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Abstract

NLP algorithms are increasingly used in com-

putational social science to take linguistic ob-

servations and predict outcomes like human

preferences or actions. Making these social

models transparent and interpretable often re-

quires identifying features in the input that pre-

dict outcomes while also controlling for po-

tential confounds. We formalize this need as

a new task: inducing a lexicon that is predic-

tive of a set of target variables yet uncorre-

lated to a set of confounding variables. We

introduce two deep learning algorithms for the

task. The first uses a bifurcated architecture

to separate the explanatory power of the text

and confounds. The second uses an adversarial

discriminator to force confound-invariant text

encodings. Both elicit lexicons from learned

weights and attentional scores. We use them

to induce lexicons that are predictive of timely

responses to consumer complaints (controlling

for product), enrollment from course descrip-

tions (controlling for subject), and sales from

product descriptions (controlling for seller).

In each domain our algorithms pick words

that are associated with narrative persuasion;

more predictive and less confound-related than

those of standard feature weighting and lexi-

con induction techniques like regression and

log odds.

1 Introduction

Applications of NLP to computational social sci-

ence and data science increasingly use lexical fea-

tures (words, prefixes, etc) to help predict non-

linguistic outcomes like sales, stock prices, hospi-

tal readmissions, and other human actions or pref-

erences. Lexical features are useful beyond pre-

dictive performance. They enhance interpretabil-

ity in machine learning because practitioners know

why their system works. Lexical features can also

be used to understand the subjective properties of

a text.

For social models, we need to be able to select

lexical features that predict the desired outcome(s)

while also controlling for potential confounders.

For example, we might want to know which words

in a product description lead to greater sales, re-

gardless of the item’s price. Words in a description

like “luxury” or “bargain” might increase sales

but also interact with our confound (price). Such

words don’t reflect the unique part of text’s ef-

fect on sales and should not be selected. Simi-

larly, we might want to know which words in a

consumer complaint lead to speedy administrative

action, regardless of the product being complained

about; which words in a course description lead to

higher student enrollment, regardless of the course

topic. These instances are associated with narra-

tive persuasion: language that is responsible for

altering cognitive responses or attitudes (Spence,

1983; Van Laer et al., 2013).

In general, we want words which are predictive

of their targets yet decorrelated from confound-

ing information. The lexicons constituted by these

words are useful in their own right (to develop

causal domain theories or for linguistic analysis)

but also as interpretable features for down-stream

modeling. Such work could help widely in appli-

cations of NLP to tasks like linking text to sales

figures (Ho and Wu, 1999), to voter preference

(Luntz, 2007; Ansolabehere and Iyengar, 1995), to

moral belief (Giles et al., 2008; Keele et al., 2009),

to police respect (Voigt et al., 2017), to financial

outlooks (Grinblatt and Keloharju, 2001; Chate-

lain and Ralf, 2012), to stock prices (Lee et al.,

2014), and even to restaurant health inspections

(Kang et al., 2013).

Identifying linguistic features that are indicative

of such outcomes and decorrelated with confounds

is a common activity among social scientists, data

scientists, and other machine learning practition-

ers. Indeed, it is essential for developing transpar-
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ent and interpretable machine learning NLP mod-

els. Yet there is no generally accepted and rigor-

ously evaluated procedure for the activity. Prac-

titioners have conducted it on a largely ad-hoc

basis, applying various forms of logistic and lin-

ear regression, confound-matching, or association

quantifiers like mutual information or log-odds to

achieve their aims, all of which have known draw-

backs (Imai and Kim, 2016; Gelman and Loken,

2014; Wurm and Fisicaro, 2014; Estévez et al.,

2009; Szumilas, 2010).

We propose to overcome these drawbacks via

two new algorithms that consider the causal struc-

ture of the problem. The first uses its architec-

ture to learn the part of the text’s effect which

the confounds cannot explain. The second uses

an adversarial objective function to match text en-

coding distributions regardless of confound treat-

ment. Both elicit lexicons by considering learned

weights or attentional scores. In summary, we

1. Formalize the problem into a new task.

2. Propose a pair of well-performing neural net-

work based algorithms.

