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1. Introduction.
1.1. Let (fi, <B, p.) be a measure space, in which the measure p, is ¡r-in-

finite(1), and let (£, u) be the associated measure algebra of measurable sets
(33) modulo null sets. If a field zAof measurable sets is given in Í2, correspond-
ing to a sub-algebra A of E, it is known (see [4, 1, 3]) that, under suitable
hypotheses(2), ß can be expressed as a direct sum of measure spaces Yx over
a base-space X whose measurable sets correspond, in a simple way, to those
of zA. In particular, if zA is the field of sets which are invariant under a
measure-preserving transformation (or a flow) on ß, the resulting decom-
position gives a decomposition of the transformation (or flow) into ergodic
parts. The object of the present paper is to extend and sharpen these results,
by showing that these direct sum decompositions can (roughly speaking) be
imbedded in a direct product JX^of measure spaces, the spaces Yx becom-
ing merely the sections x = constant of a suitable measurable subset of this
product. The significance of this sharpening consists essentially in that a
direct sum of measure spaces Yx over a base-space X is not completely de-
termined when the measure spaces Yx and X are known, since the field of
measurable sets is largely undetermined, whereas of course a direct product
Xy. Y is so determined by the factors. From the present point of view, the
fact that ju(ß) may be infinite constitutes a further nontrivial generalization,
as p. may well take only the values 0 and » for sets in así.

We consider first the "algebraic" problem of decomposing E with respect
to A; this is solved (§3), after some preliminary remarks on product spaces
(§2), by introducing an abstract-valued measure (or, more precisely, a cor-
responding equivalence relation) into E, and appealing to the analysis of ab-
stract-valued measure algebras given in [8]. Other algebraic decomposition
and imbedding theorems, due to Nikodyrn, Gleason, and Dieudonné, are then
deduced (§4), in somewhat sharpened form, and without the assumption of
finite total measure. The case in which A arises as the set of elements in-
variant under a group of measure-preserving transformations is then char-

Presented to the Society, April 29, 1950; received by the editors November 1, 1949.
(x) That is, y. is a non-negative countably additive set-function on the field Í3 of subsets

of Ü, and Q = \jBn, BnG'B, where n(B„) < ». Contrary to the usual practice, we do not require
that p(ti) be finite.

(2) Notably "normality"; see [5] and [3, p. 4l]. This hypothesis was inadvertently omitted
in [l ] and [4]. Numbers in brackets refer to the bibliography at the end of the paper.
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acterized (§5). We finally deduce the analogous "point" theorems for normal
measure spaces, incidentally showing (Theorem 5, 6.5) that, under reasonable
hypotheses, an arbitrary direct sum is in fact (roughly speaking) imbeddable
in a direct product. The resulting decomposition of a measure-preserving
transformation into ergodic parts (Theorem 6, 7.2) is an amplification of a
remark in [8, p. 329], and gives a fairly complete analysis of the relation be-
tween these ergodic parts and the whole transformation.

1.2. Notations. As far as possible, we follow the notations of [8]; the
necessary departures will be obvious. All measure spaces considered will be
assumed to have er-finite (but not necessarily finite) measures. Similarly, the
term "measure algebra" (£, p.) will mean a Boolean «--algebra on which p. is a
countably additive, non-negative measure which is <r-finite and positive (or
"reduced"—that is, Ax) =0 if and only if x = o). There is usually no loss of
generality in assuming that the measure spaces considered are complete (that
is, that every subset of a null set is measurable), and this assumption will be
made unless the contrary is indicated. A point-isometry, or isometry, between
two measure spaces, is a 1-1 mapping of one onto the other which preserves
measurability and measure (both ways). The definition of "isometry" for
measure algebras is obvious, and an isometry between the algebras associated
with two measure spaces will be called a set-isometry, or set-mapping, of the
spaces. If R is the representation space of an algebra E, we use x* to denote
the open-closed subset of R which corresponds to xGE; it may happen that
several representation spaces (of various sub-algebras of E) are involved, but
the space to which x* refers will be clear from the context.

2. Realizations and direct products.
2.1. The transition from the abstract-valued measures, which will be the

principal algebraic tool in what follows, to ordinary numerical measures, will
be obtained by comparing two kinds of direct products of measure algebras;
thus we begin with some fairly obvious remarks about these products.

If (£, p.) is the measure algebra associated with a measure space (ß, u),
we call (ß, u) a realization of (£, p.). Every (£, u) has at least one realization,
obtained by taking ß = representation space R of E, the measurable sets
forming the field generated by the open-closed subsets of R.

2.2. Any two measure-spaces (fli, pi), (ß2, ßz), have a direct product,
defined in a well known way (cf. [il, pp. 82—]). The measure algebra (E, p.)
associated with this product is defined to be the direct product of the algebras
(Ei, Mi). (E2, P2) associated with the factor spaces. The product (£, p) is de-
termined uniquely (to within isometry) by the factors (Ei, pi) and (E2, P2),
and is independent of the choice of their realizations; this follows from the
fact that (E, p) is characterized by the following properties: (i) it is a meas-
ure algebra containing sub-algebras E(, E2 which are algebraically isomorphic
to £1, E2 respectively, (ii) £ is generated by £/ VJE2, and (iii) if x¿ G£/
corresponds to x¿G£¿ (* = 1, 2), then pix{x2) =Mi(xi)/¿2(x2) (with the conven-
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tion co -0 = 0 = 0- «J ). Further, the product measure will be cr-ñnite (assuming,
of course, o--finiteness on the factors).

2.3. Similarly, the "abstract product" (fli, pi) Xß2 of two measure spaces
can be defined as follows. The measurable sets Hare those of (ßi, pi) X (ß2, P2),
but the "measure" M {il} is the non-negative measurable function on ß2
whose value at pG&2 is Pi{q\ iqXp)GH}, modulo functions on ß2 which
vanish outside null sets. This "measure" is countably additive in the obvious
sense, and is er-finite since pi is so. The "abstract product" (£1, pi) X£2 of the
associated algebras is defined to be the abstract-valued measure algebra asso-
ciated with (fli, Mi)Xß2; again it is independent of the choice of realizations
of (Ei, pi) and E2, as follows from the characterization given in [8, p. 284](3).

2.4. The relation between the abstract and numerical products is now
obvious from Fubini's theorem: the numerical direct product (£1, pi) X(£2, p2)
is algebraically isomorphic to the abstract direct product (Elf pi)XE2, and its
measure is given by: piH) =jM{H}dp2.

3. Decomposition with respect to a sub-algebra.
3.1. Letvl be a given tr-sub-algebra of a measure algebra (E, p) ; p, need not

necessarily be <r-finite on Ai?). We shall show that, roughly speaking, E can be
decomposed into a countable number(6) of pieces, each of which is the direct
product of some measure algebra with an ideal in A (with a new measure).
The precise results are stated below (3.8, 4.1). The first step is to dispose of
the elements of £ which are of order 0 over A(6). We recall that x (G£) is of
order 0 (the phrase "over A" will generally be omitted) if and only if the ideal
£(x) (of elements yGE satisfying y^x) coincides with xA, the set of ele-
ments of the form xa, aGA. Thus o is of order 0, and if y^x and x is of order
0, then so is y.

