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In this paper correspondence analysis for three-way contingency tables is presented using
three-way generalisations of the singular value decomposition. It is shown that in combination
with Lancaster’s (1951) additive decomposition of interactions in three-way tables, a detailed
analysis is possible of the deviations from independence. Finally, biplots are shown to produce
powerful graphical representations of the results from three-way correspondence analyses. An
example from child development is used to illustrate the theoretical developments.
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Introduction

Correspondence analysis can be presented in a number of different ways (see e.g.,
Benztcri, 1970; Greenacre, 1984; Lebart, Morineau, & Warwick, 1984; and their ref-
erences). Here correspondence analysis will be viewed as a technique in which 
contingency table of counts is first processed in such a way that the resulting table only
contains the dependence between the row and column variables. Then the singular
value decomposition (SVD) is applied to the processed table to find a low-rank approx-
imation, and the resulting approximation is displayed in a graph.

The major aim of the present paper is to extend correspondence analysis to three-
way tables over and above earlier generalisations by Dequier (1973), Choulakian
(1988b), and Kroonenberg (1989) using three-way generalizations of.the singular value
decomposition. Moreover, it will be shown that the combination of these generaliza-
tions and Lancaster’s (195 I) additive decomposition of 2 provides apowerful vehicle

for the decomposition of dependence in a three-way table.
In the example, biplot displays (Gabriel, 1971; Gabriel & Odoroff, 1990; Green-

acre, 1993) will be used, rather than the until recently more common simultaneous
displays (Benztcri, 1970). In correspondence analysis, the biplot can be used to provide
a graphical representation of the low-rank approximation to the observed dependence
in a contingency table (Gabriel & Odoroff, pp. 479ff; Greenacre), and these biplots can
be enhanced by linearly marking the biplot axes (Gabriel & Odoroff), a procedure called
calibration (Greenacre). To evaluate the interactions in three-way contingency tables,
as analysed with three-way correspondence analysis, biplots can be fruitfully used, be
it that it is not very well feasible to display the information of all three modes simul-
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taneously, as biplots are essentially based on two sets of markers. Proposals how to

deal with this situation will be presented.

The basics of (two-way) correspondence analysis will not be presented here but

can be found in such standard reference works as Benz6cri (1970) and Greenacre

(1984). The core of the paper consists of (a) the presentation of three-way correspon-
dence analysis, (b) the use of Lancaster’s additive decomposition of 2 t o e valuate

marginal dependence, and (c) the use of biplots to graph the dependence in three-way

tables. The paper ends with an example from child development which will be used to

discuss ways of interpreting the outcomes of an analysis.

Three-way Correspondence Analysis

With three-way correspondence analysis it is possible to produce good measures

and graphical displays of the dependence in three-way tables, and it shares and extends

many properties of ordinary (two-way) correspondence analysis. Previous work 

extending (two-way) correspondence analysis to the three-way case, mostly reduced

such tables to two-way tables using so-called interactive coding; see van der Heijden

(1987), and van der Heijden, De Falguerolles, and de Leeuw (1989) for overviews of 

approach. Papers in which three-way tables were analysed without reducing them to

two-way tables are Choulakian (1988b), and Kroonenberg (1989), and especially 

quier (1973).

Measures of Global Dependence

The basic data structures in this paper are three-way contingency tables of order I,

J and K with relative frequencies, Pijk. They will be analysed with three-way corre-

spondence analysis, and the starting point for the discussion of this technique is Pear-

son’s mean-square contingency coefficient, ~2, also referred to as the Inertia. It is
defined as

X2 (Pijk - Pi..P.j.P..k)2
ap2= __= ~’~ , (1)

n i,j,k Pi..P.j.P..k

where ap2 is based on the deviations from the three-way independence model, and as
such contains all two-way interactions and the three-way interaction. In order to be
able to define the orthogonality of two vectors (or three-way arrays) Y (Yi#) and

Z = (z/j~) in fit txJxK, we define its inner product as

(V = (Yijk), Z = (Zijk)) = X Pi..P.j.P..kYijkZijk. (2)
i,j,k

The distance between two vectors, which follows from this inner product, is

d(Y, z)= IIY-zll = ~i,j,k Pi"P’J’P"k(Yijk--Zijk)2)1/2’

SO that ap2 can be written as

(3)

Pi#

]2

aPE = ~, Pi..P.j.P..kI --1 = ~ pi..p4.p..~(IIijk)2= IIrIII2 (4)

i,j,i [P i..P 4.P..k i,j,k

with H = (IIijk), and
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Pijk Pr[ilj, k] Pr[jlk]
l-Iijk = I = 1. (5)

Pi..P.j.P..k Pr[i] Pr[j]

Thus Pearson’s ~I )2 is the weighted sum of the deviations of the observed relative

frequencies from the expected values under the model of three-way independence.

From equation (5) we see that 1 Il ij k can beint erpreted as theproduct of t wo rati os.
First, Pr[j[k]/Pr[j] indicates the conditional probability of category j given that k has
occurred, and Pr[ilj, k]/Pr[i] measures the conditional probability of category i given
thatj and k have occurred. The symmetric statements after permutation of the indices
hold as well. Thus Flij~ can be considered as a measure of global dependence of the cell
(i, j, k). Note that the weighted marginal totals summed over two indices are zero, for
instance,

I-I..k ~" ~-~ Z Pi..P.J.]-[iJ k = O. (6)
i j

Measures of Marginal Dependence

So far no distinction has been made between possible two-way and three-way
interactions, but all of them have been lumped together. Based on a different perspec-
tive, Kroonenberg (1989) argued that this seems a reasonable thing to do because 
leads to a consistent definition of profiles in a three-way context (see also de Leeuw,
1983, p. 128ff.). However, for a proper evaluation of the global dependence, the con-
tributions of the two-way interactions and the three-way interaction have to be ascer-
tained. To this end, the concept of marginal dependence will be defined.

An orthogonal decomposition of three-way arrays. To define marginal depen-
dence, it is instructive to identify the contributions of the main effects and interactions
as in the classical ANOVA context of balanced experimental designs (for technical

details see Carlier & Kroonenberg, 1995).