3. Conduct the first systematic comparison of

algorithms in the space, spanning three do-

mains: consumer complaints, course enroll-

ments, and e-commerce product descriptions.

The techniques presented in this paper will help

scientists (1) better interpret the relationship be-

tween words and real-world phenomena, and (2)

render their NLP models more interpretable1.

2 Deconfounded Lexicon Induction

We begin by formalizing this language processing

activity into a task. We have access to text(s) T ,

target variable(s) Y , and confounding variable(s)

C. The goal is to pick a lexicon L such that when

words in T belonging to L are selected, the re-

sulting set L(T ) is related to Y but not C. There

are two types of signal at play: the part of Y that

T can explain, and that explainable by C. These

signals often overlap because language reflects cir-

cumstance, but we are interested in the part of T ’s

explanatory power which is unique to T , and hope

to choose L accordingly.

So if Var [E [Y |L(T ), C]] is the information in

Y explainable by both L(T ) and C, then our goal

1Code, hyperparameters, and instructions for practi-
tioners are online at https://nlp.stanford.edu/

projects/deconfounded-lexicon-induction/

is to choose L such that this variance is maximized

after C has been fixed. With this in mind, we for-

malize the task of deconfounded lexicon induc-

tion as finding a lexicon L that maximizes an

informativeness coefficient,

I(L) = E
[
Var

[
E
[
Y
∣∣L(T ), C

] ∣∣C
]]
, (1)

which measures the explanatory power of the lex-

icon beyond the information already contained in

the confounders C. Thus, highly informative lexi-

cons cannot simply collect words that reflect the

confounds. Importantly, this coefficient is only

valid for comparing different lexicons of the same

size, because in terms of maximizing this criterion,

using the entire text will trivially make for the best

possible lexicon.

Our coefficient I(L) can also be motivated via

connections to the causal inference literature: in

Section 7, we show that—under assumptions of-

ten used to analyze causal effects in observational

studies—the coefficient I(L) can correspond ex-

actly to the strength of T ’s causal effects on Y .

Finally, note that by expanding out an ANOVA

decomposition for Y , we can re-write this criterion

as

I(L) = E

[(
Y − E

[
Y
∣∣C, L(T )

])2]

− E

[(
Y − E

[
Y
∣∣C

])2]
,

(2)

i.e., I(L) measures the performance improvement

L(T ) affords to optimal predictive models that al-

ready have access to C. We use this fact for eval-

uation in Section 4.

3 Proposed Algorithms

We continue by describing the pair of novel algo-

rithms we are proposing for deconfounded lexicon

induction problems.

3.1 Deep Residualization (DR)

Motivation. Our first method is directly motivated

by the setup from Section 2. Recall that I(L)
measures the amount by which L(T ) can improve

predictions of Y made from the confounders C.

We accordingly build a neural network architec-

ture that first predicts Y directly from C as well as

possible, and then seeks to fine-tune those predic-

tions using T .

Description. First we pass the confounds through

a feed-forward neural network (FFNN) to obtain
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Figure 1: The Deep Residualization (DR) selector. Val-

ues which are used to calculate losses are enclosed in

red ovals. Top: DR+ATTN, which represents text as

a sequence of word embeddings. Bottom: DR+BOW,

which represents text as a vector of word frequencies.

preliminary predictions Ŷ ′. We also encode the

text into a continuous vector e ∈ Rd via two alter-

native mechanisms:

1. DR+ATTN: the text is converted into a

sequence of embeddings and fed into

Long Short-Term Memory (LSTM) cell(s)

(Hochreiter and Schmidhuber, 1997) fol-

lowed by an attention mechanism inspired

by Bahdanau et al. (2015). If the words

of a text have been embedded as vectors

x1, x2, ..., xn then e is calculated as a

weighted average of hidden states, where the

weights are decided by a FFNN whose pa-

rameters are shared across timesteps:

h0 = ~0

ht = LSTM(xt,ht−1)

lt = ReLU(W attn
ht) · v

attn

pt =
exp(lt)∑
exp(li)

e =
∑

pihi

2. DR+BOW: the text is converted into a vec-

tor of word frequencies, which is compressed

with a two-layer feedforward neural network

(FFNN):

t = [freq1, freq2, ..., freqk]

h = ReLU(W hidden
t)

e = ReLU(W output
t)

