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DECOMPOSITIONAL STATE ASSIGNMENT
WITH REUSE OF STANDARD DESIGNS:
USING COUNTERS AS SUB-MACHINES AND USING
THE METHOD OF MAXIMAL ADJACENCIES TO SELECT THE
STATE CHAINS AND THE STATE CODES

Lech Jozwiak, T.Spassova-Kwaaitaal

Group Digital Systems, Faculty of Electrical Engineering,
Eindhoven University of Technology (The Netherlands)

Abstract - One of the most important steps in the design of finite
state machines is the assignment of values to the binary state
variables to represent the symbolic internal states of the machine.
The complexity of the resulting implementation can vary extensively
from assignment to assignment.

From our experiments with more than 20 sequential machines
follows, that the silicon area for the best assignment that we
found, was typically about half that for the worst assignment.

The problem of finding an optimal state assignment is
computationally complex. It is NP-hard. In a strict sense, it has
never been solved, except for exhaustive search, which for Ilarge
machines is unpractical or impossible, even wusing a computer. In
this situation, some approximated heuristic approaches must be used.
Using some knowledge about the internal structure of a sequential
machine, these approaches try to reduce the search space to a
manageable size and to keep the high quality solutions in that
reduced space. They produce often very good solutions, but they do
not guarantee the strict optimality for them.

Most of the known heuristic state assignment methods work better
for small than for large machines.

For the above reasons, decompositional state  assignment
approaches are interesting.
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If the specification of a given sequential machine (or its part)
is strongly similar to the specification of a given standard machine
then there is a great chance to reach a better solution by
decompositional implementation,

Constructing a modified version of the method of maximal
adjacencies [1], we answered the question: how to find the (sub-)
optimal sequential decomposition of a given sequential machine into a
number of sub-machines defining counters and a small general
sequential sub-machine.

The precise algorithm for computing the (sub-) optimal state
chains and the (sub-) optimal state codes is described in the report
and illustrated with examples.

Index Terms - Automata theory, logic minimization, logic system
design, sequential machines.

Acknowledgement - The authors are indebted to Prof.ir.A.Heetman and
Prof.ir.M.P.J.Stevens for making it possible to perform this work.
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1. Introduction

The methodology for digital circuits have changed because of the
growing complexity of modern IC’s. To manage this complexity
computer-aided  synthesis  techmiques are used. They  ensure
functional, logical, electrical and geometrical correctness and
allow a decrease in the design time. But often these techniques lead
to integrated circuits, which require a large silicon area.
Therefore design optimization procedures should be wused to yield
area-effective circuits.

Basic architecture of a digital system consists of two parts: a
processing unit and a control unit. The control unit can often
require more than half of the total area, so it is very important to
reduce the amount of hardware used by it. Serial processing units
constitute also an important class of digital bardware.

Control units and serial processing units can be represented by
a finite state machine (FSM) (sequential machine, finite automaton).

Traditional hardware implementation of a FSM consists of two
parts: a combinational logic and a state memory (fig. 1.1).

i I-PRIMARY INPUTS

5| OUTPUT FUNCTION ; S
A
S . O - PRIMARY
: QUTPUTS
B NEXT STATE NEXT:STATE

FUNCTION O

>

COMBINATIONAL LOGIC

STATE
MEMORY <

Fig.1.1 General model of a hardware implementation
for a sequential machine

The combinational logic realizes the next-state function & and
the output function A. Depending onr the present state and the values



of primary inputs, J generates the next state and A generates the
values for the primary outputs.

Because of the regular structure of the PLAs they are often
used to implement the combinational logic of the FSM in modern
designs.

State memory is implemented through binary memory elements
(flip-flops).

One of the most important steps in the design of finite state
machines is the assignment of values to the binary state variables
to represent the symbolic internal states of the machine. The
complexity of the resulting implementation can vary extensively from
assignment to assignment.

From our experiments with more than 20 sequential machines
follows, that the silicon area for the best assignment that we
found, was typically about half that for the worst assignment.

The problem of finding an optimal state assignment is
computationally complex. It is NP-hard. In a strict sense, it has
never been solved, except for exhaustive search, which for large
machines is unpractical or impossible, even using a computer. In
this situation, some approximated heuristic approaches must be used.
Using some knowledge about the internal structure of a sequential
machine, these approaches try to reduce the search space to a
manageable size and to keep the high quality solutions in that
reduced space. They produce often very good solutions, but they do
not guarantee the strict optimality for them.

Most of the known heuristic state assignment methods work better
for small than for large machines.

For the above reasons, decompositional state assignment
approaches are interesting.



2. Basic definitions

A sequential machine is a 5-tuple

M = (1,5,0,9,4),

with the following specifications:

I - finite nonempty set of inputs ;

S - finite nonempty set of internal states ;

O - finite set of outputs ;

J - a mapping, called the next state function,
5:8Sx1 —» S

A - a mapping, called the output function,
A: S x I — O (a Mealy machine) ;

AL S —— O (a Moore machine).

Sequential machines can be represented by their graphs. The
states are represented by the nodes of the graph and the transitions
- by the arcs. The arcs are directed. Two nodes may be connected by
more than one arc. When two or more arcs have the same start node
and the same end node, they are called multiple and the transitions
which they represent, are called multiple transitions.

Multiple transitions are checked and the largest input subspaces
which contain exclusively the inputs from a given multiple
transition and don’t have any common elements between each other,
are found. The multiple transitions between two given states will be
implemented together: all of them will be realized by a counter or
all by PLA.

When two arcs connect two nodes and have opposite directions,
they are called opposite arcs. The nodes which are connected through
opposite arcs are called directly interconnected nodes and the

states, which they represent are called directly interconnected
states.



Every node can be described as a start node, when only the arcs
that are coming out of it are concerned. When, only the arcs that
are coming into the nodes are concerned, then the node is described
as a terminal node.

All the arcs coming out of a certain start node form the start
set of the node. All the arcs that are coming into a certain
terminal node form the end set of the node.

The two opposite arcs, which connect two directly interconnected
nodes form directly interconnected pair.

When an arc starts and ends at the same node, it is called
cyclic, and the transition - cyclic transition.

Every transition can be described by a start node - Si’ a
terminal node - Ti and an input vector - Xi‘

So, single transitions are described by a triple of parameters
(Si’ Ti’ Xi). Multiple transitions are described by a start node Si’
a terminal node T, and a group of separate input subspaces Xi"'xm‘
So, multiple transitions are described by the n-tuple

(Si’ Ti’ Xi“'Xm)'

An example for a graph structure of a sequential machine is
given on fig.2.1.



cyclic transition

directly
interconnected
states

(6 D

terminal
@ node
start set of node 3 end set of node 8

" Fig.2.1 Graph structure of a sequential machine
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3. Decompositional implementation for a sequential machine

Two sorts of decompositions are feasible for sequential
machines:

- simultaneous decompositions;
and

- sequential decompositions.

Simultaneous decompositions divide the process described by a
given sequential machine into a number of interacting parallel
processes, each implemented by one partial machine. All the partial
processes are active simultaneously and together they realize the
decomposed process.

Sequential decomposition divide the process described by a given
sequential machine into a number of sequential sub-processes, each
implemented by one sub-machine. Only one of the sub-processes is
active at a given time and all the sub-processes together realize
the decomposed process.

In our previous works, we considered simultaneous decompositions
with general partial machines [4].151.161.[71.18]. The term
"general” means that a partial machine can be any sequential
machine. We considered also sequential decompositions with general
partial machines, Qur results in the last field will be published in
the nearest future,

In this work , we will consider some decompositions with special
partial machines, i.e. partial machines which are (more or less)
predefined.

This sort of decompositions is very important, because it allows
reuse of earlier designs.

A limited reuse of earlier designs can be obtained by using
parameterized generators, which describe some classes of circuits,
e.g. k-bit long counter of the natural binary code, k-bit Gray-code
counter, parameterized filter, parameterized CRC coder or checker
etc. In this case, reuse of a design is limited to a given class of



circuits defined by a given genmerator.

Often the specification of a circuit to design (or its part)
does not meet completely the specification of a special machine
designed previously, but it is only very similar to the special
machine. In such case, the earlier design can still be reused but
not as the only circuit. The second circuit must be constructed. The
newly designed circuit together with a given special machine
designed earlier must realize a machine which meets the
specification of a circuit to design.

Generally, in order to reuse the earlier designs a given
sequential machine must be decomposed into a number of special
partial machines (representing the earlier designs) and a number of
general partial machines (representing the new part of the design).
All the partial machines together must realize the decomposed
machine.

Reuse of earlier designs is important not only because it
decreases the design time and design costs. It is specially
important to reuse the standard designs which are designed very
carefully. Such designs ensure the correctness and are optimal or
near-optimal from the complexity point of view.

If a large enough part of a circuit will be constructed using
standard optimal designs and a small part of it will be constructed
in the form of a general machine, it is a great chance to reach an
optimal or near optimal solution. There is a chance to reach better
solution than that offered by the heuristic state assignment tools
applied to a general sequential machine on a whole. One reason for
it is the fact that one large part of a circuit will be optimal due
to using the optimal standard design; the second one is the fact
that the second (general) part will be much smaller than the whole
circuit and therefore easier to optimize. However, one must remember
that the standard part and the general part will be optimized in
separation. So, the eventual common parts of the logic cannot be
shared in this case. It means, that having ideal optimization tools
(e.g. state assignment tools), it will be always possible to find no

worse general solution than any solution obtained by reusing of
earlier designs.



