AD-AISE 04 CALIFORNIA UNIV DAVIS ERADUATE SCHOOL OF ADHINISTRATION F/E 12/1 DCOMPDITIONS OF MLTIATTRIEUTE UTILITY FUNCTIONS BASED ON CON-ETC(U) mat en m Tamina. Y makamuna
UMCLASSIFIED mpaes-1 $\mathrm{NOOO14}-\mathrm{BO}=\mathrm{F}=067$

M.

> Graduate School of Administration University of California, Davis Davis, California 95616

DECOMPOSITIONS OF MルTIATTRIBUTE

UTILITY FUNCTIONS BASED ON CONVEX DEPENDENCE

Hiroyuki Tamura* and Yutaka Nakamura**
*Department of Precision Engineering Osaka University, Suita Osaka 56\%, Japan
> **Graduate School of Administration University of California, Davis Davis, California 95616

This research was supported in part by the Office of Naval Research under Contract \#N00014-80-C-0897, Task NRR-277-258 to the University of California, Davis (Peter H. Farquhar, Principal Investigator).

Aproved for public release; distribution unlimited.
All rights reserved. Reproduction in whole or in part is not permitted without the written consent of the authors, except for any purpose of the United States Government.

UNCLASSIFIED
SECUMITY CLASSIFICATION OF THIS PAGE fmon bate Enforen

REPORT DOCUMENTATION PAGE	EEFEAD ${ }^{\text {RSSTRUCTIONS }}$
	$4 \delta^{2}$
4. Tirte (md Sunilito Functions Based on Convex Dependence	2. TrFE Or Refont a Penioo covened Technical report
7. AUTHOR(C) Hiroyuki Tamura and Yutaka Nakamura	
11. CONTROLLIMG OPFICE NAME ANO ADORESS Mathematics Division (Code 411-MA) Office of Naval Research Arlington, Virginia 22217	
10. OIST RILUTTIO STATEMENT OO MID RODOFI) Approved for public release; distribution unlin	
17. DISTAIDUTION STATEMENT (of the abotrect enfered in Dlock 20, 11 difforent fr N/A	(eperen)
10. SUPPLEMENTARY NOTES N/A	
we-introduce the concept of convex dependence, whe shapes of conditional utility functions. Then, wo shapes of conditional utirity functions. Then, how to decompose multiattribute utility functions convex decomposition includes as special cases Kee decompositions, Folshburn s biateral. decomposition under the interpolation independence. Moreover, t exact grid model which was axiomatized by Fishburn	utility functions. Pirst -we consider the change of establish theorems which show sing convex dependence. The and Bell's decomposition convex decomposition is an and Farquhar.

 $8 / \mathrm{N} 0102 \cdot 014 \cdot 6601$

UNCLASSIFIED
sECUAITY CLABBIFICATION OF THIS PAOE (when Dete Enterean

DECOMPOSITIONS OF MULTIATTRIBUTE UTILITY FUNCTIONS

BASED ON CONVEX DEPENDENCE

Hiroyuki Tamura and Yutaka Nakamura ${ }^{\dagger}$ Department of Precision Engineering Osaka University, Suita, Osaka 565, Japan

ABSTRACT

We describe a method of assessing von Neumann-Morgenstern utility functions on a two-attribute space and its extension to n-attribute spaces. First, we introduce the concept of convex dependence between two attributes, where we consider the change of shapes of conditional utility functions. Then, we establish theorems which show how to decompose a two-attribute utility function using the concept of convex dependence. This concept covers a wide range of situations involving trade-offs. The convex decomposition includes as special cases Keeney's additive/multiplicative decompositions, Fishburn's bilateral decomposition, and Bell's decomposition under the interpolation independence. Moreover, the convex decomposition is an exact grid model which was axiomatized by Fishburn and Farquhar. Finally, we extend the convex decomposition theorem from two attributes to an arbitrary number of attributes.

TPresently at the University of California, Davis.

This paper deals with individual decision making where the decision alternatives are characterized by multiple attributes. The problem is to provide conditions describing how a decision waker trades off conflicting attributes in evalusting decision alternatives. These conditions then restrict the form of a multiattribute utility function in a decomposition theorem. In many situations, it is practically impossible to directly assess a multiattribute utility function, so it is necessary to develop conditions that reduce the dimensionality of the functions that are required in the decomposition.

Much of the research in utility theory deals with additive decompositions [5, 16]. Pollak [16], Keeney [11, 12, 13, 14], and others, however, develop a "utility independence" condition that implies non-additive utility decompositions. Although these decompositions have been applied to many real-world decision problems, there are situations, such as conflict resolution between pollution and consumption [17], where the utility independence condition does not hoid. Fishburn [6] and Farquhar [3, 4] have investigated more general independence conditions that imply various non-additive utility decompositions. For example, Farquhar's fractional decompositions include nonseparable attribute interactions.

In this paper, we introduce the concept of convex dependence as an extension of utility independence. In our methodology, normalized conditional utility functions play an important role. Utility independence implies that the normalized conditional utility functions do not depend on different conditional levels. On the other hand, convex dependence implies that each norsalized conditional utility functions can be represented as a convex combination of some specified normalized conditional utility functions. Reeney [12] described interpolation in motivating utility independence. If we find that
the utility independence condition does not hold in the process of assessing normalized conditional utility functions, we can repeat the procedure [17] to test the convex dependence condition to derive the utility representations as approximations. the concept of the convex dependence covers aide range of situations involving trade-offs. The convex decomposition includes as special cases Keeney's [12, 13] multilinear and multiplicative decompositions, Fishburn's [6] bilateral decomposition, and Bell's [1] decomposition under interpolation independence, which is the same as first-order convex dependence in this paper. Bell [2] has developed ways to reduce the number of constants to be assessed and has provided a generalization of additive and multiplicative forms in the multiattribute case. Moreover, the convex decomposition is an exact grid model as defined by Fishburn [7]. Our approach gives an approximation of utility functions but recently Fishburn and Farquhar [8] derived a preference axiom which provides a general exact grid model, and provided a procedure for selecting the normalized conditional utility functions.

1. PRELIMINARIES

Let $X=X_{1} \times \ldots \times X_{n}$ denote the consequence space which, for simplicity, is a rectagular subset of finite-dimensional Euclidean space. A specific consequence $x \in X$ is represented by $\left(x_{1}, \ldots, x_{n}\right)$, where x_{1} is a particular level in the attribute set X_{1}. We consider $Y \times 2$ as two-attribute space, where $Y=X_{1_{1}} \times \ldots \times X_{1_{r}}, Z=X_{1_{1+1}} \times \ldots \times X_{i_{n}}$ and $\left\{1_{1}, \ldots, i_{n}\right\}=$ $\{1, \ldots, n\}$. Throughout the paper, we assume that appropriate conditions are satisfied for the existence of von Neumann-Morgenstern utility function $u(y, z)$ on $Y \times z[18]$. Moreover, we assume that there exist distinct $y^{*}, y^{0} \mathrm{EY}$
which eatisfy $u\left(y^{*}, z\right) \neq u\left(y^{0}, z\right)$ for all zeZ. Similarly, we assume that there exist distinct $z^{*}, z^{0} \varepsilon Z$, which satisfy $u\left(y, z^{*}\right) \neq u\left(y, z^{0}\right)$ for all $y \varepsilon Y$.

DEFINITION 1. Given an arbitrary $\varepsilon \in Z$, a nomalised conditional utility function $v_{2}(y)$ on Y is defined as

$$
v_{z}(y)=\frac{u(y, z)-u\left(y^{0}, z\right)}{u\left(y^{*}, z\right)-u\left(y^{0}, z\right)}
$$

From Definition 1 it is obvious that $v_{2}\left(y^{0}\right)=0$ and $v_{z}\left(y^{*}\right)=1$. Moreover, if a decision maker prefers y^{*} to y^{0}, then $v_{2}(y)$ represents his utility, and if a decision maker prefers y^{0} to y^{*}, then $v_{2}(y)$. represents his disutility.

To represent the decomposition forms and proofs simply, we need to introduce some notation. First, we define three functions $f(y, z), G(y, z)$ and $H(y, z)$ which will be used to represent the decompostion forms. We assume $u\left(y^{0}, z^{0}\right) \equiv 0$ without loss of generality.

$$
\begin{align*}
& f(y, z) \equiv u(y, z)-u\left(y^{0}, z\right)-u\left(y, z^{0}\right), \tag{1}\\
& G(y, z) \equiv u\left(y^{*}, z^{0}\right) f(y, z)-u\left(y, z^{0}\right) f\left(y^{*}, z\right), \tag{2}\\
& H(y, z) \equiv u\left(y^{0}, z^{*}\right) f(y, z)-u\left(y^{0}, z\right) f\left(y, z^{*}\right) . \tag{3}
\end{align*}
$$

The two functions $G(y, z)$ and $H(y, z)$ are related to each other as follows.

$$
\begin{equation*}
u\left(y^{0}, z^{*}\right) G(y, z)-u\left(y^{0}, z\right) G\left(y, z^{*}\right)=u\left(y^{*}, z^{0}\right) H(y, z)-u\left(y, z^{0}\right) H\left(y^{*}, z\right) \tag{4}
\end{equation*}
$$

We define $\mathbf{P}(y, z)$ as

$$
\begin{equation*}
F(y, z) \equiv u\left(y^{0}, z^{*}\right) G(y, z)-u\left(y^{0}, z\right) G\left(y, z^{*}\right) . \tag{5}
\end{equation*}
$$

To represent the constants simply in our decomposition forms, three eatrices $G^{n} H^{n}$ and F^{n} are defined for $y^{1}, \ldots, y^{n} E Y$ and $z^{1} \ldots \ldots, z^{n} \in Z$. Let the (1,1)
element of the matrix G^{n} be denoted by $\left(G^{n}\right)_{1 j}$, which is defined as $G\left(y^{1}, z^{j}\right)$, where $z^{n} \equiv z^{*}$. Similarly, define $\left(H^{n}\right)_{1 j} \equiv H\left(y^{j}, z^{1}\right)$, where $y^{n} \equiv z^{*}$, and define $\left(F^{n}\right)_{1 j} \equiv f\left(y^{j}, z^{1}\right)$, where $y^{n}=y^{*}$ and $z^{n}=z^{*}$. Let $G_{1 j}^{n}$ be the $(n-1) \times(n-1)$ matrix obtained from G^{n} by deleting the $1-t h$ row and the j-th column, and let "det" denote the determinant on square matrices. Define

$$
\left|G^{n}\right|=\operatorname{det}\left(G^{n}\right), \tilde{G}_{i j}^{n}=(-1)^{1+j}\left|G_{i j}^{n}\right|, 1, j=1, \ldots, n .
$$

Let $\left|H^{n}\right|, \tilde{H}_{i j}^{n},\left|F^{n}\right|$ and $\tilde{F}_{i j}^{n}$ be defined similarly. Moreover, for $n=1$, we define $\tilde{G}_{i j}^{1}=\tilde{H}_{1 j}^{1}=\tilde{F}_{1 j}^{1}=1$. We define an $n \times n \operatorname{matrix} G_{n}$ for distinct $y_{1}, \ldots, y_{n} \varepsilon Y$, and distinct $z_{0}, z_{1}, \ldots, z_{n} \varepsilon Z$ as $\left(G_{n}\right)_{i j}=v_{z_{j}}\left(y_{i}\right)-v_{z_{0}}\left(y_{i}\right)$.

