DOI: 10.2478/v10324-012-0017-0

Analele Universității de Vest, Timișoara Seria Matematică – Informatică L, 2, (2012), 85–96

Decompositions of τ_{g} -Continuity and Continuity

Ahmad Al-Omari and Takashi Noiri

Abstract. In this paper, we introduce and investigate the notion of weakly G-locally closed sets in a topological space with a grill. Furthermore, by using these sets, we obtain new decompositions of continuity.

AMS Subject Classification (2000). 54A05; 54C10. Keywords. grill, weakly \mathcal{G} -locally closed, $\tau_{\mathcal{G}}$ -continuity, decomposition of continuity

1 Introduction

The idea of grills on a topological space was first introduced by Choquet [6]. The concept of grills has shown to be a powerful supporting and useful tool like nets and filters, for getting a deeper insight into further studying some topological notions such as proximity spaces, closure spaces and the theory of compactifications and extension problems of different kinds (see [5], [4], [18] for details). In [17], Roy and Mukherjee defined and studied a typical topology associated rather naturally to the existing topology and a grill on a given topological space. Quite recently, Hatir and Jafari [9] defined new classes of sets and obtained a new decomposition of continuity in terms of grills. In this paper, we introduce and investigate the notion of weakly *G*-locally closed sets in a topological space with a grill. Furthermore, by using these sets, we obtain new decompositions of continuity.

2 Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) denote the closure and the interior of A in (X, τ) , respectively. The power set of X will be denoted by $\mathcal{P}(X)$. A subcollection \mathcal{G} (not containing the empty set) of $\mathcal{P}(X)$ is called a grill [6] on X if \mathcal{G} satisfies the following conditions:

- 1. $A \in \mathcal{G}$ and $A \subseteq B$ implies that $B \in \mathcal{G}$,
- 2. $A, B \subseteq X$ and $A \cup B \in \mathcal{G}$ implies that $A \in \mathcal{G}$ or $B \in \mathcal{G}$.

For any point x of a topological space (X, τ) , $\tau(x)$ denotes the collection of all open neighborhoods of x.

Definition 2.1. [17] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. A mapping $\Phi : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined as follows: $\Phi(A) = \Phi_{\mathcal{G}}(A, \tau) = \{x \in X : A \cap U \in \mathcal{G} \text{ for all } U \in \tau(x)\}$ for each $A \in \mathcal{P}(X)$. The mapping Φ is called the operator associated with the grill \mathcal{G} and the topology τ .

Proposition 2.1. [17] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. Then for all $A, B \subseteq X$:

- 1. $A \subseteq B$ implies that $\Phi(A) \subseteq \Phi(B)$,
- 2. $\Phi(A \cup B) = \Phi(A) \cup \Phi(B),$
- 3. $\Phi(\Phi(A)) \subseteq \Phi(A) = Cl(\Phi(A)) \subseteq Cl(A).$

Let G be a grill on a space X. Then in [17] a map $\Psi : \mathcal{P}(X) \to \mathcal{P}(X)$ is defined by $\Psi(A) = A \cup \Phi(A)$ for all $A \in \mathcal{P}(X)$. The map Ψ satisfies a Kuratowski closure axiom. Thus a subset A of X is $\tau_{\mathfrak{g}}$ -closed if $\Psi(A) = A$ or equivalently $\Phi(A) \subseteq A$. Corresponding to a grill \mathfrak{G} on a topological space (X, τ) , there exists a unique topology $\tau_{\mathfrak{g}}$ on X given by $\tau_{\mathfrak{g}} = \{U \subseteq X :$ $\Psi(X - U) = X - U\}$, where for any $A \subseteq X$, $\Psi(A) = A \cup \Phi(A) = \tau_{\mathfrak{g}}$ -Cl(A). For any grill \mathfrak{G} on a topological space $(X, \tau), \tau \subseteq \tau_{\mathfrak{g}}$. If (X, τ) is a topological space with a grill \mathfrak{G} on X, then we call it a grill topological space and denote it by (X, τ, \mathfrak{G}) .