Let gi, g2, ■ ■ ■ be a maximal disjoint collection (necessarily countable
(6)) of nonzero elements of order 0, and write e0 = Vg„, e* =e — e0. Thus £(e*)
contains no nonzero element of order 0.

3.2. Given xGE, the smallest element of A satisfying a^x will be called
the closure of x, written x or Cl(x). We note that

(1) Cl(Vx„) = V(Cl(x»)).
(2) Cliax)=ax, if aGA.
(3) If x is of order 0, and y^x, then xy = y, and the ideals £(x), Aix)

are isomorphic under the correspondence y^>a = y, a-^>y = xa.

(3) Compare [8, pp. 283-290]. In [8] the representation space realizations were used;
this has the advantage of enabling the function Mill} to be chosen uniquely (as a continuous
function).

(4) That is, there need not exist elements a„GA such that \/an — e and n(an) < °o.
(6) Throughout this paper, "countable" means "at most countable," and "sequences"

may terminate finitely except where the contrary is explicitly stated.
(6) See [8, p. 301 ]. The elements of order 0 over A have properties similar to some of the

properties of the "indecomposable" elements in [8, pp. 295, 296]; in fact, the indecomposable
elements in [8] are of order 0 over the invariant algebra.
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To prove (3), we note that, since x is of order 0, y = ax where aGA;
hence, from (2), xy — xax = ax = y, and the result follows.

(4) If Xi, x2, • • • are elements of order 0 having disjoint closures, then
Vx» is of order 0. (Cf. [8, 9.3].)

For if y^Vx„, we have yx„ = ö„x„ where anGA and we can assume
a»^Cl(x„). Then y= Vyxn = (Va„)(Vx„) =ax, where aGA.

(5) There exist disjoint elements dx, d2, ■ ■ • , each of order 0, such that
(i) eo = V¿„, (ii) co = di ^ ¿2 ̂  • •

Proof. By construction, eo = Vg„, where the elements gn are disjoint and of
order 0. The elements g„ — Cl(giVg2V ■ ■ ■ Vg»-i), » = 1, 2, • • • , have dis-
joint invariant closures; hence their supremum, ¿i say, is of order 0 (from
(4)). Further, gi^¿i;gVg„ = eo, and ¿i = V[Cl(gK)-lCl(gi)V • ■ ■ VCl(g„_i)}]
= Cl(Vg„)=ê0.

When dk has been defined, we write g»,fc = g»— (¿iV ■ ■ ■ Vd*), and define
dk+i— V«¡-kfi{f».*—Cl(gn-i,*V ■ • ■ Vgn-i,*)}. As before, dk+i is of order 0,
gn.k^dk+i^eo-idiV ■ ■ ■ Vdk), and Cl(d*+i) =Cl(e0-(<W ■ • ■ Vdh)). It is
easy to see that the desired properties follow.

Now define a measure un on the ideal of dn in A by:

(6) Pnia) = piadn) (a G A, a S dn).

Clearly pn is a o--additive and o--finite measure on Aidn), and further (from
(2)) pn is positive. From (3) we have at once:

(7)  The ideal (£(¿„), p) is isometric to the ideal (^4(d„), pn).
3.3. Now consider the ideal E(e*). Write
(1) x~y if and only if piax) =p(ay) for all aGAÇ7). Obviously this is an

equivalence relation on £(e*). We shall prove:

Theorem 1. (£(e*), ~) satisfies the postulates of [8, p. 281]; further, it
has no nonzero indecomposable elements [8, p. 295], and its invariant elements
[8, p. 290} form precisely the relative algebra e*^4(8).

The proof requires several lemmas. To simplify the notation, we shall
drop the asterisks in 3.4-3.7, referring to c*, E(e*), e*A simply as e, £, A.

3.4. Lemma 1. Let g, h be two a-additive finite numerical functions on a
cr-algebra B satisfying the countable chain condition. There exists boGB such
that (i) tfbGB(bo), g(b)^h(b), (ii) if bGB(-b0), g(b)>h(b) unless b = o.

This is a form of the Jordan decomposition theorem. To prove it, an easy
"exhaustion" argument gives the existence of a maximal element b'GB such

(*) If m is (T-finite on A, this is equivalent to defining an abstract-valued measure on E(e*)
by: Af}*} = Radon-Nikodym function for the additive set-function p(ax) on a realization of
(A, p), and writing 3C~y to mean M{x} =M{y} p.p.

(s) Consequently no confusion can arise from the two definitions of "closure" (3.2 above
and [8, p. 291]), as these coincide.
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that, whenever bGB(b') and by¿o, then gib) —hib)>0. We have only to take
60= -b'.

Lemma 2. Given xGE, and given a cr-additive non-negative numerical func-
tion f on A, not identically 0, such that 0^f(a) ¿p(xa) for all aGA, there exists
y¿x such that y9^0 and p(ya) ¿fia) for all aGA.

First assume pix) < 00. Now apply Lemma 1 to the algebra A (x) and the
functions/(a) and ep(xa), where e>0. If the resulting element 60 were 0 for
all €>0,/would vanish identically, contrary to hypothesis. Hence there exist
e>0 and boGAix), with bo^o, such that

(1) fia) ^ ep(xa) for all a G AQ>o).

We shall show that there exists yi^xbo such that y 19^0 and

(2) piyid) ^ pixa)/2 for all a G A (yi).

For xboT^o, since otherwise (from 3.2(2)) xbo = o, contradicting bo^o.
Hence xbo is not of order 0 over A; that is, there exists y^xbo such that
yGxA. Writing z — xbo—y, we have yzj^o (else y = xy). By Lemma 1 applied
to Aiy), there exists biGAiy) such that (i) p(ya)fíp(xa)/2 whenever a
GA(bi), (ii) p(ya)>p(xa')/2 whenever a'GA(y — h) and a'7*0. If bi^o, (2)
is satisfied if we take yi = yZ>i. Hence we may assume ¿»1 = 0, and therefore, on
taking a' = yz, we have p(ya')>p(xa')/2. A similar argument using z gives
p(za') >p(xa')/2 ; and, adding, we obtain a contradiction.

By iteration, the factor 1/2 in (2) can be replaced by (1/2)", and from (1)
the lemma is established in the case ju(x) < 00.

Now suppose pix) = =0. It is easy to see that there will be a maximal
element b«,GA such that fia) = 00 whenever aGA(bx) and a¿¿o. If bxt¿o,
we have only to take y — xbx. Hence we can assume ¿»„ = 0, and consequently
can write e=V&», w=l, 2, • • • , where the elements b„ are disjoint, belong
to A, and satisfy f(bn) < 00. Define/„ by:/„(a) =/(aZ>„), aG^4 ; then /= J^fn,
so that for at least one n the function /» is not identically zero, and it will
suffice to prove the lemma for/» instead of/. That is, we may assume that/
is finite.

