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Abstract. We propose a novel subdivision of the plane that consists of both convex poly-
gons and pseudo-triangles. This pseudo-convex decomposition is significantly sparser than either
convex decompositions or pseudo-triangulations for planar point sets and simple polygons. We
also introduce pseudo-convex partitions and coverings. We establish some basic properties and
give combinatorial bounds on their complexity. Our upper bounds depend on new Ramsey-type
results concerning disjoint empty convex k-gons in point sets.
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1. Introduction

Geometric algorithms and data structures frequently use subdivisions of the input space
into compact and easy to handle polygonal cells. Triangulations are among the most widely
used of these tessellations. Since the running time of algorithms is often correlated with
the size of the subdivision, many efficient algorithms tile the plane with generalizations of
triangles such as convex polygons or pseudo-triangles which provide a sparser tessellation
but retain many of the desirable properties of a triangulation. Both convex subdivisions
and pseudo-triangulations have applications in areas like motion planning [7,32], collision
detection [1,23], ray shooting [6,15], or visibility [27,29,28]. A pseudo-triangle is the “most
reflex” polygon possible—it has exactly three convex vertices with internal angles less than
π. Whether a chain of points is considered convex or reflex depends only on the point of
view. So pseudo-triangles can be considered as natural counterparts of convex polygons.

In this paper we propose a combination of convex and pseudo-triangular subdivisions:
Pseudo-convex decompositions. A pseudo-convex decomposition is a tiling of the plane
with convex polygons and pseudo-triangles. We also introduce the related concepts of
pseudo-convex partitions and coverings whose convex counterparts have been extensively
studied as well. We establish some basic combinatorial properties and give quantitative
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(a) (b) (c)

Fig. 1. A pseudo-convex decomposition (a), a pseudo-convex partition (b), and a pseudo-convex
covering (c).

bounds on the complexity of pseudo-convex decompositions, partitions, and coverings for
point sets and simple polygons. Pseudo-convex decompositions are significantly sparser
than convex decompositions or pseudo-triangulations.

All our bounds are combinatorial, in fact we do not know what the complexity of finding
a minimum decomposition for a given input point set is. Our upper bounds depend on
optimal solutions for small point configurations. Any improvement on a finite point set
would lead to better bounds. We achieve optimal bounds for small configurations by
proving two geometric Ramsey-type results concerning disjoint empty convex k-gons in
point sets. These results extend previous work by Erdős, Hosono, and Urabe, but to the
best of our knowledge our results are the first Ramsey-type answers to such questions.
Small configurations of points are notoriously hard to deal with. An asymptotic lower
bound for the number of order types of a set of n points in the plane is nΘ(n log n) [14].
We confirmed our conjectures regarding sets of 8 and 11 points with the help of the order
type data base developed at TU Graz [2,3]. We give analytical proofs for some of our
results, while others are purely based on the data base.

Organization. The next paragraphs give precise definitions for convex and pseudo-convex
decompositions, partitions, and coverings and Section 2 collects some of their basic com-
binatorial properties. In the next subsection we state our results and compare our bounds
to previous work. Pseudo-convex decompositions and partitions are significantly sparser
than their convex counterparts while pseudo-convex and convex coverings have asymp-
totically the same complexity. We devote Section 3 to pseudo-convex decompositions
and Section 4 to pseudo-convex partitions of point sets. Subsection 3.1 formally states
our two Ramsey-type theorems. Section 5 collects a number of observations concerning
pseudo-convex coverings for small point sets. Finally, Section 6 discusses pseudo-convex
decompositions for the interior of simple polygons. We conclude with some open problems.

Definitions. Let S be a set of n points in general position in the plane. A pseudo-triangle
is a planar polygon that has exactly three convex vertices with internal angles less than π,
all other vertices are concave. A pseudo-triangulation of S is a subdivision of the convex
hull of S into pseudo-triangles whose vertex set is exactly S. A vertex is called pointed if
it has an adjacent angle greater than π. A planar straight line graph is pointed if every
vertex is pointed.

The convex decomposition number of S, κd(S), is the minimum number of faces in
a subdivision of the convex hull of S into convex polygons whose joint vertex set is
exactly S. A pseudo-convex decomposition of S is a subdivision of the convex hull of S into
a family of convex polygons and pseudo-triangles whose joint vertex set is S. For instance
every triangulation or pseudo-triangulation of S is a pseudo-convex decomposition. The
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pseudo-convex decomposition number of S, ψd(S), is the minimum number of faces in a
pseudo-convex decomposition of S.

The convex partition number of S, κp(S), is the minimum number of pairwise disjoint
closed convex polygonal domains whose joint vertex set is S (that is, the vertex sets of
these convex polygons partition the point set S). Similarly, the pseudo-convex partition
number of S, ψp(S), is the minimum number of pairwise disjoint, closed, convex or pseudo-
triangular polygonal domains whose joint vertex set is S. Note that each of the disjoint
polygonal domains is empty (of points): neither a convex nor a pseudo-convex partition
contains nested polygons.

The convex cover number of S, κc(S), is the minimum number of convex polygons
whose joint vertex set is S. Similarly, the pseudo-convex cover number of S, ψc(S), is the
minimum number of convex and pseudo-triangular polygons whose joint vertex set is S.

We are interested in combinatorial bounds on the maximum pseudo-convex decompo-
sition (resp., pseudo-convex partition, pseudo-convex cover) number over all point sets of
a given size n ∈ N. We let

ψi(n) := max
|S|=n

ψi(S), for i = d, p, c.

Similarly, for the convex decompositions (resp., partitions and coverings), we let κi(n) :=
max|S|=n κi(S), for i = d, p, c.

1.1. Previous work and results.

Decomposition. The convex decomposition number κd(n) is bounded by

12

11
n− 2 < κd(n) ≤ 10n− 18

7
.

The lower bound was given very recently by Garćıa-López and Nicolás [11] and the upper
bound was established by Neumann-Lara et al. [26]. Fevens, Meijer, and Rappaport [10]
and Spillner [31] designed algorithms for computing a minimum convex decomposition
for input point sets. Every minimum pseudo-triangulation of n points has exactly n − 2
pseudo-triangles [32]. We show that the pseudo-convex decomposition number is bounded
by

3
⌊n

5

⌋
− 1 ≤ ψd(n) ≤ 7

10
n.

Furthermore, we also prove that ψd(n) is monotonically increasing with n.

Partition. The convex partition number κp(n) is bounded by

n− 1

4
≤ κp(n) ≤

⌈
5n

18

⌉
.

The lower bound was given by Urabe [33] and the upper bound was established by Hosono
and Urabe [18]. Arkin et al. [4] study questions related to convex partitions and coverings
by examining the reflexivity of point sets. We show that the pseudo-convex partition
number ψp(n) is bounded by

3

4

⌊n

4

⌋
≤ ψp(n) ≤

⌈n

4

⌉
.
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C
¯

overing. The study of convex cover numbers is rooted in the classical work of Erdős
and Szekeres [8,9] who showed that any set of n points contains a convex subset of size
Ω(log n). More recent results include the work by Urabe [33] who proved that the convex
cover number κc(n) is bounded by

n

log2 n + 2
< κc(n) <

2n

log2 n− log2 e
.

There is an easy connection between the pseudo-convex cover number and the convex
cover number, namely ψc(n) ≤ κc(n) ≤ 3ψc(n) (all points which can be covered by a
pseudo-triangle can be covered by at most three convex sets). Thus both numbers have
the same asymptotic behavior, which implies

ψc(n) = Θ

(
n

log n

)
.

Table 1 shows the exact values of ψc(n), ψp(n), and ψd(n) for small sets of points.

n 3 4 5 6 7 8 9 10 11 12 13 14 15
ψd(n) 1 2 2 3 4 4 5 6 6 7 8 8..9 8..9
ψp(n) 1 1 2 2 2 2 3 3 3 3 3..4 3..4 4
ψc(n) 1 1 2 2 2 2 2 3 3 3 3 3 3

Table 1. Bounds on the pseudo-convex cover number ψc(n), partition number ψp(n), and de-
composition number ψd(n) for small point sets.