Corollary 2.2. [17] Let (X, τ, \mathfrak{G}) be a grill topological space and suppose $A, B \subseteq X$ with $B \notin \mathfrak{G}$. Then $\Phi(A \cup B) = \Phi(A) = \Phi(A - B)$.

Proposition 2.3. [17] Let (X, τ, \mathfrak{G}) be a grill topological space and $A \subseteq X$ with $A \subseteq \Phi(A)$. Then $Cl(A) = \Psi(A) = Cl(\Phi(A)) = \Phi(A)$.

Lemma 2.4. [17] Let (X, τ, \mathfrak{G}) be a grill topological space with $\tau - \phi \subseteq \mathfrak{G}$. Then for all $U \in \tau$, $U \subseteq \Phi(U)$.

Definition 2.2. Let (X, τ, \mathfrak{G}) be a grill topological space. A subset A in X is said to be

- 1. Φ -open [9] if $A \subseteq Int(\Phi(A))$,
- 2. G-preopen [9] if $A \subseteq Int(\Psi(A))$.

3 weakly *G*-locally closed sets

A subset A of a topological space (X, τ) is said to be locally closed [3] if A is the intersection of an open set and a closed set. Locally closed sets are further investigated by Ganster and Reilly in [7]. It is easy to see that all open sets as well as all closed sets are locally closed. Recently Mandal and Mukherjee [13] introduced the notion of \mathcal{G} -locally closed sets as a new type of locally closed sets.

Definition 3.1. [13] A subset A of a grill topological space (X, τ, \mathcal{G}) is said to be \mathcal{G} -locally closed if $A = U \cap \Phi(A)$ for some $U \in \tau$.

We now introduce a new type of locally closed sets called weakly G-locally closed as follows:

Definition 3.2. A subset A of a grill topological space (X, τ, \mathfrak{G}) is said to be weakly \mathfrak{G} -locally closed (briefly weakly- \mathfrak{G} -LC) if $A = U \cap V$, where U is open and V is $\tau_{\mathfrak{G}}$ -closed.

- **Remark 3.1.** 1. [13] Every 9-locally closed set in a grill topological space $(X, \tau, 9)$ is locally closed. But the converse is false.
 - 2. Every locally closed set in a grill topological space (X, τ, \mathcal{G}) is weakly \mathcal{G} -locally closed. But the converse is false as is shown below.

Example 3.1. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\mathcal{G} = \{\{a, b\}, \{a, b, c\}, \{a, b, d\}, X\}$. Then $A = \{a, b\}$ is weakly \mathcal{G} -locally closed but it is not locally closed.

Proposition 3.1. Let (X, τ, \mathfrak{G}) be a grill topological space and A a subset of X. Then the following properties hold:

1. If A is open, then A is weakly-G-LC.

Proof. The proof is obvious.

The converses of the statements in Proposition 3.1 need not be true as shown in the following example.

Example 3.2. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mathcal{G} = \{\{a\}, \{c\}, \{a, c\}, \{a, b\}, \{b, c\}, X\}$. Then

- 1. $A = \{b\}$ is a weakly-G-LC set but it is not open.
- 2. $A = \{a\}$ is a weakly-G-LC set but it is not τ_{g} -closed.

Theorem 3.2. For a subset A of a grill topological space (X, τ, \mathcal{G}) , the following are equivalent:

- 1. A is open.
- 2. A is weakly-G-LC and G-preopen.

Proof. (1) \Rightarrow (2): It is obvious since X is τ_{g} -closed. (2) \Rightarrow (1): Let A be a weakly-g-LC set and g-preopen. Then, we have $A \subseteq Int(\Psi(A))$ and $A = U \cap V$, where $U \in \tau$ and V is τ_{g} -closed, respectively. Therefore, we have

$$\begin{split} A &\subseteq Int(\Psi(A)) \\ &= Int(\Psi(U \cap V)) \\ &\subseteq Int(\Psi(U) \cap \Psi(V)) \\ &= Int(\Psi(U)) \cap Int(\Psi(V)) \\ &= Int(\Psi(U)) \cap Int(V). \end{split}$$

Since $A = U \cap V$ and $A \subseteq U$, we have

$$\begin{split} A &= A \cap U \\ &\subseteq [Int(\Psi(U)) \cap Int(V)] \cap U \\ &= [Int(\Psi(U)) \cap U] \cap Int(V) \\ &= Int [\Psi(U) \cap U] \cap Int(V) \\ &= Int[U \cap V] = Int(A). \end{split}$$

Hence A is an open set.