From Lemma 1 there is a maximal element boGA for which f(b0) =0. If
p(x — bo)<œ, the lemma again follows, since we can replace x by x —60.
Hence we may assume p(x — bo) = °o. Since p is (r-finite, we can write x—¿>o
= Vx„, where Xi 5=x2 á • • • and p(xn) < x. Since / is finite, there must exist
n and a nonzero b'GA(-bo) such that p(xna) ^f(a) whenever aGA(b'). The
lemma now follows from the finite-measure case, since we can replace x by
x„ and / by the function /o defined by: fo(a) =f(ab').

Lemma 3. Under the hypotheses of Lemma 2, there exists y^x such that
piya) =fia) for all aGA.
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This follows from Lemma 2 by an "exhaustion" argument.
3.5. From Lemma 3 it follows at once that ~ satisfies postulate II of [8,

p. 281]; and postulates 0 and I are here trivial. Postulate III also follows
readily, in view of the facts that (i) elements of finite p are bounded(9), (ii)
equivalence is here subtractive (cf. [8, 6.1]). Lemma 3 also shows that there
are no nonzero indecomposable elements [8, p. 295]. To complete the proof
of Theorem 1 we have only to show that the invariant algebra of (E, -~) is A.

Each aGA is invariant; for otherwise [8, 5.3] there would exist elements
x^a, y^—a, such that y~X5¿o, whence p(x) = p(xa) =piya) =0, a contra-
diction.

Conversely, suppose x is invariant but does not belong to A. Then the
same is true of the elements y = x —x and z = x —Cl( —x). By Lemma 1 (3.4)
there exists boGA such that piay) úp(az) if aGAibo), and piay)>piaz) ii
aGAi — bo) and aj^o. From Lemma 3 (3.4) there is a sub-element of z which
is equivalent to ¿>oy, and since y, z are disjoint and invariant it follows that
boy = o. Similarly z — bo = o. Thus z^bo, whence xg( — Cl( — x))V¿>o, so that
y^xg( — Cl(— x))\/bo; but y is disjoint from x and therefore from
— (Cl(—x)), so that y = ybo — o, a contradiction.

3.6. The theorem of [8, 19.4] now gives (since there are here no inde-
composable elements) an isometry <j> between (E, ~) and the principal ideal
of a certain element, K say, in (/, m) XA, where (J, m) is a certain (<r-finite)
numerical measure algebra. In order to derive an isometry of (E, p) from this,
we recall (cf. [8, §10]) that we have e = e'\Je" where c' is the greatest
bounded invariant element and e" — V/n, rc = l, 2, • • -, to <», where the ele-
ments /" are disjoint, bounded and equivalent. Define a measure v on A by

(1) via) = piae') + piaf1), aGA,

(note that piaf1) = piafn) because f1'^Jfn). Obviously v is positive and cr-addi-
tive, and we shall show below that v is <r-finite on A. Taking this for granted,
we assert that 4> is an isometry of (£, p) onto the ideal of K in (/, m) X iA, v)—
that is, from 2.4, that for the relevant sets H in a realization of this product
we have jM{H}dv = p(d>-l(H)). By the usual approximation argument, it
will suffice to prove this for "rectangular" sets(10) ; thus we have only to show
that, for xGJ and aGE, and either a^e' or a^e", we have p(xa)
= mix)via)i11). Suppose first age'. From the construction of J (see [8, 19.4
and 18.1 ]), we may further assume xg/„ = e», and <zgCl(e„). Now, from the
construction of m (see [8, 17.1 and 8.1]) we have [xa] = (m(x)/pn)[aen]
and   [ae„]=p»[a]; thus   [xa] =m(x) [a], and from the definition of class-

(9) For the definition of "bounded," see [8, p. 281 ]. Note that bounded elements need not
have finite /¿-measure; see 3.7 below.

(10) Since the element K corresponds to a countable union of such rectangles, from the
construction in [8, §§18, 19].

(") To simplify the notation, we have identified J with the corresponding sub-algebra of E.
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multiplication [8, §12] it readily follows that p(xa) =m(x)p(a) =iw(x)j'(a), as
desired. If a^e", we can assume [8, 19.1] that xgj". Since the construc-
tion relative to /" was the same as for Eie'), we have as before pixa)
= mix)piaf")—mix)via), completing the proof.

3.7. The o--finiteness of v on A is an immediate consequence of the
boundedness of e' and/", in view of the following lemma:

Lemma 4. A necessary and sufficient condition that xGE be bounded in
(E, ~) is that jc| Vô», where b„GA and pib„x) < <».

If the condition is satisfied, there is no loss in supposing the elements bn
to be disjoint; each of the elements bnx is bounded, having finite p, and their
invariant closures are disjoint, so that [8, 6.5] Vxo„ = x is bounded.

Conversely, suppose that x does not satisfy the condition. Then there
exists ygx such that yGx^4 and, for each nonzero aGAiy), piay) = <». Since
u is <r-finite on E, there exists yiáy such that 0<piyi) < oo, and therefore, if
aGA and ay^o, ju(a(y — yO) = oo =piay). Thus y — yi~y. From postulate
II of [8], there exists y2gy —yi such that y2~yi, and consequently
p(a(y-(yi\/y2))) = œ=P-(ay) if a-GA and ay^o, so that y-(yiVy2)~y.
Iteration of this argument produces an infinite sequence of disjoint equiva-
lent nonzero elements yn^y- Hence (from [8, 6.3]) y, and so, a fortiori, x,
is unbounded.

3.8. In 3.3-3.7, all considerations were relative to c*. If we note that the
relative algebra .4e* is isomorphic to the ideal A(ê*) (cf. [8, 8.3]), we see that
the results of 3.6 and 3.2(7) can be combined into the following theorem.

Theorem 2. Let (E, u) be a (o-finite) measure algebra, with a given sub-
algebra A (on which p need not be a-finite). Then there exist: a o-finite measure
algebra (J, m), elements è*, bi, b2, • ■ • of A, and o-finite positive measures i>,
Mil M2i ' ' ' on the respective ideals A(b*), A(bi), A(b2), • ■ ■ such that:

(i) ô*V&i = e, and h^folt
(ii) (£, p) is isometric, under an isometry \p, to the direct sum of the measure

algebras (A(bn), pn) and of the principal ideal of an element K in the direct
product (J, m)X(A(b*), v).

(iii) To each aGA, \p assigns the element abn of (A(bn), pn) and the element
KA(JXa) of (/, m)X(A(b*), v).

(iv) If aGA is expressible as Va», where a„GA and pian) < °°, then p(a)
= ^pn(abn)+viab*).

In fact, the elements bn, &*, will be the closures of dn (3.2(5)) and e*
respectively; the construction of if/ is clear. The only statement requiring
proof is the last, which follows from the definitions of pn and v and the
observation that a must be bounded (Lemma 4, 3.7) and so disjoint from e".

4. Algebraic decomposition theorems.
4.1. Two other ways of stating Theorem 2 deserve attention. In the first
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place, we may decompose K into its constituent "rectangles" (following the
construction in [8]), obtaining the following extension of a theorem of
Nikodym [9].