So, the only reason, for the solution obtained by reusing the
earlier designs to be better (from the complexity point of view)
than the best solution found in a general way, is the wunideal
heuristic character of the optimization tools.

If only a small part of a circuit will be implemented by reusing
the standard designs, then the chance to reach a better solution
will be small. The impossibility to share the logic by the standard
and the general part as well as the necessity to implement a piece
of hardware that will ensure the proper cooperation of those two
parts, will probably cause the hardware overhead greater than the
overhead caused by the unideal character of the optimization tools.

So, the following two problems have to be solved:

- to discover that the specification of a given design (or a part of
it) is strongly similar to the specification of a given standard
design (i.e. the chance to reach a better solution is high enough);

- to find the optimal decomposition of a given design into standard
and general parts.

In this work, we tried to analyze and to solve the above
described problems wusing a counter as an example of a standard
(special) machine. The choice of this example was not random,
Counters itself constitute a very important class of sequential
circuits and, what is more important in this context, many practical
controllers can be designed as modified counters quite well.

We were interested in the decompositional implementation for a
sequential machine using sequential decomposition into a number of
counters (standard machines) and one general machine. (Since we
developed earlier a method for sequential decomposition of a general
machine into a number of general machines, the above formulated
problem is general enough).

Sequential decomposition consists in  partitioning a given
sequential machine into a number of sub-machines and ensuring the
proper cooperation of this sub-machines in order to realize the
behaviour of the machine to decompose.

We considered the one state realization of the state and output
behaviour in the sense of the definition given in [4]. ”Sub-machine”
is understood here in the sense defined by the algebraic theory of
sequential machines.



A machine M'= (1’, §‘, 0’, §’, A’) is a sub-machine of a

machine M = (I, S, O, 4, 1) if and only if:

S =5 1I'=1 0" = Q,

0’ = Jrestricted to 8’ x I’ (d : 8 xI'— § ),
A’ = A restricted to §° x I’ or §’

(A" :8 xI"— 0" or i’ : 8 — 0.

In other words, sequential decomposition partitions the graph of
a given sequential machine into a number of sub-graphs. Each
sub-graph is implemented then as a separated sub-machine. One must
ensure that only one of the sub-machines is active at a given time.
So, if a given sub-machine is in ome of its active states and from
this state for a given input value another sub-machine should be
activated, the active sub-machine must suspend his work and, at the
same time, it must activate another sub-machine. From this time on,
the activated sub-machine must keep itself active up to a similar
situation as described above (i.e. it must perform its normal work)
and each suspended sub-machine (also the newly suspended) will be
suspended up to the activation by a sub-machine which is active at
the moment of the activation.

Since sequential decomposition partitions the graph of a
sequential machine into a number of sub-graphs, the graph of a
sequential machine will be a very wuseful tool in considering
sequential decompositions.

The machine’s graph is defined as

MG = < V, E, L(V), L(E) >

where

V - the set of vertices corresponding to the set of machine’s

states;

E - the set of edges corresponding to the set of transitions

between the states;

L(V) - a set of labels attached to each vertex; this set is

empty for a Mealy machine and each label represents the
output value in a given state for a Moore machine;



L(E) - a set of labels attached to edges; each label represents
the input value of the machine (for Moore machine) or
the input and the output value (for Mealy machine)
corresponding to a given transition represented by the
edge.

The transitions in the machine’s graph represent the actions
performed by a sequential machine.

The only action that can be performed by a counter is “go to the
next state”. So, the omly type of a sequential machine that can be
realized using a counter consists of a sequence of successive states
and is represented by a path in the machine’s graph.

Since we considered here only the one state realizations, only
one state can be made successive and only one state can be made
previous to a given state. In general, we can have more than one
next state for a given state and different inputs ("fork” splitting
in a machine’s graph) and transitions to a given state can have an
origin in more than one state (”join” action in a machine’s graph).
It follows immediately that not every sequential machine c¢an be
implemented by composing only some counters (only counters can be
implemented using only counters) and that at most one transition
from a given "fork” or "join” group can be implemented by a counter.

So, in order to construct a one state realization of a
sequential machine in the decompositional form wusing a sequential
decomposition into counters we must use also a general sequential
machine as one of the sub-machines (the only exception is the case
of a counter itself).

The optimal choice of transitions from the “fork” and “join”
groups to be implemented by a counter will be considered in the next
chapters. All the transitions which will be realized by a counter
will be referred to as counting transitions. The counting
transitions can form a number of  counting chains (paths in a
graph). Each counting chain describes a sub-machine that can be
realized by a counter. However, instead of implementing each counter
representing a sub-machine in separate, we will implement all of
them together wusing one larger counter and differentiate its
sub-ranges to implement different counters - sub-machines.
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A general sub-machine can be implemented using a PLA (for a
combinational logic) and a register (for a state memory). However,
in a sequential decomposition only one of the sub-machines is active
at a given time. So, it is possible to share the flip-flops of a
counter and to use them one time in the counter configuration (if
one of the counters - sub-machines is active) and another time in a
register configuration (if a general sub-machine is active). Imn
consequence, in order to implement the counter - sub-machines and
the memory of the general sub-machine a loadable binary counter will
be used. The load signal (L) will distinguish between the active
states of a general sub-machine and the active states of one of the
counter - sub-machines.

The aim of our decomposition is to minimize the total silicon
area for implementation.

The silicon area for PLA grows with the pumber of state
variables k and with the number of product terms used for realizing
the nmext-state and output functions [1].

The silicon area for a counter grows with the number of state
variables which for the minimum-length assignments grows logarithmic
with the number of states implemented in a counter (k= log, |S| ).

We decide to use a counter if most of the transitions (and
states) can be implemented wusing it. So, we can expect in the
practice at most one-bit growth of a counter due to the extra
transitions and states of a general sub-machine. Therefore, we will
not consider minimization of a counter.

In the sequel we present a method which heuristically minimizes
the area used for the PLA implementation of the combinatorial logic
by replacing some of the state transitions by counting transitions.
These counting transitions will them be realized by a loadable
binary counter, which replaces the traditional feedback register of
the FSM. Selecting of the counting transitions has been considered
for the first time in [2]; however, it has been done in relation to
the very low quality state assignment algorithm - KISS [3]. In order
to select the counting transitions we developed a special edition of
the method of maximal adjacencies [1] . Figure 3.1 shows the basic
counter-based PLA structure using a loadable counter.

11



COMMAND >

PLA PRTMARY
QUTPUTS
AND - OR -
ARRAY ARRAY
A LOADABLE COUNTER
CLOCK
T ] T+1 L
I VI
PRIMARY X | .
INPUTS SEQUENCING
AND - ARRAY OR - ARRAY PLA

Fig.3.1 Basic counter-based PLA structure

This structure implements FSM’s with Moore specification, since
the output vector depends only on the actual state ZT; however, very
similar structure implementing Mealy machine can be constructed
also.

In the next chapters, the suboptimal selection of counting
transitions and suboptimal state assignment will be considered.

4. A new method for state assignment

To solve the problem of sub-optimal state assignment for an
implementation of a sequential machine using a counter and a PLA, we
have developed a method, which is a combination of the method of
maximal adjacencies (MMA) [1] with the concept of using a counter as
a state memory .

The MMA [1] has been developed, based upon the observation, that
the information contained in the next-state and the output tables of
sequential machines instructs the input-state, present state- next
state and output-state dependencies for adjacency conditions. The
adjacency conditions are ordered according to the number of adjacent

" 1 ”n

s and "0”s in the binary functions representing J and A reached
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when a given condition is satisfied by the assignment. Then, the
conditions are considered and combined in their order constructing
some ”suboptimal” assignments. Combining the maximal number of the
best adjacency conditions makes an order in the Karnaugh tables
which represent the binary next state and output functions by
accumulating “1”s together and “0"s together, i.e. by constructing
small number of large product terms. These ”suboptimal” assignments
lead to small PLA area.

Using a counter [2] makes it possible to realize a number of
state transitions by a counter. Counting transitions need mnot be
implemented by a PLA. This saves the PLA area. The feedback register
of the FSM is replaced by a loadable binary counter, which is
controlled by a load wvariable L. Hence, an extra output called
"load” is generated by the combinatorial logic of the FSM. In each
cycle the counter offers a binary code word. If the next state of
the sequential machine is identical to the next counting state, the
counter has only to be incremented, while L = 0, Otherwise, the
counter has to be loaded from the PLA due to L. = 1.

Our method uses the basic ideas of the method of maximal
adjacencies in order to find the transitions that should be realized
by the counter in order to minimize the PLA area.

Two main objectives are taken in mind:

1. Since each tranmsition, which is generated by the counter
allows "don’t cares” in the next state table for the transitions
that are left to be realized by PLA and therefore an additional
potential for further minimization, we have to look for as many
counting tramsitions as possible.

