Comp.-Aided Des.,Vo1.8,No 2,February 1989,p.153-170.

[3] De Micheli, G. and R.K.Brayton, A.Sangiovanni-Vincentelli

Optimal state assignment for finite state machines.

IEEE Trans.Comp.-Aided Des.,Vol.CAD-4,No 3,July 1985,p.269-285.

[4] Jozwiak, L.

The full decomposition of sequential machines with the state

and output behaviour realization.

EUT Report 88-E-188, Eindhoven University of Technology,

The Netherlands, 1988.

[5] Jozwiak, L.

The full decomposition of sequential machines with the output

behaviour realization.

EUT Report 88-E-199, Eindhoven University of Technology,

The Netherlands, 1988.

74

[6] Jozwiak, L.

The full decomposition of sequential machines with the

separate realization of the next-state and output functions.

EUT Report 89-E-222, Eindhoven University of Technology,

The Netherlands, 1989.

[7] Jozwiak, L.

The bit full-decomposition of sequential machines.

EUT Report 89-E-223, Eindhoven University of Technology,

The Netherlands, 1989.

[8] Jozwiak, L. and F.Vankan

Bit full-decomposition of sequential machines. Algorithms

and results.

Canadian conference on electrical and computer engineering,

Montreal, Canada, September 17-20, 1989.

[9] Hartmanis, J.

On the state assignment problems for sequential machines 1.

IRE Trans.Electron.Comput., Vol.EC-I0(1961),p.157-165.

[10] Steams, R.E. and J.Hartmanis

On the state assignment problems for sequential machines II.

IRE Trans.Electron.Comput., Vol.EC-I0(1961),p.593-603.

[11] Armstrong, D.B.

On the efficient assignment of internal codes to

sequential machines.

IRE Trans.Electron.Comput., Vol.EC-l1(1962),p.611-622.

[12] Armstrong, D.B.

A programmed algorithm for assigning internal

codes to sequential machines.

IRE Trans. Electron. Comput. , Vol. EC-ll (1962),p.466-472.

75

APPENDIX

":!-

76

P.g~ 1 09/05/90 12,48 PH

:.itntf:!Range 4

J.nputBitRange 2

Pt:"ndl1ctTeI."m~ 10

\

"

~;TATENAHETABLE (F gives the relationship between the internal
and the external Hemes of the machine.
Fl.u:thl'?T." the internal names are used.)

1
-,
" 3
4

pr~~entstate nex.tGt.::'lt.e times inputvector

.I. - 1 12

.1. .1. 1 01

.I. /: 1 00

pI. f:' !'H:~lLts La te nextsteLe times inputvector

L 3 1 21
;2 4 1 10
Z 2 1 00

p.t:esentstate next{~tate times inpuLvector

-J
"

1 10 ,
1 -' < 02

21

1 22

PREVSTATETABLE

presents tate pre·.r~t.l;I.t:e time~ inputvector

1 3 2 02

21

1

l!r'~!-;~ntst~t_E' Pl"€V8tB.t'?

Z 4

2 0

"
i

pt"~!';ent ~:tate l-'t"~vstate

J ,.

prE'vst<:lte

I,

I,

ltJTf.P,CONNECT I ONT ABLE

~Htltf:' 1-> 3
~lJh~rElce(st: 12

:.1"Rt.P 1<- 3
~;u"3pa,-,e (s) ~ 02

21

~;I :H.~ ;"~-." 4

!~UIH-lpaCe (s): 10
!:t:ate 2<- 4

!:lIh~pa'.:e (s) 1 22

(: YCL I CTRAIITABLE

!:l at~: 1

::ubslJa(..:e{s): 01

ntate: Z
!wiJspace (s): 00

cnSTTABLE

Page 2

1

times

1
1
1

times

1
1

times

1
1

01

inputvector

22
00
00

inputvector

21
12

inputvector

10
10

J. ne'rtstate =

11:.0 :d'LA
11l. nl'LA
1\1.15. ~;t~tf'!S

"03xl.:nUllt

I U nC'_lUlJ t

2.0E+(I(!

(! . O.E+I-"-I
1 2
'f.OE+tJ(I
4.0E+On

09/05/90 12:48 PM

::pn::novlJ : ~x.f.lmrJYl

t\1.t.i. Stt'ltes :

presentstate

HI1Y."PLA

f1inPLA
t\dj .Stat.es
HaxCount
J1J.nCOUflt.
Adj.States

MR.xPLA

HJuPLA
J\di .States
l1axCol1nt
MJ.nCol1nt
Adj.States

prpsentst.ate

I"e "'LA
Hl" I.'LA
t\d:j.Sl:ates
l-faxGollot
IHnC0l111 t
Adj .!";tateR

Hex-Pl..A
I'/j"PLA
At.l"j . States
MaxConnt
MinCol1nt
A!.q. States

l1axPLA
l1inPLA
Adi .StCltes
HaxCount
HinConnt
Adj .Sta.tes

1'."PtA
IHurLA
Adj. ~H.ates
f.1nx-Cnunt
f1 i.nCouJlt
i\dj .~3t.:1t.P.f~

1 nE'Y.tstate

2 .OT;: .. j.fHl

2.0E+OO

8.0E+O(l
It.7E+flO

1 2

l. "

2. ne::~tstate

2.0F.+Of)

1.0E+OI.1

2 4
6.0E+(1I)

5.3EtOO

" 1

2 llE'xtstate

2.0ft1lO
Z . tJJ::+ '.I n

4.0E-J-f.10

3.0E+OfJ

2 4

:. nextstate

".(IF-tOO
2.7EtOO
1 4
4.0EtOO
3.0EtOO
3 2

!, n".?xtstato:>

2.0E+'}O

l.. OEt 00

G.OE+fJ f.1
5.0E+IJ!J

2 It

2.0f+OtJ
2.0Etl)fI

4.IJE+nf!

1.0E+00
1 ~'

2. I,

09/05/90 1Z.48 nl

3

3

1

'~;U"1I11' 1. '; J 09/05/90 12,48 PH

E'II.p(I.he wei~IJt. f."n.l:· '.'"I~x.FLA 1.2E+OO

Epl "'~ the weigllt {<"II: I UllPLA 1.0E+00
EIlI th17 weigh ~ ft.·,: l.1;:,xCO'JOt:. 1.2E+OO
EIII~r tho? ~l~if2.ht f <::.Il- HJnCount 1.0E+OO
F,lIt"Pt" the weight fl)r J\.fJj Nr a.OE-Ol

TI\p!l~ at·~ thl':! 0n:.lered transistions according to ELECTRE I

Jlt:~~€nt8tat:e 3 Il~x:t.st.ete 1 1.4E+01
pr:esentstate 0 nextstate 3 l.2E+!)!