Theorem 2a. Given a sub-algebra A of a measure algebra (E, p), there exist:
elements b1, b2, ■ ■ ■ of A, <r-finite positive measures pn on the respective ideals
A(b"), and measure algebras (Jn, mn), such that E is isometric to the direct sum
of the direct products (Jn, mn)X(A(bn), pn). This isometry can be chosen so
that it maps each aGA on the element JnXabn of the nth direct product. Each
(Jn, win) is isometric to one of the following types :

(i) Im for some cardinal m (depending on n)(12),
(ii) the direct sum offto copies of Im, or
(iii) the algebra generated by a single atom.

(The last type arises, of course, from the algebras (A(bn), pn) in Theorem
2. Note that, while Vôn = e, the elements bn will not in general be disjoint.)

Remark. In particular cases, this somewhat cumbrous description may
reduce considerably; for example, if pie) = 1 and E is separable and has no
elements of order 0 over A, it is clear from the construction in §3 and [8]
that only one summand survives, and we obtain that (£, p) is isometric to
PXiA, p), under an isometry which maps each aGA on itself.

4.2. Secondly, we may combine all the direct summands together. The
result is:

Theorem 2b. Given a sub-algebra A of a measure algebra (E, p), there exist
a o-finite positive measure v on A and a measure algebra (7°, m°), such that there
is an isometry of (E, p) onto a sub-algebra of a principal ideal, say of K", of the
direct product (7°, m°)XiA, v), which maps each aGA on the element
K0A(J°Xa)(u).

Remark. If £ contains no elements of order 0 over A, Theorem 2 shows
that the phrase "sub-algebra of a principal ideal" can be replaced by "prin-
cipal ideal" here; but it is easy to show by counterexamples that this replace-
ment is not possible in general.

To prove Theorem 2b, it will be enough to imbed (E(co), p) in this way;
for in 3.6 we obtained an isometry of (£(e*), p) on a principal ideal in a direct
product (/, m)X(A(Cl(e*)), v), and the two isometries can be combined in a
routine way. We extend the definition of v (fromme*) to all of A by setting, for
each aGA,
(1) via) = v(aë*) + p(a - è*).

(i2) jtn denotes the direct product of tn copies of the measure algebra I' formed by the
measurable sets modulo null sets of the unit interval.

(") This is essentially a result announced by A. M. Gleason, Bull. Amer. Math. Soc. vol.
55 (1949) p. 283; but see the remark following.
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Since e — ¿* ¿di (3.2(5)), an element of order 0, 3.2(3) shows that v is er-finite
on A; and clearly v is a positive measure on A. For each n, the additive
function p(adn) on A has a Radon-Nikodym representation, p(adn) =ffndv,
the integral being taken over the open-closed subset a* (corresponding to
aGA) of the representation space R of A. Here the real-valued function
/„ on R can be taken to be continuous (cf., for example, [8, 4.2(7)]); and, by
an easy "exhaustion" argument, it follows that there exist positive constants
kni and elements b„iGA such that, except for a set of first category in R,
/„= ^iknixtät), X denoting the characteristic function. Integration gives

(2) p(ad„) =- u„ia) = X knAabni), for all aGA.
i

Let (Jo, mo) be the measure algebra generated by a sequence of atoms
a»,-, with îMo(ar»,) =kni- Define a mapping cj> of E(eo) in the product (Jo, mo)
XiA,v) (realized by the product of the representation spaces of J0 and A) by:

Ax)   =   U   [«m X   {Clixdn)*n bti}] (X ^   Vdn  =  Co).
n,i

It is easy to see that <f> is an algebraic isomorphism of E(eo) onto a sub-algebra
of a principal ideal in this product. Further, the measure of 0(x) is

S kniv{bniClixdn)} = X p{dnClixdn)} = ^2 pixdn)
n,i »

(from 3.2(3)) =ju(x), establishing that <p is an isometry.
4.3. Finally, we remark that Theorem 2 includes a theorem of Dieudonné

[3], as formulated by Halmos [5], without the restriction that the measure
be finite, and gives moreover an analysis of the structure of the measures pz
on the "fibres" 7r-1(z)(14). Roughly speaking, each 7r_1(s) can be split into two
parts (possibly empty), on one of which the measure pz is purely atomic,
while the other parts can be derived from a direct product fibring. A brief
indication of the argument is as follows. Let Y be the representation space
of (E, p), and Z that of (.4, v), where A is a given sub-algebra of £ and v is
the o--finite measure constructed in 4.2. From Theorem 2 (3.8), the open-
closed subset e% of Y may be regarded as an open-closed subset of the repre-
sentation space X of JXA. On e* the natural mapping it of Y on Z can be
factored into (i) a natural mapping ir' from X to the product RXZ of the
representation spaces of /and A, followed by (ii) the projection iv" from RXZ
on Z. A measurep'z is defined on e*n7r_1(z) by taking ju,' {ir'_1(/*Xz)} =m(j),
jGJ- Again, Y—e*=U¿*UTV, where TV is nowhere dense; from 3.1(3) it
follows that 7T_1(z) meets d* in at most one point, say £»(z). A measure p° is
defined on (F—e*)n7r_1(z) by giving the points £»(z) appropriate weights;
and finally tt_1(z) is made into a measure space, with measure pz, by taking

(") For the notations in this paragraph, see [5].
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the direct sum of (eîr\7r-1(z), p'z ) and (ir-1(z) — e%, ¿u°). It is easy to verify that,
for each xGE, corresponding to x*C Y, we have p(x) =Jpz(x*r\ir~1(z))dv, as
required.

5. Galois-sub-algebras.
5.1. The principal application of the preceding algebraic decomposition

theory wall be to the case in which the given sub-algebra A oí E consists of
all elements of E left invariant by some group of (measure-preserving) auto-
morphisms of (E, p). It is thus of some interest to characterize those sub-
algebras A which are "Galois"—that is, which can arise in this way. The
problem can be reformulated as follows. Given a measure algebra (£, p),
and a sub-algebra A of E, let €> be the group of all automorphisms 4> of
(£, m)(16) such that <j>(a) =a for each aGA, and let A' be the set of all elements
xGE such that <b(x)—x for each <j>G$- Clearly A' is a sub-algebra of £,
A'~2)A, and A is Galois if and only if A'=A.

5.2. Theorem 3. Necessary and sufficient conditions that A be Galois are:
(i) for each infinite cardinal m, A contains the greatest element of E which is
homogeneous of order m over A [8, §ll], and (ii) whenever c, c' are of order 0
over A, and c = c' (3.2), then pic) =p(c').

Necessity. Condition (i) is obviously necessary. To prove (ii) necessary,
consider (£, ~$) [8, 20.4]; its invariant elements form precisely A'=A, so
that x (xGE) has the same meaning here as in [8]. There exist [8, 7.5] ele-
ments d%.c, d'-^c', such that d~$d' and Cl(c — d)Cl(c' — d') =o. We have
therefore Cl(c-d) = cC\(c-d) = Cl(c')Cl(c-¿) = Cl(¿')Cl(c-<i.) = dC\(c-d)
= o, from 3.2(3); hence d = c, and similarly d' = c'. Thus c~$c', and a fortiori
p(c)=p(c')n.