Geometric Ramsey-type Results. The upper bound construction for ψd(n) relies on
minimal pseudo-convex decomposition numbers for few points. These are, in turn, related
to a combinatorial geometry problem on empty convex polygons that goes back to Erdős:
For k ≥ 3 find the smallest integer E(k) such that any set S of E(k) points contains
the vertex set of a convex k-gon whose interior does not contain any point of S. Klein [8]
showed that every set of 5 points contains an empty convex quadrilateral, that is E(4) = 5.
Harborth [17] proved that every set of 10 points contains an empty convex pentagon, that
is E(5) = 10. In the last decade, Urabe [33] proved that every set of 7 points can be
partitioned into a triangle and a disjoint convex quadrilateral. Hosono and Urabe [18]
showed that every set of 9 points contains two disjoint empty convex quadrilaterals. Very
recently Gerken [13,34] showed that any set that contains a convex 9-gon also contains
an empty convex hexagon. Each of these results corresponds to a bound on the pseudo-
convex decomposition number ψd(n). The best upper bound we achieved depends on new
results for empty convex polygons.

A typical Ramsey type problem asks for the minimum size of a system that contains
at least one of two (or more) subconfigurations. The classical Ramsey number R(n,m) is
the smallest integer such that every red-blue complete graph on R(n,m) vertices contains
a red Kn or a blue Km. The first geometric Ramsey-type problems focused on geometric
graphs [19,20] and intersection graphs [24].

We prove the following two results: (1) Every set of 8 points in general position contains
either an empty convex pentagon or two disjoint empty convex quadrilaterals. (2) Every
set of 11 points in general position contains either an empty convex hexagon or an empty
convex pentagon and a disjoint empty convex quadrilateral.
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Simple Polygons. An initial step of many algorithms on simple polygons is a decom-
position into simpler components [21]. Keil and Snoeyink [22] devised an algorithm for
computing the minimum convex decomposition of the interior of a given simple poly-
gon. Chazelle and Dobkin [5] studied a variant of this optimization problem allowing
Steiner points, Lien and Amato [25] constructed approximately convex decompositions.
Motivated by our early results, obtained during our investigations for this paper, Gerdi-
jkov and Wolff [12] extended the work by Keil and Snoeyink to compute the minimum
pseudo-convex decomposition of a simple polygon.

The minimum convex decomposition of a pseudo-triangle with n vertices may require
n − 2 triangles, and the minimum pseudo-triangulation of any convex n-gon is a trian-
gulation with n − 2 faces. (In these extremal examples, Steiner points do not lead to a
smaller convex decomposition or pseudo-triangulation.) We show that any n-gon has a
pseudo-convex decomposition of size dn/2e − 1.

Note that any quadrangulation (a decomposition into quadrilaterals) of an n-gon is
a pseudo-convex decomposition, and it also has dn/2e − 1 faces. However, not every
polygon has a quadrangulation. Allowing Steiner points on the boundary of the polygon,
Ramaswami, Ramos, and Toussaint [30] show that the minimum quadrangulation of every
n-gon has at most b2n/3c+ O(1) faces in the worst case.

2. Basic Combinatorial Properties

Our first (trivial) observation is that ψd(n) ≤ κd(n), ψp(n) ≤ κp(n), and ψc(n) ≤ κc(n).
It is well known that κc(n) ≤ κp(n) ≤ κd(n). For pseudo-convex faces we trivially have
ψc(n) ≤ ψp(n). ψp(n) ≤ ψd(n) follows from the bounds given in the previous section.

Next we observe that ψd(n + 1) ≤ ψd(n) + 1, ψp(n + 1) ≤ ψp(n) + 1, and ψc(n + 1) ≤
ψc(n) + 1. This follows by induction when inserting the points sorted according to their
x-coordinates. For covering and partitioning, the last inserted vertex is a singleton (hence
convex); for decomposing, the difference between the convex hull of the first n points and
all n + 1 points is a pseudo-triangle with a corner at the last inserted point.

The following lemma establishes an interesting connection between the convex partition
number and the pseudo-convex decomposition number.

Lemma 1. For every finite point set S, we have ψd(S) ≤ 3κp(S) − 2 and thus ψd(n) ≤
3κp(n)− 2.

Proof. Every pointed pseudo-triangulation of S is a pseudo-convex decomposition of S
with n− 2 faces. We construct a pseudo-convex decomposition as follows: Take the κp(S)
polygonal domains of a minimum convex partition of S (some of which may be single-
tons or line segments) and pseudo-triangulate their complement in a pointed way. By
triangulating each convex face, we can transform this pseudo-convex decomposition into
a pseudo-triangulation: this shows that we use fewer than n− 2 faces. For a convex face
of size ki ≥ 3, this transformation creates ki − 3 additional faces.

Since each point of S is the vertex of exactly one face of a convex partition, we have∑κp(S)
i=1 ki = n, and so we can reduce the number of faces by at least

∑κp(S)
i=1 (ki − 3) =

n− 3κp(S). Therefore, a minimum convex partition of S directly yields a pseudo-convex
decomposition of S with at most (n− 2)− (n− 3κp(S)) = 3κp(S)− 2 faces.
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Fig. 2. Sets with non-
monotone behavior.

The pseudo-convex decomposition, partition, and cover-
ing numbers for a particular point set S are not necessar-
ily monotone. Consider the examples in Figure 2. On the
left, a set S with 9 points and ψd(S) = 3. Removing the
bottom-most point of S results in a set S ′ with 8 points
and ψd(S

′) = 4. On the right, a set S with 6 points and
ψc(S) = ψp(S) = 1. Removing the top-most point of S
results in a set S ′ with 5 points and ψc(S

′) = ψp(S
′) = 2.

3. Pseudo-Convex Decompositions

We first give a formula for the number of faces in a pseudo-convex decomposition:

Lemma 2. Let S be a set of n points in general position. Let P be a pseudo-convex
decomposition of S, nk the number of convex k-gons in P , and p the number of pointed
vertices. Then the number of faces of P is

|P | = 2n− p− 2−
n∑

k=4

nk(k − 3).

Proof. We triangulate every convex k-gon in our decomposition (for k ≥ 4) and thus
obtain a pseudo-triangulation with 2n−p−2 pseudo-triangles [16]. Triangulating a convex
k-gon introduces k − 3 new faces. The proof follows.

Corollary 1. The number of faces in a pointed pseudo-convex decomposition is

|P | = n− 2−
n∑

k=4

nk(k − 3).

Although the pseudo-convex decomposition number for a particular point set S might
not be monotone (recall Figure 2), ψd(n) nevertheless increases monotonically with n.

Theorem 1. The pseudo-convex decomposition number increases monotonically with the
number of points.

Proof. We want to show that ψd(n) ≤ ψd(n + 1), which is equivalent to showing that for
every point set S with |S| = n, ψd(S) ≤ ψd(n+1) holds. Consider a set S of n points and
let q ∈ S be a point on the convex hull of S. We place a new vertex q+ arbitrarily close
to q to get the set S+ = S ∪ q+ such that both q and q+ lie on the convex hull of S+.
Note that S+ \ q has the same order type as S, that is, for any two points p1, p2 ∈ S \ q
the triples p1, p2, q and p1, p2, q

+ have the same orientation.
As S+ has n + 1 points, it has a pseudo-convex decomposition D+ with at most

ψd(n+1) faces. Note that the face F in D+ which contains the edge qq+ has to be convex,
otherwise P would be a pseudo-triangle and the points q and q+ would lie on opposite
sides of the line through one of the edges F . Now contract the edge qq+ into q. By this
transformation the face F loses one edge, but all other faces of D+ remain combinatorially
unchanged, that is, either convex polygons or valid pseudo-triangles. Thus we obtain a
pseudo-decomposition D of S which has either the same number of faces as D+ or, in the
case that F was a triangle, one fewer. Therefore ψd(S) ≤ ψd(S

+) ≤ ψd(n + 1).
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3.1. Two Geometric Ramsey-type Results

Let S be a planar point set in general position. We say that an empty k-gon is a simple
polygon spanned by k points of S that contains no point of S in its interior.