2. In order to be realized by PLA, each tramsition has a certain
cost. The idea is to implement the transitions as cheap as possible.
That means, that the most expensive transitions should be realized
by the counter and the cheapest ones - by PLA.

13



We consider that when we choose a certain transition to be
realized by a counter, the neighbouring transitions (from the same
start set, the same end set and the same directly interconnected
pair) should be realized by PLA. On that base we calculate
5 parameters.

1. Cc - maximal cost of a given transition i, when realized by
! a counter,
n
C = C
cmax, j=1 1"LAmaJcj

CPL A _ - maximal cost of a given transition to be realized in

I pLA

n - number of neighbouring transitions

The maximal cost is calculated as a sum of the maximal costs of
the neighbouring transitions, which are left to be realized in PLA.
It is calculated as the number of product terms that are necessary
to be realized for a given transition without satisfying any
restrictions or adjacency conditions.

2. Cin . minimal cost of a given transition i when realized by
! a counter,
n
c.. = 2 C .
cmin i=1 PLAmmj
n - number of neighbouring transitions
CPL Amin. - minimal cost of a given transition j to be realized
in PLA
Ccmin is calculated as a sum of the minimal costs of the

neighbourlng transitions which should be realized in PLA. The
minimal cost is calculated as the number of product terms, that are
necessary to be realized for a given transition when certain
adjacency conditions and restrictions are satisfied.

14



3. CpL Amax, - maximal cost of a given transition i to be realized in
PLA
It is calculated as the number of product terms that are
necessary to realize a given transition without satisfying any
restrictions or adjacency conditions.

4, CPL Amin - minimal cost of a given transition i to be realized in
PLA
It is calculated as the number of product terms that are
necessary to realize a given transition when certain adjacency
conditions and restrictions are satisfied.

5. AdjRestr - adjacency restrictions

It is defined as the number of adjacency restrictions which
should be satisfied in order to reach the calculated C
given transition.

. for
cmin 0 a

These 5 parameters are estimated and based on their values and
the weights preliminary given for each one of the parameters, an
order of the transitions is made using a multicriterial optimization
method.

The quality factor which is calculated for each transition is
highest in value for the transition which is best to be realized by
counter. So in the final list, the transitions are ordered according
to their quality factors and the transitions with the highest
quality factor is first on the list.

From all the transitions in the list the one that should be
realized by the counter are chosen. They are called -counting
transitions, because they are pot implemented by a PLA but they are
realized by only incrementing the value in the counter.

When choosing the counting transitions two objectives are taken
in mind:

15



1. Every transition realized by a counter saves the PLA area.
So, as much as possible transitions should be realized by the
counter, i.e. the number of the counting transitions should be as
large as possible.

2. From all the transitions in the list, for counting
transitions should be chosen the one with the highest quality
factors, that means, the one which are the most expensive when
implemented in PLA,

The basic activities of a sequential machine can be described
formally as a "sequence”, "spread choice” and "join choice”.

A "sequence” is when for a given present state there is only one
next state and both states are not interconnected. That means that
the two nodes are connected only by one arc. In this case, the
transition is always realized by a counter which gives the code of
the next state.

“Spread choice” is an activity when from a given present state
there is a possibility to go to two or more different next states.
In this case one of the transitions can be realized by the counter
and the rest are implemented by a decision logic in PLA which gives
the code of the next state,

“Join choice” is an activity when a given state can be reached
by a number (more then one) previous states. In this case one of the
transitions can be realized by the counter and the rest are
implemented by a decision logic in PLA which gives the code of the
next state.

A sequential machine can be decomposed into a number of partial
machines which realize the activities described above.

16
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We assume that the “sequence” machines and some of the
transitions of “spread choice” and "join choice” machines are
realized by one counter. The rest of the transitions of “spread
choice” and “join choice” machines are realized with one
combinational logic block.

Determining the counting transitions
For every state we can form two sets.

Previous state set which is defined as follows:
PREVSS = { PREVS, | PRI:'NS-1 is a previous state of the given
state }
and

Next state set which is defined as:
NSS = { NEXTS, | NEXTS, is a next state of the given state }

From these two sets for a given state we have to choose one
previous state and one next state, which define the two transitions
from the “join choice” and “spread choice” machines which will be
realized by the counter.

Using the list with the ordered transitions according to their
quality factor and a beam search algorithm one or more lists of
counting transitions are made.

In the beam search algorithm two parameters are used:
MaxBeams - maximum number of beams
QC - quality coefficient

QFalt

QC =—
QFbestalt

where

QFalt - quality factor for the alternative transition
QFbestalt - quality factor for the best alternative transition

17



MaxBeams and QC should be chosen experimentally. After the first
experiments good results were obtained when
MaxBeams = 3 and QC = 0.9

When a given transition is chosen to be realized by a counter,
some of the neighbouring transitions become mnoncounting, i.e. they
can’t be used as counting transitions. Noncounting transitions are
the transitions from the same NSS for the start node of the chosen
counting transition and the same PRESS for the end node of the
transition and the other transition from the interconnected pair.

The set of counting transitions is determined as

SCT = { CT, | CT, is a counting transition }
and is created in the following manner:

1. All the transitions which construct the “sequence” machines
are put in the set SCT and are taken away from the list of the
ordered transitions.

2. The best transition from the list of ordered transitions is
taken and put into the SCT.

3. The noncounting transitions are determined and are removed
from the list of the ordered transitions.

4. The algorithm continues with the next best transition until
the list of ordered transitions is empty.

Choosing the type of the counter

In general, each type of counter can be used to implement the
counting transitions and the best counter should be chosen; however,
counters of different types impose different requirements on
"successive” states and codes. For example, for the natural binary
code counter, “successive” means the next binary coded number. In
the future, we are going to give possibility to wuse different
counters; however,at the moment, the reflected binary (Gray code)
counter is used. This decision is imposed by the fact that in the
Gray code only one digit change occurs when passing from any one
combination to the next. That means that the successive states are
also adjacent, or the succession condition for the
counting transitions from one chain is given by the adjacency
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condition for the successive states from the chain.

These adjacency conditions should be satisfied obligatory and
they are called primary adjacency conditions.

Using the adjacency conditions instead of succession conditions
allows applying a slightly modified version of the method of
maximal adjacencies [1] for the state assignment.

Constructing the chains

The counting transitions are combined in chains in the following
manner.

We begin by taking one of the counting tranmsitions. It forms the
first chain, We try to conmect to it the next of the counting
transitions. If this is not possible we form a new chain. When a
counting transition is connected to already existing chain, before
proceeding with the next transition we check whether the extended
chain can be connected to any of the other chains.

When all chains are constructed they are checked if they are
closed, i.e. if the start node of the chain is connected to the end
node of the same. If such transition exists it is removed from the
chain.

Using MAXAD for state assignment

MAXAD is a program which has been developed on the base of
method of maximal adjacencies (MMA). This method [1] creates for a
given assignment length k, a set of final families of partitions
that maximize the adjacency level of ”"1”s and "0”s of Boolean
functions obtained with a given family used for state assignment.
Calculations are based only on the information from the next state
and output tables. First the adjacency conditions for input - state,
present state - next state and state - output dependencies are
determined. Then these three sorts of adjacency conditions are
combined together and ordered, according to the offered level of
adjacency, forming the ordered list of adjacency conditions. The
last step consists of creating the final families of partitions
based on the ordered list of adjacency conditions. In
this step the adjacency conditions are considered in the order of
their ordered list and the final families of partitions are created
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that satisfy the greatest number of compatible adjacency conditions.

After the determination of the counting transitions the state
transition table, describing the sequential machine 1is changed as
all the transitions which will be realized by the counter are
replaced by don't cares. Further an additional variable called
"load” is included in the state transition table. The load variable
is set to one only for the transitions, which cannot be replaced by
counting transitions. The next state code word is provided by the
PLA and is loaded into the counter. For all counting transitions L
is zero and the next state code is provided by simply incrementing
the counter,

The modified description of the sequential machine is used as an
input file for MAXAD. The adjacency conditions for input-state,
present state-next state and state-output dependencies are
determined. The adjacency conditions are combined and an ordered
list is formed. These adjacency conditions are additional to the
primary adjacency conditions which follow from the already generated
counting chains and they are called secondary adjacency conditions.
The primary adjacency conditions should be satisfied obligatory,
while from the secondary adjacency conditions we have to satisfy as
much as possible.

The satisfaction of the adjacency conditions is done while we
construct the final families of partitions(FFP). While combining the
adjacency conditions in order to form FFP’s the following
constraints should be taken into account[1]:

1. If two states Sk|S1 have to be adjacent, then they must be
contained in two different blocks of just ome two-block partition,
which is a member of a FFP. In all other partitions from the FFP,
they must be contained in one block.

2. Each pair of incompatible states (S,,.S,) must be separated in
at least one partition from a FFP (separate condition).

3. Only proper partitions are useful for state assignment and
only they can be members of FFP’s.

4. The FFP for a minimal machine is an orthogonal family of
proper partitions.

5. Each state S;:5, € S may be adjacent with at most k other
states SI:Sl € S.
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The mechanism of constructing a limited set of near optimal
families of final partitions for an assignment length k, SNOFFP(k)
is described in [1].