Sufficiency. Given xG^4', and that (i) and (ii) hold, we shall prove x = x
(and so xG-4). From (i), it will suffice to prove this assuming either (1)
x^eo (see §3), or (2) xi=am, where am is the greatest element homogeneous of
infinite order m over A (so that amG^4).

(1) Suppose xgeo= Vd„, but xt^x. Write x„ = x¿„; then x= Vx„, and so,
for some n, (x —x)xn9io. It follows that, for some k, we have (x — x)xndk~t
say^o. Since txnúdn, txn is of order 0, and so (3.2(3)) £(/x„) is (algebraically)
isomorphic to A(t), under the correspondence s—>S (i^Jx„). Similarly, t is
of order 0 and Ait) is isomorphic to £(¿) under the correspondence a—*ta
(aGAit)). Define i/'(i)=/S; thus \// is an isomorphism of £(ix„) onto E(t).
Further, if s^txn, (ii) shows that p(s) =/i(/S), so that \p is measure-preserving.
Now t and txn are disjoint; hence the mapping defined by

*(y) = {y- (txn) -1] VHyixn) V^(yt), yGE,

is a mapping in the group $ such that <j>(x) t^x, which contradicts xGA'.

(15) It is, of course, understood that each <j>G * is measure-preserving.
(16) It follows further that ac~ac', and so p(ac) =p(ac'), for each aGA.
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(2) Suppose xgßtn, xGA', but x^x. It will evidently suffice to consider
the ideals E(am), A(am), only; thus we may here suppose that am = e. We
apply the argument of 3.3-3.7, defining ~ as in 3.3(1), and have e = e'Vc"
where these are disjoint elements of A (e' being the greatest bounded element
of A). It will suffice to assume x^e' or x^e", and to consider the ideals
E(e'), E(e"), separately. Because e' and e" are now homogeneous, the
construction in [8, §§18, 19] reduces, and we have (E(e'), ~) isomorphic to
the abstract product (/, m) XA(e'), where (J, m) is isometric to Ira. A similar
statement applies to (E(e"), ~), except that (V, m) is here isometric to the
direct sum of No copies of Im. The proof in §3 shows that (E(e'), p) is iso-
metric to (J, m)X(A(e'), v), with a similar statement for e". Thus there is
no loss of generality in taking (£, p) to be simply (J, m)X(A, v).

Since xí¿x, there exist [8, 5.3] nonzero elements y Se — x, z^x, such that
y^z; and we can further suppose p(y) (=p(z)) < oo. Consider the measure-
functions M {y}, M{z}, in the abstract product (J, m) XA ; these are equa',
finite, continuous non-negative functions on the representation space R of
A, and are not identically 0. Hence there exists a nonzero aoG-4 such that,
for each pGa*, M{y}(p) = M{z} (p)>e>0. We can approximate to y and z
by countable "rectangle-sums" r= Vr,a,, s= Vs,a< (r,-, s< GJ, aiGA, Va,=c,
a(aj = 0 if ii*j, i, j=l, 2, ■ ■ ■), such that M{y+2r} <e/6 and Af{z+2s}
<e/6 for all pGR (cf. [8, 4.6]). For some i, we have «¿flo^o. Choose bGA
so that o<b^aia0 and vib) < oo ; thus, for each pGb* we have M{y+2rtb}
<e/6 and M{z+2sfb} <e/6. Since M{y} = M{z}, it follows that |i»(r<)
— misi)\ <e/3; hence, on replacing r¿ or s i by a smaller element of /, we
obtain elements h, ¿Gesuch that mifi) =mik) < oo, and (from 2.4) pihb—yb)
<evib)/2 and pizb-kb) <ev(b)/2.

From the structure of J, there exists a (measure-preserving) auto-
morphism of iJ, m) which interchanges h and k; and this is readily extended
to give an automorphism <f> of (J, m)XiA, j») = (E, p), such that <j>ia)=a
whenever aGA, 4>{h)=k, and <f>ik)=h. Thus <j>ihb)=kb and <bikb)=hb.
Write t = zkb<j>iyhb) ; since /jSz^x and </>_1(/) ̂y^e—x, the assumption
xG^4' gives / = o. Thus zkb^kb—4>(yhb)=4>(hb — y), so p(zkb)^p(hb — y)
<ev(b)/2, and therefore pizb)<evib). But p(zb)^ev(b), from 2.4 and the
choice of ao; and this contradiction completes the proof of Theorem 3.

5.3. On combining Theorem 3 with Theorem 2a (4.1), we see that for
Galois sub-algebras A the decomposition of £ over A can be simplified. We
do not state the resulting theorem, since it is precisely the theorem of [8,
20.4]. Further, if A is the algebra of elements invariant under a group i> of
automorphisms of (£, p), the equivalence relations ~ (3.3(1)) and ~$ [8,
20.4] coincide. This simplification is moreover characteristic of Galois sub-
algebras; in fact, if a decomposition of the type of [8, 20.4] exists (where A
is the direct sum of the relative algebras B„, in the notation of [8]), it is easy
to see that the conditions of Theorem 3 are satisfied, so that A is Galois.
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6. Point-set decompositions.
6.1. We next consider some "point-set" consequences of the preceding

algebraic decomposition theory. To derive the analogous results for measure
spaces, we shall have to assume that they are separable and in fact normal (17).
It is convenient, however, to extend the meaning of "normal" to allow the
measure to become infinite (but cr-finite), and to allow atoms. Thus we de-
fine a measure space to be a-normal if it is almost isometric (cf. 1.2) to the
direct sum of (i) a measure space formed by a countable number of atomic
points, of positive finite weights, and (ii) an interval, possibly infinite, on the
real line.

Theorem 4 below will be concerned with a strictly separable(18) field zA
of measurable subsets of a <r-normal measure space (ß, p). Before we state it,
consider the following examples (which will be proved to be typical) :

(1) ß„ is the direct sum of a countable number of disjoint abnormal
measure spaces ( Y„, pn), and zAa is the field generated by the sets Y„.

(2) ß", conveniently regarded as situated in the plane, with coordinates
(£, tj), consists of (i) a rectangle 0<£<a, 0<n<ß, with ordinary plane meas-
ure, together with (ii) a countable number of line segments rj= —n, 0<£<a,
» = 1, 2, • • • , each with an absolutely continuous measure pn (which may
vanish for a non-null set of ¿'s). Here a may be finite or infinite; in the appli-
cations, ß will be 0, 1, or ». The field zAß consists of all sets of the form
ß^nCyl iTT), where H is a Borel set of ¿'s and Cyl (ii) denotes the set of all
points (£, rj) with £GH(19).

6.2. Theorem 4. Given a strictly separable field zA of measurable sets in a
a-normal measure space (ß, p), then, after discarding a null zA-set, (ß, p) is iso-
metric to a direct sum ßo©ß0©ßI©ß°°, under an isometry which maps zA
isomorphically onto zAa® zAa® zAY®zA™.