Theorem 2. Every set of 8 points in general position contains either an empty convex
pentagon or two disjoint empty convex quadrilaterals.

Theorem 3. Every set of 11 points in general position contains either an empty convex
hexagon or an empty convex pentagon and a disjoint empty convex quadrilateral.

Both results were established with the help of the order type data base [2,3]. In Subsec-
tion 3.4 we also provide an intuitive geometric proof of Theorem 2 that requires only a
moderate number of case distinctions.

3.2. Small Point Sets

In this section we give tight upper and lower bounds on ψd(n) for sets of up to 13 points.
Recall that ψd(n+1) ≤ ψd(n)+1 and (by Theorem 1) ψd(n) ≤ ψd(n+1). Obviously ψd(3) =
1. If four points do not lie in convex position (see Fig. 3(a)) then every decomposition
needs at least two faces and hence ψd(4) = 2 and ψd(5) ≥ 2. Every set of 5 points contains
an empty convex quadrilateral [8]. Pseudo-triangulating in a pointed way around this
quadrilateral yields ψd(5) = 2 by Corollary 1.

ψd(5) = 2 implies ψd(6) ≤ 3. Figure 3(b) shows a configuration S of 6 points such that
every pseudo-convex decomposition of S has at least 3 faces. S does not span any empty
convex k-gon for k > 4. Every empty convex quadrilateral spanned by S necessarily uses
all three inner points, so every partition of S can contain at most one convex quadrilateral.
Then Corollary 1 implies ψd(6) = 6− 2− (4− 3) = 3 for pointed pseudo-decompositions,
which are optimal in this case.

ψd(6) = 3 implies ψd(7) ≤ 4. Figure 3(c) shows a configuration S of 7 points such that
every pseudo-convex decomposition of S has at least 4 faces. The argument is similar to
the one for the example with 6 points. Again, S does not span any empty convex k-gon for
k > 4. Every pointed decomposition contains at most one convex quadrilateral, because
every convex quadrilateral contains the point in the center. Every additional quadrilateral
forces at least one additional vertex to be non-pointed, so a non-pointed decomposition
cannot contain fewer faces than a pointed one. Therefore, ψd(7) = 7− 2− (4− 3) = 4.

ψd(7) = 4 implies ψd(8) ≥ 4. Theorem 2 together with Corollary 1 implies ψd(8) ≤
8− 2− 2 = 4. We construct this decomposition by pseudo-triangulating in a pointed way
the complement of the convex polygon(s) guaranteed by Theorem 2.

Every set of 10 points contains an empty pentagon [17] and so Corollary 1 implies
ψd(10) ≤ 10 − 2 − (5 − 3) = 6. Figure 3(d) (which is a close relative of a construction
in [18]) shows a configuration S of 10 points such that every pseudo-convex decomposition
of S has at least 6 faces. First note that S does not span any empty convex pentagon and a
disjoint empty convex quadrilateral. Furthermore, every empty convex pentagon spanned
by S necessarily contains the three points in the upper center, so every partition of S can
contain at most one convex pentagon. If we start our decomposition with a pentagon,
then we can not add a quadrilateral without creating at least one non-pointed vertex.
Therefore, a non-pointed decomposition cannot have fewer faces than a the pointed one,
which implies ψd(10) = 10− 2− (5− 3) = 6.
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(a) n =
4

(b) n =
6

(c) n =
7

(d) n = 10 (e) n = 12 (f) n = 14

Fig. 3. (a)-(e) Lower bound examples, (f) every minimum decomposition is non-pointed.

ψd(10) = 6 implies that ψd(9) ≥ 5. Since every set of 9 points contains two disjoint
empty convex quadrilaterals [18], we have (with Corollary 1) ψd(9) ≤ 9−2−2 ·(4−3) = 5.

ψd(10) = 6 also implies ψd(11) ≥ 6. Theorem 3 together with Corollary 1 yields
ψd(11) ≤ 11 − 2 − 3 = 6. We construct this decomposition by pseudo-triangulating in a
pointed way around the convex polygon(s) guaranteed by Theorem 3.

ψd(11) = 6 implies ψd(12) ≤ 7. Figure 3(e) shows a configuration S of 12 points such
that every pseudo-convex decomposition of S has at least 7 faces. The largest empty
convex set in this configuration is a hexagon. Every empty convex pentagon or hexagon
contains at least three of the four inner points and thus separates the other points, so that
no disjoint convex quadrilateral can be found. The coordinates of this point set are: (0, 0),
(0, 20), (20, 20), (20, 0), (1, 10), (10, 19), (19, 10), (10, 1), (5, 7), (7, 15), (15, 13), (13, 5).

ψd(12) = 7 implies ψd(13) ≤ 8. The point set with the following coordinates requires
8 faces for every pseudo-convex decomposition: (65535, 65535), (0, 0), (29293, 36890),
(15166, 26472), (27461, 37283), (32929, 42217), (29439, 42711), (27746, 42587),
(27491, 42925), (32135, 45720), (29447, 45175), (31736, 48764), (19257, 42830). This lower
bound example was found with the help of the order type database [3].

Non-pointed Decompositions. All upper bounds on ψd(n) for n ≤ 13 can be achieved
with pointed decompositions as described in the preceding paragraphs. Also the general
upper bound can be realized with a pointed decomposition, as we will see in the next
subsection. However, for n ≥ 10, there are point sets such that an optimal (minimal)
decomposition is always non-pointed. See, for example, Figure 3(f) which shows a config-
uration of 14 points such that every minimal pseudo-convex decomposition is non-pointed.
The coordinates for this point set are the same as the ones for Figure 3(e) with the addition
of (4, 5) and (16, 15).

3.3. Upper Bound

p

Fig. 4. Petals of size 5.

Our upper bound construction is based on exact
pseudo-convex decomposition numbers for small point
sets. Assume that we are given a set S with n points
and that we know the value of ψd(·) up to some k < n.
We choose a point p on the convex hull of S. Now we
partition the plane by half-lines emanating from p into
d(n− 1)/(k− 1)e wedges such that all but at most one
wedge contains exactly k − 1 points of S \ {p} (one of
the wedges contains n − 1 − bn−1

k−1
c(k − 1) points of S \ {p}). Let a petal be the convex

hull of points in a wedge together with p. We have a total of d(n − 1)/(k − 1)e petals,
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each petal of k′ ≤ k points can be decomposed into at most ψd(k
′) faces. Two adjacent

petals can be combined with a pseudo-triangle into one larger convex set. We combine
inductively adjacent convex sets (all including p) until we obtain the convex hull of S. We
have proved an upper bound of

ψd(n) ≤
⌊

n− 1

k − 1

⌋
ψd(k) + ψd

(
n−

⌊
n− 1

k − 1

⌋
(k − 1)

)
+

⌈
n− 1

k − 1

⌉
− 1, (1)

≤
⌊

n− 1

k − 1

⌋
(ψd(k) + 1) + ψd(k

′
n) =

ψd(k) + 1

k − 1
n + O(1),

where k′n = n− ⌊
n−1
k−1

⌋
(k− 1). The currently known minimal value of (ψd(k) + 1)/(k− 1)

is attained for k = 11 and ψd(11) = 6. Taking into account the term ψd(k
′
n), k′n < k, in

Inequality (1), we obtain a general upper bound of

ψd(n) ≤ ψd(11) + 1

11− 1
n =

7n

10
.

For some small values of n, Inequality (1) with another k may give a better upper bound:
For instance, we have ψd(15) ≤ 9 for k = 8, completing the first row of Table 1.

3.4. Proof of Theorem 2

Let S be a set of n points in general position in the plane. Recall that an empty k-gon
is a polygon spanned by k points in S whose interior does not contain any points of S.
Let H ⊂ S be the set of points on the convex hull of S. We call the points of H the
outer points and the points of I = S \H the inner points of S. In this section we prove
Theorem 2, which we restate here for completeness.