We then concatenate e with Ŷ ′ and feed the re-

sult through another neural network to generate fi-

nal predictions Ŷ . If Y is continuous we compute

loss with

Lcontinuous = ||Ŷ − Y ||2

If Y is categorical we compute loss with

Lcategorical = −p∗ log p̂∗

Where p̂∗ corresponds to the predicted probability

of the correct class. The errors from Ŷ are propa-

gated through the whole model, but the errors from

Ŷ ′ are only used to train its progenitor (Figure 1).

Note the similarities between this model and the

popular residualizing regression (RR) technique

(Jaeger et al., 2009; Baayen et al., 2010, inter alia).

Both use the text to improve an estimate gener-

ated from the confounds. RR treats this as two

separate regression tasks, by regressing the con-

founds against the variables of interest, and then

using the residuals as features, while our model

introduces the capacity for nonlinear interactions

by backpropagating between RR’s steps.

Lexicon Induction. We elicit lexicons from

+ATTN style models by (1) running inference on

a test set, but rather than saving those predictions,

saving the attentional distribution over each source

text, and (2) mapping each word to its average at-

tentional score and selecting the k highest-scoring

words.

For +BOW style models, we take the matrix that

compresses the text’s word frequency vector, then

score each word by computing the l1 norm of the

column that multiplies it, with the intuition that

important words are dotted with big vectors in or-

der to be a large component of e.

3.2 Adversarial Selector (A)

Motivation. We begin by observing that a desir-

able L can explain Y , but is unrelated to C, which

implies it should should struggle to predict C. The

Adversarial Selector draws inspiration from this.
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Figure 2: The Adversarial (A) selector. Values which

are used to calculate losses are enclosed in red ovals.

Top: A+ATTN, which represents text as a sequence of

word embeddings. Bottom: A+BOW, which represents

text as a vector of word frequencies.

It learns adversarial encodings of T which are use-

ful for predicting Y , but not useful for predicting

C. It is depicted in Figure 2.

Description. First, we encode T into e ∈ Rd via

the same mechanisms as the Deep Residualizer of

Section 3.1. e is then passed to a series of FFNNs

(“prediction heads”) which are trained to predict

each target and confound with the same loss func-

tions as that of Section 3.1. As gradients back-

propagate from the confound prediction heads to

the encoder, we pass them through a gradient re-

versal layer in the style of Ganin et al. (2016) and

Britz et al. (2017), which multiplies gradients by

−1. If the cumulative loss of the target variables

is Lt and that of the confounds is Lc, then the

loss which is implicitly used to train the encoder

is Le = Lt−Lc, thereby encouraging the encoder

to learn representations of the text which are not

useful for predicting the confounds.

Lexicons are elicited from this model via the

same mechanism as the Deep Residualizer of Sec-

tion 3.1.

4 Experiments

We evaluate the approaches described in Sec-

tions 3 and 5 by generating and evaluating de-

confounded lexicons in three domains: financial

complaints, e-commerce product descriptions, and

course descriptions. In each case the goal is

to find words which can always help someone

net a positive outcome (fulfillment, sales, enroll-

ment), regardless of their situation. This involves

finding words associated with narrative persua-

sion: predictive of human decisions or preferences

but decorrelated from non-linguistic information

which could also explain things. We analyze the

resulting lexicons, especially with respect to the

classic Aristotelian modes of persuasion: logos,

pathos, and ethos.

We compare the following algorithms:

Regression (R), Regression with Confound

features (RC), Mixed effects Regression (M),

Residualizing Regressions (RR), Log-Odds Ratio

(OR), Mutual Information (MI), and MI/OR with

regresssion (R+MI and R+OR). See Section 5 for

a discussion of these baselines, and the online

supplementary information for implementation

details. We also compare the proposed algorithms:

Deep Residualization using word frequencies

(DR+BOW) and embeddings (DR+ATTN), and

Adversarial Selection using word frequencies

(A+BOW) and embeddings (A+ATTN).