"
pr~nent.nt.D.te 4 nf~x:tstate 2 l.OE+Ol
pJ:esent.state 1 nextstate 2 a.DEfOO
II ':'~!;etl t s t.ate J next state 4 6.0E+OO
I' 1"<::' ~~QIl t, S tEl. t.~ J 1l.extstate 3 4.0E+OO
1'1:"~~nt~tBte 2 IIp.xtstate 4 2.0E+OO

'I'''f:'~H'> 8.t:f? t.he n['det'~fJ tn:4.l1sistions according to ELECTRE II

1"·"~~f.>lItGt,8te 3 t.J.':"!xtstpte 1 2.0"+01
l"'P~f?III.st,8t-,.=:' c P.,=xtstClt.€ 3 1.7E+Ol
11""s"?Tlt:state I, ll".!xtst_8 t_e ,. l.7E+Ol
I" ,j'l>-'Ilt !:tpt'7 l. IIext.st8:te Z 1.2EH11
I" ~":Pllt:!:t.:;ltl? 1 Tlf:?xtstc\'tf:? 3 7.0E+OO
1'1 "~:"'lItSt81:.~ " H'"?xtstate 4 7.0E+OO
I" !-'~Pllt ~,tRtl-:' ., n,:,xtstat~ 4 4.0E+OO

VIII.III'S CALClILATED r.Y ELECTRE-II
EIII".I71: the max n 1.uniJBr uf beams 3
P.;lItyl:' the min qualityfactor 0.90

Th*~ 1;0Ilte11t8 of the t.ransitiontable

1'1"f-,~~pt St:.a.te lIo:.:-xt St8t~ Value

, 1 2.(1.

4 "
17.

'. " 17.

.1 c 12_

.,
-' I, 7.

.1 3 7.

2 I, 4.

",-"P<:"'l1t Stat~ f.lext State

1

4

Adjacpncy
I\d \Rc~n(:y
Adj /:WP.HCY

2
3

412 2. 3
3 1.

(1,1,2,3)(1,3 Z,4)

3
1.

,'fir,'r,',,'r* ASSIGNHENTFOUND **,'r*,'r,'r

Ttl(-; assignments al: p
:

:31. fl t.e I -.-> 1.1)

~": 1 fl t" p :~ OJ.
!:t":l tr~ " " L1,

"

~:Ull " I, (1(1

"Xf'f'ltt" inll t.ime :

EN)) OF TIlE PROGRAt'1

09/05/90 12:4~ Ftt

Page 1 09/05/90 12.48 PH

I!:1) Un: FSI1 defitlitinll tile name ~ example2.

~.: 1:8 teRange 9

IllputBitRange 2

ProductTerms 19

STATENAMETABLE (It gives the relationship hetween the internal
alII.! the exterllsl names of the machine.

t,

5
6
7
9
8
1
2
3
t,

NEXTSTIITETAELE

Fllrth p r th"" internal names aloe used.)

pt"Rsentstate nextstate times inptttvector

1 2 1 22

)nesentstate nextstate times inputvector

2 5 1 11
2 4 1 01
2 3 1 20

pu':"!,entHtate next~t<3te times input.vector

", f, 1 12
" J 1 02 -'

present.state next~l:ate t:tn.le~ .i.nputvectol

4 ~ 1 11
~ ~ 1 01

'-4 1 :::1.1

I'I.I-:'~-lent.st.at~ tlext~tat~ t.imes inputv€ctor

s S 1 11
:; (, Z 02

20

l'I"~~eut:f~tat~

pH~sentstat~ nextnt.[lt.e

"1 co

7 J.

l'I'~!~~ntstEtte n~:x.tst8.t.e

(' " '.'

'J I

nE'xtstflt:e

PREVSTIITETABLE

presentstate prevstate

J. 8
.l 7

J. 4

I" ''''ri~llt.~lt.8tf:'

"

J11'P!~f:'t1t~tRt'" pn~"s ta t~

.,

. .,
.' "i

tim<::'s

I
I

times

I
1

times

1
1

times

1.

times

1
J.
1

t.lllle~

I

t. ime ~

J.
J.

inputvector

12
02

inputvector

21
20

inpl1tvector

12
02

inputvector

22

inputvector

02
ZO

20

input:vector

illpl.1 tvec tor

l12

ZQ

l!1:I~!:ellU;tate prf?vstflt.e times inputvector

09/05/90 12:48 PH

'~pn!~!~lqrn "'x.qmp1 t., ! r:;.gp '.

I, I, J. (lJ.
I, 1. 12
I, 1 I.Jl

IH·egent.state pr~VGt.3.tf? times inputvector

5 5 1 11
5 " 1 11

" 1 11

6 5 2 02

p[eB~l\tstate vp~vst.at~ times

761

p[~~;entntat~ pl'evstat~ times

8 0 J.
8 9 1
8 6 1

vresentstate prevstate times

971

IIlTERCONNECTIOllTAB[.E

, :yr;LICTRANTIIBLE

r.:t.ntE': 'J

BulHlpace (s,: 02

::tnt.l'?: Q

f\l\bn1>t\(·~ (s): OJ.

:1 t ::ll:e : ~)

!;"bspacp, (s): 11

!ll·.ah~: D

nl1h~"F.lf.·P, ($): 12

20

inputvector

n" _ L

Inputvector

12
"0

""
12

inputvector

21

cr..::l.InpJ ~<

t1~xrLA

1·!.i.tl,'LA
Ad i . St.n.tes
lJaxGutl11 t
~tlIlC"I.l1I t
Adj.States

l-laxFLA

I·' i.ltPLA
I\d i . Stat,es
1-t~~(.>l\llIt

11.1 nC!Jtll).t

AdJ. StF.l.tes

"I.·~ :;~nt: fl ta t~

IIRxt'L/\

IH"t'L/\
Ad i. 8t.ates
HrtxCoullt

H.t'ICf')unt ~

I\dj . ~.ltates

I)J:~sentstate

HaxPLA
J1:i.nPLA
Adj.States
!-I:1:xC(Junt

HJllCOUllt
Adj. States

pIY~~€ntstate

Hl.lxT'LA

Iii "I'L/\
Ad';. Y.~t3t.e!-l
t1nxC0l1Jlt

HI nCoI.1ll t

Adj. :.:t·nt·p~

r 1:1 ~ "I.A

!linl'I.A

/\,Ji .~,;t"::lt·,?,s

rlll~I:!""!1

t'illl:'IIIIII

Adi .~;I·;,lt.~~

4 . Of, Hl!.l
4 .OE+llf)

Q.OE+Of)

O.OE+lln

2 n~x.t.statl?

4.0E+O(l

4.0E+(l!l

8.01':+0')
f). f).F.+!H,l

2 (,

:2 Il~~)~.tstate

4. (JE+ UI.'
U.OE+OII
Z lj

1.2F.+OJ.
S.OEfun

3 "

2 nextstate

4.0EtOO
O.OE+OO
2 5
1.2E+OJ.
4.0E+UO
Z 4
4 5

3 l1J.!x.tstate

4.0Ff-on
J . !.IF.+II!.I

3 4
4.0F.+!.1(1

11.1).1::+1.111

;: 4

4 ll<:'xtstate

I! . f)J::·t (II I

:~ .I)Ef-OIl

" 7
J . ZE+I.l1
~~.:;r::tfln

4 ~

D J
J ~l

09/05/90 12,48 NI

3

4

5

4

1.