The notions of weakly-G-LC sets and G-preopen sets are independent as shown in the following examples.

88

An. U.V.T.

Example 3.3. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mathcal{G} = \{\{a\}, \{c\}, \{a, c\}, \{a, b\}, \{b, c\}, X\}$. Then $A = \{b\}$ is a weakly- \mathcal{G} -LC set but it is not \mathcal{G} -preopen.

Example 3.4. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{b, c, d\}, X\}$ and $\mathcal{G} = \{\{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then $A = \{a, b\}$ is \mathcal{G} -preopen but it is not weakly- \mathcal{G} -LC.

Theorem 3.3. Let (X, τ, \mathfrak{G}) be a grill topological space and A be a weakly- \mathfrak{G} -LC subset of X. Then the following properties hold:

- 1. If B is a τ_{g} -closed set, then $A \cap B$ is a weakly- \mathcal{G} -LC set.
- 2. If B is an open set, then $A \cap B$ is a weakly- \mathcal{G} -LC set.
- 3. If B is a weakly-G-LC set, then $A \cap B$ is a weakly-G-LC set.

Proof. (1) Let B be τ_{9} -closed, then $A \cap B = (U \cap V) \cap B = U \cap (V \cap B)$, where $V \cap B$ is τ_{9} -closed and U is open. Hence $A \cap B$ is weakly-9-LC. (2) Let B be open, then $A \cap B = (U \cap V) \cap B = (U \cap B) \cap V$, where $U \cap B$ is open and V is τ_{9} -closed. Hence $A \cap B$ is weakly-9-LC. (3) Let B be weakly-9-LC, then $A \cap B = (U \cap V) \cap (F \cap G) = (U \cap F) \cap (V \cap G)$, where $U \cap F$ is open and $V \cap G$ is τ_{9} -closed. Hence $A \cap B$ is weakly-9-LC.

Definition 3.3. [12] Let (X, τ) be a topological space and \mathcal{G} be a grill on X. Then a subset A of X is said to be \mathcal{G} -g-closed if $\Phi(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Theorem 3.4. A subset of a grill topological space (X, τ, \mathfrak{G}) is $\tau_{\mathfrak{G}}$ -closed if and only if it is weakly- \mathfrak{G} -LC and \mathfrak{G} -g-closed.

Proof. Necessity is trivial. We prove only sufficiency. Let A be weakly- \mathcal{G} -LC and \mathcal{G} -g-closed. Since A is weakly- \mathcal{G} -LC, $A = U \cap V$, where U is open and V is $\tau_{\mathfrak{G}}$ -closed. So, we have $A = U \cap V \subseteq U$. Since A is \mathcal{G} -g-closed, $\Phi(A) \subseteq U$. Also $A = U \cap V \subseteq V$ and V is $\tau_{\mathfrak{G}}$ -closed, then $\Phi(A) \subseteq V$. Consequently, we have $\Phi(A) \subseteq U \cap V = A$ and hence A is $\tau_{\mathfrak{G}}$ -closed. \Box

The notions of weakly-G-LC sets and G-g-closed sets are independent.

Example 3.5. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{b, c, d\}, X\}$ and $\mathcal{G} = \{\{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then

1. $A = \{a, b\}$ is G-g-closed but it is not weakly-G-LC.

An. U.V.T.

2. $A = \{c, d\}$ is a weakly-G-LC set but it is not G-g-closed.