Theorem 2 Every set of 8 points in general position contains either an empty convex
pentagon or two disjoint empty convex quadrilaterals.

The proof of Theorem 2 consists of a case distinction based on the number of outer
points.

Lemma 3. If |H| ≥ 6 then S contains an empty convex pentagon.

Proof.
|H| = 8: S contains an empty convex octagon.
|H| = 7: There is a unique point x ∈ I. Choose an arbitrary p ∈ H. There are at least

three point of H on one side of the line through p and x. Together with these three
points, p and x form an empty convex pentagon.

|H| = 6: I consists of exactly two points x and y. They span a line that has at least three
points of H on one side. Together with these 3 points, x and y form a convex pentagon.

Lemma 3 implies Theorem 2 for |H| ≥ 6. To prove Theorem 2 for |H| ≤ 5 we first
collect several useful observations.
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Observations and Definitions. We denote the convex hull of the inner points I of S
by P = CH(I). Let H ′ be the vertex set of P . Two adjacent vertices q, r of P form a face
f of P , denoted by f = {q, r}. We say that a point p ∈ H sees a face f of P or that f is
visible to p if p and P are on different sides of the line lf spanned by the vertices of f . If
p sees f then we call the pair (p, f) a visibility pair. Let V (p) be the set of faces visible
to p, and let V P be the total number of visibility pairs, that is, V P =

∑
p∈H

|V (p)|.

Lemma 4. If |H| ≤ 5, then
(a) for every p ∈ H, we have 1 ≤ |V (p)| ≤ |H ′| − 1; and
(b) every face f of P is visible to at least one vertex p ∈ H.

Proof. (a) Consider a point p ∈ H and draw two tangent from p to P . By the general
position assumption, there are two well-defined points q1, q2 ∈ H ′, q1 6= q2, incident to
these two tangents. If |I| ≥ 3, then the convex hull P = CH(I) is a closed polygonal
curve; and the points q1 and q2 split P into two non-empty open polygonal curves. Point
p sees every face of P along the polygonal curve closer to p, and it does not see any faces
along the other polygonal curve.

(b) Consider a face f of P , and let h(f) be the open halfplane bounded by the line
through f that does not contain P . There must be an outer point in h(f), otherwise the
endpoints of f would be outer points. By definition, every point p ∈ H ∩ h(f) sees f .

Observation 1 The set {p ∈ H | p sees f}∪f forms an empty convex polygon for every
face f of P .

Observation 1 immediately implies:

Observation 2 If there are three or more vertices of H that see the same face f of P ,
then S contains an empty convex pentagon. (See Fig. 5, left.)

f f
p p

q

f

x

Fig. 5. Observation 2 (left), Observation 4 (middle), and Observation 6 (right).

Observation 2 and the pigeonhole principle imply:

Observation 3 If V P > 2 · |H ′|, then S contains an empty convex pentagon.

Next, we collect some properties of the outer vertices that see only one face of the
inner polygon, that is, for every p ∈ H such that |V (p)| = 1.

Observation 4 {p ∈ H | V (p) = {f}} ∪H ′ forms a convex polygon for every face f of
P . (See Fig. 5, middle.)

Observation 4 implies:
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Observation 5 If I \H ′ = ∅, then {p ∈ H | V (p) = {f}} ∪H ′ forms an empty convex
polygon for every face f of P .

Observation 6 If I \ H ′ 6= ∅, then there is an inner point x ∈ I \ H ′ such that {p ∈
H | V (p) = {f}} ∪ f ∪ {x} forms an empty convex polygon for every face f of P . (See
Fig. 5, right.)

If |H ′| ≥ 3 then Observation 5 and Observation 6 jointly imply:

Observation 7 If |H ′| ≥ 3 and if there are two points p and q in H such that V (p) =
V (q) = {f} for some face f of P , then S contains an empty convex pentagon.

And again by the pigeonhole principle:

Observation 8 If |H ′| ≥ 3 and |{p ∈ H | |V (p)| = 1}| > |H ′|, then S contains an empty
convex pentagon.

Now assume that there is an outer vertex p ∈ H that sees two consecutive faces f1

and f2 of P ; and let p′ = f1 ∩ f2 ∈ H ′. The line lp,p′ through p and p′ partitions the plane
into two halfplanes. One of them contains f1, the other f2. We call them hf1(lp,p′) and
hf2(lp,p′), respectively (Fig. 6, left.).

p p′

f1

f2

lp,p′

p p′

q q′
lp,p′

lq,q′

f

p p′

f
q

q′
lp,p′

lq,q′

Fig. 6. hf1(lp,p′) (left), Observation 9(a) (middle), and Observation 9(b) (right).

Observation 9
(a) If p, q ∈ H, f = {p′, q′} ∈ V (p)∩V (q), and there is an inner point in hf (lp,p′)∩hf (lq,q′)∩

P , then p, q, p′, q′ and the inner point forms an empty convex pentagon (Fig. 6, middle).
(b) If p ∈ H, f = {p′, q′} ∈ V (p), there is an inner point contained in hf (lp,p′), and q ∈ H

such that V (q) = {f}, then S contains an empty convex pentagon (Fig. 6, right).

Note that we assume that the cyclic orientation of the convex hull of both H and H ′

are the same (say, counter-clockwise), as indicated in Figure 6.

Proof of Theorem 2 for |H| ≤ 5. We now continue the case distinction for the proof
of Theorem 2 based on the number of points in H and in H ′.

Fig. 7. |H| = 5.

|H| = 5

P necessarily is a triangle and every inner point belongs to H ′, that
is, |H ′| = 3. Lemma 4 implies that |V (p)| ≤ 2 for every p ∈ H.

If there are at least two outer vertices that can see two faces of
P , then V P ≥ 2 · 2 + 3 = 7 > 6 = 2 · |H ′|; and by Observation 3, S
contains an empty convex pentagon.
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Otherwise, there is at most one outer vertex that sees two faces, so four or more outer
vertices can each see only one face of P . Since P has only three faces, |{p | |V (p)| = 1}| >
|faces of P | and by Observation 8, S contains an empty convex pentagon (see Fig. 7).

|H| = 4 and |H ′| = 4

Since |H ′| = 4, every inner point belongs to H ′, that is, I \H ′ = ∅. Lemma 4 implies that
|V (p)| ≤ 3 for every p ∈ H.

If there is an outer vertex p such that |V (p)| = 1 then, by Observation 5, p forms an
empty convex pentagon together with H ′. Therefore we can assume that |V (p)| ≥ 2 for
every p ∈ H. If there is a p ∈ H such that |V (p)| = 3, then V P ≥ 3+3·2 = 9 > 8 = 2·|H ′|,
so by Observation 3, S contains an empty convex pentagon. Thus we can assume that
|V (p)| = 2 for every p ∈ H.

f ′

f
p q

Fig. 8. |H| = 4,
|H ′| = 4.

If there is a face f of P that is visible to more than 2 vertices
then, by Observation 2, S contains an empty convex pentagon. So
we can further assume that every face f of P is visible to exactly 2
outer vertices.

Let f be a face of P , and let p, q be the outer vertices that see f .
By Observation 1, p, q and the vertices of f form an empty convex
quadrilateral. The opposite face f ′ = H ′ \ f is also visible to two
vertices, but not to p or q, because each of them sees only two faces.
Again by Observation 1, the remaining two outer vertices form a
second quadrilateral together with the vertices of f ′ (see Fig. 8).

|H| = 4 and |H ′| = 3

Since |H ′| = 3, there is one inner point x that does not belong to H ′, that is, I \H ′ = {x}.
Lemma 4 implies that |V (p)| ≤ 2 for every p ∈ H. We distinguish subcases according to
the number of outer vertices that see two faces of P .