09/05/ 0 0 12,48 fH

ply!:pntGtat':' I, !l,,'''I:~~tElt_<::, :;

Mfl :f.f'LA 4 .IIE+nn

HluPLA n. (lp:+nn

Ad; .E)t~te8 4 c,

HnxCol.1Jl t 8.0E+OlJ
MlllGount. 2.0E-IOO

Ad-j .States 4 7

:~ S

I'r~sentstate 5 next~tate 6

l-i:nd".JA n.(lf.+nn
If 1.11 ~lLi\ Z.OE+()fI
Ad i. ~;tates 5 (;

H;I X.CIIIJll t. (I.OE+f)n

11 i "C01.111 t. 1).r)E+Ofl

I\d.i.Stat~s

pl:esent:st8t~ (, H~':-:-.ts ta t~ 7

Hi;l X I'LA 4.0[:;+1111

'" i ",',1.1\ 2.:;f.~f)n

Ad i. ~3'.flt~s 7 0
HllxC"tI"t 4.0EHIfJ

t1.1.11CUttIlt O. !JE-I '.HI

Adi .~tlJtes "
0 .,

l)J:fo>sentstate [> nextstate 8

t1nw.PL1\ 4. nEttl!.'

H.l.nPLA O.OEtOO
Ad; .States 6 e
11axColtIJ t a.DEtOO
IHnCOltnt. O.OgtOO
t\dj. ~t~,tes

l'r~~~l':'ntGtatp 7 nex.tstate 1

Il.l}(1'1..1\ I, . liE .-110

!Hnl'I.A ;~. or: I (1)

A,li .~_~t;:'ltf'f1 7 /,

H:nf.CIJItIl l- I. ::F.+ II J.
HJ.1I.(;u ... 1.I1. Q .0£+'"''
Ad j. States I) 1.

,""-'!: f,,~llt_ S t 8. t.p I 11.~;~.tstat<:' Q

l'lsxf'LA 4.0E+(10
H.l"PLA 2.5E+on
Adj .GtRt.es 9 1
HaxCol1nt 4. l'E+O(1
HlnConnt 2.0E+fJf)

Adj. States 7 /,

1" f.'~r·'nt.~tate I! fI'?Xt stat.e 1

tln)f J' 1..,1\ t • . Of,·I!.IO

ttl "f'LIl J..oEHlfl

i\d i. ~j, ;Jte~

11;1 !tC !.II 11,1 t

Hi "Conn I;
Adj.fjt.:::Ites

II:1XI-'LA

, IJIlJ'J .. t\
A,f; .~a.~t. ... s
1-18 x.CnPIl t

n i IlCCll1Ut

Adi .:;U:'Itp.s

f\ J
fl.lJ'~-1 (Ill

4.0EtlJil
7 I,

l, .111~ !-lIt)

{, . 'JE+I)II

q .OE+I)H

O.OE+(11l
6 fJ

F,,,, PI" t.!, p 1oTeJ.ght (= f_ll: lIe"PLA
Ell t <-, t" till-:! wf-!ight fIJI. I,UnPLiI

I~" t "I I h.:, vl·dgbt. ff) '_' tbx.'-:>Junt
Foil I 1"" thl.:' we j.ght i '.n: I,JJnCUlttlt

13:11' .' '" t:h~ weight f fl t' /I-:liN.r

09/05/PO 12.48 PM

8

1.2E+OI)
I.OEtOI)
1.2Et!)O
I.OEtOO
B.OE-OJ.

Th"!:0 ;::I l~'.l t.h r.' OJ:d,,-,t''?d tt'ansistions according to ELECTRE I

prf-'!:f-'IlI: !:t:atf::' J. 11~xtst8te Z Z. lEtOl
III-.~ sellt. s til t~ 5 nextstate (i 2. lEtfJ!
Jl 1'1> ~l~1l t.!~ ti3 t~ ~1 1I~x:t8tate 3 Z.4EtOl
I'I"P.!:; ell t f; t.;3- te (i li~xtstate 7 2.2EtOl
P' 1'!:f'~II'.!:t1:1t.F:' 7 TI~XU:t8,tf::' 9 1..9EtOI
pr€sentstate " nextstate 3 I.BEtOl
l'I·Pr.~llt~t.l:It~ " next.state 4 1.7EtOl ,.
1""::'Sf>lIt,state fJ Tl~xtstate 1 J. . 4E Hll
p':I'~PTlI ~1·.Rte 4 nAxt.state 5 1.J.1':t01
I' I"~" ~H~n 1- ~ ta te (, nextst.at.e 8 1.IEtOl
l,n·~l~ntstl'lt.F::' 4 lI.~xtstate 1 7.0EtOO
I'n,,~pl1t RtF.lt.~ 7 Jl~xtstClt€ 1. 7.0E+00
1'1.1---'~;~nl'8t-at.e 2 uext.~ t~,te 5 4.0EtOO
pI ":-lI--;'IIt::;t:fltl-:' 2 li':!xt.st~te 4 2.0EtOO

OJ:rJ'"'J:,::'d trans;.stio:.qJs accQrding t.o ELECTRE II

I'I-"~:""J!t:~:tat(::' ", '"'~xt8t8te 6 4.lEH'1 "

J' "p ~:~Il t":: t.C1 t ~ J. 1J~x.tstCl.te
" 3.3EtOl "

1"'I'~:~nt:~;t;;lte (, I!~~xt St.8,tp 7 '·.3EHl1
pl"pnent:.(lt.i"It<::' " ,,~::"tst~,t'? 8 3.2EtOl
J' '"",' !;Pl1. '-!l t8 tP ':. 11'-':::_ t.~: t~CI t: e 4 3.0EtOI
PI"~~f::'llt.~jtate I\ext.state 3 Z.7E·IOl
1""" f:en t. 81;13 te 7 nextstate 9 Z.6Et01
I''''':' ~:f--~JJ t G ta te .. lJ<:'xtste,te). Z.6E~Ol '.'

J' I"'~!;I--:'n t f: to t~ 4 l\~xt8tat.e 5 2.1E+!)1
1"-"!If::'ll I' :~tClte I, tI.~xtstat€ 1. 1.ZE+Ol
I' '"" :1 I--? II I. :: tPl t.':' ,; IIp~~.t~t:at:e ~ J.,2EtOl
I" "!lpnl'!~t,;;I"P 7 IIp)tt~tat<=:!). Q .OE+OfJ
pI P!H>lIt~I,Rt f" Il Pxt:st.ate r, 7.0E+OO
1)1 pSf"nl.!~tC'lte , 1I~:x.t.state I, 6.0EtOO

VA!."":; (:ALCll!.AT"[I f,", ''',Ef:TRE-JT
'~1l1 PI' U'l'~ max 111.1mhpr flf b~ams

ElIl. ... r: IJII7 mIll quallt,yf~''':'-(JI':-

J

0.90

Th" contents of thl? transltiontable

PI."I-!r.:f.:'t ~jtlJt.e H":'xt Stfl.te

"
,;

G 7
.I. " ~
') 8
"' f, .'
"

" " n
7 q

I, ..
(, :')

I,

1 .I.
"' -,
2 4

H~xt $t.ate

l:hl1il\ 1.

5 6
6 7

7 9
9 8
8 J.
.I. "

"
L } , J.,

Ad ;at-.-.'"t-y :. G
Ad j:JI'P''':y " 7
l\djnt:l-~n':y 7 u

I\d j :t'·'~I\t·y Q !3

I\d; :wl-'l)'7 ~ 1
I\d'jf.l':f?TWY 1 2
I\d j ~lf:f~JlI.:y "J "
I\d j;w P 1WY 1 4

Val l Je

41-
33
33
',.,
:.' L.