2. CONVEX DEPENDENCE AND ITS PROPERTIES

In this section, we define the concept of convex dependence and discuss some of its properties. In the following, let $\delta_{i f}$ be the Kronecker delta function.

DEFINITION 2. Y is n-th order convex dependent on Z, denoted $Y\left(C D_{n}\right) Z$, if there exist distinct $z_{0}, z_{1}, \ldots, z_{n} \in Z$ and real functions g_{1}, \ldots, g_{n} on Z with $g_{1}\left(z_{j}\right)$ $=\delta_{1 j}$ for $1 \varepsilon\{1, \ldots, n\}$ and $j \varepsilon\{0,1, \ldots, n\}$ such that the normalized conditional utility function $v_{2}(y)$ can be written as

$$
\begin{equation*}
v_{2}(y)=\left[1-\sum_{i=1}^{n} g_{i}(z)\right] v_{z_{0}}(y)+\sum_{i=1}^{n} g_{i}(z) v_{z_{i}}(y) \tag{6}
\end{equation*}
$$

for all yET and $2 \in Z$, where n is the amallest non-negative integer for which (6) holds.

For $n=1$, relation (6) implies " Y is interpolation independent of Z " in Bell's [1, 2] terminology. When Y and Z are scalar attributes, a geometric illustration of Definition 2 is in Figure 1 . Suppose three arbitrary normalized conditional utility functions $v_{z_{0}}(y), v_{2}(y)$, and $v_{2}(y)$ are assessed on Y. If $Y\left(C D_{0}\right) Z$, all the normalized conditional utility functions are identical as shown in Figure 1 (a). If $Y\left(C D_{1}\right) Z$, an arbitrary normalized conditional utility function $v_{2}(y)$ can be obtained as a convex combination of $v_{z_{0}}(y)$ and $v_{z_{1}}(y)$ as shown in Figure $1(b)$. Moreover, Figure $1(b)$ shows that the preferential independence condition [9] need not hold (Note that $v_{z_{0}}(y)$ is monotonic and $v_{z_{1}}(y)$ is not.).

Figure l goes here

We now establish several properties of convex dependence. Let $Y(G U I) Z$ denote Y is generalized utility independent of Z : see Fishburn and Keeney [10] for a definition.

PROPERTY 1. $Y\left(C D_{0}\right) Z$, if and only if $Y(G U I) Z$.

Proof. If $Y(G U I) Z$, the following equation holds

$$
\begin{equation*}
u(y, z)=\alpha(z) u(y, z 0)+\beta(z) \tag{7}
\end{equation*}
$$

for some $z 0^{c z}$. Setting $y=y^{0}$ and $y=y^{*}$ in (7) where $u\left(y^{0}, z\right) \neq u\left(y^{*}, z\right)$ for all $2 \varepsilon 2$ by the assumption in section 1 , we obtain

$$
\begin{align*}
& u\left(y^{0}, z\right)=\alpha(z) u\left(y^{0}, z_{0}\right)+B(z), \tag{8a}\\
& u\left(y^{*}, z\right)=\alpha(z) u\left(y^{*}, z_{0}\right)+B(z) . \tag{8b}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\frac{u(y, z)-u\left(y^{0}, z\right)}{u\left(y^{*}, z\right)-u\left(y^{0}, z\right)}=\frac{\alpha(z)\left[u\left(y, z_{0}\right)-u\left(y^{0}, z_{0}\right)\right]}{\alpha(z)\left[u\left(y^{*}, z_{0}\right)-u\left(y^{0}, z_{0}\right)\right]}=\frac{u\left(y, z_{0}\right)-u\left(y^{0}, z_{0}\right)}{u\left(y^{*}, z_{0}\right)-u\left(y^{0}, z_{0}\right)} . \tag{9}
\end{equation*}
$$

From the Definition 1 , (9) implies that $v_{z}(y)=v_{z_{0}}(y)$ which shows that $Y\left(C D_{0}\right)$. If $Y\left(\mathrm{CD}_{0}\right) \mathrm{Z}$, (9) holds. Rearranging (9), we obtain

$$
\begin{equation*}
u(y, z)=\frac{u\left(y^{*}, z\right)-u\left(y^{0}, z\right)}{u\left(y^{*}, z_{0}\right)-u\left(y^{0}, z_{0}\right)} u\left(y, z_{0}\right)+\frac{u\left(y^{0}, z\right) u\left(y^{*}, z_{0}\right)-u\left(y^{0}, z_{0}\right) u\left(y^{\star}, z\right)}{u\left(y^{*}, z_{0}\right)-u\left(y^{0}, z_{0}\right)} \tag{10}
\end{equation*}
$$

which shows that Y (GUI)Z.

This property shows that the convex dependence is a natural extension of generalized utility independence except for null zones.

PROPERTY 2. If $Y\left(C D_{n}\right) Z$, then there exist distinct $y_{1}, \ldots, y_{n} E Y$, and distinct $z_{0}, z_{1}, \ldots, z_{n} \varepsilon Z$ which satisfy rank $G_{n}=n$.

Proof. On the contrary, suppose rank $G_{n} \neq n$ for all distinct $y_{1}, \ldots, y_{n} \varepsilon Y$ and $z_{0}, z_{1}, \ldots, z_{n} \varepsilon Z$. Then there exist real numbers $h_{1}(1=1, \ldots, n)$ such that for all yeY, we have

$$
v_{z_{n}}(y)-v_{z_{0}}(y)=\sum_{i=1}^{n-1} h_{i}\left[v_{z_{i}}(y)-v_{z_{0}}(y)\right]
$$

which implies $Y\left(C D_{n-1}\right)$.

Ueing Property 2, we can assess the order of convex dependence [17]. For $n=1,2$, ... sequentially we test the rank condition of G_{n} for arbitrary distinct $y_{1}, \ldots, y_{n} \in Y$. Then if rank $G_{n}=n$ and rank $G_{n+1}=n$ for arbitrary distinct $y_{1}, \ldots, y_{n+1} \varepsilon Y$, we can conclude $Y\left(C D_{n}\right) Z_{\text {. }}$

It is obvious that relation between G_{n} and G^{n} is as follows $\operatorname{rank} G_{n}=\operatorname{rank} G^{n}$
for distinct $y^{1}, \ldots, y^{n} E Y$ and distinct $z^{0}, z^{1}, \ldots, z^{n-1}, z^{\star} \in Z$, because $G(y, z)$ $=u\left(y^{*}, z^{0}\right)\left[u\left(y^{*}, z\right)-u\left(y^{0}, z\right)\right]\left[v_{z}(y)-v_{z} 0(y)\right]$ from (1) and (2). Thus we immediately get the following property.

PROPERTY 3. If $Y\left(C D_{n}\right) z$, then there exist distinct $y^{1}, \ldots, y^{n} \varepsilon Y$ and distinct $z^{1}, \ldots, z^{n-1} \varepsilon Z$ which satisfy rank $G^{n}=n$.

Obviously the same property of rank condition for H^{n} holds. Property 3 guarantees that the following property holds, which shows the relation of the order of convex dependence between two attributes.

PROPERTY 4. For $n=0,1, \ldots$, if $Y\left(C D_{n}\right) Z$, then Z is at most $(n+1)$-th order convex dependent on Y.

Proof. See appendix.

A few aspects of these Properties deserve brief comment. If Y is utility independent of Z which is denoted $Y(U I) Z$, then Y is obviously convex dependent on 2; the converse is not true. The concept of convex dependence asserts that when Y is utility independent of Z, Z must be utility independent or first-order convex dependent on Y. Moreover, if Y is n-th order convex dependent on Z, then Z satisfies one of the three properties, $Z\left(C D_{n-1}\right) Y, Z\left(C D_{n}\right) Y$, or $Z\left(C D_{n+1}\right) Y$, because 1f $Z\left(C D_{m}\right) Y$ for $m<n-1$, then $Y\left(C D_{m+1}\right) Z$ at most and $m+1<n$.

PROPERTY 5. If rank $G^{n}=n$ for distinct $y^{l}, \ldots, y^{n} \varepsilon Y$ and distinct z^{l}, \ldots, $2^{n-1} \varepsilon Z$, then rank $F^{n}=n$.

Proof. By using (2), we obtain the following relation between G^{n} and F^{n}.

$$
\left|G^{n}\right|=\left[u\left(y^{*}, z^{0}\right)\right]^{n-1}\left\{\sum_{1=1}^{n^{\star}} u\left(y^{1}, z^{0}\right) \sum_{j=1}^{n *} \tilde{F}_{j 1} f\left(y^{n}, z^{j}\right)-u\left(y^{n}, z^{0}\right)\left|F^{n}\right|\right\}
$$

where summation $1=1$ to n^{*} means $1=1,2, \ldots, n-1$, *. On the contrary, if rank $F^{n} \neq n$ for distinct $y^{1}, \ldots, y^{n-1} \varepsilon Y$ and $z^{1}, \ldots, z^{n-1} \varepsilon Z$, then,

$$
\left|F^{n}\right|=0 \text { and } \sum_{j=1}^{n^{k}} \tilde{F}_{j i}^{n} f\left(y^{n}, z^{j}\right)=0 \text { for } 1=1,2, \ldots, n
$$

because even if we transform one of $y^{1}, y^{2}, \ldots, y^{n-1}$ and y^{*} into y^{n} in F^{n}, rank $\mathrm{F}^{\mathrm{n}} \neq \mathrm{n}$ by the assumption.