If there are more than two outer vertices that see two faces of P , then V P ≥ 3 ·2+1 =
7 > 6 = 2 · |H ′| and by Observation 3, S contains an empty convex pentagon. If, on the
other hand, |V (p)| = 1 for every p ∈ H, then, by the pigeonhole principle, one face f
of P must be visible to two vertices, and by Observation 7, S contains an empty convex
pentagon. We can, therefore, assume that either exactly one or exactly two outer vertices
see two faces of P and that each of the remaining outer vertices see exactly one face of
P . Furthermore, we can assume by Observation 7 that if two outer vertices each see only
one face of P then these two faces are different.

|V (p)| = 2 for exactly one outer vertex p, see Figure 9 (left).
Let V (p) = {f1, f2}. According to our assumptions, there are two outer vertices s and
q such that V (s) = {f1} and V (q) = {f2}. Since x must be contained in either hf1(lp,p′)
or hf2(lp,p′), we can apply Observation 9(b) to either p, f1, and s or p, f2, and q and
hence S contains an empty convex pentagon.

|V (p)| = |V (q)| = 2 for exactly two outer vertices p and q, see Figure 9 (right).
|H ′| = 3 implies that V (p) ∩ V (q) 6= ∅. If V (p) = V (q) then necessarily at least one
outer vertex r 6= p, q sees a face from V (p) and hence Observation 2 implies that S
contains an empty convex pentagon.
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Let therefore V (p) = {f, f1} and V (q) = {f, f2} with f1 6= f2. If one of the remaining
two outer vertices s and r sees f then Observation 2 again implies that S contains an
empty convex pentagon. We can therefore assume that V (s) = {f1} and V (r) = {f2}.
If x is contained in hf (lp,p′)∩hf (lq,q′)∩P then Observation 9(a) implies that S contains
an empty convex pentagon. Otherwise x has to be contained in hf1(lp,p′) or hf2(lq,q′).
We can apply Observation 9(b) to either p, f1, and s or q, f2, and r and hence S
contains an empty convex pentagon.

f1

f2

p

qr

s

p′

lp,p′

f1

f2

p

qr

s

p′

lp,p′

f

lq,q′

q′

Fig. 9. |H| = 4 and |H ′| = 3, hf (lp,p′) ∩ hf (lq,q′) ∩ P is shaded in the right figure.

|H| = 3

There are |I| = 5 inner points. If |H ′| = 5 then the inner points form an empty convex
pentagon. The remaining two cases are |H ′| = 4 and |H ′| = 3.

|H| = 3 and |H ′| = 4

Since |H ′| = 4, there is one inner point x that does not belong to H ′, that is, I \H ′ = {x}.
The diagonals of the inner quadrilateral P partition P into 4 regions. Each of them
contains exactly one face of P . Let Rf be the region containing face f . Since we assume
all points to be in general position, x is contained in exactly one of these regions. Before
we begin with a detailed case analysis we collect some additional observations.

p x

f Rf
P

p

xf
f ′

q

r

p

xf1

f2

q

r

p′

f3 lp,p′

Fig. 10. Observation 10 (left), Observation 11 (middle), and Observation 12 (right).

Observation 10 If V (p) = {f} for p ∈ H and x /∈ Rf , then S contains an empty convex
pentagon (Fig. 10, left).

Observation 1 and Observation 6 imply:

Observation 11 If V (p) = {f} for p ∈ H and the opposite face f ′ = H ′\f ∈ V (q)∩V (r)
for q 6= r ∈ H \ {p}, then S contains two disjoint empty convex quadrilaterals (Fig. 10,
middle).
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Observation 12 If V (p) = {f1, f2} for p ∈ H with f1 ∩ f2 = p′, x ∈ hf1(lp,p′) and
f3 = H ′ \ f1 ∈ V (q) ∩ V (r) for q 6= r ∈ H \ {p}, then S contains two empty convex
quadrilaterals (Fig. 10, right).

Recall from Lemma 4 that every face f of P is visible to at least one vertex from H. Since
|H| = 3, at least one of the outer vertices needs to see at least two faces. We distinguish
the following subcases:

p

q
r

q′

f

f2 f1

f3 x

lq,q′

(a) Rf ∩ hf1(lq,q′) is
shaded.

p

x

f1

f2

q

r

f3 lr,r′

f4r′

(b)

p

x
f1

f2

qr

f3

lq,q′

f4

lp,p′

(c)

Fig. 11. |H| = 3, |H ′| = 4.

|V (p)| = 1 for at least one outer vertex p.
Let V (p) = {f}. If there is a second outer vertex q such that V (q) = {f}, then by
Observation 7 S contains an empty convex pentagon. If there is a second outer vertex
q such that V (q) = {f ′}, where f ′ 6= f , Observation 10 can be applied to at least one
of p and q, because x is contained in at most in one of Rf and Rf ′ and hence S contains
an empty convex pentagon.
We can therefore assume that the remaining outer vertices q and r both see at least
two faces of P . We cannot have both f ∈ V (q) and f ∈ V (r), since f ⊂ CH(I)
cannot be visible to all vertices of H. Let f2 = H ′ \ f denote the opposite face of f .
If {f2} ∈ V (q)∩ V (r) then Observation 11 implies that S contains two disjoint empty
convex quadrilaterals.
We can therefore assume w.l.o.g. that {f, f1} ⊆ V (q), f2 /∈ V (q), {f2, f3} ⊆ V (r), and
f /∈ V (r) where f1 and f3 denote the two remaining, opposite faces of P (see Fig. 11(a)).
Now consider the line lq,q′ with q′ = f∩f1. If x ∈ hf (lq,q′) then Observation 9(b) implies
that S contains an empty convex pentagon. So we can assume that x ∈ hf1(lq,q′). If
x /∈ Rf then Observation 10 implies that S contains an empty convex pentagon.
So we can also assume that x ∈ Rf . Since now x ∈ hf1(lq,q′) and x ∈ Rf , that is,
Rf ∩ hf1(lq,q′) 6= ∅, the two endpoints of f2 must lie in hf1(lq,q′) as well. They form an
empty convex pentagon together with x and the points q, q′.

From now on we can assume that |V (p)| ≥ 2 for every p ∈ H. Lemma 4 implies that
|V (p)| ≤ 3 for every p ∈ H. If |V (p)| = 3 for every p ∈ H then V P = 3·3 = 9 > 8 = 2·|H ′|,
so by Observation 3, S contains an empty convex pentagon. Thus we can assume that
|V (p)| = 2 for at least one p ∈ H. By Observation 2 we can also assume that no face f of
P is seen by all outer vertices.

V (p) = V (q) for two outer vertices p and q.
Let r denote the third outer vertex. Since |V (p)| ≥ 2 for every p ∈ H, we necessarily
have |V (p)| = |V (q)| = |V (r)| = 2. Furthermore, r sees exactly the two faces of P that
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p

xf1

f2

qr

f3

lr,r′

f4

lq,q′

Fig. 12. |H| = 3, |H ′| = 4.

p

lx,y

f
x
y

(a)

p

lx,y

x
y

p′

lp,p′

f

(b)

Fig. 13. Observation 13.

p and q do not see. Let V (r) = {f1, f2} with f1 ∩ f2 = r′ and V (p) = V (q) = {f3, f4}
(see Fig. 11(b)). Now consider the line lr,r′ . x must lie either in hf1(lr,r′) or in hf2(lr,r′).
Since both H ′ \ f1 and H ′ \ f2 are contained in V (p)∩ V (q), Observation 12 implies in
either case that S contains two empty convex quadrilaterals.