~11J

')..7

26
Z6
~1.

12
12.

Q

7
c

I.:\ . I, • J. it. ~l J.. 2.6 . .,) 11. 1. e. 9 2..3.4. S. 6) (1. 2..3.4.8 5.6. 7 • 9) (4 1.2.3. 5 . 6. 1.8.1,.1)

(~.~.A.~' 1.2,3.G.7)(1.7.g.~ 2.3.4.5.6)(1.2.3,4.8 5,6,7,9)(3,4 1,2,5,6,7,8,9)
(" • ~l • '_1 J.:2. 3 . II . C,. 7) I 1 . fl • 7 . rJ • ~l 2. 3 . 5 . 6) (1 , Z • 3 , 4 ,8 5, 6 , 7 , 9) (3 ,4 1. 2 , 5 , 6, 7 • 8 . 9)
(~.D.~' 1.2,J,4.6.7'(1.!.B.~ 2,3,4,5,6)(1,2,3,8 4,5,6,7,9)(3,4 1,2,5,6,7,8.9)
(·I.~.~.ll.9 1.2.6.7)f1.~.3.7.8.9 4.5.6)(1.2.3.4.8 5,6,7,9)(2,3,4 1,5,6,7.8.9)
(J.~.S.8.u 1.2.6.7)(1.2.3.4.7.8. 0 5.6)(1.2.3,8 4,5,6,7,9)(2,3,4 1,5.6,7.8,9)
(~.~.U.~ 1,2.3.6.7)11.2.7.8.9 3.4,5.6)(1.2.3.4,8 5,6,7,9)(2,3,4 1,5,6,7,8,9)
(:; . II ." 1.. 2 . 3 . 4 . 6. 7) (1. Z. 7 . 8 . 9 3. 4 . 5 . 6) (1 • Z • 3 ,8 4, 5 , 6, 7 . 9) (2 , 3 ,4 1. 5 , 6, 7 , 8 . 9)
('.8.9 1.2.3.4.6.7)11.2.7.8.93.4.5.61(1.2.3.4,8 5,6,7,9)(2.3 1.4,5,6,7.8.9)
1~.5.D.:) 1.2.3.6.7)ll.2.3.4.7.B,9 5.6)(1.2.8 3,4,5.6.7,9)(2,3,4 1,5,6,7,8,9)
(~" 1t.:..1 :1.. ~2. :; . /, . (,. 7) (:I. . ~ . J . 7.8. :-) 4,5. G) (1. Z. 8 3,4.5,6, 7 . 9.1 (2,3.4 1,5.6,7.0.9)
!.I .. "·.n.'.' ;1 .• J.l~.6.7)(:·' .. I •. 7.n.9 1,2.5,6)(1,~2,3,4,8 5,6,7,9)(4 1,2,3,5,6,7,8,9)
(J .• ~.S.O.~ Z.J.G.7)(7.0.? 1,2,3.4,5,6) (1,2.3,4,8 5,6,7,9)(3.4 1,2,5,6.7,8,9)
I I • :, , H. q ;2, 3 , 4 , 6 . 7.l I. Q • 7,8, ~l I, 2, ?, , 5 I 6) (1, .2, 3, l~, 8 5,6, 7 , 9) (3, 4 l, 2, 5,6, 7 , 8 , 9)
(I .5,O.~ 2.3.4.6.7)17.~,9 1.2.3.4.5.6)(1.2,3,8 4,5,6,7,9)(3,4 1,2.5,6.7,8.9)
(I .~.~.O.q 3.4.~,7)(4.7,n.g 1,2,3,5,6)(1.2.3,4,8 5,6,7,9)(2,3,4 1,5,6,7,8,9)
(l.Z.~.~.Y 3.4.6.7)(7.8." I.Z.3.4.~.6)(1.2.3,8 4.5.6,7,9)(2,3.4 1.5.6.7,8.9)
(1 .~.S.0.9 3.4,0.7)(7.8.9 1.2.3.4.S.6)(1.Z.3,4,8 5,6,7,9)(2,3 1,4,5,6,7,8.9)
(I . ; .. J . ~; . I) • 9 (,. 6 . "7) (~ • h. 7 . [\ .? 1. Z . :; • (, , (J, • Z • 3 . 4 . 8 5. 6 , 7 . 9) (2. 3 • 4 1. 5 , 6, 7 , 0 • 9)
(1 . ;.: . J . I, . ~, • e .? r;. 7) ('1 . ,', . 7 . 8 . 9 1., Z . :-' • (.) (.1. • L. • J I 8 4 I 5 , 6, 7 . 9) (2 , 3 ,4 1, 5 , 6. 7 • 8 . 9)
(1 . / . J . ') . l.l . 9 i •• (i. 7) ('i . 0 . ~I 1, Z , :: • I~ , :; • () (J. [\ 3, 4 , 5 • 6, 7 . 9) (2 , 3 ,4 1, 5 , 6 • 7 , 8 • 9)
(I .. : .. :', . .', . .':"' . e . 9 G. 7) (/, . 7 . ~1 . 0 l. 2. . 3 , .5 • 6) (1. :2 . 8 3, 4 • 5 , 6, 7 • 9) (2 . 3 I 4 1, 5 , 6 • 7 , 8 , 9)
(I . i l . :' . n . ~.) ~2.;'. ti. 7) (.I.. :..: . 7 , B ,~I :.. 4 . .5 • f' (1, 2. • 3 • 4 ,8: .5, 6, 7 I 9) (1 , 2 f 3 ,4 5, 6, 7 , 8 • ~)
fl. ~;.13. ',I :!.. 3. I~ .6.7) (J,. 2..7.8.9 3.4,5, (5, (1.:2.3.8 4,5,6 I 7 ,9) (1,2,3, I~ 5.6,7,8.9)
1 .I .. 'i . ~ .~, 2. J . 4 . 6 . 7) (. J. • :~ , 7 . 8 , 9 3, it , 5 , 6) (1, Z , 3 I 4 I 8 5, 6, 7 , 9) (1 , 2 , 3 4, 5 , 6, 7 , 8 , 9)
(I.~.~.~.~I 1.3.6.7)(J .. Z.3.4.7.B.9 5.f)(1.2.B 3,4 • .5.6.7,9)(1.2.3.4 5,6.7.8.9)
(1 . :-' . ~3 . ! 1 :!. ~', . I, . f.. 7) (J. ' ':' • _' .• 7 . P. • ~l 4 . .5, 6) (.t, 2 . 8 3, 4, 5, 6, 7, 9, (1 • 2, 3 . 4 5, 6. 7 , 8 , ?)
(I .. :; . f..l • ~I 2. J . i, . ('. 1 , (J. . 2 . ~~ . i • $3 • 9 4. 5 . ()) (.t . 2 . 3 . 4 , 8 5. 6, 7 . 9) (1 ,2 3. l~ • 5 , 6 • 7 • 8 . 9)
(1.2.~.D.9 3.4.6,7)(1.~.7.8,9 2.3,5.6)(1,2.3,4.8 5,6,7,9)(1,2,3,4 5,6,7,8,9)
1 (.~.~.8.9 3.4.6.7111.7.8.9 2.3.4.5.6)(1.2.3.8 4,5,6,7,9)(1,2,3,4 5,6,7,8,9)
11.2.~.U.Y 3,4.6.7)(1.7.D.9 2.3.4.5,6)(1.2.3,4,8 5,6,7,9)(1,2,3 4,5,6,7,8,9)
(1 . ;' . 'I, , ,. :; .~. 1,.6. 7 , I J. . ., .. n •• ~I ~,J. 4 , 5. G) (1,2.8 3,4,5,6, 7,9) (1.2,3, 4 5.6, 7 , 8,9)