The elements of an arbitrary three-way array X = (Xijk) in ~ixjxr can be written
as

xijk = (x...) + (xi.. - x...) + (x.j. - x...) + (x..~ - x...) + (xiy. - x~.. - x.j. 

-F (Xi.k -- Xi.. -- X..k -b X...) -t- (X.jk -- X.j. -- k q- X.. .)

+ (xok - xij. - xi.k - x4~ + xi.. + 4. +x. .k - x. ..), (7)

where a dot indicates that a weighted mean has been taken over the relevant index with

respects to the associated weights (Pi..), (P.j.), or (p..k). Thus, for instance, xij" =
~-k P..kXijk; Xi.. ---- ~-j ~k P.j.P..kXijk, et cetera. The eight bracketed terms of (7) are
the elements (i, j, k) of eight three-way arrays, denoted by X .... X1., X.s, X..~:, XH.,

Xl.r, X.yr, and XH/¢. For example, the element (i, j, k) of Xty. is (xij" - xi.. - x.j.

It can be shown (see Carlier & Kroonenberg, 1995) that these arrays are pairwise
orthogonal with respect to the inner product defined in (2).

Decomposition of the array II. If the partitioning (7) is applied to H = (IIijk), 
follows from the vanishing of the doubly weighted sum of the IIij k (see (6) as 
example) that the first four terms of the decomposition of II are equal to zero. More-
over, the bracketed terms can be greatly simplified.
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IIijk = (Ilij.) + (l-li.k) + (II.jk) + (Ilijk -- Ilij. -- IIi.k -- (8)

where the last term will be designated as aHijk, following notation of Darroch (1974).

The terms with two indices have the form

Pijk -- Pi..P.j.P..k Pij. -- Pi..P.j.
1-Iij. = E p..kl-Iijk = E P..k = , (9)

k k Pi..P.j.P..k Pi..P.j.

and they are the elements approximated by two-way correspondence analysis. As we

may define Hi. k and II 4k in a similar manner, the complete decomposition of II can be

written as

1-Iij k = Ilij" + I-Ii. k + rI.jk + aIlijk

_ Pij. -- Pi..P4. + Pi.k -- Pi..P..k + Pdk -- P.j.P..k + Pijk -- aPijk,
(10)

Pi..P 4. Pi..P..k P.j.P..k Pi..P.j.P..k

where aPijk is equal to Pij.P..k + Pi.kP.j. + P.jkPi.. -- 2Pi..P.j.P..k" The decompo-

sition (10) was introduced by Lancaster (1951, 1960, 1980), and has also been used 

Dequier (1973), Choulakian (1988a) and Yoshizawa (1975, 1988). The most important

property of this decomposition is that it leads to an additive partitioning of the squared

norm of II.

Partitioning of the squared norm of II. In terms of arrays, (I0) may be written 

II = IIlj. + IILr+ II.jr + IIz~r, (11)

and the pairwise orthogonalities of the arrays lead to the additive partitioning of the

squared norm of II as

Ilnllz --Ilnu.II2 ÷ Ilnl.KIIz ÷ IIn.jKIIz ÷ IIlIuKII (12)

This equation may also be expressed in a more familiar form (see also Lancaster, 1980,

p. 142) as

,2= Z Pi..P.j.\" -Pi’-~..P.j’~.

ik .... \ Pi..P..klJ

+ E P.J.P..k
+ E Pi..P.j.P..k Pijk -- aPijk. 2.... . (13)

jk P.j.P..k / ijk \Pi..P4.P..k 

This is clearly an additive definition of the interaction in a three-way array (see Dar-

roch, 1974, for a comparative discussion of this additive definition of interaction and the

multiplicative definition as used in loglinear analysis).

To summarize these results we can say that

1. Formula (10) shows that the deviations from three-way independence can 
orthogonally decomposed into deviations from independence for the two-way

margins of the three-way table, and a three-way interaction term.

2. Equation (13) shows that the global measure of dependence can be split into

separate measures of dependence: there are three measures for the dependence

due to each two-way margin which are identical to those used in two-way
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correspondence analysis, and one measure for the three-way interaction. Such
a partitioning can be the first step in the analysis of a three-way table.

A special case: The absence of one two-way interaction. A special case, dis-
cussed by Choulakian (1988a, p. 34ff.; see also Lancaster, 1960), occurs if one of the
three terms IIn~j. II, IIIIz.KII or IIrI.jKII turns out to be small (thus e.g., IIrIl~. II --- 0). The

model of independence can then be assumed to hold for this two-way margin and it can

be verified that ~2, obtained from the three-way table, is equal to the ~2 of the two-way
table with K rows and I x J coded interactively. In such a case, the approximation of
II can be obtained by a single correspondence analysis on the table (Pijk) with rows
indexed by k and columns by (i, j). For details the reader is referred to Choulakian

(1988a).

Modeling Global Dependence

Given a measure of global dependence and its partitioning into separate marginal
measures and the three-way interaction, the next problem is how to find an appropriate
model for these measures. For two-way tables, correspondence analysis is based on the
generalized singular value decomposition (see e.g., Greenacre, 1984, p. 39), for three-
way tables a three-way analogue of the GSVD is desired. Unfortunately, there is not
one, but there are several possible generalizations. Here, only the two most common

ones will be considered.

Definition and general properties. The two different three-way singular value
decompositions or, for short, three-way models, that are used here, are those intro-
duced in the context of the decomposition of general three-way arrays. The first of
these is the PARAFAC model with no, one, two, or three orthonormal constraints on
the component matrices (see Harshman, 1970; Harshman & Lundy, 1984; and Carroll
& Chang, 1970; the latter authors used the name CANDECOMP model). With this

model, the IIij ~, are modeled as

s

l-Iijk : ~ ~lsssaisbjsCks + eijk. (14)
s=l

The vectors {as}, {bs} and {cs} are assumed to have unit lengths, and some (or none)
of those sets are orthonormal in their respective spaces At, ~tJ, and fit/¢. There is a
subtle difference in the present usage in that, analogous to two-way correspondence
analysis, orthonormality is defined with respect to weighted metrics defined by {Pi..},

{p.j.}, and {p..~}, respectively (see (2)). Thus, it would be appropriate to refer to 
model as a generalized three-way singular value decomposition or three-way GSVD.