Proof. Let (£, p) be the measure algebra associated with (ß, p), and let A
be the sub-algebra of £ which corresponds to zA. Let alt a2, ■ • ■ be the atoms
of A (necessarily countable) ; from the existence of a countable basis in zA it
readily follows that there is a smallest zA-set, say F», in the class of a„, and
we have only to take ß„= t/(F„, p). In what follows we can therefore assume
that A is non-atomic.

We apply Theorem 2a (4.1), noting that £ is now separable; thus the
decomposition reduces to

(17) For the definition and properties of normal measure spaces, see [6]. Some hypothesis
similar to normality is essential for the theorems which follow (cf. [3, p. 42]). As Dieudonné
has shown [3, pp. 40, 51 ], normality may be avoided by using representation space realizations
(as in 4.3 above) ; the resulting theorems are then essentially measure-algebraic in character.

(ls) A field zA is strictly separable [4, p. 387] if it is generated by countably many sets of
zA. As pointed out in [4], this assumption on zA involves no essential loss of generality here.

(19) If ¿5 = 0, the definition of Í20 should be modified to permit the omission, for each n, of a
Borel subset of the line ij = — n having zero M„-measure.
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(1) c = Vdn V e' V e",

where these elements are disjoint, dn is of order 0 over A, (E(dn), p) is iso-
metric to (E(C1(¿„)), pn), (E(e'), aO is isometric to (J, jw)X(4(Cl(e')), v),
and (£(e"), p) is isometric to (/, m) X(^4(Cl(e")), p), where (/, ?w) and (7, m)
are respectively the measure algebras associated with the unit interval (that
is, I1) and with an infinite interval. Further, e' and e" are invariant relative
to e—W„, from which it readily follows that Cl(e')Cl(e") =o.

We can thus choose disjoint measurable sets Dn, £', £", in the respective
classes d„, e', e", and disjoint sets F'GzA, F"GzA, corresponding to Cl(e')
and Cl(e"), in such a way that E'GF' and E"GF".

There is a set-isometry <f> between (£(e')> p) and the rectangle 0<£<a
= p(Cl(e'))> 0 <T7 < 1, which induces a set-isometry between (^4(Cl(e')), v) and
the "cylinder sets" of unit height based on measurable ¿-sets in 0<£<a.
Thus (¡> induces a set-isometry 6 between iA (Cl(c')), v) and the linear interval
(possibly infinite) 0<£<a. Again, there is a set-isometry <p„ between
(£(d„c'), p) and iA (¿„ê'), pn) (in fact, <£„(x) = x) ; thus 0</>„ gives a set-isometry
between iDJ~^F', p) and the interval 0 <£ <a, rj = — n, if we use the absolutely
continuous measure ¿u» on the latter. Together, <p and 6<pn (« = 1, 2, • • • )
constitute a set-isometry «3? between (£', ¿i) and the measure space ß1 hereby
constructed, which maps each aGAië') on ß'f^Cyl (0(a)), modulo null sets.

Since F' and ß1 are both o--normal, "ï> can be realized by a point-isometry
^ of F'-N' on ß'-TV1, where TV' and TV1 are null [6, Theorem 3].

Now, since <vi is strictly separable, there exist a countable collection of
e//-sets, say S„ (where p runs over all rational values with 0^p<a), and a
null zA-set TC.F', such that (i) Sf,GF'—T, (ii) 5o = 0, and SpC-SV whenever
p<o, (iii) i'(Sp) =p, and (iv) the sets S„ generate all the c^-sets in F' — T.
(Cf. [10, p. 602] and [8, 14.2-14.4].) For each pGF'-T, define 'Zip)
= inf {p|5p3^>} =sup {p|5p^^} It is easy to see that Z and S_1 map syf-sets
in F'— F onto Borel ¿-sets, and conversely. There is no loss in assuming that
the set-mapping 6 maps each S„ onto the interval (0, p) ; thus 'if(5p) differs
from the intersection of ß1 with the cylinder on (0, p) by a null set. Hence,
after enlarging the null sets TV' and TV1, we may suppose that TV'DF, that
Tv"1Dß1-S(£'-F), and that the abscissa of <&ip) is Zip) for all pGF'-N'.
Let Hi be the set of ¿'s for which the segment ¿ = constant, -n > 0, meets TV1 in
a set of positive (linear) outer measure; thus Hi is null, and so is contained in
a null Borel ¿-set H2. Define 8'= Sr^iV—CyiiHt))', thus ß' is an zA-set,
ß'CE', and piF'-U')=0. For each pGQ', the set Z-'iZip)) (the smallest
zA-set containing p) is mapped by \f^, except for its intersection with TV', onto
the set ß'f^ (¿=E(£)}, except for its intersection with N1; but the latter
intersection is (linearly) null, and so ^ can be redefined (altering it on null
sets only) so as to map Z~~l(Z(p)) onto ÇlT\{j;=Z(p)}. The abscissa of
^(p) is now Z(p), for all p G ß' ; hence ^ is an isometry of ß' onto ß1 — Cyl (Ht)
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which maps the c/f-sets of ß' onto Borel cylinder sets in ß1 — Cyl(i?2), and
conversely. Finally, the complement of H2 in the interval (0, a) can be
mapped isometrically on the whole interval (0, a) by a mapping which pre-
serves Borel sets(20); and the desired mapping of ß' on ß1 has been con-
structed.

The argument mapping F", except for a null zA-set, onto ß°° is com-
pletely similar, since the set-mapping between (E(e"), p) and the rectangle
0<£O(ë"), T7>0, can be taken to map each/" (cf. 3.6) on the strip n — 1
<r]^n. And in Q—F' — F" the construction is simpler, as we can start with
an arbitrary set-mapping d of (A(e — c' — ê"), v) on a linear interval.

6.3. Remarks. It follows that, under the hypotheses of Theorem 4, every
null set which is a union (not necessarily countable) of cvf-sets is contained
in a null <vf-set. Further, if a measure space is formed by taking the irre-
ducible ("atomic") tt/f-sets as points, and taking the field of sets derived (in
an obvious way) from the eyf-sets to be measurable, with measure derived
from v, then the completion of this measure space (with respect to null sets)
is cr-normal.

6.4. From Theorem 4 it is easy to deduce a theorem of Halmos [4 and 1 ;
cf. also 3 and 5], to the effect that, under the hypotheses of Theorem 4,
(ß, p) is (except for a null <v^-set) a direct sum of measure spaces (F{, p¿)
over a complete measure space (X, X, v) in such a way that X coincides with
the "completion" of zA, in a natural sense (cf. 5.3). In fact, one has only to
take the "fibres" Fj to be (i) the spaces F„in ß„ (cf. 4.1), (ii) the intersections,
for almost all ¿'s, of the lines ¿ = constant with the spaces ß°, ß1, ß°°; the base-
space X and the measures involved are obvious. However, Theorem 4 gives
rather more than the existence of a direct sum decomposition, since it shows
that if we disregard the atomic parts of the "fibres" Fj, the fibring is that of
two direct products (or a single direct product if p is finite). (Cf. 4.3.) As we
now show, a similar sharpening holds, under reasonable conditions, for a
given direct sum decomposition.