V (p) ∩ V (q) = ∅ for two outer vertices p and q.
Let r denote the third outer vertex. If either V (p) = V (r) or V (q) = V (r) then
the previous case applies. So we can assume that V (p) 6= V (r) 6= V (q). Necessarily
|V (p)| = |V (q)| = 2 and |V (r)| ∈ {2, 3}. Let V (p) = {f1, f2} with p′ = f1 ∩ f2

and V (q) = {f3, f4} with q′ = f3 ∩ f4. There must be two faces f ∈ V (r) ∩ V (p) and
f ′ ∈ V (r)∩V (q) with f ′ 6= f . W.l.o.g. {f1, f4} ⊆ V (r) with r′ = f1∩f4 (see Fig. 11(c)).
Since we assume all points to be in general position, we know that x must lie either
in hf1(lr,r′) or in hf4(lr,r′). If x ∈ hf1(lp,p′) ∩ hf4(lq,q′) then Observation 9(a) applies to
either p and r or q and r and implies that S contains an empty convex pentagon.
Let us assume that x /∈ hf1(lp,p′) which is equivalent to x ∈ hf2(lp,p′). Since f4 = H ′ \f2

is contained in V (q)∩V (r), Observation 12 implies that S contains two empty convex
quadrilaterals. Symmetrically, if x /∈ hf4(lq,q′) then necessarily x ∈ hf3(lq,q′). Since
f1 = H ′ \ f3 is contained in V (p)∩ V (r), Observation 12 again implies that S contains
two empty convex quadrilaterals.

V (p) 6= V (q) and V (p) ∩ V (q) 6= ∅ for any two outer vertices p and q.
Let p, q, and r denote the outer vertices. The condition above implies that one of them
has to see 3 faces. W.l.o.g. let us assume that |V (p)| = 3. We also know that one of
them sees only two faces. Again w.l.o.g. let us assume that |V (q)| = 2. V (q) can not
be a subset of V (p) since that would imply that V (q) and V (r) are disjoint. So let
V (p) = {f1, f2, f3} and V (q) = {f3, f4} with q′ = f3 ∩ f4. Necessarily {f4, f1} ∈ V (r)
and f3 /∈ V (r).
If f2 ∈ V (r) then consider the line lq,q′ . x must lie either in hf3(lq,q′) or in hf4(lq,q′).
Since both f1 = H ′ \ f3 and f2 = H ′ \ f4 are contained in V (p)∩ V (r), Observation 12
implies in either case that S contains two empty convex quadrilaterals.
If f2 /∈ V (r) then V (r) = {f4, f1} with f4∩f1 = r′ (see Fig 12). If x ∈ hf4(lq,q′)∩hf4(lr,r′)
then Observation 9(a) implies that S contains an empty convex pentagon. Let us
assume that x /∈ hf4(lq,q′), that is, x ∈ hf3(lq,q′). Since f1 = H ′ \ f3 is contained in
V (p)∩ V (r), Observation 12 implies that S contains two empty convex quadrilaterals.
Symmetrically, if x /∈ hf4(lr,r′), then necessarily x ∈ hf1(lr,r′). Since f3 = H ′ \ f1 is
contained in V (p) ∩ V (q), Observation 12 again implies that S contains two empty
convex quadrilaterals.



16 O. Aichholzer et al.

|H| = 3 and |H ′| = 3

Since |H ′| = 3, there are two inner points x and y that do not belong to H ′, that is,
I \H ′ = {x, y}. These two inner points x and y span a line lx,y. We say that lx,y intersects
a face f , if the two vertices of f are on different sides of lx,y. Since we assume all points to
be in general position, lx,y intersects exactly two of the three faces of P . Before we begin
with a detailed case analysis we collect some additional observations.

Observation 13
(a) If V (p) = {f} and lx,y does not intersect f , then p, x, y and the two vertices of f form

an empty convex pentagon.
(b) If V (p) = {f, f ′}, x, y ∈ hf (lp,p′) and lx,y does not intersect f , then p, x, y and the two

vertices of f form an empty convex pentagon.

Lemma 4 implies that |V (p)| ≤ 2 for every p ∈ H. We distinguish the subcases by the
number of outer vertices that see two faces of P.

p

qr

f1

f2

f3

lq,q′

lr,r′

lp,p′

p

qr

f1

f2f3

lx,y

p

q
r′

r

f1

f2

f3

lr,r′x
y

lx,y

Fig. 14. |H| = 3 and |H ′| = 3.

|V (p)| = 1 for every p ∈ H.
Every face f of P is seen by exactly one outer vertex. Since lx,y does intersect only two
of the three faces of P , Observation 13(a) implies that S contains an empty convex
pentagon.

|V (p)| = |V (q)| = 1 for exactly two outer vertices p and q, see Figure 14 (left).
If V (p) = V (q), then Observation 7 implies that S contains an empty convex pentagon.
We can therefore assume that V (p) 6= V (q). Let r denote the remaining outer vertex,
let V (p) = {f1}, and let V (q) = {f2}. W.l.o.g. we assume that V (r) = {f2, f3} with
r′ = f2 ∩ f3.
If lx,y does not intersect either f1 or f2 then Observation 13(a) implies that S contains
an empty convex pentagon. Hence we can assume that lx,y does intersect both f1

and f2 and therefore does not intersect f3. If either x ∈ hf2(lr,r′) or y ∈ hf2(lr,r′)
then Observation 9(b) implies that S contains an empty convex pentagon. So we can
assume that x, y ∈ hf3(lr,r′) and then Observation 13(b) implies that S contains an
empty convex pentagon.

|V (p)| = 1 for exactly one outer vertex p, Figure 14 (middle).
Let V (p) = {f1} and denote by q and r the remaining outer vertices. If lx,y does not
intersect f1 then Observation 13(a) implies that S contains an empty convex pentagon.
Hence we can assume that lx,y does intersect f1.
If V (q) = V (r) then necessarily V (q) = V (r) = {f2, f3}. We can assume w.l.o.g. that
lx,y intersects f2. Let p′ = f1 ∩ f2. x, y, p and p′ form an convex quadrilateral. Since
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H ′ \p′ = f3 ∈ V (q)∩V (r), Observation 1 implies that the remaining four vertices from
a convex quadrilateral as well.
If V (q) 6= V (r) then we can assume that V (q) = {f1, f2} with q′ = f1 ∩ f2 and
V (r) = {f2, f3} with r′ = f2 ∩ f3. If either x or y are contained in hf1(lq,q′) then
Observation 9(b) implies that S contains an empty convex pentagon. So we can assume
that both x and y are contained in hf2(lq,q′). Now if either x or y are contained in
hf2(lr,r′) then Observation 9(a) implies that S contains an empty convex pentagon.
Thus we have x, y ∈ hf2(lq,q′) ∩ hf3(lr,r′). Since lx,y intersects f1, it can intersect only
one of f2 and f3 and hence Observation 13(b) implies that S contains an empty convex
pentagon.

|V (p)| = 2 for every p ∈ H, Figure 14 (right).
Let us denote the three outer vertices with p, q, and r. W.l.o.g. let V (p) = {f3, f1} with
p′ = f3 ∩ f1, V (q) = {f1, f2} with q′ = f1 ∩ f2, and V (r) = {f2, f3} with r′ = f2 ∩ f3.
If either x or y is contained in either of hf1(lp,p′) ∩ hf1(lq,q′), hf2(lq,q′) ∩ hf2(lr,r′), or
hf3(lr,r′) ∩ hf3(lp,p′) then Observation 9(a) implies that S contains an empty convex
pentagon. We therefore assume that x, y ∈ hf1(lp,p′) ∩ hf2(lq,q′) ∩ hf3(lr,r′) or x, y ∈
hf3(lp,p′) ∩ hf1(lq,q′) ∩ hf2(lr,r′). In either case, since lx,y intersects only two out of f1,
f2, and f3, Observation 13(b) implies that S contains an empty convex pentagon. 2

3.5. Lower Bound

We present a lower bound construction of 5k points for every odd k ≥ 3 such that any
pseudo-convex decomposition consists of at least 3k − 1 faces (see Fig. 15). This implies

ψd(n) ≥ 3
⌊n

5

⌋
− 1.

Lemma 5. For every odd k, there are 5k points in the plane such that every pseudo-convex
decomposition consists of at least 3k − 1 faces.