In Section 2 we observed that I(L) measures

the improvement in predictive power that L(T ) af-

fords a model already having access to C. Thus,

we evaluate each algorithm by (1) regressing C
on Y , (2) drawing a lexicon L, (3) regressing

C + L(T ) on Y , and (4) measuring the size of

gap in test prediction error between the models of

step (1) and (3). For classification problems, we

measured error with cross-entropy (XE):

XE = −
∑

i

pi log p̂i

performance = XEC −XEL(T ),C

And for regression, we computed the mean

squared error (MSE):

MSE =
1

n

∑

i

(Ŷi − Yi)
2

performance = MSEC −MSEL(T ),C

Because we fix lexicon size but vary lexicon con-

tent, lexicons with good words will score highly

under this metric, yielding the large performance

improvements when combined with C.

We also report the average strength of associa-

tion between words in L and C. For categorical

confounds, we measure Cramer’s V (V ) (Cramér,

2016), and for continuous confounds, we use the
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point-biserial correlation coefficient (rpb) (Glass

and Hopkins, 1970). Note that rpb is mathemat-

ically equivalent to Pearson correlation in bivari-

ate settings. Here the best lexicons will score the

lowest.

We implemented neural models with the Ten-

sorflow framework (Abadi et al., 2016) and opti-

mized using Adam (Kingma and Ba, 2014). We

implemented linear models with the scikit learn

package (Pedregosa et al., 2011). We implemented

mixed models with the lme4 R package (Bates

et al., 2014). We refer to the online supplementary

materials for per-experiment hyperparameters.

For each dataset, we constructed vocabularies

from the 10,000 most frequently occurring tokens,

and randomly selected 2,000 examples for evalu-

ation. We then conducted a wide hyperparameter

search and used lexicon performance on the evalu-

ation set to select final model parameters. We then

used these parameters to induce lexicons from 500

random train/test splits. Significance is estimated

with a bootstrap procedure: we counted the num-

ber of trials each algorithm “won” (i.e. had the

largest errorC − errorL(T ),C). We also report

the average performance and correlation of all the

lexicons generated from each split. We ran these

experiments using lexicon sizes of k = 50, 150,

250, and 500 and observed similar behavior. The

results reported in the following sections are for

k = 150, and the words in Tables 1, and 2, 3 are

from randomly selected lexicons (other lexicons

had similar characteristics).

4.1 Consumer Financial Protection Bureau

(CFPB) Complaints

Setup. We consider 189,486 financial complaints

publicly filed with the Consumer Financial Pro-

tection Bureau (CFPB)2. The CFPB is a product

of Dodd-Frank legislation which solicits and ad-

dresses complaints from consumers regarding a

variety of financial products: mortgages, credit re-

ports, etc. Some submissions are handled on a

timely basis (< 15 days) while others languish.

We are interested in identifying salient words

which help push submissions through the bureau-

cracy and obtain timely responses, regardless of

the specific nature of the complaint. Thus, our

target variable is a binary indicator of whether

the complaint obtained a timely response. Our

2These data can be obtained from https:

//www.consumerfinance.gov/data-research/

consumer-complaints/

confounds are twofold, (1) a categorical variable

tracking the type of issue (131 categories), and (2)

a categorical variable tracking the financial prod-

uct (18 categories). For the proposed DR+BOW,

DR+ATTN, A+BOW, and A+ATTN models, we

set |e| to 1, 64, 1, and 256, respectively.

Results. In general, this seems to be a tractable

classification problem, and the confounds alone

are moderately predictive of timely response

(XEC = 1.06). The proposed methods appear

to perform the best, and DR+BOW achieved the

largest performance/correlation ratio (Figure 3).

Figure 3: Predictive performance (XEC −XEL(T ),C)

and average confound correlation (V/rpb) of lexicons

generated via our proposed algorithms and a variety of

methods in current use. The numbers to the right of

each bar indicate the number of winning bootstrap tri-

als.