I 1 .. :~.J.~.S.8,9 6,7'(1.~,7,8.9 ~,J,5!6)(1.2.8 3,4,5,6,7,9)(1,2,3,4 5,6,7,8,9)
(I .;.J.~.~.~' 4.6.7)(1.7.0.:' 2,3.4,5,6)(1.2.3,4,8 5,6,7,9)(.l,2 3,4,5,6,7.8,9)
(.I..;~.:).tl.~1 ~',.{I.G,7)(J..2.3.7.fj.,? 4.5,6)(1,8 2,3,4,5,6,7,9)(1,2,3 14 5,6,7,8,9)
(1.~.5.e.y 3.4.6.7JII.Z.3.4.7.B.9 5.6)(1.4.8 2,3,5.6,7,9)(1,2.3.4 5.6,7.8.0)
(I .~.J.~.8.Y 4.G.71 (1.2.7.8.9 3.4.5.6)(1.8 2.3.4.5,6,7,9)(1,2,3,4 5,6,7,8.9)
(1 ,:~.J,4.5.0.9 6.7)11.2.7.0.9 3.4.5,6)(1.4.8 2,3.5.6,7,9)(1,2.3,4 5,6,7,8.9)
(1.4.5.0 2,3.6.7.9)(7.8.9 1.2,3,4,5,6)(1,2,3,4,8,9 5,6,7)(3,4 1,2,5,6,7,8,9)
(.I .5.0 2.3,4.6,7.9)(4.7.8,9 1,Z.3.5,6)(1.2.3,4,8,9 5,6,7)(3,4 1.,2,5,6,7,8.9)
(1.5.0 2.J,4,6.7.9)(7.B.? 1.2.3,4,5.6)(1,2.3,8,9 4,5,6,7)(3.4 1,2,5,6,7,8,9)
(l.~,~,e 3,4,6,7,9)(4.7,8,9 1,2,3.5.6)(1,2,3,4,8,9 5,6,7)(2,3,4 1,5,6,7,8,9)
(I ,~.5,D J,4.6.7.~)(7.8.? 1,2,3,4.5,6)(1,2,3,8,9 4,5,6,7)(2,3,4 1,5,6,7,8,9)
(1.2.5." 3.4.6.7.9)(7.0.9 1.2,3,4,5,6)(1,2,3,4,8,9 5,6,7)(2,3 1,4,5,6,7,8,9)
(1.2.3,: •. 0 1~.6.7.~)(·),1.'.7.1J.? 1.2,5,6)(1,2.3,4.8,9 5.6.7)(2.3,/~ 1.5.6,7.S.?)
(1.~:.3./,.:;.~J 6.7,~1.i'.-::.!1.7,B,~ 1.:.5.6)(1,2,3,8,9 4,5,6,7)(2,3,4 1,5.6,7.8,9)
(J.~.j.~.O 4.6.7.~)(7.0.? 1.2.3.h.S.6)(1.2.8.9 3,4.5.6.7)(2,3.4 1.5.6.7.8.9)
(.I .. ::.J.4.~.O 6.7.?)(4.7.D.? 1.Z.3.5,6)(1.2.8,9 3,4,5,6,7)(2.3,4 1,5.6,7,8.9)
(1.2.~.e 1.~.~.7.~')'1.~.3.7.8.? 4.5.6)(B.? 1.2.3.4.5,6,7)(2.3,4 1.5,6.7,8.9)
(I • :.: • .) • r3 '3. / •. (.• 7 . ?) I. J . :: • 3 . !, • 7 : C· . ~l :', G) (4 . 8 ,? 1, Z I 3 , 5 , 6 I 7) (2 ! 3 I 4 1, 5 , 6 , 7 , 8 , 9)

(1 .. 2,J.~.B ~,6.7.~I)ll.:.7.D.0 ~.4.~,G'(3.~ 1.2.3.4,5.6,7)(2,3,4 1,5.6,7,8,0)
(.' .. ~.J.4.~.8 G,7.~) (1.2.7.8,9 3,4,5.6)(4,8.9 1.2,3,5,6,7)(2,3,4 1,5,6,7,8,9)
tl.·'.~.',.A ~.G.7.~)(1.2.3.4.7.e,9 5,6)(3.4.8,9 1,2,5,6,7)(2,3,4 1,5,6,7,8,9)
(I.'~.~.~.~.B 6.7.9)'1.2.3.7.8.9 4.S.6)lJ.4.8.9 1,2.5,6.7)(2.3,4 1,5,6.7,8,9)
t 1.~.5." 2.J.G.7.~1(1.2.7.0.9 3.4.5.6)(1.2.3.4,8,9 5,6,7)(1,2,3.4 5.6.7,8.9)
(1.'.112.3.4.6.7.·)(1.2.7.8.9 3.4.5.6)11.2.3,8.9 4.5,6.7)(1.2,3.4 5,6,7.8.9)
(1.~.n ~.3.4.6.7.9)ll.Z.7.8.9 3.4.5.6)(J..Z.3,4.8,9 5.6,7)(1,2.3 4,5.6,7,8,9)
t I .• ~.~.~J 2.J.6.7.~)(1.Z.J.4.7.8.~ 5.6)11.2.8.9 3.4.5.6.7)(1,2.3.4 5.6,7,8.9)
(I . " .:1 .~. 3 . I, , (l. 7 . ~l) , 1. :2. 3 . 7.8. 5l 4.5.6) (J.. 2 . 8.9 3.4. 5. 6, 7) (1.2.3. 4 5.6, 7.8.9)
, 1 .. , . r; • II :3. 'I . l;. 7 • ~I) (]. . 4 . 7 . 8.9 2.3.:;. (;) (J,. ::.3.4,8,9 5,6, 7) (1,2.3, 4 5.6, 7.8. ~I)
(I.), ,8 J.4.6.7.~I)(J.:7,O.9 2.3,4.5.6)(1.2.3,8,9 4.5,6,7)(1,2,3,4 5,6,7.8,9)
(J.2 .. U J.4.6.7.9)(1. I.B.9 2.3.4,5.6)(1.2,3.4,8.9 5.6.7)(1,2,3 4,5.6.7.8.9)
(.I .2 .. 5.8 4.6.7.9) (1.7.~.~ 2.3.4.5.6)(1.2.8,9 3,4,5.6,7)(1.2,3,4 5,6,7.8,9)
I I .. ~ .. ~.5.0 G.7.?) (1.~.7.8.? 2.3.5.6)(1.2.8.9 3.4.5.6.7)(1.2.3,4 5,6,7.B.9)
(I.~: .. :'.n 4,6,7.~')(1.1.Fj,? Z.3,1 ... S.6)(l,:":,3,4,8,9 5,6,7)(1.2 3,4,5,6,7,8,~)
(I .~:. "J.4.G.7,~'ll.Z.~.7.0.q 4.S.6)(:I..n.9 2.3.4.5.6,7)(1,2,3,4 5.6,7.B.9)