The Ysss are the three-way analogues of the singular values, and the eij ~ represent the
errors of approximation.

The other model employed in this context is the Tucker3 model, also referred to as
three-mode factor analysis model (Tucker, 1966),

P Q R

I’Iijk ---- ~ ~ ~ fflpqraipbjqCkr q- eijk, (15)

p=l q=l r=l

where the three sets of vectors are generally taken to be orthonormal (without restric-
tion of generality). The gpqr, often referred to as core elements or elements of the core
matrix, are another generalization of the singular values. For an extensive discussion of
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the relative merits of these models, see for instance Harshman and Lundy (1984), and
for a tensorial approach to the analysis of three-way arrays, see Franc (1992). 
three-way correspondence analysis, the only modification that differentiates such de-
compositions from the usual ones is the use of a weighted least-squares criterion: the

parameters Qpqr, aip, bjq and Ckr are those which minimize

P i..P .i.e..k e ijk.
i,j,k

As for fixed vectors {ap}, {bq}, and {er} , the parameters gpqr can be obtained by

weighted regression of II on the set of arrays at, ® bq @ er (where ® indicates the
Kronecker product), Ilnll2 can be orthogonally decomposed as

linll2 --Iltlll2 + Ilell (16)

It follows that, using three-way GSVD as a model, Pearson’s ~2 can be split into a fitted
part and a residual part.

Additionalproperties oforthogonal models. For three-orthogonal models, that is
the PARAFAC model with three orthogonality constraints, or the Tucker3 model, it

can verified that the orthogonality of the three sets of vectors {ap}, {bq} and {er},
implies the orthogonality of the arrays ap ~) bq t~ er in the Euclidean space ~tIxJxK

using the definition of the metric defined by (2). As a consequence, we have the addi-
tional decomposition of .2, assuming unit length components,

II1111=-- gsss2 (three-orthonormal PARAFAC model)
$

I1 11= E ~pqr2 (Tucker3 model), (17)
pqr

which shows that the explained part of the ~2 can be further decomposed into parts
referring to each element of the core matrix (see also ten Berge, de Leeuw, & Kroonen-
berg, 1987).

Modeling of Marginal Dependence

One of the attractive features of using Lancaster’s approach over a loglinear mod-
eling framework, is that one single decomposition of the global dependence is made,
and that the marginal dependence can directly be modeled and assessed from the global
decomposition. The contributions to the global dependence can be evaluated without
having to construct special decompositions for lower order interactions.

Orthogonal decomposition of 1~1. In the previous section I~I was modeled by

three-way GSVD. But in (11), the decomposition of the global dependence into mar-
ginal dependences and a three-way interaction was considered. The seemingly most
straight-forward way to decompose I~l would be to claim that (12) would also hold for
1~1. This is unfortunately not true, because the first four terms of the decomposition
vanish for If, but not for i’1. However, II, 1~1 and e can each be orthogonally decom-

posed as follows

II = 0 + 0 + 0 + 0 + ll ij. + II I.K + II.JK + II1JK

1~I = I~I... + l~Ii.. + l~lj. + I~l..r + lily. + i][,.r + i’lgr + i’llyr, (18)

e=e... +eL. +e.~. +e..K +ely. +eLK +e.m¢ +e~Jr.



ANDRI~ CARLIER AND PIETER M. KROONENBERG 361

The uniqueness of the decomposition and the linearity of the mapping that associates an

element of its decomposition (e.g., II ~ IIis" ) with an array implies that we can equate
each of the eight components of li + e to each of the eight components of l-I, respec-

tively. (see Carlier & Kroonenberg, 1995). This leads to eight equations. The last four
equations have the form Ht.~. = liht. + els. , HI.~K = I~I.K + eLK, et cetera. The first

four terms in (18) lead to the equations e... = -II .... el.. = -IIt.., et cetera.

Modeling Two-Way and Three-Way Interactions

Given the appropriate expressions for the decomposition of li, and its constituent

parts such as liIJ., expressions (14) or (15) can be used to derive submodels for 

parts, that is for the marginal dependences.

Using PARAFAC to model the terms of (18), the following expressions can 

derived

li...(i,j, k) = ~ 9sssa.sb.sc.s

l~ll.. (i, j, k) = ~, 9sss(ais - a.s)b.sc.s
s (19)

liij. (i, j, k) = ~, e,ss(ais - a.s)(bj, - b.,)c.s

llur(i, j, k) = ~ e~(ai, - a.s)(bjs - b.s)(Ck~ 

The submodels for the other terms can be derived from the ones above by permutations

of the indices. In this manner, the single model for the global dependence is used to

model in a natural way the marginal dependence. In particular, the submodels for the

two-way and the three-way interactions are given by the third and the fourth equations

of (19), respectively, and they consist of centring and/or averaging the components 

two or three of the modes. At the same time, expressions have been acquired for the
so-called partial residuals, such as e... = -li... and el.. = -lit...

Removing marginal dependences. If it is desired to remove the dependence due

to the margin I x J from the global dependence, for instance because it needs to be

established what the third dimension K adds to dependence of I and J, one has to use
the array li..K + I~lt.K + I~I.SK + I~IJK.

Writing this expression for a single element, using the PARAFAC model (14), gives

li..K(i, j, k) + lqIt.K(i, j, k) + l].~rr(i, j, k) + l~t.~K(i, 

= l]..i~(i, j, k) + ~ 9~s~((ai~ - a.s)(Cks -- c.~)b.~

+ (bjs - b.~)(cks - c.~)a.s + (ais - a.s)(bjs - b.s)(Cks 

= li..K(i, j, k) ~’~ 9s~ai~bjs(c~,~ - c. ~) - ~,9~a.~b.~(cks - c

= l~l..K(i, j, k) + ~ 9sssaisbjs(cks - C.s) - II..K(i, 

= ~ 9~s~aisbjs(ck~ - c.s). (20)



362 PSYCHOMETRIKA

Removing the dependencies due to two two-way margins (e.g., the dependencies due to

the margins I x J and I x K), leads to

l’I.jK(i, j, k) + I~iJK(i, j, k)

= ~, gsss((bjs - b.s)(cks - c.~)a.s + (ais - a.~)(bjs - b.s)(cis 

$

= Z gsssais(bjs - b.s)(Cks - C.s). (21)
$

From the above the following rule may be inferred: in order to remove interactions due

to one two-way margin (e.g., I x J), the family of vectors associated with the indices

that do not belong to the margins ({c$, s = 1 .... , S}) have to be centred. Removing

more than one two-way margin effect can be done by repeating this operation for one

or two of the remaining families of vectors. The above results will be used in biplots to

display global dependence as well as marginal dependence.