First we define a "standard" direct sum, as follows. Let (Xs, v), the base-
space, be an arbitrary <r-normal measure space, and let / be a non-negative
numerical measurable function on Xe; the value oo for/ is not excluded. Let
{gn} be a sequence of non-negative finite measurable functions on X„. Let
Y(, for each l-GX„ consist of the interval 0 <t) </(£), with ordinary measure,
together with atoms of weights g»(£) at the points r\ = — n whenever gn(0 >0.
The "standard" direct sum ß„ is then the subset of the product of Xs with the
line — oo<jj<oo consisting of (i) the ordinate set '{%GXS, 0< 77 </(£)),
with ordinary product measure, and (ii) the sets {¿GX>, g»(£)>0, 77= — n},
each with measure pn=fgndv.

(20) For simplicity we can suppose H¡ to be a Gi set. Let H3 be an uncountable null Gj
{-set disjoint from H2, and map H¡ onto H^JH¡ homeomorphically (see for example C. Kura-
towski, Topologie I, Warsaw, 1933, p. 225).
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6.5. Theorem 5. If a o-normal measure space (ß, p) is a direct sum of
measure spaces (Yx, px) over a complete^1) (o-finite) measure space (X, X, X),
and ifX has a separating sequence^-2), then there exist null sets NiGX, TV2Cß,
such that (i) if xGNu YXGN2, and if xGTVi, px(YxC\N2) =0, (ii) there exist
isometrics q> of ß —TV2 onto a standard direct sum ßs, and 9 of X — Ni onto the
base-space Xs, such that, for each xGX — Ni, <f> is an isometry of (Yx — N2, px)
onto the "standard" fibre Ye(x).

Sketch of proof. For each ZGX, write zA(Z) = [J{Yx\xGZ}. The sets
zA(Z) form a field zA which corresponds to a sub-algebra A of the algebra
(E, p) associated with ß. As in 6.2 we construct a set-isometry, say $, of
(ß, p) on a measure space of the type considered in Theorem 4; this space is
essentially a "standard" direct sum in which the function/ takes the values
0, 1, oo, only. Further, \p maps zA-sets on "cylinder sets" (modulo null sets).
From (T-normality, \f/ can be realized by a point-isometry <f>, if we discard
suitable null sets. Using the countable separating system, and discarding
further null sets, we arrange that each Yx is mapped on a single "vertical"
segment. Thus <f> induces a point-mapping 6 of X on Xt; in the first instance,
6 is not measure-preserving, but we change the measure in Xs to make 6 an
isometry, at the same time adjusting the "ordinate-function"/ (and the func-
tions gn) to keep <j> measure-preserving. The relation p(U)=Jpx(Yxi^U)dK,
applied to a suitably chosen sequence of sets, is then used to show that (after
discarding more null sets) <¡> is also an isometry of each Yx. (In carrying out
the detailed proof, it is convenient to dispose of the atoms in X and in the
spaces  Yx separately.)

Corollary. Under the hypotheses of Theorem 5, the measure spaces (X, X)
and (for almost all x) (Yx, px) are a-normal.

7. Decompositions of measure-preserving transformations.
7.1. Let "3? be a group of isometries of a measure space (ß, p) onto itself.

An important special case of the preceding theory arises if we take zA to be
the field of sets U which are invariant under $ (that is, which satisfy <b( U) = U
for each <j>G&)- From the algebraic point of view, a structural analysis of the
behavior of ß (modulo null sets) under <3? was given in [8, p. 328] (cf. also 5.3
above) ; we shall here deduce the analogous "point" theorems for er-normal
measure spaces, dealing in detail with the case in which i> is generated by a
single isometry T, and then indicating briefly the results for a flow. In what
follows, it is understood that all sets considered are measurable.

If X,  Y are subsets of a measure space (ß, m), on which F is a given

(21) It is no restriction on the generality of a direct sum to require that its base-space be
complete.

(22) A separating sequence inX is a sequence of sets S„GX such that, for every p, qGX
with p^q, there exists Si containing p but not q.
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isometry of ß onto itself, we write X^t Y to mean that there exists a se-
quence of disjoint sets X» such that m(\JXn+2X) =0, m(\jTn(Xn) +2F) =0,
and the sets Tn(Xn) are disjoint (—oo<«<co). Let (£, m) be the measure
algebra associated with ß; T can of course be regarded as an automorphism
of (E, m), and ~r can be regarded as defined on £. An element uGE will be
"invariant" if T(u)=u; any corresponding set Z7Cß will be called "almost
invariant." It is easy to see that these definitions of ~r and invariance on E
agree with those in [8, 20.4]. Trivially, an invariant set is almost invariant;
conversely, it is easy to see that

(1) if U is almost invariant, there exist invariant sets t/0, Ui, such that
LToC UG Ui. and m( Ui - Uo) = 0.

7.2. Theorem 6(23). Let T be an isometry of a o-normal measure space (ß, m)
onto itself. There exist disjoint invariant sets ß» in —I, 2, • ■ ■) such that
w(ß— Uß„)=0, and a-normal measure spaces iXn, vn), (F„, pn), such that:

(i)  (ß„, m) is ito within an isometry) the direct product (Z„, vn) X(Fn, pn).
(ii) For each xGXn, the set xX Yn is invariant under T, and T is an ergodic

measure-preserving transformation on (xX Yn, pn).
(iii) For any Qi, Q2Cß, we have Qi ~r Q2 if and only if, for every n and for

almost every xGXn, we have pn{ (xX F„)nÇi} =pn{ (xX Yn)(^Q2}.
(iv) TVo two of the spaces ( Yn, pn) are isometric, and each of them is isometric

to one of the following :
(a) the unit interval (with Lebesgue measure),
(b) the real line (with Lebesgue measure),
(c) a space consisting of k ( = k(n)) atomic points pi, p2, • • • , pk, each of

measure 1 (where 1 ̂  k ^ fc$o) ■
(v) If (Yn, pn) is atomic (of type (c)), then, for each xGXn, T(xXpi)

= (xXpi+i); here, if k is finite, the suffixes i, i+l, are to be taken modulo k.
Hence, if k < oo, T is periodic, with period k, on the corresponding set ß„.

Proof. We apply the theorem of [8, p. 328] to (E, m) and the transforma-
tion group generated by T, obtaining a sequence of disjoint invariant ele-
ments c» such that Vc„ = e, and with the further properties specified in that
theorem. From 7.1(1) we can find disjoint invariant subsets C„ of ß in the
respective classes e», and have m(Q— UC„)=0. Each ideal (E(cn), m) is iso-
metric to a direct product (An, pn) X (Bn, vn), where An, Bn are sub-algebras of
E(cn), Bn consisting of the invariant elements, and (An, pn) corresponding to
one of the types listed in (iv) above. (It is convenient to take the factors in
this product in the opposite order to that in the statement of Theorem 6.)
As separable measure algebras, (An, pn) and (Bn, vn) can be realized by c-
normal measure spaces (Yn, pn) and (Zn, vn) respectively; and we thus have a
set-isometry of (Cn, m) onto (F», pn)XiZn, vn), which can be realized by a

(23) Extending [4, Theorem 2] and [l, Theorem 2].
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point-isometry </>„. In the first instance, 0„ is defined only on C„ — 0», where
w(0„)=0, and </>„(C„ —0») is only almost all of the product space; however,
by altering <pn on null sets and discarding a null invariant subset of Cn, we
easily arrange that <pn is an isometry of C„ onto YnXZn. In what follows, ß„
will be derived from C„, and Xn from Zn, by omitting suitable null sets; to
simplify the notation we assume n fixed and discard the suffix n, and take
<pn to be the identity mapping.