Description of our construction. For every odd k ∈ N, we construct a set of 5k points
Sk = {ai, bi, ci, di, ei, : i = 1, 2, . . . , k}. The polygons A = a1a2 . . . ak and C = c1c2 . . . ck

form two centrally symmetric regular k-gons such that A ⊂ C. Let o denote their center
of symmetry. For every i = 1, 2 . . . , k, the quadrilateral Qi = aibicidi is a rhombus, where
the diagonal aici is much longer than bidi. Point ei lies near the center of the rhombus
aibicidi in the interior of the triangle aibidi ∩ aicidi. The configurations {ai, bi, ci, di, ei},
i = 1, 2, . . . , k, are congruent. See Figure 15 for an example with k = 5. The ratio of
the diameter of the polygons A and C are so close to 1 that any rhombus Qi can be
separated from the other rhombi by a straight line. Furthermore, we choose the ratio of
the two diagonals of Qi such that every line passing through ai (resp., ci) and another
point of {ai, bi, ci, di, ei} passes through between the rhombi Qj and Qj+1 for j = i + k−1

2

mod k. The point ei is so close to the midpoint of bidi that (1) every line spanned by
any two points in {bi, di, ei} intersects the segments ci−1ci and cici+1; (2) for every vertex
x ∈ Sk \ {bi, di, ei}, the half-line xei lies in the angular domain 6 bixdi < π.

Reference points. For a point set Sk and a pseudo-convex decomposition D, we choose
6k reference points and show that every face of D, with at most one exception, contains
at most two reference points; and the exceptional face may contain up to four reference
points. This proves that |D| ≥ 3k − 1.
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a1

a2

a3

a4

a5

c1
c2

c3

c4

c5

ai

bi

ci

di

ei

Fig. 15. Our construction for k = 5 with 25 points on the left. The sub-configuration of
{ai, bi, ci, di, ei} on the right.

Let ε > 0 be a sufficiently small real number. Each reference point lies in the ε-
neighborhood of the intersection point of two lines spanned by Sk, in the interior of a
triangle incident to the intersection point. The locations of six different types of reference
points are given in Table 2 below.

Reference point in the ε-neighborhood of in the triangle
xi bidi ∩ aici ∆(ai, bi, bidi ∩ aici) or ∆(bi, ci, bidi ∩ aici)
yi bidi ∩ ciei ∆(di, ei, bidi ∩ ciei)
zi cibi+1 ∩ dici+1 ∆(ci, ci+1, cibi+1 ∩ dici+1)
ui cidi+1 ∩ bici+1 ∆(bi, di+1, cidi+1 ∩ bici+1)
vi aici+1 ∩ biai+(k−1)/2 ∆(ai, ai+(k−1)/2, aici+1 ∩ biai+(k−1)/2)
wi ciai+1 ∩ di+1ai+1+(k+1)/2 ∆(ai+1, ai+1+(k+1)/2, ciai+1 ∩ di+1ai+1+(k+1)/2)

Table 2. The locations of the six types of reference points for i = 1, 2, . . . , k (addition is mod k).

The location of the reference points, however, slightly depends on the decomposition
D. The reference point xi lies in the triangle ∆(bi, ci, bidi ∩ aici) if the pseudo-triangle
bidiciai+1ei or biciai−1eidi is in D; otherwise xi lies in ∆(ai, bi, bidi∩aici). Also, if a pseudo-
triangle in D has consecutive vertices at (ai, di, ci, ci+1) or (ai, ei, ci, di, ci+1), it has at least
one additional vertex, it but does not contain the center o, then move the reference point
vi to wi (it can be thought of as a double reference point at wi). Similarly, if a pseudo-
triangle in D has consecutive vertices at (ci, ci+1, bi+1, ai+1), has at least five vertices, but
does not contain o, then we move wi to vi.

Proof. We show that all but at most one faces contain at most two reference points. One
can show that a face in D contains three or four reference points only if it also contains
the symmetry center o of the construction (Fig. 17(f)). No face in D contains more than
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zi

ui

ai+1

di+1

ai+(k−1)/2
ai+1+(k+1)/2

ei+1

xi+1 yi+1

bi+1

ci+1

ai

bi

ci

di

ei

xi
yi

vi wi

Fig. 16. The location of the reference points for sub-configurations Qi and Qi+1.

four reference points. It is not too difficult to verify these statements by classifying all
possible faces of a pseudo-convex decomposition D.

It is easy to find all possible maximal convex faces spanned by Sk. We have the regular
k-gon a1a2 . . . ak. For every i = 1, 2, . . . , k, we have aibiciei, bicidiei determined by a
single group. In two consecutive groups, we have all nine combinations of two maximal
convex arcs from the two groups: one of the three arcs aieidi, aibiei, and dici from group
i with one of the three arcs bi+1ei+1ai+1, ei+1di+1ai+1, and ci+1bi+1 from group i + 1, for
i = 1, 2, . . . , k. Two such maximal convex arcs from two nonconsecutive groups i and j,
with 1 < j− i < k/2 mod k, also form a maximal convex polygon, which passes through
the intermediate a vertices (for instance, the combination of the first convex arcs listed
above gives aieidiai+1 . . . aj−1bjejaj). Every convex face contains at most two reference
points.

One can also classify all empty pseudo-triangles spanned by Sk. Every pseudo-triangle
is determined by three corners and their bisectors. In our construction, all vertices of a
pseudo-triangle must lie in at most three groups, those containing the three corners. A
pseudo-triangle can contain the reference points zi, ui, vi, or wi, only if it has a corner in
both groups i and i+1. A pseudo-triangle can contain xi or yi if it has either two corners in
group i, or one corner in group i and contains the center o. See a few examples in Fig. 17.
A systematic search of possible pseudo-triangle faces confirms that every pseudo-triangle
contains at most two reference points unless it contains the center of symmetry o.

(a) (b) (c) (d) (e) (f)

Fig. 17. Five tilings of the convex hull of S5 with 16 convex or pseudo-triangle faces (a–e), and
one with 17 faces (f).
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4. Pseudo-Convex Partitions

An upper bound of ψp(n) ≤ dn/4e can be easily established: Partition the point set by
vertical lines into groups of size four, allowing at most one group to be smaller if n is
not a multiple of four—every four points forms either a convex quadrilateral or a pseudo-
triangle. Any better bound than dn/4e for some n ∈ N may improve this upper bound.
For example, we do not know the exact value of ψp(13), we only know that ψp(13) ∈ {3, 4}
(c.f., Table 1). ψp(13) = 3 would imply ψp(n) ≤ d3n/13e by partitioning the point set
into groups of size 13 and partitioning the groups independently.

4.1. Lower Bound

Lemma 6. ψp(n) ≥ 3
4
bn

4
c.

Proof. We consider a set S of n = 4k points illustrated in Figure 18. S consists of k
groups of 4 points, ai, bi, ci, and di. First we show that if ci is a reflex vertex of a pseudo-
triangle P , then ai and bi must be the corners of P : This is the case since ci lies in the
convex hull of the corners of P , and there is a halfplane for ai (bi) whose boundary line
passes through ci and whose intersection with P is ai (bi).

a1

b1
c1

d1

a2

b2
c2

d3

d2

a3

b3

c3

d4

d5

Fig. 18. k = 7.

Let W ⊂ S denote a subset of 3k
points {ai, bi, ci : i = 1, 2, . . . , k}. Con-
sider a polygon P from a pseudo-convex
partition of S. We show next that P is
incident to at most 4 points of W . This
implies immediately that every pseudo-
convex partition of S consists of at least
3k/4 = 3n/16 polygons. Suppose, by
contradiction, that P is incident to more
than 4 points of W .

First suppose that P is convex, that is,
P contains a convex pentagon Q with all
vertices in W . Since each group contains
only three points of W , Q must have cor-
ners in at least two groups. Q can contain
at most two points from each group, be-
cause the triangle aibici cannot be completed to a convex pentagon in S. Therefore, Q
must have corners in at least three groups, and it contains a triangle T with corners of W
from three different groups. There is a group i ∈ {1, 2, . . . , k} such that T has a corner in
group i and the other two corners of T are in a group j ∈ [i + 1, i + bk/2c mod k] and
in a group j′ ∈ [i + dk/2e mod k, i + k − 1 mod k]. It follows that T contains di in its
interior, a contradiction.