The Choulakian and Dequier Models

As mentioned in the introduction both Choulakian (1988b) and Dequier (1973) 

described models for three-way contingency tables along similar lines as those devel-

oped in this paper. In this section, the similarities and differences between our propos-

als and those of Choulakian and Dequier will be explained below.1

The elements of the decomposition of 1’1 in (18) are of two different types. Firstly,

l~I1j, I~IIK, I~IjK and l~I/drK are respectively the approximations of Ill j, IIIK, IIjK and
IIij K. Secondly, i’1 ....

HI.. , I~I.j. and I~I..K, the negations of the partial residuals, have

no corresponding terms in the decomposition of II, and ignoring them leads to a mod-

ified fitted matrix I~I*, equal to ~It~ + I]m + I~IjK + I~II~K.

The new approximation I~l * is a better approximation of l-I than l~l. Using (18),

gives the following orthogonal decomposition of II - I~l,

II - I~l = (e...) + (e~..) + (e.s.) + (e..r) + (If 

This expression leads to

lln - fi*ll2 --lle...ll2 + lle,..ll2 + lle.j.ll2 + lle..Kll2 + lln - fill2.

Note, that fl* is the sum of the two-way and three-way terms in 09), and this sum does

not constitute a proper or complete Tucker3 or PARAFAC model. To see this in more

detail, the PARAFAC model for the Fli# can be written as,

Iiij k = Z gsss(ais - a.s)(bjs - b.s)c., + ~, gsss(ais - a.s)(Cks -- c.,)b.s
$ $

+ ~, gsss(bjs - b.s)(cks - c.s)a.s ~,gss s(ais - a .s )(bjs - b .s )(ck$ - c .$ Eijk,
$ $

(22)

where the residual Eij k is equal to the four last partial residuals in (18). Using the

Tucker3 model, another model can be obtained for Hij k, which can be written as
follows

I Unfortunately, the proposal of Yoshizawa (1975; see also Yoshizawa, 1988) is written in Japanese and

come too late to our notice to be included.
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IIiyk : ~’~ Apq(aip - a.p)(bjq - b.q) + ~ I~pr(aip - a.p)(Ckr 

pq pr

+ ~ Vqr(bjq - b.q)(Ckr - C.r)

qr

+ ~ ~pqr(aip -- a.p)(bjq - b.q)(Ckr - C.r) + (23)

pqr

where the parameters Apq, ~pr, Vqr are used to indicate the sum over r Of ypqr C.r, the

sum over q ofymrb.~, and the sum overp ofYp~ra.,, respectively, and where Eiyk is

defined as above.
The former model (22) is similar to one proposed by Choulakian (1988b) and 

latter (23) to one proposed in by Dequier (1973). The difference between these models

and the present ones is that the above authors assume that the f~ily of centred vectors
(e.g., vectors of coordinates (a is - a.s)i= l,..., * in ~ 1) are o~hogonal. On the other

hand, in the present proposals the o~hogonMity is t~e for the uncentred, but not for the

centred components. The effect of this is that a d~erent estimation procedure is needed

for Choulakian’s and Dequier’s models. The former sketches only implicitly an algo-

rithm for his model, while the latter is not conceded with estimation.

Representating Dependence Graphically: Joint and Interactive Biplots

Greenacre (1993) contains an extensive discussion of the properties of biplots

(which were introduced independently by Tucker, 1960, and Gabriel, 1971) in two-way

correspondence analysis. Especially important in the present context is the concept of

metric-preserving biplots. In row-isometric biplots, the distances between the row

markers are faithfully represented, but those between the columns are not, with the

reverse for column-isometric biplots.
So far the three ways of the contingency table have been treated in an entirely

symmetric fashion. The symmetry can, however, not be maintained when graphical

representations are considered, as (so far) no spatial representations or triplots (a term

suggested by a reviewer) exist to portray all three ways simultaneously in one graph. 

strict parallel with classical correspondence analysis cannot be maintained where the
biplot can be viewed as a natural extension (see Greenacre, 1993).

To display the approximation of dependence obtained by a three-way correspon-

dence analysis, two kinds of biplots are considered. They are presented here within the

context of an approximation using the Tucker3 model, but a similar approach can be

taken in the PARAFAC context.

The first kind, the so-called joint (bi)plot (see Kroonenberg, 1983, p. 164ff.) 

based on the following decomposition

~-Iijk = X Ckr ~Ipqraipbjq (24)

r=l 1 =1

R

= ~ ckrd(ij)r, (25)
r=l

where d(ij) r denotes the term in square brackets in equation (24). Each slice k of the
array l~l is a linear combination of the Dr = (d(ij)r) with as coefficients the Ckr. The

object of joint plots is to construct graphical displays for each component r of the third
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way. First, for each r, a singular value decomposition of the r-th slice of the core matrix

Gr is performed, that is, Gr = UrArV~ with U~Ur = I T and V~Vr = I~r, where T =

min(P, Q). Thus r =AUrArV~B’ = ~, rAr~’r is the sing ular valu e deco mposition with
the same weighted metrics for ~’r and ~r as for A and B, respectively. This choice of

metrics will allow comparisons between the biplots of the (I x J) matrix r and t he

biplot obtained from the I x J margin of II.