Theorem 3.5. Let (X, τ, \mathfrak{G}) be a grill topological space and A a subset of X. Then the following properties are equivalent:

- 1. A is weakly-G-LC;
- 2. $A = U \cap \Psi(A)$ for some open set U;
- 3. $\Psi(A) A = \Phi(A) A$ is closed;
- 4. $A \cup [X \Phi(A)] = A \cup [X \Psi(A)]$ is open;
- 5. $A \subseteq Int[A \cup (X \Phi(A))].$

Proof. (1) \Rightarrow (2): If A is weakly-9-LC, then there exist an open set U and a τ_9 -closed set F such that $A = U \cap F$. Clearly, $A \subseteq U \cap \Psi(A)$. Since Fis τ_9 -closed, $\Psi(A) \subseteq \Psi(F) = F$ and so $U \cap \Psi(A) \subseteq U \cap F = A$. Therefore, $A = U \cap \Psi(A)$. (2) \Rightarrow (3): Now $\Phi(A) - A = \Phi(A) \cap (X - A) = \Phi(A) \cap [X - (U \cap \Psi(A))] =$ $\Phi(A) \cap (X - U)$. Therefore, $\Psi(A) - A = \Phi(A) - A$ is closed. (3) \Rightarrow (4): Since $X - (\Phi(A) - A) = (X - \Phi(A)) \cup A$, then $[X - \Phi(A)] \cup A$ is open. Clearly, $A \cup [X - \Phi(A)] = A \cup [X - \Psi(A)]$. (4) \Rightarrow (5): It is clear. (5) \Rightarrow (1): $X - \Phi(A) = Int(X - \Phi(A)) \subseteq Int[A \cup (X - \Phi(A))]$ which implies that $A \cup [X - \Phi(A)] \subseteq Int[A \cup (X - \Phi(A))]$ and so $A \cup [X - \Phi(A)]$ is open. Since $A = [A \cup [X - \Phi(A)]] \cap \Psi(A)$, A is weakly-9-LC. \Box

Remark 3.2. In a grill topological space (X, τ, \mathcal{G}) , if $A \subseteq \Phi(A)$ for every subset A of X, then every weakly- \mathcal{G} -LC set is \mathcal{G} -locally closed.

4 Strongly *G*-locally closed sets

Definition 4.1. A subset A of a grill topological space (X, τ, \mathfrak{G}) is said to be strongly \mathfrak{G} -locally closed (briefly strongly- \mathfrak{G} -LC) (resp. strongly-LC [10]) if $A = U \cap V$, where U is regular open and V is $\tau_{\mathfrak{G}}$ -closed (resp. closed).

Proposition 4.1. Let (X, τ, \mathfrak{G}) be a grill topological space and A a subset of X. Then the following properties hold:

- 1. If A is regular open, then A is strongly-G-LC.
- 2. If A is τ_{g} -closed, then A is strongly-G-LC.

Vol. L (2012) Decompositions of $\tau_{\rm g}$ -Continuity and Continuity

3. If A is strongly-G-LC, then A is weakly-G-LC.

The converses of the statements in Proposition 4.1 need not be true as shown in the following example.

Example 4.1. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$ and $\mathcal{G} = \{\{a\}, \{c\}, \{a, c\}, \{a, b\}, \{b, c\}, X\}$. Then

- 1. $A = \{b\}$ is a strongly-G-LC set but it is not regular open.
- 2. $A = \{a\}$ is a strongly-G-LC set but it is not τ_{G} -closed.
- 3. $A = \{a, c\}$ is a weakly-G-LC set but it is not strongly-G-LC.

Theorem 4.2. Let (X, τ, \mathfrak{G}) be a grill topological space and A be a strongly- \mathfrak{G} -LC subset of X. Then the following properties hold:

- 1. If B is a $\tau_{\mathfrak{G}}$ -closed set, then $A \cap B$ is a strongly- \mathfrak{G} -LC set.
- 2. If B is a regular open set, then $A \cap B$ is a strongly-G-LC set.
- 3. If B is a strongly- \mathcal{G} -LC set, then $A \cap B$ is a strongly- \mathcal{G} -LC set.

Definition 4.2. Let (X, τ) be a topological space and \mathcal{G} be a grill on X. Then a subset A of X is said to be \mathcal{G} -gr-closed if $\Phi(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

Lemma 4.3. Let (X, τ, \mathfrak{G}) be a grill topological space and A a subset of X. If A is \mathfrak{G} -g-closed, then A is \mathfrak{G} -gr-closed.