Each FFP & SNOFFP(k) must contain k proper partitions i.e. k
two-block partitions containing at most 2 -1 elements in each of
their blocks.

We start by constructing partial proper partitions which satisfy
all primary adjacency conditions. And after that by trying to
satisfy as much as possible secondary adjacency conditions we build
the SNOFFP. For every FFP from this set by changing the blocks
within the partitions and the places of the partitions we find a
construction for which the states which are members of the counting
chains can be assigned with codes which correspond to the Gray code
sequence.

5. Evaluation of transitions in relation to adjacency conditions.

At present, we evaluate transitions taking into account only the
adjacency conditions for the next-state function; however, the
adjacency conditions for the output function can be taken into
account in a very similar way.

We estimate the cost to realize in PLA for each transition in
relation to the surrounding transitions. Cyclic transitions must be
realized by PLA, because it’s not possible to realize them by
counter. If some of the other transitions are related to them, they
can be realized in PLA cost free or for a very low cost. In this
case some adjacency conditions should be fulfilled,

Single transitions are described by the triple of parameters
(SiTiXi) where Si - start node
Ti - terminal node

Xi - input vector

Multiple transitions are described by the n-tuple of parameters
(SiTiXi"‘Xm) where Si - start node
T, - terminal node
X....X,, - separate input subspaces
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In connection to adjacency conditions the following cases are
possible:

5.1 Si = Ti and Si = S.i

5.1.1 The transitions are S, T.X. and SjTij

If X Xj cost = 1

5.1.2 The transitions are SiTiXi"‘Xm and SJ.Tij...X11

51.2.1 If Xi"'xm and Xj"'Xn form one subspace
cost = n
5122 If X, | Xj cost = k(n-1)+1

k - number of variables
used for state coding

5123 If X Xj .. and X | X I- adjacencies

n

cost = ki(n-l)+1

For these cases the adjacency condition is Sj| Tj

5.2 S, = Sj

52.1 The transitions are §,T.X, and SjTij

If X Xj cost = L'zi

5.2.2 The transitions are SiTiXi and SjTij"’Xn
5221 K X X, cost = Xn+l
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5222 If X; and Xj"'Xn form one subspace

. k+n
cost = Jrn
5.2.3 The transitions are SiTiXi'“Xm and SjTij...X I
_ k(im+n)-k+1
5231 KX Xj cost = e

5232 IfX| Xj - and X X [ adjacencies

k(m+n)-lk+!

cost = (. R

)m

5233 If X...X = and Xj'“xn form one subspace

k-1 +m-+n

cost =(—Fm )

For these cases the adjacency condition is T.| Tj

5.3 S, = T, and T, = Tj
5.3.1 The transitions are SiTiXi and SjTij
If X, = Xj cost = 0
5.3.2 The transitions are SiTiXi"‘Xm and SjTij"'Xn
If X = Xj ........ Xn =X,
cost = Q
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5.4.1 The transitions are SiTiXi and SjTjX-

]
If Xi = Xj cost = —k—;—l—
542 The transitions are SiTixi and SjTij"‘Xn
If X = X, cost = Xot1

5.4.3 The transitions are SiTiXi'”xm and SjTij"'Xn

If Xi = Xj ........ Xm = X11 in ! cases
_ ¢ k(m-1 +n)+!
cost = ( o m ) m

The adjacency condition for these cases is S| Sj

5.5 'I'i = Tj
5.5.1 The transitions are SiTiXi and SjTij
If X. = X cost = k
1 i =z
5.5.2 The transitions are SiTiXi and SjTij...Xn
IfX =X cost = kn
1 1 n+1

5.5.3 The transitions are SiTiXi“'Xm and SjTij“'Xn

If Xi 5 n

[
e
o
i
>4

g in ! cases

cost =( (m-1 +n)k

mFn )™

The adjacency condition for these cases is S| Sj
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6. Algorithm description.
6.1 Read the transition table.

6.2 Check the multiple transitions. Find the largest input subspaces
which contain exclusively the inputs from a given multiple
transition and don’t have any common elements between each other.

6.3 For each state a set of next states to which that state leads is

found. If S is the number of states, Ns sets are constructed .

Fori =1t S

Next_state_set(i) = {next_statej,timesj’input_verctorsj i
next_statej—next state for present state 1,
timcsj-number of input_vcctorsj,
input_vcctorsj-input vectors for a transition

from present_state to ncxt_statej}
i

6.4 For each state, a set of previous states leading to that state

is found. Ns sets are constructed.

Fori = 1toS

Previous_state_set (i) = {previous_statej,times_].,inpur_vectorsj |
previous_statcj-previous state of state;

timcsj-number of input,_vectorsj,

input_vectorsj-input vectors for a transi-

tion from previous_statej to state.}

6.5 Check for each state if there exists a directly interconnected
state.

then make Interconne,cted_pair‘lj
2

Interconnected_pairij = {statci,statej,input_vcctors;

2,

state ; ,state;,input_vectors}
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6.6 Make a set of cyclic transitions.
Cyc]ic_transition_seti = {statci,input_vcctorsi|statci-statc with
cyclic transition}

6.7 Generation of subgraphs.
6.7.1 Read one transition.

6.7.2 For the start state of the transition
next_state_set.

673 For the end state of the transition
previous_state_set.
6.7.4 Check for directly interconnected pairs.
6.7.5 Combine the three sets. They form one subgraph.

6.8 Calculation of the cost of each transition to be realized

PLA.
6.8.1 Calculation of the maximal cost.
6.8.2 Calculation of the minimal cost.

take

take

the

the

in

It is based on the condition that some of the states are coded

with adjacent codes and is calculated according to p.5.
For every transition check if it is related to

1. Cyclic transition - 'I‘i = Si
a) check if Ti = Tj and Xi = Xj
then S| Sj
b) check if Si = Sj and Xi| Xj
then S.| T,
en S T
2. Another transition
a) check if §, = Sj and X | Xj
then T.| T,
b) check if Ti = Tj and Xi = Xj
then Sil Sj

3. To directly interconnected transitions
Check if Si = Tj and Tj = Sj and Xi = Xj
then §;] Sj

26



6.9 Calculation of the cost for each transition to be realized by a
counter.

6.9.1 Calculation of maximal cost - it is calculated as a sum of the
maximal costs that are necessary for all noncyclic transitions from
the same subgraph to be realized by PLA.

6.9.1.1 Take one subgraph.

6.9.1.2 Choose one transition.

6.9.1.3 For the rest of the transitions calculate the maximal

cost Cc 2,28 follows

Ccmax. = -Z CPLAmax.

CPLQ _ - maximal cost of a given transition to be realized in
I pLA
n - number of neighbouring transitions

6.9.2 Calculation of minimal cost
6.10 Calculation of the number of adjacency restrictions - AdjRestr

6.11 Estimate C cmax? Ccmin’ CPL Amax’ CPL Amin and AdjRestr for every
transition and wusing a multicriterial optimization method make one
suboptimal order of the transitions. The quality factor will be
highest for the transition which is best to be realized by a
counter.

6.12 Using a beam search algorithm construct one or more suboptimal
lists of transitions for the counter containing as many transitions
with the highest quality factors as possible

6.13 Construct the counting chains and derive the primary adjacency
conditions.

6.14 In the mnext state table describing the sequential machine

replace with don’t cares all the transitions which are members of
the counting chains.
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6.15 Include an additional variable called "load” in the state table
of the machine and set it to 1 only for the transitions which cannot
be replaced by counting transitions. For the rest of the transitions
it is set to O.

6.16 Use the modified description of the machine as an input file
for MAXAD and determine the adjacency conditions for input-state,
present state-next state and state-output dependencies.

6.17 Construct partial proper partitions satisfying all primary
adjacency conditions.

6.18 Build the SNOFFP by trying to satisfy as much as possible
secondary adjacency conditions.

6.19. By changing the blocks within the partitions and the places of
the partitions find an appropriate constructions for the FFP from
the SNOFFP for which the counting states can be assigned with codes
which correspond to the Gray code sequence.
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7. EXAMPLES

All steps of the algorithm will  be explained using the fol-
lowing two examples.
7.1 Example I

7.1.1 The sequential machine 1is described by the following
next-state table.

Table 7.1.1

(8]
w
L7
R R W

Next-state table

7.1.2 The multiple transitions are checked and the largest input
subspaces which contain exclusively the inputs from a given multiple
transition and don’t have any common elements between each other are
found. By the integer 2 don’t care bits in the input vectors are

represented. The input vectors stand for the largest input subspaces
and they are given in Table 7.1.2.
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Table 7.1.2

present | next input
state state vector

1 3 12

1 1 01

1 2 00

2 3 21

2 4 10

2 2 00

3 4 10

3 1 02

21

4 2 22

7.1.3 For each state a set of next states to which that state leads is
found. For S=4 (S - number of states) N4 sets are constructed.

N, = { 3,1,12; 1,1,01; 2,1,00 }
, = {3,1,21; 4,1,10; 2,1,00 }

N; = { 4,1,10; 1,2,02,21 }

N, = {2,1,22}

z
I
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7.1.4 For each state, a set of previous states leading to that state
is found. For § = 4, P4 sets are constructed.