The second kind of biplot will be called an interactive biplot, and uses the same

equation (24) as its base. Here each pair of indices (i, j) will be represented by a single

marker, that is, the first and second modes are coded interactively, and hence the name

of the biplot. As one reviewer remarked the name could be interpreted incorrectly, and

concatenated biplot was suggested instead, but we prefer the former name because of

its close relation to interactive coding. The number of biplots does not depend on P or

Q, but only on R, and is equal to R/2 if R is even. The interactive biplot is especially

useful when the number of elements in I x J is not too large, or when one of the two

sets I or J is ordered (e.g., is associated with time). Bradu and Gabriel (1978) and 

and Gabriel (1982) already used interactive biplots for tables with a continuous depen-

dent variable and a three-way factorial design. The present use is different in that the

scores of the interactively coded markers are structured by the three-way decomposi-

tion, while this structure is not explicitly modeled in their biplot. Bradu and Gabriel

aptly remark that "[h]igher order tables can only be biplotted if they are collapsed into

two-way tables" (p. 66). In comparison with their approach, we do not collapse tables

resulting from the decomposition, but either combine two of the modes into a single

one, or make the biplot "conditional" on the third mode.

Assuming j is an ordered mode, trajectories can be drawn in the biplot by con-

necting, for each i, the points (i, j) in their proper order. This will greatly facilitate

interpretation, especially ifj is a time mode (see also Bradu & Gabriel, 1978, Fig. 8A).2

On the other hand, if there is no order in any of the modes and if the number of levels

in the interactive modes is very large, there may be too many markers to produce an

intelligible interactive biplot.

The nonsymmetry with respect to the three ways of the table leads to the choice of

a "reference mode" (here the third one), the two other modes playing symmetric roles

with respect to each other. The reference mode will often be the one leading to the

smallest number of biplots: it will be the mode that is most easily summarized.

Implementation

The methods and graphical procedures described above have been programmed by

the first author in S-Plus (Statistical Science; for a description of the language see

Becker, Chambers, & Wilks, 1988). Most calculations are fairly straightforward except

the three-way generalizations of the singular value decomposition. The technical basis

for the algorithms can, for instance, be found in Harshman and Lundy (1984; PARA-
FAC), and Kroonenberg (1983; Tucker3 model). We have not been able to find 

explicit reference for the three-way orthogonal PARAFAC algorithm, but its develop-

ment is straightforward given an algorithm for an one-way orthogonal PARAFAC. The
former is incorporated in our S program; detailed algorithms for one-way and two-way

orthogonal PARAFAC can, for instance, be found in Kiers and Krijnen (1991, pp.

150-151).

2 For an example, see Carlier and Kroonenberg (in press).
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Application: Mother-Child Interactions over Time

In this section data collected by van den Boom (1988; van den Boom & Hoeksma,
1994) will be analysed to illustrate some of the basic properties of three-way corre-
spondence analysis, the Lancaster decomposition, and the associated biplots.

In her study of (Dutch) irritable infants, van den Boom and Hoeksma (1994) 
lected data of 30 infant-mother pairs during the first six months of life (for a discussion
of irritability, see van den Boom, 1988, p. 70ft.). Each month, each mother-infant pair
was observed at home in two sessions of forty minutes which were video-taped. The
video tapes were coded by trained observers, and each six seconds the most salient

behaviour of both the infant and the mother was coded, for instance, infant cried and
mother soothed. The original 14 categories for infant behavior were reduced for this
analysis to 7 categories and those of the mother to 6 categories. For each month and

each mother-infant pair a 7 by 6 co-occurrence matrix was constructed from the cate-
gorical longitudinal sequences. Subsequently, the matrices were aggregated over moth-
er-infant pairs, so that statements could be made about mother-infant interaction irre-

spective of the individual pairs.
The seven infant categories were crying, exploring, sucking, smile and similar

positive social behaviour, inactivity, that is, the infant does not do anything in partic-

ular, looking at the mother, and vocalizing. The six mother behaviors were soothing,
looking, stimulating, offering, contact seeking or maintaining with the infant, and other,
that is behavior not directed at the infant.

Thus the data set under consideration form a 7 (infant behaviors) x 6 (mother
behaviors) x 6 (months) three-way contingency table. The underlying structure for this
table is that there are two response variables and one design variable (Time). In other
words, the p ..k are not really stochastic quantities, but proportions fixed by the design,
and ideally they should (or .could) have been equal, and their relative sizes are not
something that needs to be explained.

Decomposition ofX 2 . The decomposition of the XtEotal of the three-way table is
given in Table 1. In absolute terms, the most important effects are the two-way inter-
actions Infant x Mother, and the Infant x Time ones, followed by the three-way

interaction, while the Mother x Time interaction is the smallest, be it that in terms of
XE/df ratios the last two change places. This indicates that in the first years of an
infant’s life, there is a distinct interaction pattern between mother and infant indepen-

Table 1

Van den Boom Data: Analysis of Fit

Source

Two-way interactions

Infant x Mother

Infant x Time

Mother x Time

Three-way Interaction

Total

df X2tot~/df % of Total X2

70687 30 2356 66%

23472 30 782 22%

4852 25 194 5%
8505 65 131 "8%

107516 150 717 100%
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dent of time (e.g., Crying generally goes together with Soothing). The larger interaction
of the infant with time suggests that it is the infant rather than the mother who changes
its behavior (e.g., over the six months the infant starts exploring), be it that a strict
causal interpretation is, of course, not possible on the basis of the data alone. The
smaller change in the mother’s behavior over time suggests that her overall behavior

patterns tend to be stable over time. However, the three-way interaction indicates that
the changes in the interactions between mother and infant over time are not the same
for all infant behaviors.

Joint biplots. It is known that, in contrast with the two-way singular value de-
composition, the Tucker3 model is not an embedded (or nested) model (see Kroonen-

berg, 1983, p. 93ff.). This means that it is not possible to deduce a solution with a triple
(P, Q, R) from a solution obtained with another triple (P’, Q’, R’) with P - P’, 
Q’ end R -< R’ by simple removing some terms in the sum. On the other hand, the fit
of the reduced model is always less than or equal to the model with more components.
One way to assess how many components are adequate for any one analysis is to
investigate how much each combination of components contributes to the overall fit.
After inspecting several high-dimensional solutions, we decided that a (P = 4, Q = 4,
R = 2)-solution, which had an overall fit of 90.3%, provided an adequate compromise
between accuracy of approximation and simplicity of description. The core matrix of
the solution is presented in Table 2. Because the time mode could be summarised with
the least number of components, it was selected as the reference mode. Moreover, joint
plots for the Mother and Child categories were deemed most informative, because their
relationships were of prime interest in the analysis. There will be two joint plots, one
for each of the time components.