Theorem 4.4. For a subset A of a grill topological space (X, τ, \mathcal{G}) , the following properties are equivalent:

- 1. A is τ_{g} -closed;
- 2. A is strongly-G-LC and G-g-closed;
- 3. A is strongly- \mathcal{G} -LC and \mathcal{G} -gr-closed.

Proof. (1) \Rightarrow (2): Obvious.

 $(2) \Rightarrow (3)$: The proof follows from Lemma 4.3.

(3) \Rightarrow (1): Let A be strongly-9-LC and 9-gr-closed. Since A is strongly-9-LC, $A = U \cap V$, where U is regular open and V is τ_9 -closed. Since $A \subseteq U$ and A is 9-gr-closed, $\Phi(A) \subseteq U$. Since $A \subseteq V$ and V is τ_9 -closed, $\Phi(A) \subseteq V$. Thus $\Phi(A) \subseteq U \cap V = A$. Hence A is τ_9 -closed. \Box

- **Remark 4.1.** 1. The notions of strongly-G-LC sets and G-g-closed sets are independent.
 - 2. The notions of strongly-G-LC sets and G-gr-closed sets are independent.

Example 4.2. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{b, c, d\}, X\}$ and $\mathcal{G} = \{\{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then

- 1. $A = \{b\}$ is \mathcal{G} -gr-closed but it is not strongly- \mathcal{G} -LC.
- 2. $A = \{a, b, c\}$ is \mathcal{G} -g-closed but it is not strongly- \mathcal{G} -LC.

Example 4.3. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mathcal{G} = \{\{b\}, \{a\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. Then

- 1. $A = \{a\}$ is strongly-G-LC but it is not G-g-closed.
- 2. $A = \{b\}$ is strongly-G-LC but it is not G-gr-closed.

5 Decompositions of τ_{g} -continuity and continuity

Definition 5.1. A function $f : (X, \tau, \mathfrak{G}) \to (Y, \sigma)$ is said to be $\tau_{\mathfrak{G}}$ -continuous (resp. \mathfrak{G} -g-continuous [12], \mathfrak{G} -gr-continuous, weakly \mathfrak{G} -LC-continuous, strongly \mathfrak{G} -LC-continuous) if $f^{-1}(A)$ is a $\tau_{\mathfrak{G}}$ -closed (resp. \mathfrak{G} -g-closed, \mathfrak{G} -gr-closed, weakly- \mathfrak{G} -LC, strongly- \mathfrak{G} -LC) set in (X, τ, \mathfrak{G}) for every closed set A of (Y, σ) .

Definition 5.2. A function $f: (X, \tau, \mathfrak{G}) \to (Y, \sigma)$ is said to be g-continuous [2] (resp. gr-continuous [15], strongly LC-continuous [10], LC-continuous [7]) if $f^{-1}(A)$ is a g-closed, (resp. gr-closed, strongly-LC, locally closed) set in (X, τ, \mathfrak{G}) for every closed set A of (Y, σ) .

Definition 5.3. A function $f : (X, \tau, \mathfrak{G}) \to (Y, \sigma)$ is said to be contra weakly \mathfrak{G} -LC-continuous (resp. \mathfrak{G} -precontinuous [9]) if $f^{-1}(A)$ is weakly- \mathfrak{G} -LC (resp. \mathfrak{G} -preopen) set in (X, τ, \mathfrak{G}) for every open set A of (Y, σ) .

Theorem 5.1. For a function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$, the following properties are equivalent:

- 1. f is τ_{g} -continuous;
- 2. The inverse image of each open set in Y is τ_{g} -open;

Vol. L (2012) Decompositions of $\tau_{\rm g}$ -Continuity and Continuity

- 3. For each $x \in X$ and each $V \in \sigma$ containing f(x), there exists $U \in \tau_{\mathfrak{g}}$ containing x such that $f(U) \subseteq V$;
- 4. $f: (X, \tau_{\mathfrak{S}}) \to (Y, \sigma)$ is continuous.