DR+BOW MI RR R

. secondly being 100

ma’am forget 6 fargo

multiple focus issued wells

guide questions agreement .

submitted battle starting fdcpa

’nt vs 150.00 angry

honor certainly question owe

, contained in hipaa

xx/xx/xxxx the . file

ago be agreement across

Table 1: The ten highest-scoring words in lexicons gen-

erated by Deep Residualization + BOW (DR+BOW),

Mutual Information (MI), Residialized Regression

(RR), and regression (R).
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We obtain further evidence upon examining

the lexicons selected by four representative algo-

rithms: proposed (DR+BOW), a well-performing

baseline (RR), and two naive baselines (R, MI)

(Table 1). MI’s words appear unrelated to the

confounds, but don’t seem very persuasive, and

our results corroborate this: these words failed

to add predictive power over the confounds (Fig-

ure 3). On the opposite end of the spectrum, R’s

words appear somewhat predictive of the timely

response, but are confound-related: they include

the FDCPA (Fair Debt Collection Practices Act)

and HIPAA (Health Insurance Portability and Ac-

countability Act), which are directly related to the

confound of financial product.

The top-scoring words in RR’s lexicon include

numbers (“6”, “150.00”) and words that suggest

that the issue is ongoing (“being”, “starting”). On

the other hand, the words of DR+BOW draw on

the rhetorical devices of ethos by respecting the

reader’s authority (“ma’am”, “honor”), and logos

by suggesting that the writer has been proactive

about solving the issue (“multiple”, “submitted”,

“xx/xx/xxx”, “ago”). These are narrative qualities

that align with two of the persuasion literature’s

“weapons of influence”: reciprocation and com-

mitment (Kenrick et al., 2005). Several algorithms

implicitly favored longer (presumably more de-

tailed) complaints by selecting common punctu-

ation.

4.2 University Course Descriptions

Setup. We consider 141,753 undergraduate and

graduate course offerings over a 6-year period

(2010 - 2016) at Stanford University. We are in-

terested in how the writing style of a description

convinces students to enroll. We therefore choose

log(enrollment) as our target variable and control

for non-linguistic information which students also

use when making enrollment decisions: course

subject (227 categories), course level (26), num-

ber of requirements satisfied (7), whether there is

a final (3), the start time, and the combination of

days the class meets (26). All except start time are

modeled as categorical variables. For the proposed

DR+BOW, DR+ATTN, A+BOW, and A+ATTN

models, we set |e| to 1, 100, 16, and 64, respec-

tively.

Results. This appears to be a tractable regression

problem; the confounds alone are highly predic-

tive of course enrollment (MSEC = 3.67). (Fig-

A+ATTN R OR

future programming summer

instructor required interpretation

eating prerequisites stability

or computer attitude

doing management optimization

guest introduction completion

sexual chemical during

culture applications labor

research you production

project clinical background

Table 2: The ten highest-scoring words in lexicons gen-

erated by Adversarial + ATTN (A+ATTN), Regression

(R), and Log-Odds Ratio (OR).

ure 4). A+ATTN performed the best, and in gen-

eral, the proposed techniques produced the most-

predictive and least-correlated lexicons. Interest-

ingly, Residualization (RR) and Regression with

Confounds (RC) appear to outperform the Deep

Residualization selector.

In Table 2 we observe stark differences between

the highest-scoring words of a proposed technique

(A+ATTN) and two baselines with opposing char-

acteristics (R, OR) (Table 2). Words chosen via

Regression (R) appear predictive of enrollment,

but also related to the confounds of subject (“pro-

gramming”, “computer”, “management”, “chemi-

cal”, “clinical”) and level (“required”, “prerequi-

sites”, “introduction”).

Figure 4: Course description comparative perfor-

mance.

Log-Odds Ratio (OR) selected words which
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A+BOW RR

word transliteration translation word transliteration translation

ます masu polite suffix ７５

プロテイン purotein protein ５

お oh polite prefix ニチバン nichiban adhesive company
粒 tsubu grain ４

栄養 eiyō nutrition 群 gun group
ご go polite prefix サイズ saizu size
配合 haigō formulation 摂取 sesshu intake
デザート dezāto dessert 枚 mai sheet
錠 jō tablet 化学 kagaku chemical
大豆 daizu soy ミニ mini mini

Table 3: The ten highest-scoring words in lexicons generated by Adversarial Selection + BOW (A+BOW) and

Residualization (RR).

appear unrelated to both the confounds and

enrollment. The Adversarial Selector (A+ATTN)

selected words which are both confound-

decorrelated and predictive of enrollment. Its

words appeal to the concept of variety (“or”,

“guest”), and to pathos, in the form of universal

student interests (“future”, “eating”, “sexual”).