With two components for the reference mode Time, (25) becomes

2 e Q
~Iijk : 2 Ckrdijr with dijr = 2 2 gpqraipbjq. (26)

r=l p=l q=l

Table 2

Percentages Accounted for by Elements of the Core Matrix

(Tucker3 Model, 4*4*2-Solution)

Pl

P3

~2

ql q2 qa q4 ql q2 q3 q4

37.4 0.6 0.0 0.0

0.0 0.0 4.2 0.0

0.0 0.6 0.5 4.3

0.0 0.i 0.3 0.4

0.0 0.0 0.0 0.0

1.2 13.4 0.0 0.i

0.I 0.I 1.5 0.1

0.0 0.1 2.0 0.1

Note: pi = i-th child component; q~ = j-th mother component,

and rk = k-th time component
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Writing l~lljk for the approximation of the k-th slice of II (IItj k in ~tx~), (26) can also

be written as

l~ltjk = cklDl + ¢k2D2¯ (27)

In this case, one generally would not choose to make an interactive biplot with 7 × 6

interactive Child x Mother markers, because no trajectories can be drawn as Time is

the reference mode. Therefore, it seems better to use joint biplots for visualizing the

results of the decomposition.

Subdividing the error of approximation. To construct the joint biplot of Dr, the

singular value decomposition the core slice Gr is computed as explained above. Thus

Lr

Or = ®

with Lr <-- min(P, Q). Depending on the purpose of the biplot the A[ will be multiplied

with the ~ or ~ to create a row-isometric or a column-isometric biplot, respectively.

Due to the choice of metrics for A, B, and C (see the discussion after (14)), the 
of vectors .~[ ® ~ ® er is orthogonal in ~t×~×t¢, which leads to the following additive

decomposition of the squared norm of 1]

2 Lr

Ilfill2= E
r=l £=1

Numerically, the explained variability or inertia Ill’Ill 2 of the first step, which represents

90.3% of the total dependence, can be decomposed into the inertia explained by the two

slices Dl (64.6%) and E ( 25.7%). Table 3 provides more de tails ab out th e quality of

approximations of the different components of the dependence. It shows that all parts
are well explained with the largest error for the three-way interaction which has a

proportional error of 37%.

Interpretation. The structure of the time components, that is the coefficients Ckr,

can be inspected via Table 4.

Table 3

Global and Marginal Quality Indexes

Source

Main effects

Two-way interactions

IxJ

IxK

JxK

Three-way interaction

Total

X2~ot~t Total X2 2 X2 2X~o~ Total Total X~ro r X2to~

0.0 0.0 11.0 0.0 0.1 -

70687.0 65.7 2742.9 2.6 26.3 3.9
23472.3 21.8 3795.9 3.5 36.4 16.2
4851.7 4.5 718.8 0.7 6.9 14.8

8504.8 7.9 3153.8 2.9 30.3 37.1
107515.8 100.0 10422.5 9.7 100.0 9.7
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Table 4

Time Components (Tucker3 Model, 4*4*2-Solution)

Month

1

2

3

4

5

6

1.16 -1.42

1.27 -0.63

0.93 -0.06

0.93 0.49

0.81 1.11

0.81 1.45

The coefficients ckl are approximately equal to one, but slightly decreasing (their

mean c.1 is equal to .98). As a first approximation, all these coefficients can be

considered to be equal, and thus the slice D1 (see Table 5) does not explain any
time effect. If more precision is required, one may say that because these elements

are slightly decreasing, this first component implies a slight decrease for all the

interactions. But the variations of the interactions are primarily accounted for by

the second component.

The coefficients ck2 are regularly increasing from - 1.42 to 1.45, and their mean is

approximately equal to zero (c.2 = . 15). In other words, the corresponding biplot

portrays those category combinations which cliange most over time. The products

Table 5

The Slices D1 and D2.

Bold values are larger than 1.00, italic values exceed 0.75)

D1

Inactive
Smile

Look

Vocal
Explore

Cry

Suck

D2

Inactive

Smile
Look

Vocal
Explore
Cry

Suck

Mother Categories

OTHER LOOK STIMULATE OFFER CONTACT SOOTH

-0.389 0.692 -0.524 -0.368 1.307 -0.955

-0.739 -0.056 1.560 0.466 -0.009 -0.871

0.061 0.121 -0.186 -0.041 0.218 -0.888

¯ -0.303 -0.041 0.733 0.244 -0.032 -0.734

0.561 -0.256 -0.395 0.050 -0.510 -0.868

-0.064 -0.307 -0.899 -0.654 -0.593 8.457

0.501 -0.025 -0.797 -0.170 -0.093 -0.444

OTHER LOOK STIMULATE OFFER CONTACT SOOTH

-0.432 -1.426 -0.745 -0.553 -1.828 -0.279

-0.180 -0.309 0.046 -0.053 -0.391 -0.168

0.081 -0.138 -0.083 -0.009 -0.224 -0.038

0.125 -0.108 0.058 0.078 -0.217 -0.108

1.592 0.597 0.376 0.83~ 0.201 -0.105

0.088 -0.121 -0.092 -0.011 -0.201 -0.006

1.002 0.215 0.095 0.453 -0.092 -0.071
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FIGURE I.

Axis 1 versus Axis 2 of the Biplot of Slice Dl associated with the First Time Component.

of the coefficients ck2 with the larger values in D2 (see Table 5) represent large
contributions to II (see the left-hand side of (26)). If the inner products are positive,

for instance Exploring with OTHER (= 1.59) then in combination with the large

negative value of c12 and increasing towards large positive values of ck2 (k --

2... 6), this means that the child initially does not explore in combination with the

mother doing non-child related things, while this combination occurs more and

more frequently in the later months. The reverse is true for negative inner prod-

ucts, such as Inactive with CONTACT (= - 1.83). In other words, while in the first

month the mother often seeks contact with the inactive child, this occurs less and

less over the next six months.