Theorem 5.2. A function $f : (X, \tau, \mathfrak{G}) \to (Y, \sigma)$ is continuous if and only if it is contra weakly \mathfrak{G} -LC-continuous and \mathfrak{G} -precontinuous.

Proof. This is an immediate consequence of Theorem 3.2.

Theorem 5.3. A function $f : (X, \tau, \mathfrak{G}) \to (Y, \sigma)$ is $\tau_{\mathfrak{G}}$ -continuous if and only if it is weakly \mathfrak{G} -LC-continuous and \mathfrak{G} -g-continuous.

Proof. This is an immediate consequence of Theorem 3.4.

Corollary 5.4. [14] Let (X, τ, \mathfrak{G}) be a grill space and $\mathfrak{G} = \mathfrak{P}(X) \setminus \{\phi\}$. A function $f : (X, \tau, \mathfrak{G}) \to (Y, \sigma)$ is continuous if and only if it is LC-continuous and g-continuous.

Theorem 5.5. For a function $f : (X, \tau, \mathcal{G}) \to (Y, \sigma)$, the following properties are equivalent:

- 1. f is τ_{g} -continuous;
- 2. f is strongly G-LC-continuous and G-g-continuous;
- 3. f is strongly G-LC-continuous and G-gr-continuous.

Proof. This is an immediate consequence of Theorem 4.4.

Corollary 5.6. Let (X, τ, \mathfrak{G}) be a grill space and $\mathfrak{G} = \mathfrak{P}(X) \setminus \{\phi\}$. For a function $f : (X, \tau, \mathfrak{G}) \to (Y, \sigma)$, the following properties are equivalent:

- 1. f is continuous;
- 2. f is strongly LC-continuous and g-continuous;
- 3. f is strongly LC-continuous and gr-continuous.

6 Additions

The concept of ideals in topological spaces is treated in the classic text by Kuratowski [11] and Vaidyanathaswamy [19]. Janković and Hamlett [8] investigated further properties of ideal spaces. An ideal J on a topological

space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties: (1) $A \in \mathcal{I}$ and $B \subseteq A$ implies $B \in \mathcal{I}$; (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. An ideal topological space or simply an ideal space is a topological space (X, τ) with an ideal \mathcal{I} on X and is denoted by (X, τ, \mathcal{I}) . For a subset $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X : A \cap U \notin \mathcal{I}$ for every $U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau : x \in U\}$, is called the local function of Awith respect to \mathcal{I} and τ [11]. We simply write A^* in case there is no chance for confusion. A Kuratowski closure operator $Cl^*(.)$ for a topology $\tau^*(\mathcal{I}, \tau)$ called the *-topology, finer than τ , is defined by $Cl^*(A) = A \cup A^*$ [8]. The following lemma will be useful in the sequel.

Lemma 6.1. [16] Let (X, τ) be a topological space. Then the following hold.

- 1. \mathfrak{G} is a grill on X if and only if $\mathfrak{I} = \mathfrak{P}(X) \mathfrak{G}$ is an ideal on X,
- 2. The operators Cl^* on (X, τ, \mathfrak{I}) , where $\mathfrak{I} = \mathfrak{P}(X) \mathfrak{G}$, and Ψ on (X, τ, \mathfrak{G}) are equal.

Remark 6.1. Let (X, τ, \mathfrak{G}) be a grill topological space and A a subset of X.