If P is a pseudo-triangle with at least five vertices in W , then it must have at least two
reflex vertices in W . Since the convex hull vertices can only be corners of P , at least two
reflex vertices are some ci and cj, i 6= j. We have seen that if P contains ci and cj, then
it also contains ai, bi and aj, bj, and so it must have four corners: A contradiction. 2
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5. Pseudo-Convex Coverings for Small Point Sets

We start with a simple observation about three points lying in the interior of a triangle.
Then we show that every set of 12 points contains a hexagon that is either convex or a
pseudo-triangle.

Lemma 7. Every set S of 6 points whose convex hull is a triangle has a spanning pseudo-
triangle.

Proof. Let c1, c2, and c3, be three vertices of of the convex hull of S sorted in clockwise
order; and let p1, p2, and p3 be the inner vertices of S, sorted clockwise around c1. Then
we first form two side chains c1, p1, c2 and c1, p3, c3, respectively, which do not interfere. If
p2 lies to the left of the directed line lies to the right of the directed line c2, p1 we extend
the side chain c1, p1, c2 to c1, p2, p1, c2. In the remaining case p2 lies to the right of the
directed line c3, p3 and to the left of the directed line c2, p1 and we therefore take the side
chain c2, p2, c3. In all cases we get a valid pseudo triangle which spans all 6 vertices of S.

Lemma 8. Every set S of n points contains either a convex hexagon or a pseudo-triangle
with 6 vertices if and only if n ≥ 12.

Proof. Let h be the size of the convex hull of S. We prove the statement by a case analysis
over various values of h. If h = 3, then the theorem directly follows from Lemma 7. Note
that additional inner points are allowed in Lemma 7, as we do not require the hexagon
or pseudo-triangle to be empty. For h = 4, 5, decompose the convex hull of S into two
(three, respectively) triangles. At least one triangle must contain 3 or more interior points.
Again the our statement follows from Lemma 7 applied to this triangle. If h ≥ 6, then S
certainly contains a convex hexagon.

There exist precisely 9 (out of over 2.33 billion) realizable order types of 11 points
which do not contain a convex hexagon nor a pseudo-triangle with 6 vertices1. Thus the
bound is tight with respect to n.

Lemma 9. ψc(n) = 3 for n = 10, . . . , 15.

Fig. 19. n = 10.

Proof. For n = 10, . . . , 14, we obtain ψc(n) ≤ 3 from the
fact that every set of n ≥ 9 points contains a convex pen-
tagon together with ψc(5) = 2, . . . , ψc(9) = 2. The matching
lower bound ψc(10) ≥ 3 (and thus ψc(11) ≥ 3, . . . , ψc(14) ≥
3) follows from a configuration of 10 points whose pseudo-
convex cover consists of at least 3 polygons. We found this
configuration with the help of the order type data base and
to our surprise there is only one set (out of 14, 309, 547
order types) which has this property. Here are its coordi-
nates: (0,43470), (20468,62019), (27350,61551), (32984,63477),
(34692,42743), (50624,39069), (64372,33534), (15064,31131), (16660,25083),
(19152,0) (see Fig. 19). We obtain ψc(15) = 3 from Lemma 8 together with ψc(9) = 2. 2

1 Let us note here that the probability of winning the Jackpot of the Austrian lottery (6 out of 45) is
about 30 times higher than the probability of finding such a set at random.
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6. Pseudo-Convex Decompositions of the Interior of a Simple Polygon

Theorem 4. Every simple polygon with n ≥ 3 vertices has a decomposition into at most⌈
n−2

2

⌉
convex or pseudo-triangular faces, and this bound is the best possible.

Proof. The lower bound is attained by the comb polygons (Fig. 20 (a)). We prove the
upper bound by induction on n ∈ N. The theorem is obvious for n = 3, 4. Consider a
simple polygon Pn with n ≥ 5 vertices. Triangulate Pn and let Tn denote the dual graph
of the triangulation. Every node of Tn corresponds to a triangle, and every edge of Tn

corresponds to a diagonal in the triangulation. Tn is a tree with maximal degree three
and with n− 2 nodes.

If n is odd then we delete a triangle t corresponding to a leaf node in Tn. By induction,
Pn− t can be decomposed into n−3

2
faces. Therefore Pn decomposes into n−3

2
+ 1 =

⌈
n−2

2

⌉
faces.

Assume that n is even, and so
⌈

n−2
2

⌉
= n

2
− 1. The triangulation consists of an even

number of triangles. If a diagonal decomposes Pn into two even polygons, then induction
completes the proof. Hence we assume that every diagonal decomposes Pn into two odd
polygons.

Let the triangle abc correspond to a leaf in Tn such that ac is a diagonal of Pn. We show
that no diagonal of Pn is incident to b. Suppose, by contradiction, that bd is a diagonal of
Pn (Fig. 20 (b)). Then abcd must be a convex polygon lying in Pn. Let d′ be the vertex of
Pn in acd \ {a, c} closest to the line ac. Note that bd′ is a diagonal of Pn, and at least one
of ad′ and cd′ is also a diagonal (since n ≥ 5). If bd′ decomposes Pn into odd polygons,
then either ad′ or cd′ decomposes it into two (non-empty) even polygons. We conclude
that b is not incident to any diagonal of Pn and so it sees the interior of a unique edge ef
of Pn (Fig. 20 (c)).

(a) The comb
polygon for n
odd and for n
even.

a

b

c

d

d
′

(b) If b is incident to a diagonal
bd, then there is a vertex d′

such that bd′ and at least
one of ad′ or cd′ are also di-
agonals.

a

b

c

e f

g

(c) If b sees the edge ef then
we can form the pseudo-
triangle pt(b, e, f).

Fig. 20. Lower bound (a). An example 24-gon. (b)-(c).

Consider the pseudo-triangle pt(b, e, f), which is the unique pseudo-triangle lying in
Pn with corners b, e, and f . If Pn = pt(b, e, f), then Pn is a pseudo-triangle, and our proof
is complete. Each of the components of Pn − pt(b, e, f) is an odd polygon. Every such
component is adjacent to a unique edge of the geodesic geo(a, e) or geo(c, f). If pt(b, e, f)
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has k vertices, then it has k − 3 edges along these geodesics (all edges except ab, bc, and
ef). We show that there is one edge along the geodesics geo(a, e) and geo(c, f) that is not
adjacent to any component of Pn − pt(b, e, f): Consider the dual graph of an arbitrary
triangulation of pt(b, e, f). It is a tree where one leaf node corresponds to abc and another
leaf corresponds to efg for some vertex g. Assume w.l.o.g. that eg is a side and fg is a
diagonal in pt(b, e, f). If eg were adjacent to an odd component of Pn−pt(b, e, f), then fg
would partition Pn into two even polygons. Therefore pt(b, e, f) with k vertices is adjacent
to at most k − 4 components of Pn − pt(b, e, f).

Let ni denote the number of vertices of the components of Pn − pt(b, e, f) for i =
1, 2, . . . , k − 4. We have k +

∑k−4
i=1 (ni − 2) = n. By induction, every odd component with

ni vertices can be decomposed into (ni−1)/2 faces. Together with pt(b, e, f), the polygon
Pn can be decomposed into

1 +
k−4∑
i=1

ni − 1

2
≤ 1 +

1

2

(
k−4∑
i=1

ni − 2

)
+

k − 4

2
=

n

2
− 1

faces, as required.

7. Conclusions and Open Problems

We proposed pseudo-convex decompositions, partitions, and coverings. We established
some of their basic properties and gave combinatorial bounds on their complexity. Our
upper bounds depend on new Ramsey-type results concerning disjoint empty convex k-
gons in the plane. We (obviously) would like to know what the exact bounds on ψd(n) and
ψp(n) are and if the exact bound for ψd(n) can be realized with a pointed decomposition.
It would also be interesting to determine the complexity of computing a minimum pseudo-
convex decomposition or covering for a given point set.

Acknowledgements. The first two authors thank Ferran Hurtado and Hannes Krasser
for valuable discussions over the matter presented here.
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