Because the coefficients Ckl are close to one, (27) becomes ~Itj ~ = D1 + Ck2D2.
Furthermore, because c.2 = 0 it can be deduced that D1 is approximately equal to HIj,

and that it contains the part of dependence that does not involve time. For the same

reason and as a consequence of (11), the array which has as its k-th slice Ck2D2,

approximates II - IItj" = HI. K + H.j K + HIj K which does depend on time.
The biplot for the axes 1 and 2 of D1 will be called the "1 × 2" biplot of D1, and

it is displayed in Figure 1. This biplot is very similar to that obtained from a corre-spondence analysis of lltj ’. The contribution of the interaction Crying x SOOTHING

on the first axis is very important with Crying accounting for 90% of the variance of the

first child axis and SOOTHING for 92% of the first mother axis. In addition to this
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AXIS 3
Axis 3 versus Axis 4 of the Biplot of Slice D1 associated with the First Time Component.

interaction the larger interactions are that the infant is Sucking and Exploring when the

mother does OTHER nonchild-related things, and the infant is Smiling, and to a lesser

degree, Vocalizing when the mother STIMULATES.

To supplement these larger scale patterns, one may study the remainder of the

interaction. Instead of using a 4-dimensional biplot, which is not easy to visualize in
practice, a second bidimensional biplot will be used to visualize the rank-two matrix
~1-1~’1 -1-1~13 a3 03 + A4 a4 04, which is the difference between the 4th and 2nd order approxima-
tion of D1. Such a figure contains "corrections" to the second-order approximation of
the dependence and accounts for 7% of the inertia (compared to 93% of the 1 x 

biplot). Figure 2 shows primarily interactions of Inactivity of the infant with several

mother behaviors. On the one hand, the mother tends to seek CONTACT, LOOK at
the infant when it is inactive. On the other hand when the mother is not STIMULating,

OFFERing, nor engaged in OTHER activities the infant is also Inactive as follows from

the negative projections on the respective axes. Further a clear interaction exists be-

tween Exploring of the infant and lack of CONTACT seeking of the mother.

As indicated above, the second slice D2 contains the interactions which explicitly
involve time. In other words, to study what is changing, only the component r = 2 of

the decomposition needs to be used. The biplot associated with the decomposition of

DE of order 2 (representing 99% of the variability of D2) is given in Figure 3. The

interactions involving Exploring are positive for all behaviors of the mother except
SOOTHING, which means that they increase over time, when taking the values of the

coefficients ck2 into account. At the opposite end, the interactions involving the Inac-

tivity of the child are decreasing (all the corresponding elements of E are n egative).

More precisely, the interactions which increase most are those linking Exploring of the

child with OTHER (-- 1.59) and OFFERing (= 0.83) behavior of the mother, and those

linking Sucking with OTHER (= 1.00). Similarly the interactions that decrease most are

those linking Inactivity of the child with CONTACT seeking (= -1.83) and LOOKING

(= -1.43) of the mother.
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FIGURE 3.

Axis l versus Axis 2 of the Biplot of Slice D2 associated with the Second Time Component. (I = centroid
infant behaviours; M = centroid mother behaviors; the biplot axis through M can be used to evaluate the
Infant x Time interaction.)

The marginal effects of Infant by Time (I x K) and Mother by Time (J x K) 
be studied in the same biplot via combined usage of one set of markers and the axis
determined by the centroid of the other set. Recall that the marginal effect of Infant by

Time (I x K) is given by IIi.t~ = Y.j p.j.Ilij k (see also (9)). Its approximation can 

expressed in terms of the dijr,

j r r r e

with b-.re = Y~j p.j. Kje. Thus by taking the centroid for the mother behaviors, and
combining it with the markers of the infant behaviors, it is possible to assess from the
biplot of Dr the value of C~i.r, and to evaluate the Infant by Time interaction. The
evaluation of the Mother by Time effects proceeds analogously.

The centroids of the markers of the mother behaviors and of the child behaviours
are close to the origin in the biplot of D1 and are not shown in the plot. This closeness
to the origin shows that D 1 does not contribute to the change of the infant and mother



372 PSYCHOMETRIKA

behaviors. On the biplot of D2 the centroid of the infant behaviours (marked by an ’T’

in Figure 3) is again close to the origin, indicating that the Mother x Time interaction

is small overall (see also Table 1). However, the centroid of the mother behaviors
(marked by an "M" in Figure 3) is clearly away from the origin in accordance with the

larger Infant x Time interaction indicated in Table Io Projecting the infant behaviors on

the axis through the centroid (see Figure 3) shows that Exploring is increasing over time

and that Inactivity is decreasing over time, as one would expect from normal infants.

Conclusion

In this paper, it is explained how Lancaster’s additive definition of interaction in

contingency tables is well suited for an exploratory approach to analyzing (large) three-

way contingency tables. It is interesting to note that his additive approach has fallen

into disuse after the advent of loglinear modeling. Apart from the papers by Choulakian

and Dequier cited above, only a few technical mathematical papers dealing with addi-

tive modeling have appeared after the comparative review by Darroch (1974), in par-

ticular Streitberg (1990) and the papers mentioned by him. The power of the additive

decomposition lies in the possibility of fitting one model to the complete deviation from

independence, and deriving the contributions of the separate lower-order terms from

that one model.
So far only limited experience has been acquired with practical applications (see,

however, for another example Carlier & Krooaenberg, in press), but as shown above

three-way correspondence analysis in combination with various biplots can be fruitfully

used to analyse large three-way contingency tables. In comparison with loglinear and/or

logit modeling, three-way correspondence analysis as proposed here is not so much a

procedure for fitting models to contingency tables, but primarily a technique to inves-

tigate and portray the main features of dependence in large three-way contingency
tables with large and significant two-way and three-way interactions. In this sense, it is

similar in spirit to the use of correspondence analysis complementary to loglinear

analysis as suggested by van tier Heijden et al. (1989). Given the complexity of higher-

way data and their interpretation, it will not be easy to use some form of higher-way

correspondence analysis in practical applications, even though mathematically it is

should not pose too many problems (see Franc, 1992, p. 108).

References

Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The new S language. A programming environment

for data analysis and graphics. Pacific Grove, CA: Wadsworth.

Benz6cri, J. P. (1970). L’Analyse des donn~es [Data analysis]. Paris: Dunod.