(l.;:.~,ll J,4.fi.l,~I)(1.:.·~.4.7.0.~ ~,6J(1.4.0.? Z,3.5,6.7)(1,2,},4 5.6.7.B.O)
(I ,~,J,~.O 4.G.7.~I)(1.~.7,O.9 3,4.5.6)(1.0.9 2,3,4,5,6,7)(1,2.3,4 5,6.7.0.9)
(1.?3.4,~.U G.7.~1'(1.=.7.0!9 3,4,5,6)(1,4.8,9 2,3,S,6,7}(l,2,3,4 5.6.7,0.0)
(1 ,~,3,4.5 6,7,0,0) (2.~,4.7.9 1,5.6,8)(1.2,8,~ 3,4,5.6,7)(4 1.2,3.5,fi.7,r,~I)
(I ,2,3,5 4,G,7,3,~)(2,3,4,7,9 1,5,6,8)(1,2.3,4,8,9 5,6,7)(3,4 1,2,5,6,7,B,O)
(1,2,3,4,5 6,7,3,9)(2.3,7,9 1,4,5,6.8)(1,2,3,4,8.9 5,6,7)(3,4 1,2,5,6,7,8.9)
(1. , 2 , 3 , I, ,:, I). 7 . 8 . (I) (~ • ~~ , 4. 7 ,9 1. 5 , 6 . 8) (J. , Z . 3 . 8 . 9 4, S • 6, 7) (3 • 4 1, 2 , 5 , 6. 7 . 0 . 9)
(I • ~' . 'i -1. 4 , G, 7 , n . ~)) (I~. 7 ,~-) l. 2 , J • .5 , G • 8) (J. , 2 . :) , fl , fJ ,9 5, 6 , 7) (2 , 3 • 4 J,:;, 6 • 7 . f.l . OJ)

(I ,Z.5 :\.4,6.7.0.~') (7. 0 1,2.3.4.5.6.0)11.2.3,8.9 4,5.6.7)(2.3.4 1.5,6.7.".~)
(1,2,3.;; 4,6.7.0.9)(3,4.7.9 1,2.J,Ci.0)f1.2.3,"',8,9 5.6,7)(2,3,4 1.5,6.7,0.9)
(1.2,3,4,5 6.7,0,9)(3.4.7.9 1,2.5,6.8)(1.2.3.8.9 4,5,6.7)(2,3,4 1,5,6,7.8.9)
(1,2,3,4,S 6,7,8,9)(3.4.7,9 1,2.S~6,8)(1.2.3,4,8,9 5,6,7)(2,3 1,4,5,6,7,8.9)
(1,2,3,5 4,6,7,e,0)(7,~ 1,2,3,4,5.6,8)(1,2.8,9 3,4,5,6,7)(2,3,4 1,5,6,7,8.9)
(1,2,3,4,5 6,7,8,9)(~,7,9 1,2,3,5,6,8)(1,2,8,9 3,4.5,6,7)(2,3,4 1,5,6,7,8,0)
(2.3.5 1.4.6.7.8.9)(3.4.7.9 1.2.5.6.8)(1.2.3,4,8,9 5.6.7)(1.2.3.4 5,6.7.8.9)
(l.3,~,5 1,6.7.0,~)(3.6.7,9 1,2,5,6,8)(1,2.3,8,9 4,5,6.7)(1,2,3,4 5,6,7,8.9)
(Z,3.4.~ J.,6.7.8.?)(3.4,7,9 1.Z.5.6.8)(1.Z.3.4.8,9 5.6.7)11.2.3 4.5.6.7.B.~)
(Z,~,5 J.~.6.7.0.{I)(7.!1 1.2.3.4.5.6.8)(1.:.8.9 3.4,5,6.7)(1.2.3.4 5,6.7.B.91
(2.:',4.~ 1.fi.7,0.9)1~.7.9 1.Z,3.5.6.0)(I.Z.8.? 3.4.S.6.7)(1.2.3.4 5.6.7,0.9)
(;' .• :\ , I, • S J, (, . 7 • !J • :1) (I,. 7 .:1 1, 2: , 3 . S . 6 . I'J ,) (J. . ;_ .. J . I .. • 0 . 9 5, 6, 7) (1 . 2 3, 4 . 5 , 6. 7 , B . 9)
('.1 , i, • J t. ~~, (;. 7. f! •• ~l) (~.'. •. " • 7 .~, .t. 1./ • :;. (). e) (J .• ~ • :3 , i, .8,9 5.6, 7) (1. 2,3. I, 5, G. 1. n . q)

(J.~.S 1.2.6.7.8.~')(::.J.4.7.9 1.S.6.0)(I.~.3.8.9 4.5.6.7)(1.2.3.4 5.6.1.8.~)
(J, 1".) J, 2.,6, -, . S. ~I) £. ~ • :'. , 4. 7 , 9 1,5,6,8) (J., Z, :3, 4 , 8,9 5,6, 7) (1,2, 3 4, 5 ,6. 7. e . n)

(~.S 1,~.J.6.7.U,!)'{Z.J.4,7.9 1.5,6,8)(1,2.8,9 3,4,5,6,7)(1.2.3,4 5,6.7.B.!')
(5 1.2.3.4,6.7.3.9)(2.3.7.9 1,4,5.6.8)(1.2,0.9 3,4,5.6,7)(1,2,3.4 5,6.7.B.9)
(3 . I~ • ~ 1, 2 , 6. 7 • IJ , ~I) (I, . 7 ,9 1. Z , J . 5 . 6 . [l) (1 . 13 ,? Z, 3 , 4 , 5 , 6, 7) (1 . 2 , :. , 4 5, 6. 7 . 0 . ~)
('J • f, ,~) '1,~:. (i , 7 , e . 9) ("1 . ~l 1, Z . :. , 4 , 5 , 6 , 8) (.-'- , il , 8 ,9 2.'~" 5 , 6, 7) '- 1 , Z, J ,4 5, Ii, 7 . n , q)