P, = {3,2,02,21; 1,1,01 }
P, = { 4,1,22; 2,1,00; 1,1,00}
P, = {2,1,21; 1,1,12 }

P, = { 3,1,10; 2,1,10 }

7.1.5 Check for each state if there exists a directly interconnected
state and make interconnected pairs.

P, = { 1,3,12; 3,1,02,21 }
IP,, = { 2,4,10:4,2,22 }

I

7.1.6 Make a set of cyclic transitions

There are cyclic transitions for states 1 and 2 and the sets are
the following.

c; = { 1,01}
, = {200}

0

7.1.7 Generation of subgraphs
For the easier description of the algorithm we shall give names
to the transitions. They are shown in Table 7.1.3.
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Table 7.1.3

present | mext input trans i tion
state state vector name

1 2 00 A

1 1 01 B

1 3 12 C

2 2 00 D

2 4 10 E

2 3 21 F

3 1 02 G

3 1 21 I

3 4 10 H

4 2 22 J

By combining the next state set for the start state with the
previous state set for the end state of each mnoncyclic transition
and the directly interconnected pairs, the following subgraphs are
generated. Multiple transitions are considered together and the
generated subgraph is one for them.

SG A — N, and P, are combined
SGC — N, and P, and IP,, are combined
SGE — N2 and P4 and IP2 4 are combined

SGF —_ N2 and P3 are combined

SGGI N N3 and P1 and IP13 are combined
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SGH — N3 and P 4 are combined

SGJ —— N 4 and P2 and IP2 4 are combined

7.1.8 Calculation of the cost of each transition to be realized in
PLA.
7.1.8.1 Calculation of maximal cost.

It is calculated as the number of product terms that are
necessary to realize a given noncyclic transition without satisfying

any restrictions or adjacency conditions.

The following maximal costs are calculated:

CpLaMAX, = 2
CpLAMAX, = 2
CpLaMaxg = 2
CrLamax; = 2
CpLAMAX, " ¢
CpLAMAX, = 2
CpLAMAX| = 2
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7.1.8.2 Calculation of minimal cost

It is calculated as the number of product terms that are
necessary to realize a given noncyclic transition when certain
adjacency conditions and restrictions are satisfied.

The evaluation of transitions in connection to adjacenéy
conditions is explained in p.5.

The following minimal costs are calculated for the different
transitions:

CPL AMINA = ( (related to transition D, adjacency condition - 1|2)

CPL AMINC = 2 (not related to any other transition)

CpLAMIN. = 1 (related to transition D, adjacency condition - 2|4)

E

CoL AMIN = 2 {(not related to any other transition)

CpL AMINGI= 2,7 (related to transition H, adjacency condition - 1]4)

CPL AMINH = 1 (related to transition E, adjacency condition - 2|3)

CPL AMINJ = 2 (not related to any other transition)

7.1.9 Caiculation of the cost for each transition to be realized by
a counter.

7.1.9.1 Calculation of maximal cost

It is calculated as a sum of the maximal costs that are
necessary for all noncyclic transitions from the same subgraph to be
realized by PLA.
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cmax; i=1 PLAmax]

CPLQ _ - maximal cost of a given transition to be realized in
I pLA

n - number of neighbouring transitions

The maximal cost for the transitions is calculated as follows:

CeMm AX = 4 (in SG A noncyclic transitions G and J are left)
Com AX . = 8 (in SG_ noncyclic transitions A,F,G and I are left)
Cem AXg = 6 (in SGy noncyclic transitions F,H and J are left)

CoMm AX = 4 (in SGg noncyclic transitions E and C are left)
Cem AXGI= 4 (in SGg noncyclic transitions H and C are left)
CCMAXH = 6 (in SGy noncyclic transitions G,I and E are left)

CeMm AX, = 4 (in SGy noncyclic transitions A and E are left)

7.1.9.2 Calculation of minimal cost
It is calculated as a sum of the minimal costs that are

necessary for all noncyclic transitions from the same subgraph to be
realized by PLA.
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n
C = 2 C

cmin i=1 PLAmmj
n - number of noncyclic transitions
CPL Amin. " minimal cost of a given transition j to be realized
in PLA

The following minimal costs are calculated:

CCMINA = 4 (in SG, noncyclic transitions C and J are left)

CCMINC = 4,7 (in SGc noncyclic transitions A,F,G and I are left;

adjacency conditions 1|2, 1|4)

CCMINE = 5.3 (in SGE noncyclic transitions F.H and J are left;

adjacency condition 1|4)

CCMINF = 3 (in SGg noncyclic transitions E and C are left;

adjacency condition 2|4)

CCMINGI= 3 (in SGGI noncyclic transitions C and H are left;

adjacency condition 2|3)

CCMINH = 5 (in SGH noncyclic transitions G,I and E are left;
adjacency condition 2|4)
CCMINJ = 1 (in SGy noncyclic transitions A and E are left;

adjacency conditions 1|2, 2|4)
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Remark: When we assume that a certain transition should be realized
by a counter, we should not calculate the minimal cost of any
neighbouring transition in relation to that transition. We should
search for relation with another transition. This is done in
connection with the calculation of the costs for the transitions E
and H.

7.1.10 Calculation of the number of the adjacency restrictions - NAR

It is calculated as the number of the adjacency restrictions,
which should be satisfied in order to reach the calculated C
a given transition.

cmiN for

NAR A" 0
NARC =2
NARE = ]
NARF = 1
NAR,;= 1
NARH =1
NARJ =2

7.1.11 For every transition we have calculated five parameters, By
using a multicriterial optimization method we make an order of the
transitions such that the transitions which are best to be realized
by a counter will be at the top of the list.

37



For the example we have reached the following order.

present | next tran s ition
state state

3 1 GI

2 3 F

4 2 J

1 2 A

3 4 H

1 3 C

2 4 E

7.1.12 By using a beam search algorithm we construct the following
suboptimal list of counting transitions,

present | next tran sition
state state

3 1 GI

2 3 F

4 2

7.1.13 The constructed counting chain is as follows:

4 y 2 3 —o1
The following primary adjacency conditions are derived.

214,23, 1|3
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We see that all the states of the machine are members of the
counting chain and they should be coded in such a way as to form a
Gray code sequence.

7.1.14 In the next state table we replace by don’t cares all the
transitions which are members of the counting chains.

7.1.15 Set the additional variable called "load” to 1 only for the

transitions which camnot be replaced by counting transitions. For
the rest - set it to zero.

xo Xl Xz X3

S L'oo {01 |11 | 10

1] 1 1 1 1

2 [ 1 o | o 1

3| o 0 0 1

4] o 0 0 0
L
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7.1.16 Calculate the adjacency conditions for input-state, present
state-next state and state-output dependencies using the next state
table with the counting transitions replaced by "don’t cares”. This
is done according to the method described in [1].

For our example we obtained the following ordered list of adjacency
conditions.

pairs of number of |estimation
next states|uncondi- of the to-
pair of |and number |[tionally tal number lnumber
adjacent|of their reached of adja- |of "don’t
states |occurencies|adj acencies|cencies cares”
2|3 —_ 9 9 4
2j4 —— 9 9 4
3|4 —_ 8 8 4
1|4 _ 8 g 4
3| 4
13 —_— 7 8 3
1
3|14
1|2 _ 7 8 3
1

Ordered list of adjacency conditions
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7.1.17 Construct partial proper partitions satisfying all primary
adjacency conditions

According to 7.1.13 the following primary adjacency conditions
were calculated

Each FFP &€ SNOFFP must contain 2 proper partitions i.e. 2 two -
block partitions containing at most 2 elements in each of their
blocks. We consider the adjacency conditions one after the other and
construct the following FFP,

143 : {23,141} {24,13)

We have reached only one FFP so it is not possible to satisfy
any of the secondary adjacency conditions.

7.1.18 By changing the blocks within the partitions and the places
of the partitions we find an appropriate construction for the FFP
for which the counting states can be assigned with codes which
correspond to the Gray code sequence.

One possible construction is:

{24,13} {14,273}
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For the assignment of blocks with

24-0;, 13-1; 14-0; 23-1
the following assignment of states is reached:

- 00
01
- 11
- 10

— o M A
)

The Gray code sequence between the counting states is fulfilled.

The assigned next state table is as follows:

0 1 2 3

g 700 |01 |11 |10

1-10]01 |10 | 11 | 11

2-01]01 | -- | -- | 00

3-11] -- -1 - T1oo

4-00]| -- A I
S15;2
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In the assigned next state table we add an additional variable L
which has the value of 1 for the tramsitions which cannot be
replaced by counting traasitions, and 0 otherwise.