Bradu, D., & Gabriel, K. R. (1978). The biplot as a diagnostic tool for models of two-way tables. Techno-

metrics, 20, 47-68.
Carlier, A., & Kroonenberg, P. M. (1995). Biplots and decompositions in two-way and three-way correspon-

dence analyis (Technical report No. 01-93, revised). Toulouse, France: Universit6 Paul Sabatier, Lab-

oratoire de Statistique et Probabilit~s.

Carlier, A., & Kroonenberg, P. M. (in press). Three-way correspondence analysis. The case of the French

cantons. In J. Blasius and M. J. Greenacre (Eds.),Visualization of categorical data. London: Academic

Press.

Carroll, J. D., & Chang, J.-J. (1970). Analysis of individual differences in multidimensional scaling via 

N-way generalization of "Eckart-Young" decomposition. Psychometrika, 35, 283-319.

Choulakian, V. (1988a). Analyse factorielle des correspondances de tableaux multiples [Correspondence
analysis of multiway tables]. Revue de Statistiques Appliqu~es, 36(4), 33-42.

Choulakian, V. (1988b). Exploratory analysis of contingency tables by loglinear formulations and generali-
zations of correspondence analysis. Psychometrika, 53, 235-250.

Cox, C., & Gabriel, K. R. (1982). Some comparisons of biplot display and pencil-and-paper E.D.A. methods.

In R. L. Launer & A. F. Siegel (Eds.), Modern data analysis (pp. 45-82). London: Academic Press.



ANDR~ CARLIER AND PIETER M. KROONENBERG 373

Darroch, J. N. (1974). Multiplicative and additive interaction in contingency tables. Biometrika, 61,207-214.
de Leeuw, J. (1983). Models and methods for the analysis of correlation coefficients. Journal of Economet-

rics, 22, 113-138.
Dequier, A. (1973). Contribution d l’dtude des tables de contingence entre trois caractdres [A contribution

to the study of three-way contingency tables]. Unpublished doctoral thesis, Universit6 de Pads VI,
Pads.

Franc, A. (1992). l~tude algebrique des multitableaux: Apports de l’alg~bre tensorielle [Algebraic study of
multiway tables: Contributions of tensor algebra]. Unpublished doctoral thesis, Universit~ Montpellier

II, France.
Gabriel, K. R. (1971). The biplot graphic display with application to principal component analysis. B/-

ometrika, 58, 453--467.
Gabriel, K. G., & Odoroff, C. L. (1990). Biplots in biomedical research. Statistics in Medicine, 9, 469-485.
Greenacre, M. J. (1984). Theory and applications of correspondence analysis. London: Academic Press.
Greenacre, M. J. (1993). Biplots in correspondence analysis. Journal of Applied Statistics, 20, 251-269.
Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and contributions for an "ex-

planatory" multi-modal factor analysis. UCLA Working Papers in Phonetics, 16, 1-84. (Also available

as University Microfilms, No. 10,0085)
Harshman, R. A., & Lundy, M. E. (1984). The PARAFAC model for three-way factor analysis and multi-

dimensional scaling. In H. G. Law, C. W. Synder, Jr., R. P. McDonald, & J. Hattie. (Eds.), Research
methods in multimode data analysis (pp. 122-214). New York: Praeger.

Kiers, H. A. L., & Krijnen, W. P. (1991). An efficient algorithm for PARAFAC of three-way data with large
numbers of observation units. Psychometrika, 56, 147-152.

Kroonenberg, P. M. (1983). Three-mode principal component analysis: Theor~ and applications. Leiden:
DSWO Press.

Kroonenberg, P. M. (1989). Singular value decompositions of interactions in three-way contingency tables.

In R. Coppi & S. Bolasco (Eds.), Multiway data analysis (pp. 169-184). Amsterdam: North Holland.
Lancaster, H. O. (1951). Complex contingency tables treated by the partition of the chi-square. Journal of

Royal Statistical Society, Series B, 13,242-249.
Lancaster, H. O. (1960). On tests of independence in several dimensions. Journal of the Australian Math-

ematical Society, 1,241-254.
Lancaster, H. O. (1980). Orthogonal models for contingency tables. In P. R. Krishnaiah (Ed.), Developments

in statistics (Vol. 3). New York: Academic Press.
Lebart, L., Morineau, A., & Warwick, K. M. (1984). Multivariate descriptive statistical analysis: Corre-

spondence analysis and related techniques for large matrices. New York: Wiley.
Streitberg, B. (1990). Lancaster interactions revisited. Annals of Statistics, 18, 1878-1885.
ten Berge, J. M. F., de Leeuw, J., & Kroonenberg, P. M. (1987). Some additional results on principal

components analysis of three-mode data by means of alternating least squares algorithms. Psy-

chometrika, 52, 183-191.
Tucker, L. G. (1966). Intra-individual and inter-individual multidemsionality. In H. Gulliksen & S. Messick

(Eds.), Psychometric Scaling: Theory and Applications. New York: Wiley.
Tucker, L. R. (1960). Some mathematical notes on three-mode factor analysis. Psychometrika, 31,279-311.
van den Boom, D. C. (1988). Neonatal irritability and the development of attachment: Observation and

intervention. Unpublished doctoral dissertation, Leiden University.
van den Boom, D. C., & Hoeksma, J. B. (1994). The effect on infant irritability on mother-infant interaction:

A growth-curve analysis. Developmental Psychology, 30, 581-590.
van der Heijden, P. G. M. (1987). Correspondence analysis of longitudinal categorical data. Leiden: DSWO

Press.
van dcr Heijden, P. G. M., Dc Falguerollcs, A., & dc Lccuw, J. (1989). A combined approach to contingency

table analysis and log-linear analysis (with discussion). Applied Statistics, 38, 249-292.
Yoshizawa, T. 0975). Models for quantification techniques in multiple contingency tables--the theoretical

approach. Koudoukeiryougaku [Japanese Journal of Bchaviormctrics], 3, 1-11. (in Japanese)
Yoshizawa, T. 0988). Singular value decomposition of multiarray data and its applications. In C. Hayashi,

E. Diday, M. Jambu, & N. Ohsumi (Eds.), Recent developments in clustering and data analysis (pp.
24-257). New York: Academic Press.

Manuscript received 3/24/92
Final version received 1/10/95


	Introduction
	Three-way Correspondence Analysis
	Application: Mother-Child Interactions over Time
	Conclusion
	References
	EXIT