3. CONVEX DECOMPOSITION THEOREMS ON TWO-ATTRIBUTE SPACE

This section uees convex dependence to establish two decomposition theorems and a corollary for two-attribute utility functions. We further discuss the relation of these results with the previous researches.

THEOREM 1. For $n=1,2, \ldots, Y\left(C D_{n}\right) Z$, if and only if

$$
\begin{equation*}
u(y, z)=u\left(y^{0}, z\right)+u\left(y, z^{0}\right)+v(y) f\left(y^{*}, z\right)+\frac{c y}{\left|G^{n}\right|} \sum_{i=1}^{n^{*}} \sum_{j=1}^{n} \tilde{G}_{j i}^{n} G\left(y, z^{1}\right) G\left(y^{j}, z\right), \tag{11}
\end{equation*}
$$

where $\quad v(y)=\frac{u\left(y, z^{0}\right)}{u\left(y^{\star}, z^{0}\right)}, c_{y}=\frac{1}{u\left(y^{*}, z^{0}\right)}$.

Proof. See appendix.

THEOREM 2. For $n=1,2, \ldots, Y\left(C D_{n}\right) Z$ and $Z\left(C D_{n}\right) Y$, if and only if

$$
\begin{align*}
u(y, z)= & u\left(y^{0}, z\right)+u\left(y, z^{0}\right)+\frac{1}{\left|F^{n}\right|} \sum_{1=1}^{n^{*}} \sum_{j=1}^{n^{*}} \tilde{F}_{1 j}^{n} f\left(y, z^{1}\right) f\left(y^{j}, z\right) \\
& +c \sum_{i=1}^{n^{*}} \sum_{j=1}^{n^{*}} \tilde{G}_{n i}^{n} \tilde{H}_{n j}^{n} G\left(y, z^{1}\right) H\left(y^{j}, z\right), \tag{12}
\end{align*}
$$

where $c=\frac{c_{y} c_{z}}{\left|G^{n} H^{n}\right|}\left[f\left(y^{n}, z^{n}\right)-\frac{1}{\left|F^{n}\right|} \sum_{i=1}^{n^{*}} \sum_{j=1}^{n^{*}} \tilde{F}_{i j}^{n} f\left(y^{n}, z^{1}\right) f\left(y^{j}, z^{n}\right)\right]$ and $c_{y}=\frac{1}{u\left(y^{*}, z^{0}\right)}, c_{z}=\frac{1}{u\left(y^{0}, z^{*}\right)}$.

Proof. See appendix.

We have obtained two main decomposition theorems which can represent a wide range of utility functions. Moreover, when the utility on the arbitrary point ($\mathrm{y}^{\mathrm{n}}, 2^{\mathrm{n}}$) has a particular value, that $1 \mathrm{i}, \mathrm{c}=0 \mathrm{in}(12)$, we can obtain one more decomposition of utility functions which does not depend on the point (y^{n}, z^{n}). This decomposition still satisfies $Y\left(C_{n}\right) Z$ and $Z\left(C D_{n}\right) Y$, so we will call this new property reduced n-th order convex dependence and denote it by $Y\left(\operatorname{RCD}_{n}\right) Z$. It is obvious that $Z\left(R_{n}\right) Y$ when $Y\left(R C D_{n}\right) Z$.

COROLLARY 1. For $n=1,2, \ldots, Y\left(R C D_{n}\right) Z$, if and only if

$$
\begin{equation*}
u(y, z)=u\left(y^{0}, z\right)+u\left(y, z^{0}\right)+\frac{1}{\left|F^{n}\right|} \sum_{i=1}^{n^{*}} \sum_{j=1}^{n^{*}} \tilde{F}_{i j}^{n} f\left(y, z^{i}\right) f\left(y^{j}, z\right) . \tag{13}
\end{equation*}
$$

We note that when $n=1$, (13) reduces to Fishburn's [6] bilateral decomposition,

$$
\begin{equation*}
u(y, z)=u\left(y^{0}, z\right)+u\left(y, z^{0}\right)+\frac{f\left(y, z^{*}\right) f\left(y^{*}, z\right)}{f\left(y^{*}, z^{*}\right)} . \tag{14}
\end{equation*}
$$

In Figure 2, we show on two scalar attributes the difference between the conditional utility functions necessary to construct the previous decomposition models and our decomposition models. By assessing utilities on the heavy shaded Ines and points, we can completely specify the utility function in the cases indicated in Figure 2. As seen from Figure 2, an advantage of the convex decomposition is that only conditional utility functions with one varying attribute need be assessed even for high-order convex dependent cases.

Figure 2 goes here

4. CONVEX DECOMPOSITION THEOREM ON N-ATTRIBUTE SPACE

There are many ways to extend the two-attribute convex decomposition theorems in Section 3 to n-attribute decompositions. In this paper, we extend Theorem 1 to n attributes in a way which might be useful in the practical situations discussed later.

We partition X into X_{i} and X_{i}, where $X_{i} \equiv X_{1} \times \ldots \times X_{i-1} \times X_{i+1} \times \ldots \times X_{n}$. When we consider $Y=X_{i}$ and $Z=X_{1}$ in Theorem 1 , all notation and definitions In the previous section are suffixed with 1 . The representation and its proof of n-attribute convex decomposition theorem requires some additional terminology and notation as shown in Farquhar [3]. First, we define the following function for $1=1, \ldots, n$,

$$
\begin{equation*}
G_{1, k_{i}}^{m} \equiv \sum_{k=1}^{m *} \tilde{G}_{1\left(k_{1}, k\right)}^{m} G_{i}\left(x_{1}, x_{i}^{k}\right), \tag{15}
\end{equation*}
$$

where $\tilde{G}_{1(j, k)}^{m}$ is (j, k)-cofactor of G_{i}^{m} and $x_{1} \varepsilon X_{1}, x_{i}^{k} \varepsilon X_{1}$. The delta operator Δ is defined as follows. Suppose $X=X_{I_{T}} \times X_{\bar{I}_{T}}$ for some $1 \leq r \leq n$ and $I_{r} \subset\{1, \ldots, n\}$. Let $y \in X_{I_{r}}$ and $a=\left\{\alpha_{i}: 1 \in I_{r}\right\}, \alpha_{i} \in\{1, \ldots, m, *$, blank $\}$.

Then delta operator Δ is defined as

$$
\begin{gather*}
u\left(x_{I_{r}}^{\Delta a}, y\right) \equiv{\underset{J C I}{C}}_{\{ }^{I_{r}}\left\{(-1)^{b} u\left(x_{1}^{a_{1}}, \ldots, x_{1_{r}}^{a_{r}}, y\right): a_{j}=1 \text { if } j \& J,\right. \\
a_{j}=0 \text { and } a_{j}=0 \text { if } j\{J\}, \tag{16}
\end{gather*}
$$

where $b=r+\sum_{j=1}^{r} a_{j}$.

We shall of ten omit attributes that are at the level x^{0}, when it will not be confusing. For instance, $u\left(x_{1}\right)=u\left(x_{1}, x_{1}{ }^{0}\right)$. The utility function is always scaled so that $u\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)=0$. From the definition of the delta operator and (1), $f_{j}\left(x_{j} \alpha_{j}, x_{j}, y\right)$ for all $j \in I_{r}, J=I_{r}-\{j\}$ are equal each other. Using the relation of $f_{i}\left(x_{i}, x_{i}\right) \equiv f_{i}\left(x_{i}^{\Delta \alpha}, x_{\bar{i}}\right)$ for $1=1, \ldots, n$, we can get the following notation

$$
\begin{equation*}
f_{I_{r}}^{\alpha}(y) \equiv f_{i}\left(x_{I_{r}}^{\Delta \alpha}, y\right) \text { for all } 1 \in I_{r} \tag{17}
\end{equation*}
$$

The coefficient function $\Delta_{\left(I_{r}, \beta\right)}(y)$ for $I_{r} \subset\{1, \ldots, n\}, \beta=\left\{\beta_{1}: i \varepsilon I_{r}\right\}$ and $B_{i} \varepsilon\{1, \ldots, *\}$ is defined as

$$
\begin{align*}
& \Delta_{\left(I_{r}, \beta\right)}(y) \equiv \sum_{J \subset I_{r}}\left\{(-1)^{b} \prod_{i \in I_{r}} u\left(x_{i}^{a_{i}}\right) f_{I_{r}}^{\beta}(y): a_{j}=\beta_{j}, \beta_{j}=* \text { and } c_{j}=0\right. \\
& \left.\quad \text { if } j \varepsilon J, a_{j}=* \text { and } c_{j}=1 \text { if } j \nmid J\right\}, \tag{18}
\end{align*}
$$

where $b=r+\sum_{j=1}^{T} c_{j}$ and $y \in X_{\bar{I}_{\mathbf{r}}}$.

The coefficient function has the relation with (2) as follows.

PROPERTY 6.
(1) $\Delta_{\left(1, \beta_{1}\right)}\left(x_{1}\right)=G_{1}\left(x_{1}^{\beta_{1}}, x_{1}\right)$ for $1=1, \ldots, n_{\text {. }}$
(11)

$$
\begin{aligned}
\Delta_{\left(I_{r}, \beta\right)}(y)= & u\left(x_{i}^{*}\right) \Delta_{(J, \beta)}\left(x_{i}^{\Delta B}, y\right)-u\left(x_{i}^{\beta_{1}}\right) \Delta_{(J, \beta)}\left(x_{i}^{\Delta_{i}^{*}}, y\right) \\
& \text { for } i \varepsilon I_{r} \text { and } J=I_{r}-\{i\} .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \Delta_{(J, \beta)}(y)= \sum_{K}\left\{(-1)^{b} G_{i}\left(x_{K}^{\Delta \beta}, y\right) \underset{j \in I_{r}}{\|} u\left(x_{j}^{\alpha_{j}}\right): \alpha_{j}=\beta_{j}, \beta_{j}=*\right. \text { and } \\
& a_{j}=0 \text { if } j \varepsilon K, \alpha_{j}=* \text { and } a_{j}=1 \text { if } j\{K\},
\end{aligned}
$$

where $b=r+\sum_{i=1}^{r} a_{i}, J=I_{r}+\{1\}, 1 \nmid I_{r}$ and $y \varepsilon X_{j}$.