1-104 011 | 101 | 111 | 111

2-01)|011 | --0| --0j 001

3-11] --0| --0 | --0 | 001
4-00| --0 | --0 | --0 | --0

55, L

We make the Karnaugh maps in order to calculate the number of
terms which are necessary to realize Sl’ 82 and L

IlI2 1112 1112 1112
I
S 00 01 11 10
00 - - - -
01 0 j B 0 2 terms
11 - - - 0
10 0 1 1 1

Karnaugh map of S1
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I41

I,I

I,I

I,I

172 "1°2] "172|] "172
S 00 01 11 10
00 - - - -
01 1 - - 0
11 - - - 0
10 1 0 I 1
Karnaugh map of 82
LI Tilyy L1y 141,
¢ Yoo |01 |11 |10
00 0 0 0 0
o1 1| 0| 0 |[I
11 0 0 0 1
10 |[1 | I 1]

Karnaugh map of L

2 terms

3 terms

By using a counter-based PLA structure the next-state functions

can be implemented with 7 terms as shown on fig.7.1.
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Sequencing PLA

12

+—
st r>o_;_‘—L [ - AND-array
>
uaaREEl

YY_YVVVV

1 — L
l
Loadable
0 st counter
0 — S2

OR-array

+

Fig. 7.1 Implementation by using
counter based PLA structure.
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7.2 Example II

7.2.1 The sequential machine is described by the following
next-state table.

Table 7.2.1

XO xl K2 xs

¢ oolo1| 11| 10
1] 2 {2 [2 |2
203 |4 |5 |3
303 [3 [4 |4
a1 |4 |5 |1
5016 16 |5 |6
6|7 17 |9 |9
711 18 [8 |1
g8l o |9 |9 |09
ol 1 {1 |9 |9

Next-state table

7.2.2 The multiple transitions are checked and the largest input
subspaces which contain exclusively the inputs from a given multiple
transition and don’t have any common elements between each other are
found. By the integer 2 don’t care bits in the input vectors are
represented. The input vectors stand for the largest input subspaces
and they are given in Table 7.2.2.

46



Table 7.2.2

present
state

next
state

input
vector

1

22

11

01

20

12

02

11

B W R Wl ] A

01

20

11

Lhiwn| bl &l p| WV RN

20
02

12

02

o0 | | O

21

[

20

22

o | e

12

O | |l ool 2| 2] | *

02
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7.2.3 For each state a set of next states to which that state leads is
found. For S=9 (S - number of states) N9 sets are constructed.

N, = {2122}

N, = { 51,11; 4,1,01; 3,1,20 }
5 = {4,1,12; 3,1,02 }

N, = { 51,11; 4,1,01; 1,1,20 }

Z
I

Ng = { 5,1,11; 6,2,20,02 }
Ng = {9,1,12; 7,1,02 }
N, = { 8,1,21; 1,1,20 }

Z
)
I

{9,1,22 }
o = £ 91,12, 1,1,02 }

7.2.4 For each state, a set of previous states leading to that state
is found. For S = 9, P9 sets are constructed.

P, = {9,1,02; 7,1,20; 4,1,20 }
P, = { 1,1,22 }

= { 3,1,02; 2,1,20 }

P, = { 4,1,01; 3,1,12; 2,1,01 }
= { 5,1,11; 4,1,11; 2,1,11 }
¢ = {5:2,20,02}

. = {6102}

Pg = { 7,1.21}

Py = { 9,1,12; 8,1,22; 6,1,12 }

)
w
I

w W v
h
[ I

7.2.5 Check for each state if there exists a directly interconnected
state and make interconnected pairs.

For this example directly interconnected pairs don’t exist.
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7.2.6 Make a set of cyclic transitions
There are cyclic transitions for states 3,4,5 and 9 and the sets
are the following.

Cy = {302}
C, = {401}
Cy = { 5.1}
Cg = {912}

7.2.7 Generation of subgraphs
For the easier description of the algorithm we shall give names
to the transitions. They are shown in Table 7.2.3.
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Table 7.2.3

present
state

next
state

input
vector

trans ition
name

14

22

A

11

01

20

12

02

11

~ m|lm| & 0D

Bl A W] & W] A W

01

(oY

20

11

20

02

12

02

0| ~1| W[ | |

21

[

20

22

O WO

12

Wiwv| ow|al<d|la| ||l wv|]wvw] &l & & W] W] BB

02

Pl O Q|9 |22 R« Q|
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By combining the next state set for the start state with the
previous state set for the end state of each noncyclic transition
and the directly interconnected pairs, the following subgraphs are
generated. Multiple transitions are considered together and the
generated subgraph is one for them.

SG A — Ny and P, are combined
8Gg — N, and P, are combined
SGC — N, and P, are combined
SGD — N2 and P5 are combined
SGF — N, and P 4 are combined
Gy — Ny and P, are combined
SG; — N 4 and Ps are combined
SGJK — N5 and P6 are combined
SGM — N6 and P., are combined
SGy — Ng and Py are combined
8Gg — N, and P1 are combined
§Gp — N7 and P8 are combined

SGQ — N8 and Pg are combined

SGR - N9 and P1 are combined
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7.2.8 Calculation of the cost of each transition to be realized

PLA.

7.2.8.1 Calculation of maximal cost.

It

necessary

is calculated as

to realize a

the
given noncyclic

any restrictions or adjacency conditions.,

number of product

in

that
transition without satisfying

terms arc

The following maximal costs are calculated:

CpLAMAX, = *
CpLaMAX, = 4
CpLaMAX = *
CrLamAxy = 4
CpLaMAX, = ¢
CpLAMAX, = 4
CpLAMAX, = ¢
CpLAMAX; = 8
CPLAMAX,, = *
“pLAMAK, = 4
CpLAMAX, = 4
CpLAMAX, = 4
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C = 4

X
PLAMA Q

CPLAMAXR =4

7.2.8.2 Calculation of minimal cost

It is calculated as the number of product terms that are
necessary to realize a given noncyclic transition when certain
adjacency conditions and restrictions are satisfied.

The evaluation of transitions in connection to adjacency
conditions 1is explained in p.5.

The following minimal costs are calculated for the different
transitions:

CPL AMINA= 4 (not related to any other tramsition)
CpL AMINB= 4 (not related to any other tramsition)

CPL AMINC= 0 (related to transition H, adjacency condition - 2|4)

CopLaMIN .. = O (related to transition L, adjacency condition - 25)

D

CpL AMINF= 1 (related to transition E, adjacency condition - 3|4)

CPL AMIN .= 2 (related to tramsition O, adjacency condition - 4|7)

G

CrL AMINI = O (related to transition L, adjacency condition - 4|5)

CPLAMIN JK= 2 (related to transition L, adjacency condition - 5|6)

CpLAMIN. . = 2.5 (related to tramsition N, adjacency condition - 7|9)

M
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CPL AMIN.. = O (related to transition S, adjacency condition - 6|9)

N

CpL AMIN,, = 2 (related to transition G, adjacency condition - 7|4)

CPL AMIN.. = 2.5 (related to transition O, adjacency condition - 8|1)

P

CPL AMINQ = 4 (not related to any other tranmsition)

CPL AMINR = 1 (related to transition S, adjacency condition - 1|9)

7.2.9 Calculation of the cost for each transition to be realized by
a counter.

7.2.9.1 Calculation of maximal cost

It is calculated as a sum of the maximal costs that are
necessary for all noncyclic transitions from the same subgraph to be
realized by PLA.

n
Ccmaxi = .51 CPLAmaxj

CpLA _ - maximal cost of a given transition to be realized in
PLA

n - number of neighbouring transitions
The maximal cost for the transitions is calculated as follows:

Com AX = 0 (SG, contains only the transition A)

CCM AXB = 8 (in SGB noncyclic transitions C and D are left)

CCM AXC = 12 (in SGC noncyclic transitions B,F,D are left)
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CCM AX.. = 12 (in SGD noncyclic transitions B,C and I are left)

D
CCMAXF = 4 (in SGg noncyclic transition C is left)
Cem AXg = 12(in SGG noncyclic transitions 1,0 and R are left)

Com AX| = 8 (in SG; noncyclic transitions G and D are left)

Comaxy, = © (SGy contains only the transition 1K)

CeMm AXyg = 4 (in SG), noncyclic transition N is left)

CoMm AXN = 8 (in SGN noncyclic transitions M and Q are left)

Cem AX, =12 (in SGg noncyclic transitions P,G and R are left)

CCM AXP = 4 (in SGP noncyclic transition O is left)
Coum AXp = 8 (in SGy noncyclic transitions G and O are left)

CCM AXQ = 4 (in SGQ noncyclic transition N is left)

7.2.9.2 Calculation of minimal cost

It is calculated as a sum of the minimal costs that are

necessary for all noncyclic tramsitions from the same subgraph to be
realized by PLA.
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n
C = 2 C

cmin i=1 PLAmm‘i
n - number of noncyclic transitions
CPL Amin. - minimal cost of a given transition j to be realized
in PLA

The following minimal costs are calculated:

CCMINA =0 (SG A contains only the transition A )

CCMIN = 0 (in SGB noncyclic transitions C and D are left;

B
adjacency conditions 2|4, 2|5)

CMIN.. = 5 (n SG noncyclic transitions B,D and F are left;

adjacency conditions 2|5, 3|4)

CCMIND = 4 (in SGD noncyclic transitions B,C and I are left;
adjacency conditions 2|4, 4|5)
CCMINF = 0 (in SGF noncyclic transition C is left;

adjacency condition 2]4)

CCMING = 3.5 (in SGG noncyclic transitions 1,0 and R are left;
adjacency conditions 4|5, 1|8, 1|9)

CCMINI = 2 (in SGy noncyclic transitions G and D are left;
adjacency condition 4|7, 2|5)

CCMINJK= 0 ( SGJK contains only the transition JK )

CCMINM = 0 (in SGM noncyclic transition N is left;

adjacency condition 6|9)
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CCMINN = 8 {in SGy noncyclic transitions M and Q are left;

CCMINO = 9 (in SGO noncyclic transitions P,G and R are left;

adjacency condition 1[9)

CCMINP = 2 (in SGp noncyclic transition O is left;

adjacency condition 7}4)

CCMINQ = ( (in SGQ noncyclic transition N is left;

adjacency condition 6|9)

CCMINR = 4 (in SGR noncyclic transitions G and O are left;

adjacency condition 7]4)

Remark: When we assume that a certain transition should be realized
by a counter, we should not calculate the minimal cost of any
neighbouring transition in relation to that transition. We should
search for relation with another transition. This is done in
connection with the calculation of the costs for the transitions
G, N and O.