Notably, the A+ATTN words are also shorter

(mean length of 6.2) than those of R (9.3) and

OR (9.0), which coincides with intuition (students

often skim descriptions) and prior research (short

words are known to be more persuasive in some

settings (Pratkanis et al., 1988)). The lexicon also

suggests that students prefer courses with research

project components (“research”, “project”).

4.3 eCommerce Descriptions

Setup. We consider 59,487 health product listings

on the Japanese e-commerce website Rakuten3.

These data originate from a December 2012 snap-

shot of the Rakuten marketplace. They were tok-

enized with the JUMAN morphological analyzer

(Kurohashi and Nagao, 1999).

We are interested in identifying words which

advertisers could use to increase their sales, re-

gardless of the nature of the product. Therefore,

we set log(sales) as our target variable, and con-

trol for an item’s price (continuous) and seller (207

categories). The category of an item (i.e. tooth-

brush vs. supplement) is not included in these

data. In practice, sellers specialize in particular

product types, so this may be indirectly accounted

for. For the proposed DR+BOW, DR+ATTN,

A+BOW, and A+ATTN models, we set |e| to 4,

3These data can be obtained from https://rit.

rakuten.co.jp/data_release/

Figure 5: E-commerce comparative performance.

64, 4, and 30, respectively.

Results. This appears to be a more difficult pre-

diction task, and the confounds are only slightly

predictive of sales (MSEC = 116.34) (Figure 5).

Again, lexicons obtained via the proposed meth-

ods were the most successful, achieving the high-

est performance with the lowest correlation (Ta-

ble 3). When comparing the words selected by

A+BOW (proposed) and RR (widely used and

well performing), we find that both draw on the

rhetorical element of logos and demonstrate in-

formativeness (“nutrition”, “size”, etc.). A+BOW

also draws on ethos by identifying word stems as-

sociated with politeness. This quality draws on the

authority of shared cultural values, and has been

shown to appeal to Japanese shoppers (Pryzant

et al., 2017). On the other hand, RR selected sev-
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eral numbers and failed to avoid brand indicators:

“nichiban”, a large company which specializes in

medical adhesives, is one of the highest-scoring

words.

5 Related Work

There are three areas of related work which we

draw on. We address these in turn.

Lexicon induction. Some work in lexicon in-

duction is intended to help interpret the subjective

properties of a text or make make machine learn-

ing models more interpretable, i.e. so that prac-

titioners can know why their system works. For

example, Taboada et al. (2011); Hamilton et al.

(2016) induce sentiment lexicons, and Moham-

mad and Turney (2010); Hu et al. (2009) induce

emotion lexicons. Practitioners often get these

words by considering the high-scoring features of

regressions trained to predict an outcome (McFar-

land et al., 2013; Chahuneau et al., 2012; Ran-

ganath et al., 2013; Kang et al., 2013). They ac-

count for confounds through manual inspection,

residualizing (Jaeger et al., 2009; Baayen et al.,

2010), hierarchical modeling (Bates, 2010; Gus-

tarini, 2016; Schillebeeckx et al., 2016), log-odds

(Szumilas, 2010; Monroe et al., 2008), mutual in-

formation (Berg, 2004), or matching (Tan et al.,

2014; DiNardo, 2010). Many of these methods

are manual processes or have known limitations,

mostly due to multicollinearity (Imai and Kim,

2016; Chatelain and Ralf, 2012; Wurm and Fisi-

caro, 2014). Furthermore, these methods have not

been tested in a comparative setting: this work is

the first to offer an experimental analysis of their

abilities.