Proof. (i), (ii), and (iii) are easily obtained from (2) and (18).

THEOREM 3. Suppose that for $1 \varepsilon N=\{1, \ldots, n\}$, m_{1} are nonnegative integers. For $1=1, \ldots, n, X_{i}\left(C D_{m_{i}}\right) x_{i}$ if and only if

$$
\begin{align*}
u\left(x_{1}, \ldots, x_{n}\right) & =\sum_{I}\left\{c_{I} \prod_{i \in I} v_{i}\left(x_{i}\right)\right\} \\
& +\sum_{I} \sum_{N}\left\{\prod_{i \in I} d_{i} \sum_{j=1}^{w_{1}} G_{i, j}^{m_{i}}\left(x_{i}\right)\left[\Delta(I, B)+v_{I}\left(x_{j}\right)\right]\right\} \tag{19}
\end{align*}
$$

where $V_{I}\left(X_{J}\right) \equiv \sum_{J \subset N-I}\left\{\Delta(I, B)^{\left(x_{J}^{\Delta^{*}}\right)} \underset{j \in J}{\Pi} v_{1}\left(x_{1}\right)\right\}$,

$$
\begin{aligned}
& c_{I} \equiv u\left(x_{I}^{\Delta^{\star}}\right), \\
& d_{1} \equiv \frac{1}{\left|G_{1}^{u_{1}}\right| u\left(x_{1}^{*}\right)} \text { for } 1=1, \ldots, n, \\
& B=\left\{B_{1}: 1 \varepsilon I\right\} \text { and } B_{1} \in\left\{1, \ldots, m_{1}, \star\right\}
\end{aligned}
$$

Proof. See appendix.

Decomposition form in Theorem 3 gives aide range of utility functions on n-attribute space because it is possible to allow for the various orders of convex dependence among attributes. The order of convex dependence is the number of normalized conditional utility functions which must be evaluated to construct a multiattribute utility function. Therefore, Theorem 3 provides the general decomposition form which has m_{i} conditional utility functions on each X_{1} to be evaluated. Nahas [15] discussed the order of conditional utility function on each X_{i} when utility independence holds among attributes. In this paper, we show the relation among orders of convex dependence on each X_{1}, which is one extension of Nahas' discussion. As Property 4 holds with respect to the order of convex dependence between attributes, the following property holds with respect to the order of convex dependence in Theorem 3.

PROPERTY 7. When $X_{1}\left(C D_{m_{1}}\right) X_{1}$ for $1=1, \ldots, n$, if m_{2}, \ldots, m_{n} are arbitrary orders of convex dependence, the order m_{1} must satisfy the following two inequalities.

$$
\begin{aligned}
& \text { (1) } \prod_{i=2}^{n}\left(w_{1}+2\right) \geq m_{1}+1 \\
& \text { (11) } m_{1}+2 \geq \max \left\{a_{2}, \ldots, a_{n}\right\},
\end{aligned}
$$

where $a_{i}=\left(m_{1}+1\right) / n$
$\underset{\substack{j=2 \\ j=1}}{ }\left(m_{j}+2\right), 1=2, \ldots, n_{0}$
$j \neq 1$

Proof: (i) When m2,, ma are arbitrarily given, we can obtain the upperbound of m_{1} by the following term in (19).

$$
\begin{equation*}
\prod_{i=1}^{n} d_{i} \sum_{j=1}^{m} G_{i, j}^{m_{1}}\left(x_{i}\right) \Delta(N, \beta) \tag{20}
\end{equation*}
$$

The upperbound of m_{1} is determined by the number of normalized conditional utility function on X_{1} included in (20). Then, it is sufficient to take into account the following term in (20).

$$
\begin{equation*}
d_{1} \sum_{j=1}^{m} G_{1, j}^{m_{1}}\left(x_{1}\right) \Delta_{(N, B)} \tag{21}
\end{equation*}
$$

By Property 6 it is obvious that (21) is constructed by the inear combination of the following terms.

$$
\begin{equation*}
d_{i} \sum_{j=1}^{m_{1}} G_{1, j}^{m_{1}}\left(x_{1}\right) G_{1}\left(x_{1}^{j}, x_{2}^{\beta_{2}}, \ldots, x_{n}^{\beta_{n}}\right) \tag{22}
\end{equation*}
$$

where $\beta_{1} \varepsilon\left\{0,1, \ldots, m_{1}, *\right\}, 1=2, \ldots, n$.
Substituting (15) into (22), we have

$$
\begin{equation*}
d_{1} \sum_{j=1}^{m i} G_{1}\left(x_{1}, x_{1}^{-j}\right) \sum_{k=1}^{m} \tilde{G}_{1}^{m} l(k, j) G_{1}\left(x_{1}^{k}, x_{2}^{B_{2}}, \ldots, x_{n}^{B_{n}}\right) \tag{23}
\end{equation*}
$$

Setting $x_{1}^{-j}=\left(x_{2}^{\beta_{2}}, \ldots, x_{n}^{\beta_{n}}\right)$ in (23), we have

$$
\begin{equation*}
\frac{1}{u\left(x_{1}^{*}\right)} G_{1}\left(x_{1}, x_{2}^{\beta_{2}}, \ldots, x_{n}^{\beta_{n}}\right) \tag{24}
\end{equation*}
$$

Then, the decomposition (19) includes $G_{1}\left(x_{1}, x_{2}^{\beta_{2}}, \ldots, x_{n}^{\beta_{n}}\right), \beta_{1} \varepsilon\left\{0,1, \ldots, m_{1}, *\right\}$, $1=1, \ldots, n$, that is, $\prod_{i=2}^{n}\left(m_{1}+2\right)$ normalized conditional utility functions at most.
(1i) When $X_{1}\left(C D_{m_{1}}\right) X_{1}, 1=1, \ldots, n$, the orders m_{1}, \ldots, m_{n} metisty the following inequalities by (i).

$$
\prod_{\substack{j=1 \\ j \neq 1}}^{n}\left(m_{j}+2\right) \geq m_{1}+1, \quad 1=1, \ldots, n
$$

Then for wi we have

$$
m_{1}+2 \geq \max \left\{a_{2}, \ldots, a_{n}\right\},
$$

where $a_{1}=\left(m_{1}+1\right) / n$

$$
\prod_{\substack{j=2 \\ j \neq 1}}\left(m_{j}+2\right), \quad 1=2, \ldots, n
$$

In some decision problems, utility independence may not hold in one or more attributes. In such cases the convex decomposition theorem may give a representation of the utility function. We illustrate how the convex decomposition theorem decomposes the utility function when $n=3$.

When $m_{1}=m_{2}=m_{3}=0$ in (19), we have obviousiy

$$
u\left(x_{1}, x_{2}, x_{3}\right)=\sum_{I} \sum_{\{1,2,3\}}{ }^{c} \prod_{1 \in I} v_{1}\left(x_{1}\right) .
$$

This decomposition is a multilinear utility function [11].
When \mathbf{m}_{2} and m_{3} are arbitrary orders of convex dependence, we obtain the following inequalities from Property 7.

$$
\begin{align*}
& \left(m_{2}+2\right)\left(m_{3}+2\right) \geq m_{1}+1 \tag{25}\\
& m_{1}+2 \geq \max \left\{\frac{m_{2}+1}{m_{3}+2}, \frac{m_{3}+1}{m_{2}+2}\right\} \tag{26}
\end{align*}
$$

When $m_{2}=m_{3}=0$ in (25), that is, $X_{2}\left(C D_{0}\right) X_{1} X_{3}$ and $X_{3}\left(C D_{0}\right) X_{1} X_{2}, X_{1}$ is at most third-order convex dependent on $X_{2} X_{3}$. In this case the decomposition form in Theorem 3 is reduced to

$$
\begin{align*}
u\left(x_{1}, x_{2}, x_{3}\right) & =\sum_{I} \sum_{\{1,2,3\}^{c_{1}} \frac{n}{i \in I} v_{1}\left(x_{1}\right)} \\
& +d_{1} \sum_{i=1}^{1} G_{1,1}^{m_{1}}\left(x_{1}\right)\left[G_{1}\left(x_{1}^{1}, x_{2}^{*}, x_{3}^{0}\right) v_{2}\left(x_{2}\right)\right. \\
& \left.+G_{1}\left(x_{1}^{1}, x_{2}^{0}, x_{3}^{*}\right) v_{3}\left(x_{3}\right)+G_{1}\left(x_{1}^{1}, x_{2}^{*}, x_{3}^{*}\right) v_{3}\left(x_{3}\right)\right] . \tag{27}
\end{align*}
$$

Therefore, we can construct (27) by evaluating one conditional utility function on X_{2} and X_{3}, m_{1} conditional utility functions on X_{1}, where $m_{1}=1$, 2, or 3 , and constants. When $m_{1}=3$, that $18, X_{1}\left(C D_{3}\right) X_{2} X_{3}$, (27) is reduced to

$$
\begin{align*}
u\left(x_{1}, x_{2}, x_{3}\right) & =c_{1} v_{1}\left(x_{1}\right)+u\left(x_{1}, x_{2}, x_{3}^{*}\right) v_{2}\left(x_{2}\right) \\
& +u\left(x_{1}, x_{2}^{0}, x_{3}\right) v_{3}\left(x_{3}\right)+u\left(x_{1}, x_{2}, x_{3}^{*}\right) v_{2}\left(x_{2}\right) v_{3}\left(x_{3}\right) \tag{28}
\end{align*}
$$

This decomposition form 18 the same as the one which Keeney showed in [14] and Nahas discussed in [15] when $X_{2}(U I) X_{1} X_{3}$ and $X_{3}(U I) X_{1} X_{2}$. Keeney said nothing about what property holds between X_{1} and $X_{2} X_{3}$ in this case. Convex dependence asserts that (28) holds if and only if $X_{1}\left(C D_{3}\right) X_{2} X_{3}$ as shown above. Moreover, from Property 7 (11) convex dependence allows for $X_{1}\left(C D_{2}\right) X_{2} X_{3}$ or $X_{1}\left(C D_{1}\right) X_{2} X_{3}$ which are stronger conditions than $X_{1}\left(C D_{3}\right) X_{2} X_{3}$. In these cases, we could obtain decomposition forms easily as shown in (27) where mi $=1$ and 2 are corresponding to $X_{1}\left(C D_{1}\right) X_{2} X_{3}$ and $X_{1}\left(C D_{2}\right) X_{2} X_{3}$, respectively.