(4.5 I,Z.3.6.7.8.9)(3.4.7,9 1.2.5,6,8)(1.8,9 2,3,4,5,6,7)(1,2,3,4 S,6.7.0.Q)
(~ J.,2,J,4,fi,7,8,9)(3.4.7,9 1.2,5.6,8)(1,4.8,9 2,3,5,6,7)(1,2,3,4 5.6,7,8.9)
(1.2.5 3.4.6.7.8.9)(1.7.0.9 2.J.4.5,6)(1.2.3,8.9 4.5,6,7)(1,2.3.4.8 5.6.7.0)
(1,2,5 3,4.~,7,8,9)(l,7.a,? :.3,4,5,6)(1,2,3,4,8,9 5.6,7)(1,2,3,8 4,5,6,7.9)
(1,2,3,5 4,~,7,8,9)(1,7,O,9 2,3,4.5.6)(1,2,8,9 3,4,5,6,7)(1,2,3,4,8 5,6.7.0)
(J.,2,3,~,5 6,7,8,9)(1,4.7,0,9 2,3,5,6)(1,2,8,9 3,4,5,6,7)(1,2,3,4,8 5,6,7,9)
(J .2,3,5 4,6,7.8,9)(1,7,8,9 2,3,4,5,6)(1.2,3,4,8,9 5,6,7) (1,2,8 3,4,5,6,7,9)
(1,2,3,4,5 6,7,8,9)(1,4.7,8.9 Z,3,5,6){1,2,3,4,8,9 5,6,7)(1,2,8 3,4,5,6,7,9)
(1.2,5 3,4.6,7,8,9)(1.2,3.7.8,9 4,5.6)(1.8,9 2,3,4,5.6,7)(1.2,3,4,8 5,6.7.9)
(t,2.3,5 4,6,7,8,9)l1,2,7,O.9 3,4,5,6)(1,8,9 2,3,4,5,6,7)(1,2,3,4,8 5,6,7.9)
(1.2,3,4.5 6,7,8,9)(1,2.7,8,9 3.4,5.6)(1,4,8,9 2.3,5,6,7)(1,2,3,4,8 5,6.7.9)
(1.2,3,4,5 6.7.8,9)(1.2,3.4,7.8,9 5.6)(1.4.8.9 2,3,5.6,7)(1.2,8 3,4,5.6.7.9)
(1,2,3,5 4,6.7.8.9)(1.2.7,8,9 3.4,5,6)(1.2,3.4,8,9 5.6,7)(1,8 '.0.4.5.6.7.9)
(l,2,3,~.5 5,7,8.9)(1.2.7,8.9 3.4,5,6)(1,2.3,4.8,9 5,6,7)(1,4.8 ~,3.5.6.7,~)
(J.,~,3,4,5 6,7,8,9)(1.:,3.4,7.8,9 5,6)(1,2.8,9 3,4,5,6,7)(1,4,8 2,3,5,6,7.9)
(2,3. /',5 J.,6,7.8.~,(}./~.7,8.~1 J .. 2,5,6)(J..2,3,8.~ 4,5,6.7,(1.2.3./1.8 5.6,"1.0'
(2.J.~.5 1.6.7.8.9)(3.4.7.0.9 1.2.5.6)(1,2.3.4.8.9 5.6.7) (1.2.3.8 ~.5.G."1.9)

(;~.J.5 1.4,6.7.0.?)(7.U.~ 1.Z.3.4.S.6)'1.Z.O.? 3,4.5.6.7)11.2.3.4.8 5.0. l.~)
(;!,J.~.5 1,G.7,8.9! (4.7.~.? 1,Z.3.5.6)(1.2.8.9 3.4,5,6.7)(1.2,3.4.8 5.6.7.?)
(2.:3.5 J .• 4.6.7.8,9)(7.0.9 1.2.].4.~.6){1.2.3,4.8,9 5.6.7)(1.2.8 3.4.S.6.7.?)
(2,J.4.~ 1.G,7.B.9)(~.7.8.9 1.2.3.5.6)(1.2.3.4.8,9 5.6.7)(1.Z.8 J.~.5.G.7.9)
(:~ • I, ,) 1., 2 • (,. 7 . D . ~) (I~ • 7 . :] . ~"I 1.:2.?,. ~ . (1) (1 . IJ .? 2.. J . I~ • 5 . 6. 7) 1 1 . ': . ,; .. ,I, • ~ 5. ('. 7 . ~I)

(:J • I, ,:i 1.. Z . (, • 7 , (l • :;1) (7 . fJ . ~l 1.:':'. :_~ . I, • ~ • 6) (1 . I~ . 8 .? 2, 3 . S . (.. 7) (1 . :.:. .. ~ . /, . 8 :.. (. . 7 . ~))
(II • fJ J, ~~ . J , (i, 7 . n . ~I) ('~ •. II . 7 . g ,'.) J.,~', ~ . 6) (l . [1 .~.j 2.:3. 4 , 5 , 6, 7 1 (1 • 2. , 3 . I, . 8 5. f;. 7 , ())
('.\ , I, , ':", .1.:':, (" 7 , IJ , ()) (I, . 7 . n ,~J .1.,::, J , ::. , (.) (J. • ~: , ::. , 4 , 8 ,9 :;, 6. 7) (1 ,fJ 2, 3 , i, , 5 , G. 7 . <l)

('\.4,5 l,Z,G,7,8,9)(7.ft.:' 1.2.3.4,5.6)(1,2.3.4,8,9 S,6,7)(J .. 4,8 2.3.S.~.7.~)

(7,1,5 1,4.G,7.0.9)(1.~. 7.8.9 J.4,5,6)(0,9 1,2.3.4,5.6.7)(1,2,3,4.0 5.6,7.9)
(;~ , :\ , I, ,~; l, (i, 7 , ~l , ~1 .1 (.1 . ;:. 7 , H ,? 3, 4 , 5 , 6) (4 , 8 ,? 1. 2 • 3 , 5 , 6, 7) (1 , 2 . J , 4 , 8 .5, (1, 7 . ':-l)

(~,",4,~ 1.6,7.0.9)(I.~.J,7,e.9 4,5.0)(J.4.8.9 J.,2,5.6.7)(1,2,3.4,O 5.6.7.9)
(?1,1"y l,fi,7.D.9)(J..;~.~~.4.7.3.9 5.6)(3. /1,8,9 1,2,5.6,7)(1.2.3,8 4,5,6,7.Q)
(~.J,~.~ l,6.7,O.?) (1.Z.3,4.7.0.9 5.0) (4.0.9 1.2,3,5.6.7)(1.:.8 3.4.5.6.7.?)
(1.~.5).,2,6.7,8.9)(1.4.7,8,9 2,3,5.6)(8.9 1.2,3,4,5,6,7)ll.2.3.4.8 3.6.7.!')
(:\ , 11 , 5 1., 2 , 6. 7 , 8. 9) (].. 7 . 8 .9 2,:3. ~ . 5 , 6) (l, • 8 . 9 1. 2 , 3 • 5 ! 6, 7) (1. 2 , .3 • 4 , 8 :'. G. 7 . ~I)

(~,S l,2,J.6,7,8.!l)(1.7,8.9 2.3,4,5.6)(3,4.8,9 1,2,5,6,7)(1,2,3.4,8 5,6,7.9)
I~ 1,2.3.4,6,7.6.9)(1.7.8.9 2.3.4.5.6)(3.4.8.9 1,2,5,6.7)(1.2.3.8 4.5.6.7.0)

o:.:xamvJ."'~' 09/05/ 0 0 12:48 PH

~j 1- ,-I t p J - - 1.11.1 1
~; I "' p 2 01<11
~~ t :It,t.> " (1.lIJO

:.;'.:lly I, - - 11110

:3 I- 11. t ~
, 01.1110

::1;..,1.1:" ,; 0(1)1

~; 1 ~t,~ 1.11)11

~; I Ht.~ U --> (Illn

:;1 aly 'J 01.110

""H'l'IIt.lnl1 tlm~ n h n m 28 R

'''''' Of TilE f'ROGPAIi

Eindhoven University of Technology Research Reports
Faculty of Electrical Engineering