Causal inference. Our methods for lexicon in-

duction have connections to recent advances in the

causal inference literature. In particular, Johans-

son et al. (2016) and Shalit et al. (2016) propose

an algorithm for counterfactual inference which

bear similarities to our Adversarial Selector (Sec-

tion 3.2), Imai et al. (2013) advocate a lasso-based

method related to our Deep Residualization (DR)

method (Section 3.1), and Egami et al. (2017) ex-

plore how to make causal inferences from text

through careful data splitting. Unlike us, these pa-

pers are largely unconcerned with the underlying

features and algorithmic interpretability. Athey

(2017) has a recent survey of machine learning

problems where causal modeling is important.

Persuasion. Our experiments touch on the mech-

anism of persuasion, which has been widely stud-

ied. Most of this prior work uses lexical, syntac-

tic, discourse, and dialog interactive features (Stab

and Gurevych, 2014; Habernal and Gurevych,

2016; Wei et al., 2016), power dynamics (Rosen-

thal and Mckeown, 2017; Moore, 2012), or diction

(Wei et al., 2016) to study discourse persuasion as

manifested in argument. We study narrative per-

suasion as manifested in everyday decisions. This

important mode of persuasion is understudied be-

cause researchers have struggled to isolate the “ac-

tive ingredient” of persuasive narratives (Green,

2008; De Graaf et al., 2012), a problem that the

formal framework of deconfounded lexicon induc-

tion (Section 2) may help alleviate.

6 Conclusion

Computational social scientists frequently develop

algorithms to find words that are related to some

information but not other information. We en-

coded this problem into a formal task, proposed

two novel methods for it, and conducted the first

principled comparison of algorithms in the space.

Our results suggest the proposed algorithms of-

fer better performance than those which are cur-

rently in use. Upon linguistic analysis, we also

find the proposed algorithms’ words better reflect

the classic Aristotelian modes of persuasion: lo-

gos, pathos, and ethos.

This is a promising new direction for NLP re-

search, one that we hope will help computational

(and non-computational!) social scientists better

interpret linguistic variables and their relation to

outcomes. There are many directions for future

work. This includes algorithmic innovation, the-

oretical bounds for performance, and investigat-

ing rich social questions with these powerful new

techniques.

7 Appendix: Causal Interpretation of the

Informativeness Coefficient

Recall the definition of I(L):

I(L) = E
[
Var

[
E
[
Y
∣∣L(T ), C

] ∣∣C
]]

Here, we discuss how under standard (albeit

strong) assumptions that are often made to iden-

tify causal effects in observational studies, we can

interpret I(L) with L(T ) = T as a measure of the

strength of the text’s causal effect on Y .

Following the potential outcomes model of Ru-

bin (1974) we start by imagining potential out-
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comes Y (t) corresponding to the outcome we

would have observed given text t for any possible

text t ∈ T ; then we actually observe Y = Y (T ).
With this formalism, the causal effect of the text

is clear, e.g., the effect of using text t′ versus t is

simply Y (t′)− Y (t).

Suppose that T , our observed text, takes on

values in T with a distribution that depends

on C. Let’s also assume that the observed

text T is independent of the potential outcomes

{Y (t)}t∈T , conditioned on the confounders C
(Rosenbaum and Rubin, 1983). So we know

what would happen with any given text, but don’t

yet know which text will get selected (because

T is a random variable). Now if we fix C and

there is any variance remaining in Y (T ) (i.e.

E
[
Var

[
Y (T )

∣∣C, {Y (t)}t∈T
]]

> 0) then the text

has a causal effect on Y .

Now we assume that Y (t) = fc(t) + ǫ, mean-

ing that the difference in effects of one text t rel-

ative to another text t′ is always the same given

fixed confounders. For example, in a bag of words

model, this would imply that switching from using

the word “eating” versus “homework” in a course

description would always have the same impact on

enrollment (conditionally on confounders). With

this assumption in hand, then the causal effects of

T , E
[
Var

[
Y (T )

∣∣C, {Y (t)}t∈T
]]

, matches I(L)
as described in equation (1) (Imbens and Rubin,

2015). In other words, given the same assumptions

often made in observational studies, the informa-

tiveness coefficient of the full, uncompressed text

in fact corresponds to the amount of variation in Y
due to the causal effects of T .
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