5. SUMMYARY

The concept of convex dependence is introduced for decomposing multiattribute utility functions. Convex dependence is based on normalized conditional utility functions. Since the order of convex dependence can be an arbitrary finite number, many different forms can be produced from the convex decomposition theorems. We have shown that the convex decompositions include the additive, multiplicative, multilinear and bilateral decompositions as spectal cases. A major advantage of the convex decompositions is that only aingle-attribute utility functions are used in the utility representations even for high-order convex dependent cases. Therefore, it is relatively easy
to assess the utility functions. Moreover, in the multiattribute case the orders of convex dependence among the attributes have much freedom even if the restrictions in Property 7 are taken into account. So even in the practical situations where utility independence, which is the 0 -th order convex dependence, holds for all but one or two the attributes, the convex deconpositions produce an appropriate representation.

Our approach is an approximation method based upon the exact grid model defined by Fishburn [7]. We note that Fishburn and Farquhar [8] recently established an atiomatic approach for a general exact grid model and provided a procedure for selecting a basis of normalized conditional utility functions.

ACKNOWLEDGEMENT

The authors wish to express their sincere thanks to Professor Peter H. Farquhar for his extensive comments on earlier drafts of this paper. This research was supported in part by the Ministry of Education, Japan, for the science research program of "Environmental Science" under Grant No. 303066, 403066, and 503066; by the Toyota Foundation, Tokyo, under Grant No. 77-1-203, and by the Office of Naval Research, Contract N00014-80-C-0897, Task *NR-277-258, with the University of California, Davis.

APPENDIX

To represent simply an arbitrary linear combination of normalized conditional utility functions, we define the following notation

$$
C\left[v_{z_{1}}(y), \ldots, v_{z_{n}}(y)\right] \equiv \sum_{i=1}^{m} \theta_{i} v_{z_{i}}(y),
$$

where $\sum_{i=1}^{m} \theta_{i}=1$.
By using this notation, the following equations hold.

$$
\begin{align*}
f(y, z) & =f\left(y^{*}, z\right) C\left[v_{z} 0(y), v_{z}(y)\right], \tag{29a}\\
& =f\left(y, z^{*}\right) C\left[v_{y} 0(z), v_{y}(z)\right], \tag{29b}\\
G(y, z) & =G\left(y, z^{*}\right) C\left[v_{y} 0(z), v_{y}(z), v_{y^{*}}(z)\right], \tag{29c}\\
H(y, z) & =H\left(y^{*}, z\right) C\left[v_{z} 0(y), v_{z}(y), v_{z} *(y)\right] . \tag{29d}
\end{align*}
$$

Proof of Property 4: When $n=0$, if $Y\left(C D_{0}\right) Z$, then $v_{z}(y)=v_{2} 0(y)$. Using (1), we have

$$
\begin{equation*}
f(y, z)=v_{z} 0(y) f\left(y^{*}, z\right) . \tag{30}
\end{equation*}
$$

Substituting (29b) into (30), we have

$$
C\left[v_{y}(z), v_{y} 0(z)\right]=C\left[v_{y} *(z), v_{y} 0(z)\right]
$$

This concludes $Z\left(C D_{1}\right) Y$ at most.

When $n \geq 1$, if $Y\left(C D_{n}\right) z$, then for distinct $z^{0}, \varepsilon^{1}, \ldots, z^{n-1}, \varepsilon^{*} \varepsilon Z$

$$
\begin{align*}
v_{z}(y) & =\left[1-\sum_{i=1}^{n^{*}} g_{i}(z)\right] v_{z} 0(y)+\sum_{i=1}^{n^{*}} g_{i}(z) v_{z^{1}}(y) \\
& =\sum_{i=1}^{n^{*}}\left[v_{z^{i}}(y)-v_{z} 0(y)\right] g_{i}(z)+v_{2} 0(y) . \tag{31}
\end{align*}
$$

By Property 2 we can select distinct $y^{1}, \ldots, y^{n} \varepsilon Y$ and $2^{1}, \ldots, 2^{n-1} \varepsilon 2$ which make G_{n} a nonsingular matrix. Then, substituting these $y^{1}, \ldots, y^{n} E Y$ into (31), we have the following matrix equation,

$$
\begin{equation*}
\mathrm{G}_{\mathrm{n}} \underline{g}=\underline{v}, \tag{32}
\end{equation*}
$$

where g and \underline{v} are column vectors and these 1 -th elements are $g_{i}(z)$ and $v_{z}\left(y^{i}\right)$ $v_{z^{0}}\left(y^{i}\right)$, respectively.

Using $G(y, z)$, (32) is transformed into

$$
\begin{equation*}
\overline{\mathrm{G}} \underline{g}=\underline{u}, \tag{33}
\end{equation*}
$$

where $u\left(y^{*} z\right) \neq u\left(y^{0}, z\right)$ for all $z \varepsilon Z$ from the previous assumption, and $(\bar{G})_{i j}=$ $G\left(y^{1}, z^{j}\right) /\left[u\left(y^{*}, z^{1}\right)-u\left(y^{0}, z^{j}\right)\right]$, where $z^{n}=z^{*}$, and \underline{u} is a column vector and its 1 -th element is $G\left(y^{1}, z\right) /\left[u\left(y^{*}, z\right)-u\left(y^{0}, z\right)\right]$.

Solving (33) for $g_{1}(z)(i=1, \ldots, n)$ and substituting these $g_{1}(z)$ into (31), we obtain

$$
\begin{equation*}
G(y, z)=\frac{1}{\left|G^{n}\right|} \sum_{i=1}^{n^{*}} G\left(y, z^{i}\right) \sum_{j=1}^{n}{\underset{G}{j i}}_{n}^{G}\left(y^{j}, z\right), \tag{34}
\end{equation*}
$$

where G^{n} is nonsingular by Property 3.
By (29c) we have

$$
\begin{align*}
& G\left(y, z^{*}\right) C\left[v_{y} 0(z), v_{y}(z), v_{y^{*}}(z)\right] \\
& =\frac{1}{\left|G^{n}\right|} \sum_{i=1}^{n^{*}} \tilde{G}\left(y, z^{i}\right) \sum_{j=1}^{n} \tilde{G}_{j 1}^{n} G\left(y^{j}, z^{*}\right) C\left[v_{y} 0(z), v_{y j}(z), v_{y^{*}}(z)\right] . \tag{35}
\end{align*}
$$

Suming up all the coefficients of $C\left[v_{y} 0(z), v_{y j}(z), v_{y^{*}}(z)\right]$ for $j=1,2, \ldots, n$ In the right hand side of (35) yields

$$
\frac{1}{\left|G^{n}\right|} \sum_{i=1}^{n^{*}} G\left(y, z^{1}\right) \sum_{j=1}^{n} \tilde{G}_{j i}^{n} G\left(y^{j}, z^{*}\right)=G\left(y, z^{*}\right),
$$

which iaplies

$$
v_{y}(z)=C\left[v_{y} 0(z), v_{y^{1}}(z), \ldots, v_{y^{n}}(z), v_{y^{*}} \star(z)\right]
$$

This concludes $Z\left(C D_{n+1}\right) Y$ at most.
Proof of Theorem 1: Suppose $Y\left(C D_{n}\right)$, and (34) holds. Substituting (2) into the left hand side of (34) and solving it with respect to $u(y, z)$, then we have (11).

Conversely, suppose that (11) holds. By definition (2), it is obvious that $Y\left(C D_{n}\right) Z$.

Proof of Theorem 2: Suppose $Y\left(C D_{n}\right) Z$ and $Z\left(C D_{n}\right) Y$. Using Theorem 1, we get two equations,

$$
\begin{equation*}
u(y, z)=u\left(y^{0}, z\right)+u\left(y, z^{0}\right)+v(y) f\left(y^{\star}, z\right)+c_{y} \sum_{1=1}^{n} G_{1}^{n}(y) G\left(y^{1}, z\right), \tag{36a}
\end{equation*}
$$

and

$$
\begin{equation*}
u(y, z)=u\left(y^{0}, z\right)+u\left(y, z^{0}\right)+v(z) f\left(y, z^{*}\right)+c_{z} \sum_{i=1}^{n} H_{i}^{n}(z) H\left(y, z^{1}\right), \tag{36b}
\end{equation*}
$$

where

$$
G_{i}^{n}(y) \equiv \frac{1}{\left|G^{n}\right|} \sum_{k=1}^{n^{k}} \tilde{G}_{i k}^{n} G\left(y, z^{k}\right) \text { and } H_{i}^{n}(z) \equiv \frac{1}{\left|H^{n}\right|} \sum_{k=1}^{n^{k}} \tilde{H}_{i k}^{n} H\left(y^{k}, z\right)
$$

Substituting (36b) into $f\left(y^{\alpha}, z\right)$ for $\alpha \varepsilon\{1,2, \ldots, n, *\}$, we have

$$
\begin{equation*}
f\left(y^{\alpha}, z\right)=v(z) f\left(y^{\alpha}, z^{*}\right)+c_{z} H\left(y^{\alpha}, z\right), \tag{37}
\end{equation*}
$$

where we use $v\left(z^{0}\right)=0, H\left(y, z^{0}\right)=0$ and $H(y, z)=\sum_{i=1}^{n} H_{i}^{n}(z) H\left(y, z^{1}\right)$.
Substituting (36b) into $G\left(y^{\alpha}, z\right)$, we have

$$
\begin{equation*}
G\left(y^{\alpha}, z\right)=v(z) G\left(y^{\alpha}, z^{\star}\right)+c_{z} \sum_{i=1}^{n} H_{1}^{n}(z) F\left(y^{\alpha}, z^{i}\right) . \tag{38}
\end{equation*}
$$

Substituting (37) and (38) into (36a), and using (2) and (3), we have

$$
\begin{align*}
u(y, z) & =u\left(y^{0}, z\right)+u\left(y, z^{0}\right)+v(y) f\left(y^{*}, z\right)+v(z) f\left(y, z^{*}\right) \\
& -v(y) v(z) f\left(y^{*}, z^{\star}\right)+c_{y} c_{z} \sum_{i=1}^{n} \sum_{j=1}^{n} G_{i}^{n}(y) H_{j}^{n}(z) F\left(y^{i}, z^{j}\right) . \tag{39}
\end{align*}
$$

