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Deconstructing fibrosis research: do pro-fibrotic signals
point the way for chronic dermal wound regeneration?
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Abstract Chronic wounds are characterized by inadequate
matrix synthesis, no re-epithelialization, infection and
ultimately no wound resolution. In contrast, fibrosis is
characterized by overproduction of matrix and excess
matrix contraction. As research in the fields of chronic
wounds and fibrosis surges forward, important parallels can
now be drawn between the dysfunctions in fibrotic diseases
and the needs of chronic wounds. These parallels exist at
both the macroscopic level and at the molecular level. Thus
in finding the individual factors responsible for the
progression of fibrotic diseases, we may identify new
therapeutic targets for the resolution of chronic wounds.
The aim of this review is to discuss how recent advances in
fibrosis research have found a home in the treatment of
chronic wounds and to highlight the benefits that can be
obtained for chronic wound treatments by employing a
translational approach to molecules identified in fibrosis
research.
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Abbreviations
α-SMA alpha smooth muscle actin
bTGFβ2 bovine transforming growth factor beta 2
CCN2 connective tissue growth factor
ED-A FN extra type III domain-A fibronectin
ERK extracellular signal-regulated kinases
FAK focal adhesion kinase
JNK c-Jun N terminal kinases
LEA lower extremity amputation
MMP matrix metalloproteinase
PDGF platelet-derived growth factor
PRP platelet rich plasma
rhPDGF-BB recombinant human platelet-derived growth

factor B homodimer
SIS small intestine submucosa
SSc systemic sclerosis
TGFβ transforming growth factor beta
TIMP tissue inhibitors of matrix metalloproteinases

Introduction

Development of non-healing skin lesions represent an
increasing burden on today’s health care systems. The burden
of non-healing skin lesions, which for simplicity will be
referred to as chronic wounds, is being further exacerbated
with the increasing worldwide prevalence of diabetes. The
need for new and alternate therapeutics for the repair of non-
healing wounds is paramount to reduce patient suffering and
costs associated with treatment. Chronic wounds result from
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failure of the natural healing process to close dermal lesions.
In contrast, fibrosis results when the healing process contin-
ues, unchecked, to the point of scarring and impaired tissue
function. As research in the fields of chronic wounds and
fibrosis surge forward important parallels can be drawn
between the dysfunctions in fibrotic diseases and the needs
of chronic wounds, including; increased proliferation, in-
creased matrix synthesis and increased matrix contraction.
Curiously, elevated inflammation is a driving force in both
pathologies. The aim of this review is to discuss how recent
advances in fibrosis research have found a home in the
treatment of chronic wounds. Additionally, a relatively new
player in fibrosis, periostin, which may have potential benefit
for chronic wound resolution, will be discussed. The overall
goal of this review is to highlight potential new therapeutics,
which have been identified as pivotal to development of
fibrosis and whether such cues could kick-start chronic wound
resolution. To identify the current limitations and potential for
new therapeutics, it is first necessary to understand molecules
that are essential for normal wound resolution (Table 1).

Acute wound repair

The process of cutaneous wound repair is very complex and
dynamic, involving multiple cell types and a plethora of
growth factors, cytokines and their interactions. The aim of
this paper is not to review the intricate details of acute
wound healing. For such information, the reader is directed
to comprehensive reviews on the subject (Clark 1996;
Singer and Clark 1999; Diegelmann and Evans 2004;
Barrientos et al. 2008; Schultz and Wysocki 2009).

Briefly, acute (normal) wound repair consists of three
overlapping phases: inflammation, proliferative and tissue
remodeling (Fig. 1). Upon tissue injury, damage to blood

vessels results in the aggregation of platelets and the
formation of a fibrin clot. The clot is essential for restoring
hemostasis but also acts as a provisional matrix for
infiltrating cells (Clark 1996). Platelets secrete several
soluble factors including platelet-derived growth factor
(PDGF), which initiates chemotaxis of neutrophils, macro-
phages and fibroblasts (Clark 1996; Diegelmann and Evans
2004). Neutrophils and macrophages cleanse the wound of
foreign material. Secretion of transforming growth factor
(TGF) β by platelets and macrophages facilitates migration
and activation of fibroblasts. Fibroblasts infiltration of the
granulation tissue is essential for transition from the
inflammatory stage to the proliferative/tissue-building phase
(Roberts and Sporn 1993). Concurrently, keratinocytes
proliferate and migrate from the wound edge, isolating the
wound from the external environment (re-epithelialization).

The proliferative phase involves the formation of granula-
tion tissue by simultaneous perfusion of the wound site with
new vasculature andmatrix turnover by fibroblasts (Singer and
Clark 1999). Fibroblast proliferation, migration and matrix
synthesis is stimulated by PDGF and TGFβ (Clark 1996).
The fibrin clot is replaced by cellular fibronectin, collagen III
and progressively more collagen I (Midwood et al. 2004).
Differentiation of fibroblasts into the α-smooth muscle actin
(α-SMA)-positive contractile, myofibroblast phenotype
allows the contraction and compaction of the granulation
tissue into a matrix dense scar (Tomasek et al. 2002).