7.2.10 Calculation of the number of the adjacency restrictions - NAR
It is calculated as the number of the adjacency restrictions,
which should be satisfied in order to reach the calculated C

cMIN for
a given transition.

NAR, =0
NARB =2
NARC =2
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D
NARF =1
NARG =3
NARI =12
NARJK 0
NARM =1
NARN =0
NAR0 =1
NARP =1
NARQ =1
NARR =1

7.2.11 For every transition we have calculated five parameters. By
using a multicriterial optimization method we make an order of the
transitions such that the transitions which are best to be realized
by a counter will be at the top of the list.
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For the example we have reached the following order.

present | next tran s i tion
state state
1 2 A
5 6 JK
8 9 Q
6 7 M
7 8 P
2 3 B
3 4 F
9 1 R
4 5 I
6 9 N
4 1 G
7 1 0O
2 5 D
2 4 C
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7.2.12 By using a beam search algorithm we construct the following
suboptimal list of counting transitions.

present | next tran s ition
state state

5 6 JK

6 7 M

7 8 P

8 9 Q

9 1 R

1 2 A

2 3 B

3 4 F

7.2.13 The constructed counting chain is as follows:

5 > 6 > 7 5 8§ — 0 > 1 y 2

¥
(W3 ]
N

+a

The following primary adjacency conditions are derived.

516,617 ,718,8]9,9]1,1]2,213,3]4

We see that all the states of the machine are members of the
counting chain and they should be coded in such a way as to form a
Gray code sequence.
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7.2.14 In the next state table we replace by don’t cares all the
transitions which are members of the counting chains.

0 1 2 3
gl oojo1)11]10
1| - - - -
21 - 14 |s |-
3|3 [3 |- |-
al1 [a {5 |1
s|- |- |5 |-
6! - 1- 19 |o
711 |- |- |1
8 - - - -
o -] -] ol 9
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7.2.15 Set the additional variable called “load” to 1 only for the
transitions which cannot be replaced by counting transitions. For
the rest - set it to zero.

KO Xl Kz X3
¢ Yoo 01| 11|10
1o [o |0 |o
210 [1 |1 Jo
311 1 |0 |o
al1 |1 |1 |1
510 [o |1 |o
61 |1 [0 |o
711 Jo o |1
glo [o [0 |o
ol of of 1| 1

L

7.2.16 Calculate the adjacency conditions for input-state, present
state-next state and state-output dependencies using the next state
table with the counting transitions replaced by “don’t cares”. This
is done according to the method described in [1].

For this example we obtained the following ordered list of adjacency
conditions.
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pairs of number of |estimat ion
next states{uncondi- of the to-
pair of |and number |[tionally tal number|number
adjacent|of their reached of adja- |of “donmn’t
states |occurencies|adjacencies{cencies cares”
1,4 | 1,9
49 6 16 2
2 | 3
1,9
4|6 - 9 15 3
3
1,9
6|7 - - 9 15 3
3
1,9
719 - - 9 15 3
3
1|9 —_— 14 14 4
1[4 ———— 13 13 4
12 —_ 12 12 4
113 —_ 12 12 4
15 —_— 12 12 4
1|6 —_— 12 12 4

Ordered list of adjacency conditions
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pairs of number of |estimat ion
next states{uncondi- of the to-
pair of |and number |[tionally tal number|number
adjacent|of their reached of adja- |of "don’t
states |occurencies|adjacencies|cencies cares”
117 S 12 12 4
1|8 —_ 12 12 4
2|4 —_— 12 12 4
2|5 —_— 12 12 4
217 e 12 12 4
2|8 —_— 12 12 4
315 e 12 12 4
3|8 —_ 12 12 4
36 —_— 12 12 4
7|8 —_— 12 12 4

Ordered list of adjacency conditions (cont.)
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pairs of number of |estimation
next statesiuncondi- of the to-
pair of [and number |tionally tal number|number
adjacent|of their reached of adja- |of “don’t
states |occurencies|adjacenciesi{cencies cares”
4|5 —— 12 12 4
417 —_— 12 12 4
4|8 —_— 12 12 4
517 — 12 12 4
5|8 —_— 12 12 4
6|8 _ 12 12 4
6|9 —_— 12 12 4
8|9 — 12 12 4
1,4 | 5,9
2|9 6 12 2
2 | 1
3,4
2|3 - - 9 11 2
1

Ordered list of adjacency conditions (cont.)
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pairs of number of |estimation
next states|uncondi- of the to-
pair of |and number (tionally tal number|number
adjacent|of their reached of adja- |of "don’t
states |occurencies|adj acencies|cencies cares”
5,9
2|6 — o 11 3
1
1,3
3|7 - 9 11 3
1
5,9
5|6 - 9 11 3
1
519 —_ 11 11 3
1,3
3|9 - 6 10 2
2
1|3
3|4 - 7 9 2
1
Ordered list of adjacency conditions (cont.)
7.2.17 Construct partial proper partitions satisfying all primary

adjacency conditions.

According to 7.2.13 the following primary adjacency conditions

were calculated

516,67

,718,819,91,1]2,2(3,31}4

Each FFP € SNOFFP must contain 4 proper partitions i.e. 4
two-block partitions containing at most 8 elements in each of their

blocks. We consider the adjacency conditions one after the other and
construct the following FFP,
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7.2,18 By taking into account the calculated secondary adjacency
conditions and by changing the blocks within the partitions and the
places of the partitions we find an appropriate construction for the
FFP for which the counting states can be assigned with codes which
correspond to the Gray code sequence.

One FFP which can be used for state assignment is:
(3,4,5.,89 126,7%(1,7,89 2,3,4,5,6)
(1,2,3,4,9 5,6,7,84 1,2,3,5,6,7,8,9)

We change the places of the partitions in the following manner:

4 1,2,3,5,6,7,8,951,2,34,9 5,6,7,8)

(1,7,8,9 2,3,45,6)3,4,58,9 12,6,

For the assignment of blocks with :

4 -1
1,2,3,5,6,7,8,9 - 0
1,2,3,4,9 -1
5,6,7,8 -0
1,7,8,9 -1
2,3,4,5,6 -0
3,4,5,8,9 -0
1,2,6,7 -1
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The following assignment of states is reached:

- 0000
- 0001
- 0011
- 0010
0110
- 0111
- 0101
- 0100
- 1100

W RN = O 0~ N
1

The Gray code sequence between the counting states is fulfilled.

The assigned next state table is as follows:

s I| oo 01 11 10
1= 0111 | woee | woen | mmme | =mn-
2 - 0101 | ---- | 1100 | 0000 | ----
3 - 0100 | 0100 | 0100 | =-=- | =---
4 - 1100 | 0111 | 1100 | 0000 | 0111
5- 0000 | ---- | ===~ | 0000 | ----
6 - 0001 | ---- | ---- | 0110 | 0110
7 - 0011 | 0111 | === | -=-= | 0111
8§ - 0010 | =-=n | mmem | mmee | amee
9 - 0110 | ---- | ---- | 0110 | 0110

S; S, 84 Sy
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In the assigned next state table we add an additional variable L
which has the value of 1 for the transitions which cannot be
replaced by counting transitions, and 0 otherwise.

s I| o0 | o1 11 10
1-0111 | ===+0| -=--0| ----0| ----0
2 - 0101 | ----0| 11001| 00001| --~-0
3 - 0100 | 01001| 01001| ----0| ----0
4 - 1100 | 01111] 11001 00001| 01111
5 - 0000 | ----0] ----0| 00001| ----0
6 - 0001 | ----0{ ----0| 01101| 01101
7 - 0011 | 01111| ----0] ----0| 01111
8 - 0010 | =-=-0| --==0| ==-=0] ----0
9 - 0110 e===0] ----0] 01101| 01101

S1 S, S3 S4 L

By using a counter-based PLA structure S 52’ 83, S4 and
L should be implemented as shown in example 1.
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8.Conclusions

In the report the decompositional state assignment with reuse of
standard designs has been discussed. Since the state assignment
methods that consider a sequential machine on the whole are all
heuristic, they produce often good solutions but they do not
guarantee the strict optimality for them and they can fail sometimes.
Most of them work better for small than for large machines. For this
reason, decompositional implementations of sequential machines with
reuse of standard carefully optimized sub-machines can sometimes be
superior. If the specification of a given sequential machine (or its
part) is strongly similar to the specification of a given standard
machine then there is a great chamce to reach a better solution by
decompositional implementation.