We can assume that F^{n} is a nonsingular matrix because Property 5 holds. Considering next equation and transforming it, we obtain

$$
\begin{align*}
& v(y) f\left(y^{\star}, z\right)+v(z) f\left(y, z^{\star}\right)-v(y) v(z) f\left(y^{*}, z^{*}\right) \\
&=\left|F^{n}\right|^{-1} \sum_{1=1}^{n^{*}} \sum_{j=1}^{n^{*}} \widetilde{F}_{i j}^{n}\left[v(y) f\left(y^{*}, z^{1}\right) f\left(y^{j}, z\right)\right. \\
&\left.+v(z) f\left(y^{j}, z^{*}\right) f\left(y, z^{i}\right)-v(y) v(z) f\left(y^{j}, z^{*}\right) f\left(y^{*}, z^{1}\right)\right] \tag{40}
\end{align*}
$$

By definition (2) and (3), the following relation holds.

$$
\begin{align*}
& v(y) f\left(y^{*},{ }^{i}\right) f\left(y^{j}, z\right)+v(z) f\left(y^{j}, z^{*}\right) f\left(y, z^{1}\right)-v(y) v(z) f\left(y^{\star}, z^{i}\right) f\left(y^{j}, z^{*}\right) \\
& =f\left(y, z^{i}\right) f\left(y^{j}, z\right)-c_{v} c_{z} G\left(y, z^{i}\right) H\left(y^{j}, z\right) \tag{41}
\end{align*}
$$

Substituting (40) and (41) into (39), we obtain

$$
\begin{align*}
& f(y, z)= \frac{1}{\left|F^{n}\right|} \sum_{i=1}^{n^{*}} \sum_{j=1}^{n^{*}} \tilde{F}_{1 j}^{n}\left[f\left(y, z^{1}\right) f\left(y^{j}, z\right)-c_{y} c_{z} G\left(y, z^{1}\right) H\left(y^{j}, z\right)\right] \\
&+c_{y} c_{z} \sum_{i=1}^{n} \sum_{j=1}^{n} G_{i}^{n}(y) H_{j}^{n}(z) F\left(y^{1}, z^{j}\right), \tag{42a}\\
& f(y, z)= \frac{1}{\left|F^{n}\right|} \sum_{i=1}^{n^{*}} \sum_{j=1}^{n^{*}} \tilde{F}_{1 j}^{n} f\left(y, z^{1}\right) f\left(y^{j}, z\right)+ \\
& c_{y} c_{z} \sum_{i=1}^{n^{*}} \sum_{j=1}^{n^{*}}\left[\frac{1}{\left|G^{n} y^{n}\right|} \sum_{k=1}^{n} \sum_{r=1}^{n} \tilde{G}_{k i}^{n} \tilde{H}_{r j}^{n} F\left(y^{k}, z^{r}\right)-\frac{\tilde{F}_{i j}^{n}}{\left|F^{n}\right|}\right] G\left(y, z^{1}\right) H\left(y^{j}, z\right) . \tag{42b}
\end{align*}
$$

In (42a), setting $y=y^{p}, z=z q$ for $p, q \varepsilon\{1, \ldots, n\}$, and solving it with respect to $c_{y} c_{z} F(y P, z q)$, and then substituting it into the following

$$
\begin{align*}
& \frac{c_{y} c_{z}}{\left|G^{n} H^{n}\right|} \sum_{k=1}^{n} \sum_{r=1}^{n} \tilde{G}_{k i}^{n} \tilde{H}_{r j}^{n} F\left(y^{k}, z^{r}\right)-\frac{F_{1 j}^{n}}{\left|F^{n}\right|} c_{y} c_{z} \\
& =\frac{\tilde{G}_{n i}^{n} \tilde{H}_{n j}^{n}}{\left|F^{n} G^{n} H^{n}\right|}\left[\left|F^{n}\right| f\left(y^{n}, z^{n}\right)-\sum_{p=1}^{n^{n}} \sum_{q=1}^{n^{k}} \tilde{F}_{q P}^{n} f\left(y^{n}, z^{q}\right) f\left(y^{P}, z^{n}\right)\right], \tag{43}
\end{align*}
$$

where we use the following relations

$$
\begin{aligned}
& \sum_{p=1}^{n^{*}} \sum_{q=1}^{n^{*}} \tilde{F}_{q p}^{n} f\left(y^{k}, z^{q}\right) f\left(y^{p}, z^{r}\right)=\left|F^{n}\right| \sum_{q=1}^{n^{*}} \delta \delta_{r q} f\left(y^{k}, z^{q}\right), \\
& \sum_{k=1}^{n} \tilde{G}_{k 1}^{n} G\left(y^{k}, z^{q}\right)=\delta_{i q}\left|G^{n}\right|, \text { and } \sum_{r=1}^{n} \tilde{H}_{r j}^{n} H\left(y^{p}, z^{r}\right)=\delta_{j p}\left|H^{n}\right|,
\end{aligned}
$$

where $\delta_{1 j}$ denotes the Kronecker's delta.

Substituting (43) into (42b), then we have (12). Therefore, sufficient condition is proved.

Conversely, suppose that (12) holds, then we assume G^{n}, H^{n}, and F^{n} are nonsingular matrices. Substituting (3) and (29a) into (12), we have

$$
\begin{align*}
& f\left(y, z^{*}\right) C\left[v_{y} 0(z), v_{y}(z)\right] \\
&=\frac{1}{\left|F^{n}\right|} \sum_{i=1}^{n^{*}} \sum_{j=1}^{n^{*}} \tilde{F}_{i j}^{n} f\left(y, z^{1}\right) f\left(y^{j}, z\right) c\left[v_{y} 0(z), v_{y j} f(z)\right] \\
&+c \sum_{1=1}^{n^{*}} \sum_{j=1}^{n^{*}} \tilde{G}_{n 1}^{n} \tilde{H}_{n j}^{n} G\left(y, z^{i}\right) \frac{v_{y j}(z)-v_{y y^{\prime}}(z)}{\left.u\left(y^{0}, z^{*}\right)\left[u\left(y^{1}, z^{k}\right)-z, y^{i}, z^{0}\right)\right]} . \tag{44}
\end{align*}
$$

Summing up the coefficients of $C\left[v_{y} 0(z), v_{y j}(z)\right], v_{y j}(z)$ for $j=0,1,2, \ldots$, n, * and $v_{y} 0(z)$ of the right hand side of (44), we have $f\left(y, z^{*}\right)$. Then, we conclude $Z\left(C D_{n}\right) Y$, and the same procedure for Y concludes $Y\left(C D_{n}\right) Z$.

Proof of Theorem 3: We can prove this theorem in the same way as Farquhar [3]. If $X_{1}\left(C D_{m_{1}}\right) X_{-1}$ for $1=1, \ldots, n$, then by Theorem 1, (15) and (18) the following equation holds.

$$
\begin{align*}
u\left(x_{1}, \ldots,\right. & \left.x_{n}\right)=u\left(x_{1}\right)+u\left(x_{1}, \ldots, x_{i-1}, x_{1+1}, \ldots, x_{n}\right) \\
& +v_{i}\left(x_{1}\right) f_{i}\left(x_{1}, \ldots, x_{1-1}, x_{i}^{\Delta_{k}^{*}}, x_{i+1}, \ldots, x_{n}\right) \\
& +d_{i} \sum_{j=1}^{w_{1}} G_{i, j}^{\mathbf{m}_{1}}\left(x_{i}\right) \Delta\left(1, \beta_{i}\right)\left(x_{1}, \ldots, x_{i-1}, x_{1+1}, \ldots, x_{n}\right) \tag{45}
\end{align*}
$$

If $1=1$ in (45), then we have

$$
\begin{align*}
u\left(x_{1}, \ldots, x_{n}\right)= & u\left(x_{1}\right)+u\left(x_{2}, \ldots, x_{n}\right)+v_{1}\left(x_{1}\right) f_{1}\left(x_{1}^{\Delta *}, x_{2}, \ldots, x_{n}\right) \\
& +d_{1} \sum_{j=1}^{m_{1}} G_{1, j}^{m_{1}}\left(x_{1}\right) \Delta\left(1, \beta_{1}\right)\left(x_{2}, \ldots, x_{n}\right) . \tag{46}
\end{align*}
$$

If $i=2$ in (45), then we have

$$
\begin{align*}
& u\left(x_{1}, \ldots, x_{n}\right)=u\left(x_{2}\right)+u\left(x_{1}, x_{3}, \ldots, x_{n}\right)+v_{2}\left(x_{2}\right) f_{2}\left(x_{1}, x_{2}^{\Delta *}, x_{3}, \ldots, x_{n}\right) \\
&+d_{2} \sum_{j=1}^{\mathrm{m}^{2}} G_{2, j}^{m_{2}}\left(x_{2}\right) \Delta \tag{47}\\
&\left(2, \beta_{2}\right)\left(x_{1}, x_{3}, \ldots, x_{n}\right)
\end{align*}
$$

We consider to substitute (46) into (47). First, we substitute (46) into the following

$$
\begin{align*}
f_{2}\left(x_{1},\right. & \left.x_{2}^{\Delta c}, x_{3}, \ldots, x_{n}\right)=u\left(x_{1}, x_{2}^{\Delta c}, x_{3}, \ldots, x_{n}\right)-u\left(x_{2}\right) \\
= & f_{2}\left(x_{1}^{0}, x_{2}^{\Delta c} x_{3}, \ldots, x_{n}\right)+v_{1}\left(x_{1}\right) f_{k}^{a}\left(x_{3}, \ldots, x_{n}\right) \\
& +d_{1} \sum_{j \text { ni: }}^{m_{1}} G_{1, j}^{m_{1}}\left(x_{1}\right) \Delta\left(1, \beta_{1}\right)\left(x_{2}^{\Delta c} x_{3}, \ldots, x_{n}\right), \tag{48}
\end{align*}
$$

where $c \varepsilon\left\{0,1, \ldots, m_{2}, \star\right\}, K=\{1,2\}, a=\left\{a_{1}, a_{2}\right\}, a_{1}=*, a_{2}=c$ and we use the relation (17).