ISSN 0167-9708
Coden: TEUEDE

(222) Jozwiak, L.
THE FULL-DECOMPOSITION OF SEQUENTIAL MACHINES WITH THE SEPARATE REALIZATION
OF THE NEXT-STATE AND OUTPUT FUNCTIONS.
EUT Report 89-E-222. 1989. ISBN 90-6144-222-2

(223) Jozwiak, L.
THE BIT FULL-DECOMPOSITION OF SEQUENTIAL MACHINES.
EUT Report 89-E-223. 1989. ISBN 90-6144-223-0

(224) Book of abstracts of the first Benelux-Japan Workshop on Information and
Communication Theory, Eindhoven, The Netherlands, 3-5 September 1989.
Ed. by Han Vinck.
EUT Report ~224. 1989. ISBN 90-6144-224-9

(225) Hoei jmakers, M.J.
A POSSIBILITY TO INCORPORATE SATURATION IN THE SIMPLE, GLOBAL MODEL
OF A SYNCHRONOUS MACHINE WITH RECTIFIER.

(226)

EUT Report 89-E-22S. 1989. ISBN 90-6144-22S-7

~ahk~a, R.P. and E.M. van Veldhuizen, W.R. Rut~ers, L.H.Th. Rietiens
XP IMENTS ON INITIAL BEHAVIOUR OF CORONA GEN RATEO WITH ELECTR CAL

PULSES SUPERIMPOSED ON DC BIAS.
EUT Report 89-E-226. 1989. ISBN 90-6144-226-5

(227) Bastings, R.H.A.
TOWARD THE DEVELOPMENT OF AN INTELLIGENT ALARM SYSTEM IN ANESTHESIA.
EUT Report 89-E-227. 1989. ISBN 90-6144-227-3

(228) Hekker, J.J.

(229)

~ER ANIMATED GRAPHICS AS A TEACHING TOOL FOR THE ANESTHESIA MACHINE
SIMULATOR.
EUT Report 89-E-228. 1989. ISBN 90-6144-228-1

Oostrom, J.H.M. van
INTELLIGENT ALARMS IN ANESTHESIA: An implementation.
EUT Report 89-E-229. 1989. ISBN 90-6144-229-X

(230) Winter, M.R.H.
DrSTGN OF A UNIVERSAL PROTOCOL SUBSYSTEM ARCHITECTURE: Specification of
functions and services.

(231)

(232)

EUT Report 89-E-230. 1989. ISBN 90-6144-230-3

Schemmann, M.F.C. and H.C. Heyker, J.J.M. Th.e. van de Roer
MOUNTING AND DC TO 18 GHz CHARACTERISATI BARRIER RESONANT
TUNNELING DEVICES.
EUT Report 89-E-231. 1989. ISBN 90-6144-231-1

Sarma, A.D. and M.H.A.J. Herben
ilATAACQUISITION AND SIGi;"/iLPRl!CESSING!ilNALYSIS OF SCINTILLATION EVEIHS
FOR THE OLYMPUS PROPAGATION EXPERIMEtH.
EUT Report 89-E-232. 1989. ISBN 90-6144-232-X

(233) Nederstigt, J.A.
DESIGN AND IMPLEMENTATION OF A SECOND PROTOTYPE OF THE INTELLIGENl ALARM
SYSTEM IN ANESTHESIA.

(234)

EUT Report 90-E-233. 1990. ISBI, 90-6144-233-8

Phili~~enst E.H.J.
DESIG NG DEBUGGING TOOLS FOR SIMPLEXYS EXPERT SYSTEMS.
EUT Report 90-E-234. 1990. ISBN 90-6144-234-6

(235) Heffels, J.J.M.
Ii. pAtiENT SIMULATOR FOR Ai-IESTHESIIi. TRAINIt~C: A mechanical lung model and a
physiological software model.
EUT Report 90-E-235. 1990. ISBN 90-6144-235-4

(236) Lammers, J.D.
KNOWLEDGE BASED ADAPTIVE BLOOD PRESSURE CONTROL: A Simplexys expert ~y5tem
application.
EUT Report 90-E-236. 1990. ISBN 90-6144-236-2

(237) Ren Qingchang
PREDICTION ERROR METHOD FOR IDENTIFICATION OF A HEAT EXCHANGER.
EUT Report 90-E-237. 1990. ISBN 90-6144-237-0

~i~ChO\en Ur' .el ~I~, 01 Technology Re~edr{·h Report~
rac;Jl::, of ElectrIcal EnqTneerlnq

ISS" 0167-9708
Coden: TEUEDE

(238) Ldmmer~, J.O.

(239)

rHE USE OF PETRI NET THEORY FOR SIMPLEXYS EXPERT SYSTEMS PROTOCOL CHECKING.
EUr Report 90-E-238. 1990. ISBN 90-6144-238-9

wa
E

Q , x.
PR LIMINARY INVESTIGATIONS ON TACTILE PERCEPTION OF GRAPHICAL PATTERNS.
EUT Repoet 90-E-239. 1990. ISBN 90-6144-239-7

(240) Lutgens, J.M.A.
KNOWLEDGE BASE CORRECTNESS CHECKING FOR SIMPLEXYS EXPERT SYSTEMS.
EUT Eepoet 90-E-240. 1990. ISBN 90-6144-240-0

(241) Brinker, A.C. den
A MEMBRANE MODEL FOR SPATIOTEMPORAL COUPLING.
EUT Repoet 90-E-241. 1990. ISBN 90-6144-2.1-9

(242)

(243)

(244)

Demarteau, J.I.M. and H.C. Oe~kEr, J.J.M. KwasGAn, Th.G. van de Roer
M I CROWAVE NO I SE MEAS R M NTS ON DOUBLE RR I ER RESONANT TilNIlrLl NG
DIODES.
EUT Repoet 90-E-242. 1990. ISBN 90-6144-242-7

Massee, P. and H.A.L.M. de Graaf, W.J.M. Balemans, H.G. Knoopers, H.H.J.
ten Kate --
PREDrsTCN OF AN EXPERIMENTAL (5-10 MWt) DISK MHO FACILITY AND PROSPECTS OF
COMMERCIAL (1000 MWt) MHO/STEAM SYSTEMS.
EUT Repoet 90-E-243. 1990. ISBN 90-6144-243-5

Klompstra, Martin and Ton van den Boom, Ad Damen
A COMPARIsON OF CLASSICAL AND MODE~ONTRO~DESIGN: A case study.
EUT Repoet 90-E-244. 1990. ISBN 90-6144-244-3

(245) ger
T
, P.H.G. van de

N HE ACCURACY OF RADIOWAVE PROPAGATION MEASUREMENTS: Olympus propagation
experiment.
EUT Repoet 90-E-24S. 1990. ISBN 90-6144-245-1

	Abstract
	Index terms
	Acknowledgements
	Contents
	1. Introduction
	2. Basic definitions
	3. Decompositional implementation for a sequential machine
	4. A new method for state assignment
	5. Evaluation of transitations in relation to adjacency conditions
	6. Algorithm description
	7. Examples
	8. Conclusions
	Literature
	Appendix