In the second part of the report, we focused our attention om
counters as standard machines. We made this choice, because many
practical controllers can be designed quite well as modified
counters.

Constructing a modified version of the method of maximal
adjacencies [1], we answered the question; how to find the (sub-)
optimal sequential decomposition of a given sequential machine into a
number of sub-machines defining counters and a small general
sequential sub-machine.

The precise algorithm for computing the (sub-) optimal state
chains and the (sub-) optimal state codes is described in the report
and illustrated with examples.

We are now developing software that will implement this
algorithms. In the appendix, the first results are provided which
were obtained using the first part of the software in order to
process the machine from the examples.
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The work described in this report should be continued in the
following directions:

- finishing the implementation of the software and checking the
practical usefulness of the decompositional state assignment with
reuse of standard designs;

- considering other types of standard sub-machines than counters;

- considering the simultaneous decompositions with reuse of standard
designs.
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apannova @ examplel Fage 1 09/05/90

Enter FOM defipition £11le name : examplel
tateRange : 4
InputBitRange : 2
ProductTerms : 10

12:48

STATENAMETABLE (It pives the relationship between the internal

and the external names of the machine.
Further the internal names are used.)

R

NEXTSTATETABLE

presentstate nextstakte times inputvector

] 3 1 1z
} i 1 01
] o 1 no

presentstate nextstate times inputvector

2 3 1 21
2 4 1 10
2 2 1 0o

presentstate nextstate times inputvector

3 4 1 10
3 1 Z 02
21

presentstate  nextstarte  times  inputvector

PREVSTATETABLE

presentstate prevetate times inputvector

PH



npassova 1 examplel Page 7

i 1 1 01,
prewentstate  prevetate times inputvector

2 4 1 22

2 2 1 00

2 1 i3 o0
presentatate prevstate times inputvector

3 P 1 21

3 1 1 12
pregsentstare  prevstate times inputvector

] 2 1 1o

h 2 i 10

THYFRCONNECTIONTARLE

state 1-> 3
subspaceist: 12
atate 1<- 3
subgpace{s): 02

21
slate  Z2-~ 4
suhspace(s): 10
state 2<- 4

mubspace(s): 22

CYCLICTRANTABLE

slate: 1
subspace(e): 01

state: 2
subspace(s): 00

COGTTABLE

nyenentetate =

I nextstate =

HaxPLA =  Z2.0F400
MinkPLA = 0.0E+00
Adj.fGtares ¢+ 1 2

HaxCount = A QE+uM

I
&=

HinCount

L0E+00

[al
o

09/05/90

12:48 PM



spastova e
Adj.States
presentstate

MaxPLA
HinPLA
Adj.States
MaxCount
MinCount
Adj.States

¥on

N o

presentstate

MaxPLA
MinPLA
Adj.States
HMaxCount
MinCount
Adj.States

o

i

presentstate

Maxl'LA
MIinT'LA
Mlj.States
HMaxCount =
MinCount
Adj.States

I

presentatate

MaxPLA
MinPLA

A} .States
MaxCount
MinCount
Addj.States

-

prosentstate

HaxPLA
HinPLA
Adj.States
MaxCount
MinCount
Aly.States

1

presentastate

MaxPLA
HinlLA =
Adj.5tates
HaxCount
MinCount
Adj.Sratesn

i

examplel

£ GG =N

IS

[ JREE I

W W e ro &

T3 L D= b

[N o8]

Ne ==

] nextstate

L OF 400
L ODE+D0

LE+O0
L TEAN)

“
~

[

2 nextetate =

LOFE4O0
COE400

4

-OE+00
.3E+00

1

2 nextstate

LOFHOO
COE+O0

LOE+00
LOE+00D

4

2 nextetate =

LOE+00
.7E+00

4

-0E+0D
-0E+00

2

L}

3 nextstate

LOE+HG0
. 0E+ 00
]

AEOD
-0E+00D

]

4 nexkatate =

COF+00
LOE+00

LOERON
R0

Al
Z

4

Fage

(W]
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LA Il B )

Fage 4
MaxFPLA H 1.2E+00
HinPLA +  1.0E+00
ltaxCount 1.2E+00
MinCount 1.0E+00
Adjlir + Q.0E-01

transistions

naxtstate
nextstate
nextgtate
nextstate
nextstate
nextatate
frtextstate

ne/o

5

fo0

according to ELECTRE I

PSRN S S R

1.4E+01
)L.2E+01
1.0E+01
8.0EHD0Q
6.0E+00
4. 0E+N0
2.0E+0Q0

ordeved transistions according to ELECTRE II

[P ]

5 e e

nextstate
nextetate
nextstate

CALCULATED BY ELECTRE-II1
the max number of

beams :

fnrer the min qualityfactor

The contents of the transitiontable

I're

net Dtate

lNext State

e

Cha

Fan RS R PR ~ S

[

PRI

P b}

iy

4

copntente of the Chainteble

nent State

in

]

i Z2.0FE+01
3 1.7E+01
z 1.7E+01
2 1.2E+01
2 7.0E400
4 7.0E+00
4 4,0E+00
3
90
Value
Zn
17.
17.
12.
7.
7.
4.
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apagrova @ examplel Pape 5 0o/05/90  12:492 PM

[FL I
[l P}

Adjacenry
Adjacency
Adjarency

W e
— L N

The created FFP's aype

(1,4 2,3)(1,3 2.4

hwvekh ASSTCHNMEMTFCIND %k ki

The assignments are

Slate 1 --> 10
Mate 2 -~ 0l
SDtate 3 .- )L
State N -~ 0
cyecrntion time : nh 1 m22 a3

END OF TIIE PROGRAM



spassova : example? Page 1 09/05/90 12:48

tnter FSHM definition file name : examplel

HtateRange : 9
IuputBitRange : 2
ProductTerms : 19

STATENAMETABLE (It gives the relationship hetween the internal
an't the external names of the machine.
Further the internal names are used.)

il 5
6 6
7 7
A 9
a 3
1 1
2 2
4 3
4 4

HEXTSTATETAEBLE

presentgtate nextstate times inputvector

1 2 1 22

presentstate nextstate times inputvector

2 5 1 11
2 4 1 01
2 3 1 20

mreseptstate nextstate times inputvector

4 1 12
K] 2 1 02

presentstate nextstate times inputvector

4 A 1 11
h 4 1 UL
] 1 1 20

puesentstate uextstate  times inputvector

5 3 1 11
o 6 2 02

20

FH



R RIARRREAR AN ]

presentstate

A

presentstate

mresentstate

presentstate

PREVSTATETABLE

presentstate

ptesentatate

presentstate

[

presentstate

examp e}

nextatal

u
T

nextatate

U

nextstate

prevstate

2

prevstate

prevstate

i~

prevatate

Fage 2 09/05f/90 12:48

tim=s dnputvector
L3 12
1 02

times JInputvector
1 21
1 20

times inputvector
1 12
1 62

times inputvector
1 22

times inputvector
i 02
ik 2
1 20

times inputvector
LA 22

times inputvector
1 0z
1 20

times inputvector

Pt
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4
iy
4

pregentstate

[ IR, W) |

presentstate

6

example!

%

prevstate

prevstate

A

presentstate provstate

presentstate

6

prevshtate

8 8

8 9

8 6
presentstate prevstate

9 7

IRTERCOMNECTIONTARLE

CYCLICTRANTABLE

ntate:

)
2

subospace(s): 02

ntate:

4

aubhapace(s): 01

ntate:

5

subspace(s): 11

abate:

f

anbspace(s): 12

Fage 2
1 01
¥ 12
1 ¢
times
1 11
1 1t
1 11
times
2 0z
20
times
1 0z
times
1 12
1 22
1 12
times
1 21

inputvector

inputvector

inputvector

inputvector

inputvector

QO 05 [0

12448
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COSTTARLE

presentstate
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Adj.States :

presentstate
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h
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Al
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VALIIEDS CALCHLATED BY ELECTRE-TT
Fnter Lthe max numher of heams : 3
Fuler the min qualitybactor : .90

The contents of the transitiontable

Preset Statre Hext State Value
5 t 41
6 7 23
1 2 32
9 8 LA
3 f 34
2 3 27
8 1 26
7 °4 ofh.
4 D 2
i n 1z,
I il o,
7 1 o,
? n 7.
2 4 g

The contents of the Chaintalble

Fraosent Gtate llext State

Chain 1
5 6
6 7
7 9
o 2
3 1
1 2
2 3
A ]

Adjacency KNG

Adjacen:y 17

Adjracency 7|0

Adyncency a8

Adjncency @ a1

Adjacency @ 32

Adjacency 211

Adjacency + |4

The vceeaked FFP's are

(A A,5.8.8 L.2.6.7)60.7.8.9 2.3,6.5,6)(L.2.3.4.8 5.6,7,9)(4 1.2.3.5.6.7.8.0)
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