Secondly, we substitute (48) into the following

$$
\begin{align*}
& \Delta\left(2, \beta_{2}\right)\left(x_{1}, x_{3}, \ldots, x_{n}\right) \\
& \quad=\Delta_{\left(2, \beta_{2}\right)}\left(x_{1}^{0}, x_{3}, \ldots, x_{n}\right)+v_{1}\left(x_{1}\right) \Delta_{\left(2, \beta_{2}\right)}\left(x_{1}^{\Delta *}, x_{3}, \ldots, x_{n}\right) \\
& \quad+d_{1} \sum_{j=1}^{m} G_{1, j}^{m_{1}}\left(x_{1}\right) \Delta(x, \beta)\left(x_{3}, \ldots, x_{n}\right), \tag{49}
\end{align*}
$$

where $K=\{1,2\}$, and $B=\left\{B_{1}, B_{2}\right\}$.

From (46) we obtain the following

$$
\begin{align*}
& u\left(x_{1}, x_{3} \ldots, x_{n}\right)=u\left(x_{1}\right)+u\left(x_{3}, \ldots, x_{n}\right)+v_{1}\left(x_{1}\right) f_{1}\left(x_{1}, x_{2}^{0}, x_{3}, \ldots, x_{n}\right) \\
&+d_{1} \sum_{j=1}^{m_{1}} G_{1, j}^{m_{1}}\left(x_{1}\right) \Delta\left(1, \beta_{1}\right)\left(x_{2}^{0}, x_{3}, \ldots, x_{n}\right) \tag{50}
\end{align*}
$$

Substituting (48), (49), and (50) into (47), we have

$$
\begin{aligned}
& u\left(x_{1}, \ldots, x_{n}\right)=u\left(x_{1}\right)+u\left(x_{2}\right)+u\left(x_{3}, \ldots, x_{n}\right) \\
& +v_{1}\left(x_{1}\right) f_{1}\left(x_{1}^{\Delta^{*}}, x_{2}^{0}, x_{3}, \ldots, x_{n}\right) \\
& +v_{2}\left(x_{2}\right) f_{2}\left(x_{1}^{0}, x_{2}^{\Delta^{*}}, x_{3}, \ldots, x_{n}\right) \\
& +v_{1}\left(x_{1}\right) v_{2}\left(x_{2}\right) f_{K}^{a}\left(x_{3}, \ldots, x_{n}\right) \\
& +d_{1} \sum_{j=1}^{m_{1}} G_{1, j}^{m_{1}}\left(x_{1}\right)\left\{\Delta\left(1, \beta_{1}\right)^{\left.\left(x_{2}^{0}, x_{3}, \ldots, x_{n}\right)+v_{2}\left(x_{2}\right) \Delta_{\left(1, \beta_{1}\right)}\left(x_{2}^{\Delta^{*}}, x_{3}, \ldots, x_{n}\right)\right\}}\right. \\
& +d_{2} \sum_{j=1}^{m_{2}} G_{2, j}^{m_{2}}\left(x_{2}\right)\left\{\Delta\left(2, \beta_{2}\right)\left(x_{1}^{0}, x_{3}, \ldots, x_{n}\right)+v_{1}\left(x_{1}\right) \Delta_{\left(2, \beta_{2}\right)}\left(x_{1}^{\Delta^{*}}, x_{3}, \ldots, x_{n}\right)\right\} \\
& +d_{1} d_{2} \sum_{j=1}^{m_{1}} \sum_{k=1}^{m_{2}} G_{1, j}^{m_{1}}\left(x_{1}\right) G_{2, k}^{m_{2}}\left(x_{2}\right) \Delta_{(K, \beta)}\left(x_{3}, \ldots, x_{n}\right),
\end{aligned}
$$

where $K=\{1,2\}, a=\left\{a_{1}, a_{2}\right\}, a_{1}=*$, and $a_{2}=*$.

This procedure is repeated for steps $1=1, \ldots . n^{\prime}$. Hence, we have (19) by using Property 6 and the following relation

$$
f_{I_{r}}^{a}=u\left(x_{I}^{\Delta_{r}^{*}}\right) \text { and } u\left(x_{1}\right)=u\left(x_{i}^{\Delta^{*}}\right) v_{i}\left(x_{1}\right) \text { for } 1=1, \ldots, n
$$

where $I_{r}=\left\{1_{1}, \ldots, i_{r}\right\} \subset N, a=\left\{a_{1}, \ldots, a_{r}\right\}$ and $a_{1}=*$ for all 1.

Conversely, if (19) holds, it is evidenly that $X_{1}\left(C D_{m_{1}}\right) X_{1}$ for $1=1, \ldots, n$ by (29) and the property of convex combination.

REFERENCES

1. Bell, D.E. (1979). Consistent assessment procedure using conditional utility functions. Operations Research, 27, 1054-1066.
2. Bell, D.E. (1979). Multiattribute utility functions: Decompositions using interpolation. Management Science, 25, 744-753.
3. Farquhar, P.H. (1975). A fractional hypercube decomposition theorem for multiattribute utility functions. operations Research, 23, 941-967.
4. Farquhar, P.H. (1976). Pyramid and semicube decompositions of multiattribute utility functions. Operations Research, 24, 256-271.
5. Fishburn, P.C. (1965). Independence in utility theory with whole product sets. Operations Research, 13, 28-45.
6. Fishburn, P.C. (1974). von Neumann-Morgenstern utility functions on two attributes. Operations Research, 22, 35-45.
7. Fishburn, P.C. (1977). Approximations of two-attribute utility functions. Mathematice of Operations Research, 2, 30-44.
8. Fishburn, P.C. and P. F. Farquhar (1981). Finite-degree utility independence. Working Paper 81-3, Graduate School of Administration, University of California, Davis, California. To appear in Mathematics of Operations Research.
9. Fishburn, P.C. and R.L. Keeney (1974). Seven independence concepts and continuous multiattribute utility functions. Journal of Mathematical Peychology, 11, 294-327.
10. Fishburn, P.C. and R.L. Keeney (1975). Generalized utility independence and some implications. Operations Research, 23, 928-940.
11. Keeney, R.L. (1971). Utility independence and preferences for multiattributed consequences. Operations Research, 19, 875-893.
12. Keeney, R.L. (1972). Utility functions for multiattributed consequences. Management Science, 18, 276-287.
13. Keeney, R.L. (1974). Multiplicative utility functions. Operations Research, 22, 22-34.
14. Reeney, R.L. and A. Raiffa (1976). Decisions with Multiple Objectives: Preferences and Value Tradeoffs. John Wiley and Sons, New York.
15. Nahas, K.H. (1977). Preference modeling of utility surfaces. Unpublished doctoral dissertation, Departwent of Engineering-Economic Systems, Stanford University, Stanford, California.
16. Pollak, R.A. (1967). Additive von Neumann-Morgenstern utility functions. Econometrica, 35, 485-494.
17. Tamura, H. and Y. Nakamura (1978). Constructing a two-attribute utility function for pollution and consumption based on a new concept of convex dependence. In H. Myoken (Ed.), Information, Decision and Control in Dynamic Socio-Economics, pp. 381-412. Bunshindo, Tokyo, Japan.
18. Von Neumann, J. and O. Morgenstern (1944). Theory of Games and Economic Behavior. 2nd Ed., Princeton University Press, Princeton, New Jersey, 1947; 3rd Ed., John Wiley and Sons, New York, 1953.

(b) $\quad Y\left(C D_{1}\right) Z$

$$
v_{z}(y)=(2-g(z)) v_{z_{0}}(y)+g(z) v_{z_{1}}(y) \text { for all } 2 \in Z
$$

Figure 1. The relations among normalized conditional utility functione when the convex dependence holds.

ONR DISTRIBUTION LIST

Mr. J.R. Simpson, Scientific Officer Mathematics Group, Code 411-MA Office of Naval Research 800 N. Quincy Street Arlington, VA 22217

Dr. Stuart Brodsky, Group Leader Mathematics Group, Code 411-MA Office of Naval Research 800 N. Quincy Street Arlington, VA 22217

Dr. Martin A. Tolcott, Director Engineering Psychology Programs Office of Naval Research 800 N. Quincy Street Arlington, VA 22217

Mr. Christal Grisham ONR Resident Representative University of California 239 Campbell Hall
Berkeley, CA 94720
Defense Documentation Center
Cameron Station, Building 5
Alexandria, VA 22314
Naval Research Laboratory
Code 2627
Washington, DC 20375
Office of Naval Research -
Branch Office
1030 East Green Street
Pasadena, CA 91106
Professor Kenneth J. Arrow
Department of Economics
Stanford University
Stanford, CA 94305
Professor F. Hutton Barron School of Business 311 Summerfield Hall University of Kansas Lawrence, Ransas 66045

Professor David E. Bell
Grad. School of Business Administration Harvard University
Boston, MA 02163
Professor Samuel Bodily
The Darden School
University of Virginia
P.O. Box 6550

Charlottesville, VA 22906
Dr. Dean W. Boyd
Decision Focus, Inc.
5 Palo Alto Square, Suite 410
Palo Alto, CA 94304
Dr. Horace Brock
SRI International
Decision Analysis Group
333 Ravenswood Avenue
Menio Park, CA 94025
Dr. Rex V. Brown
Decision Science Consortium
7700 Leesburg Pike, Suite 421
Falls Church, VA 22043
Professor Derek W. Bunn
Dept. of Engineering Science
University of Oxford
Parks Road
Oxford, OX1 3PJ
ENGLAND
Professor Soo Hong Chew
Department of Economics, B1dg. 23
College of Business \& Public Admin.
The University of Arizona
Tucson, Arizona 85721
Professor Eric K. Clemons
Dept. of Decision Sciences, CC
The Wharton School
University of Pennsylvania
Philadelphia, PA 19104

Professor Jared L. Cohon
Dept. of Geol. \& Environ. Engineering
Johns Hopkins University
Baltimore, MD 21218
Professor William W. Cooper
Graduate School of Business, 200E, BEB
University of Texas at Austin
Austin, Texas 78712
Professor Norman C. Dalkey School of Engrg \& Applied Sci. Univ. of Calif. at Los Angeles Los Angeles, CA 90024

Professor Morris H. DeGroot Department of Statistics Carnegie-Mellon University Pittsburgh, PA 15213

Professor James S. Dyer Department of Management College of Business Admin. University of Texas, Austin Austin, TX 78712