- 1. Since $\tau \subseteq \tau_{\mathcal{G}}$, then every strongly-LC set is strongly- \mathcal{G} -LC.
- 2. If $\mathcal{G} = \mathcal{P}(X) \setminus \{\phi\}$, then $\tau = \tau_{\mathcal{G}}$ and hence both the notions of strongly-G-LC and strongly-LC are equal.
- 3. If $A \subseteq \Phi(A)$, then $Cl(A) = \tau_{\mathfrak{G}} Cl(A)$ and hence both the notions of strongly- \mathfrak{G} -LC and strongly-LC are equal.
- 4. If $\mathcal{G} = \{X\}$, then $\Phi(A) = \phi$ for any subset A of X and $\Psi(A) = A$. Then any subset A of X is strongly- \mathcal{G} -LC.
- 5. For any subset A of a space X and any grill \mathcal{G} on X, $\Phi(A)$ is $\tau_{\mathcal{G}}$ -closed. Then if every open set is regular open, then every \mathcal{G} -locally closed set is strongly- \mathcal{G} -LC.
- 6. Let τ be suitable for \mathcal{G} , that is, $A \Phi(A) \notin \mathcal{G}$ for all $A \subseteq X$ [[17], Definition 3.1] and $\tau - \{\phi\} \subseteq \mathcal{G}$. Then if $(X, \tau_{\mathcal{G}})$ is regular then $\tau = \tau_{\mathcal{G}}$ by Theorem 3.8 of [17] and hence both notions of strongly- \mathcal{G} -LC and strongly-LC are equal.

Acknowledgement

The authors wish to thank the referees for his/her useful comments and suggestions. Especially, Examples 3.3 and 3.4, Lemma 6.1 and Remark 6.1 are added due to suggestions of the referees.

References

- A. Al-Omari and T. Noiri, Decompositions of continuity via grills, Jordan J. Math. Stat., 4 (1), (2011), 33–46
- [2] K. Balachandran and P. Sundaram and H. Maki, On generalized continuous maps in topological spaces, *Mem. Fac. Sci. Kochi Univ. Ser. A Math.*, **12**, (1991), 5–13
- [3] N. Bourbaki, General Topology, Part I, Addition wesley, Reading Mass, 1966
- [4] K. C. Chattopadhyay and W. J. Thron, Extensions of closure spaces, Can. J. Math., 29 (6), (1977), 1277–1286
- [5] K. C. Chattopadhyay and O. Njåstad and W. J. Thron, Merotopic spaces and extensions of closure spaces, *Can. J. Math.*, **35** (4), (1983), 613–629
- [6] G. Choqet, Sur les notions de filter et grill, Comptes Rendus Acad. Sci. Paris, 224, (1947), 171–173
- [7] M. Ganster and I. L. Reilly, Locally closed sets and LC-continuous functions, Internat. J. Math. Math. Sci., 12, (1989), 417–424
- [8] D. Janković and T. R. Hamlet, New topologies from old via ideals, Amer. Math. Monthly, 97, (1990), 295–310
- [9] E. Hatir and S. Jafari, On some new calsses of sets and a new decomposition of continuity via grills, J. Adv. Math. Stud., 3 (1), (2010), 33–40
- [10] S. Krishnaprakash and M. Rajamani V. Inthumathi, Strongly-J-localy closed sets and decomposition of *-continuity, Acta Math. Hungar., 130 (4), (2011), 358–362
- [11] K. Kuratowski, Topology I, Academic Press, 1966
- [12] D. Mandal and M. N. Mukherjee, On a type of generalized closed sets, Bol. Soc. Paran. Mat., 30 (1), (2012), 67–76
- [13] D. Mandal and M. N. Mukherjee, On some generalized types of sets and functions: certain decompositions, J. Adv. Res. Pure Math., 4(1), (2012), 1-8.
- [14] T. Noiri and V. Popa, A general decomposition of continuity, Anal. Univ. Sci. Budapest, 50, (2007), 41–50
- [15] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33, (1993), 211–219

Al-Omari and Noiri

- [16] V. Renukadevi, Relation between ideals and grills, J. Adv. Res. Pure Math., 2(4), (2010), 9–14
- [17] B. Roy and M. N. Mukherjee, On a typical topology induced by a grill, Soochow J. Math., 33, (2007), 771–786
- [18] W. J. Thron, Proximity structure and grills, Math. Ann., 206, (1973), 35–62
- [19] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, New York, 1960

Ahmad Al-Omari

Al al-Bayt University, Faculty of Sciences, Department of Mathematics P.O. Box 130095, Mafraq 25113, Jordan E-mail: omarimutah1@yahoo.com

Takashi Noiri 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan E-mail: t.noiri@nifty.com

Received: 25.04.2012 Accepted: 14.06.2012