Let {Sr} be a separating sequence in Z; the set YXSr corresponds to an
element of the algebra B, and so is almost invariant. From 7.1(1), there exist
invariant sets Ur, Vr, with t/rC(FX5r)CFr and m(Ur-VT)=0. Write
Ni= \J(Vr— Ur); thus TVi is null and invariant, and it readily follows that,
for each xGZ, the set (YXx)— TV. is invariant. Since (iv) of the present
theorem is fulfilled, we may suppose first that ( Y, p) is an interval, finite or
infinite; the atomic case will be considered later. Let { Wr} be an enumeration
of the rational intervals of Y of finite lengths. Then, for every measurable
set SGZ with v(S)<«>, we have m[T{(WrXS)-Ni}]=piWr)viS)
= m[T~1{iWrXS) —Ni}]; and, on applying Fubini's theorem, we readily
obtain a null invariant set TV2DTV1 such that T is an isometry on each
HYXx) — N2, p). Further, by discarding a null set from Z and an invariant
null set from C, we may suppose that /¿(TV2fï(FXx)) =0 for each xGZ.

To obtain the ergodicity of T on the sets YXx, we prove a superficially
stronger (but equivalent) result: that, after discarding a suitable (fixed) null
set of x's, we have, for every Qu Q2G Y,

(1) PÍQi)=piQ2) if and only if iQiXx)-N2~T,xiQ2Xx)-N2 where ~T>.
is defined as in 7.1 except that the measure space here considered is ((FXx)
-N2,p).

Let Wr, Ws be any two rational intervals in Y with piWr) =piWs) ; then
the corresponding elements of the algebra A have equal ju-measure, so
(from (iii) of the theorem of [8, p. 328]) WrXZ~TW,XZ. Thus there exist
disjoint subsets Hi of C — N2 such that the sets T'iHi) are disjoint
(-oo<¿<oo), miWr+2UHi)=0, and miW,+î\JTiiHi))=0. Hence, except
for a set ZrsGZ with viZrs) = 0, we have that the sets HiC\(FXx) are measur-
able in (FXx, p), p{iWrXx)+2UiHi(~\iYXx))}=0, and p{(W.Xx)
+2\JTiiHir\iYXx))} =0. Write X = Z-VZr„ TV3 = TV2U(FxUZrä); then TV,
is null and invariant, and we have that (1) holds for each xGX, provided that
Qi and Q2 are rational intervals. It follows that (1) holds (for xGX). when-
ever Qi, Q2 are open sets, and thence [7, 4.11] provided only that Qi, Q2 are Gj
sets of finite measure; and from this (1) follows at once without restriction^4).

Restoring the suffix n, we define ß„ = C„ — TV3, and have established state-
ments (i) and (ii) of Theorem 6, except that the product YnXX„ has a null
set TV2 removed from it, where p{ (FnXx)HTV2} =0 for each xGX. But it is

(24) Alternatively, the appeal to [7] can be replaced by a direct argument along the lines
of the proof of 5.2(2) above.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1950] DECOMPOSITIONS OF MEASURE ALGEBRAS AND SPACES 159

easy to construct an isometry of (F„XAT„) — TV2, which is the identity except
on an invariant null set, onto YnXXn, in such a way that (F»Xx)—TV2 is
mapped onto Y„Xx isometrically; and (i) and (ii) are completely established
when Yn is an interval.

Now (again dropping the suffix n temporarily) suppose (F, p) is atomic,
generated by k atoms Si, • • • , g* of measure 1; and suppose k is finite. By
arguments similar to the preceding, we may suppose C= YXZ, and that
each YXx, xGZ, is invariant. We assert that, except for a set ZiGZ with
»iZi)=0,

(2) the k points F'(giXx), l^i^k, are distinct.
For otherwise there is a set SGZ, with viS) >0, and a g,-, such that the in-
variant set UF'(giXS) is disjoint from g.XZ. But (from the theorem of [8,
p. 328]) every invariant subset of C is (modulo null sets) of the form YXS',
S'GZ, giving a contradiction.

Write X = Z—Zi, and consider the k disjoint sets T'iqiXX). Their union,
say ß, is invariant, and ßCC,m (C—ß) =0. Further, the mapping ThiqiXX)
—>iphXx) exhibits ß ( = ß„) as a direct product in accordance with Theorem 6.

The case k= co is treated similarly.
All that remains to be proved is property (iii). From [8, 6.6], we have

Qi~tQi if and only if, for each n, ß»n<2i~rßn''^(?2. But, from the construc-
tion in [8, 2O.3], (ß„, t) and (F„, pn) XXn are two realizations of the same
abstract product. In ( F„, pn) XXn, the abstract measure of a set Q is the func-
tion whose value, for almost every xGX„, is pniQ(~^iYnXx)); and the proof
is complete.

7.3. For a measurable flow, we assume for simplicity that the total meas-
ure of ß is finite, and have(26) :

Theorem 7. If Tt is a measurable flow on a normal measure space (ß, m)
(w(ß) < 00 ), then there exist disjoint invariant measurable subsets ßi, ß2, with
w(ß— öi — ß2) =0, such that

(i) on ßi, Tt is the identity,
(ii) on ß2, the flow Tt is isomorphic to a measurable flow T[ on (i~, X)

XiX, u), where (/, X) is the unit interval and (X, p) is a o-normal measure
space (0/finite measure), in such a way that, for each xGX, iXx is invariant
under T[, and T[ is an ergodic measurable flow on (7"Xx, X).

(iii) Two measurable sets Ci, Q2, in ß are equivalent under Tt iin the sense
of [8, p. 328]) if and only if m-iQ,iC\iQi+2Q2)) =0 and, for almost all xGX,
X((/xx)n<2i) =x((/xx)nç2).

This can be proved by observing that [l, Theorem 3] gives a (direct sum)
decomposition having some of these properties, and [8, p. 328] gives a de-
composition having the others; and it is not hard to show (cf. proof of
Theorem 5, 6.5 above) that these decompositions are essentially the same.

(M) Extending [l, Theorem 3]; compare also [10, p. 617]. See [2] for terminology.
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A similar theorem and proof can be given for "generalized flows" in the
sense of von Neumann [l0].

Finally, we remark that an alternative, and possibly more useful, "prod-
uct-like" decomposition of a flow into ergodic parts can be obtained by com-
bining the representation [2] of the flow as built under a function with
Theorem 6 to decompose the transformation of the base-space into ergodic
parts.
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