Professor Ward Edwards
Social Science Research Institute
University of Southern California
950 West Jefferson Blvd.
Los Angeles, Calif. 90007
Professor Hillel J. Einhorn
Center for Decision Research
Grad. School of Business
University of Chicago
1101 East 58th Street
Chicago, IL 60637
Professor Jehoshua Eliashberg
Marketing Department
Grad. School of Management
Northweatern University
Evanston, IL 60201
Professor Peter H. Farquhar
Graduate School of Administration University of Calif., Davis Davis, CA 95616

Professor Gregory W. Fischer Dept. of Social Sciences Carnegie-Mellon University Pittsburgh, PA 15213

Dr. Baruch Fischhoff
Decision Research
1201 Oak Street
Eugene, Oregon 97401
Dr. Peter C. Fishburn
Bell Laboratories, Rm. 2C-126
600 Mountain Avenue
Murray Hill, NJ 07974
Professor Dennis G. Fryback Health Systems Engineering Univ. of Wisconsin, Madison 1225 Observatory Drive Madison, Wisconsin 53706

Professor Paul E. Green Department of Marketing, CC The Wharton School Univ. of Pennsylvania Philadelphia, PA 19104

Professor Kenneth R. Hammond Center for Research on Judgment \& Policy Institute of Behavioral Sci. University of Colorado Campus Box 485
Boulder, CO 80309
Professor Charles M. Harvey Dept. of Mathematical Sciences Dickinson College Carlisle, PA 17013

Professor John R. Hauser Sloan School of Management Massachusetts Institute of Technology Cambridge, MA 02139

Professor John C. Hershey
Dept. of Decision Science, CC
The Wharton School
University of Pennsylvania Philadelphia, PA 19104

Professor Robin M. Hogarth Center for Decision Research
Grad. School of Business
University of Chicago
1101 East 58th Street
Chicago, IL 60637
Attn: Ms. Vicki Holcomb, Librarian Decision and Designs, Inc. P.O. Box 907

8400 Westpark Drive, Suite 600 McLean, VA 22101

Professor Charles A. Holloway
Graduate School of Business
Stanford University
Stanford, CA 94305
Professor Ronald A. Howard Dept. of Engrg. Econ. Systems
School of Engineering
Stanford University
Stanford, CA 94305
Professor George P. Huber
Grad. School of Business University of Wisconsin, Madison
1155 Observatory Drive
Madison, Wisconsin 53706
Professor Patrick Humphreys
Dept. of Psychology
Brunel University
Kingston Ln .
Uxbridge Middlesex UB8 3PH
ENGLAND
Professor Arthur P. Hurter, Jr.
Dept. of Industrial Eng/Mgt Sci.
Northwestern University
Evanston, IL 60201
Dr. Edgar M. Johnson US Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333
Professor Daniel Kahneman
Dept. of Paychology
Univ. of British Columbia
Vancouver B.C. V6T IW5
CANADA

Professor Gordon M. Kaufman
Sloan School of Management, E53-375
Massachusetts Institute of Technology
Cambridge, MA 02139
Dr. Donald L. Keefer
Gulf Management Sciences Group
Gulf Science \& Technology Co., Rm. 308
P.O. Box 1166

Pittsburgh, PA 15230
Dr. Thomas W. Keelin
Decision Focus, Inc.
5 Palo Alto Square, Suite 410
Palo Alto, CA 94304
Dr. Ralph L. Keeney
Woodward-Clyde Consultants
Three Embarcadero Center, Suite 700
San Francisco, CA 94111
L. Robin Keller

Engineering Bldg. I., Room 4173B
University of California, Los Angeles
Los Angeles, CA 90024
Dr. Craig W. Kirkwood
Woodward-Clyde Consultants
Three Embarcadero Center, Suite 700
San Francisco, CA 94111
Professor Paul R. Kleindorfer
Dept. of Decision Sciences, CC
The Wharton School
University of Pennsylvania
Philadelphia, PA 19104
Professor David M. Kreps
Graduate School of Business
Stanford University
Stanford, California 94305
Dr. Jeffrey P. Krischer
Health Services Research and Development
Veterans Administration HSR 7 D (152), Medical Center Gainesville, Florida 32602

Professor Roman Krzysztofowicz
Dept. of Civil Engineering Building 48-329
Massachusetts Inst. of Tech. Cambridge, Mass. 02139

Professor Howard C. Kunreuther Dept. of Decision Sci., CC The Wharton School
University of Pennsylvania Philadelphia, PA 19104

Professor Irving H. LaValle School of Business Admin. Tulane University
New Orleans, LA 70118
Professor Arie Y. Lewin
Graduate School of Business Administration
Duke University
Durham, NC 27706
Dr. Sarah Lichtenstein
Decision Research, Inc. 1201 Oak Street
Eugene, Oregon 97401
Professor John D.C. Little
Sloan School of Management, E53-355
Massachusetts Institute of Technology
Cambridge, MA 02139
Professor William F. Lucas
School of Operations Research and Industrial Engineering
Cornell University
Ithaca, NY 14853
Professor R. Duncan Luce
Dept. of Psychology and Social Relations
William James Hall, Rm. 930
Harvard University
Cambridge, MA 02138
Professor K.R. MacCrimmon
Paculty of Commerce \& Business Admin.
University of British Columbia
Vancouver, B.C. V6T 1W5
CANADA

Professor Mark J. Machina
Department of Economics, B-003
Univ. of Calif., San Diego
LaJolla, California 92093
Dr. James E. Matheson
Resource Planning Assoc., Inc. 3000 Sand Hill Road
Menlo Park, CA 94025
Dr. Gary McClelland
Inst. of Behavioral Science
University of Colorado
Campus Box 485
Boulder, Colorado 80309
Dr. Miley W. Merkhofer
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
Dr. Peter A. Morris
Applied Decision Analysis, Inc.
3000 San Hill Road
Menlo Park, CA 94025
Dr. Melvin R. Novick
356 Lindquist Center
University of Iowa
Iowa City, Iowa 52242
Dr. V.M. Ozernoy
Woodward-Clyde Consultants
Three Embarcadero Center, Suite 700
San Francisco, CA 94111
Professor John W. Payne
Graduate School of Business
Duke University
Durham, North Carolina 27706
Dr. Cameron Peterson
Decision \& Designs, Inc.
8400 Westpark Drive, Suite 600
P.O. Box 907

Mclean, VA 22101
Professor Stephen M. Pollock
Dept. of Industrial and
Operations Engineering
University of Michigan
Ann Arbor, MI 48109

Professor Howard Raiffa
Grad. School of Business Administration Harvard University
Boston, MA 02163
Professor Fred S. Roberts
Dept. of Mathematics
Rutgers University
New Brunswick, NJ 08903
Professor Stephen M. Robinson Dept. of Industrial Engineering
Univ. of Wisconsin, Madison
1513 University Avenue
Madison, WI 53706
Professor Andrew P. Sage
Dept. of Engrg. Sci. \& Systems University of Virginia
Charlottesville, Virginia 22901
Professor Rakesh K. Sarin Grad School of Management University of Calif. at L.A. Los Angeles, CA 90024

Professor Paul Schoenaker
Grad School of Business University of Chicago 1101 East 58th Street Chicago, IL 60637

Dr. David A. Seaver
Decision Sci. Consortium, Inc. 7700 Leesburg Pike, Suite 421 Falls Church, VA 22043

Professor Richard H. Shachtman Department of Biostatistics University of North Carolina 426 Rosenau 201H Chapel Hill, NC 27514

Professor James Shanteau Department of Psychology Kansas State University Manhattan, Kansas 66506

Professor Martin Shubik Department of Economics Yale University Box 2125, Yale Station
New Haven, CT 06520
Dr. Paul Slovic
Decision Research
1201 Oak Street
Eugene, OR 97401
Dr. Richard D. Snallwood
Applied Decision Analysis, Inc.
3000 Sand Hill Road
Menlo Park, CA 94025
Professor Richard Soland Dept. of Operations Research Schl. of Engrg \& Appl. Sci. George Washington University Washington, DC 20052

Professor Ralph E. Steuer College of Business \& Econ. University of Kentucky Lexington, KY 40506

Professor Hirayuki Tamura Dept. of Precision Engineering Osaka University Yamada-kami, Suita, Osaka 565 JAPAN

Professor Robert M. Thrall
Dept. of Mathematical Sciences
Rice University
Houston, TX 77001
Professor Amos Tversky
Department of Psychology
Stanford University
Stanford, CA 94305
Dr. Jacob W. Ulvila
Decision Science Consortiu7700 Leesburg Pike, Suite 421
Falls Church, VA 22043

Professor Detlof von Winterfeldt Social Science Research Institute University of Southern Calif. 950 West Jefferson Blvd. Los Angeles, CA 90007

Professor Thomas S. Wallsten L.L. Thurstone Psychometric Lab. Department of Psychology University of North Carolina Chapel Hill, NC 27514

Professor S.R. Watson Engineering Department Control \& Mgmt Systems Div. University of Cambridge Mill Lane
Cambridge CB2 1RX
ENGLAND
Dr. Martin O. Weber
Institut fur Wirtschaftswissenschaften Templergraben 64
D-5100 Aachen
WEST GERMANY
Professor Donald A. Wehrung Faculty of Commerce \& Bus. Adm. University of British Columbia Vancouver, B.C. V6T 1W5 CANADA

Professor Chelsea C. White
Dept. of Engrg. Sci. \& Systems
Thornton Hall
University of Virginia
Charlottesville, VA 22901
Dr. Andrzej Wierzbicki
International Institute for Applied Systems Analysis
Schloss Laxenburg
Laxenburg A-2361
AUSTRIA
Professor Robert B. Wilson
Dept. of Decision Sciences
Grad. School of Business Admin.
Stanford University
Stanford, CA 94305

Professor Robert L. Winkler Quantitative Business Analysis Graduate School of Business Indiana University
Bloomington, IN 47405
Professor Mustafa R. Yilmaz Management Science Dept. College of Business Admin. Northeastern University 360 Huntington Avenue Boston, MA 02115

Professor Po-Lung Yu
School of Business
Summerfield Hall
University of Kansas
Lawrence, KS 66045
Professor Milan Zeleny
Graduate School of Business Admin. Fordham Univ., Lincoln Center New York, NY 10023

Professor Stanley Zionts Dept. of Mgmt Sci. \& Systems School of Management State University of New York Buffalo, NY 14214