The transition from granulation tissue to scar formation
marks the beginning of the remodeling phase. During this
phase collagen is degraded, synthesized and rearranged at a
slower rate. Increasingly, collagen is organized into large
bundles and cross-linked. The resulting scar tissue is relatively
acellular and achieves only about 80% of the breaking
strength of normal skin (Levenson et al. 1965). Therefore,

Table 1 Summary of current and potential therapeutics used for the treatment of chronic wounds which are discussed in this review

Factor Role in acute wounds Fibrosis Chronic wounds Treatment options and outcomes (treatment vs. control)a

PDGF-BB Migration and activation of macrophages Increased Decreased Becaplermin:

Migration, proliferation and activation of
fibroblasts Granulation tissue formation

Steed 1995: 48% vs. 25% incidence of closure

Wieman et al. 1998: 50% vs. 35% incidence of closure

Platelet
releasate

Numerous due to inclusion of various
growth factors and components of the
fibrin matrix

N/A N/A Auto1ogel:

Driver et al. 2006: 81% vs. 420% incidence of closure
(in a subset of patients)

Margolis et al. 2001: 50% vs. 41% incidence of closure

TGFβ Decreases protease activity Increased Decreased Bovine TGF2:

Migration, proliferation and activation of
fibroblasts

Robson et al. 1995: open-label study increased closure
rate, closed-label study no efficacy.

Granulation tissue formation

Periostin Unknown, but contributes to collagen
fibrillogenesis, matrix accumulation,
cell migration, proliferation

Increased Unknown No treatments currently target periostin

a Outcomes are listed as percent incidence of closure in the treatment group vs. percent incidence of closure in the control group
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acute repair does not perfectly regenerate the affected tissue,
but instead strikes a favorable balance between a “good
enough” repair and rapid wound closure. However, the
inability of patients with existing medical conditions, such as
diabetes, to resolve dermal wounds rapidly, or at all, is
becoming more and more of a burden on healthcare systems.

The burden of chronic wounds

In general, chronic wounds in healthy individuals are rare
(Sen et al. 2009). However, in medically compromised
patients, such as those suffering from diabetes, the risk of

developing non-healing skin lesions is greatly increased. The
lifetime incidence of foot ulcers in diabetic patients has been
estimated to be between 15% and 25% (Reiber 1996; Singh
et al. 2005). The overall prevalence of pressure ulcers within
Canadian healthcare institutions was estimated at 26%
(Woodbury and Houghton 2004), although this estimate
does not include diabetic foot ulcers, or ulcers caused by
venous insufficiency. The estimated prevalence of non-
healing skin lesions encompassing all etiologies within the
healthcare system is closer to 35.5% (Woodbury and
Houghton 2005). Unfortunately, failure of current treatment
strategies to resolve chronic wounds commonly leads to

Fig. 1 Acute wound repair con-
sists of three overlapping
phases: inflammation, prolifera-
tive and remodeling. The in-
flammation phase is dominated
by neutrophils and macro-
phages, which serve to remove
foreign debris, bacteria and
damaged tissue. The prolifera-
tive phase includes the forma-
tion of granulation tissue and
reduced inflammatory signals.
The dominant cell types are
fibroblasts and myofibroblasts.
Matrix turnover and contraction
are key features of this phase.
The remodeling phase serves to
rearrange and strengthen the
newly formed tissue, producing
a matrix-dense, relatively acel-
lular, scar. Development of
chronic wounds and fibrotic
lesions are both driven by in-
creased inflammation. However,
in chronic wounds sustained
inflammation and failed pro-
gression to proliferative and
remodeling phases results (A).
Fibrosis results from failure of
the remodeling process to ter-
minate at an appropriate point.
Instead, continued matrix secre-
tion and contraction by myofi-
broblasts results in excessive
scarring (B)
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amputation of the effected limb (Cavanagh et al. 2005; Wu et
al. 2007). In 1993, Siitonen et al. reported the occurrence of
lower extremity amputation (LEA) to be ten times higher in
diabetic persons than in non-diabetics (Siitonen et al. 1993).
16 years later this trend had shown no signs of leveling off.
In fact LEA occurs 19 times as often in diabetic Canadians
than in the general population (Canada Diabetes Report,
2009). 60% of non-traumatic amputations in the US occurred
in diabetic patients (CDC Diabetes Fact Sheet 2007), with
80% of amputations in diabetic patients being preceded by a
non-healing ulcer (Driver et al. 2010). The risks associated
with LEA are staggering. Perioperative mortality rates
following above knee LEA have been reported as high as
18.6% in 2003 (Moxey et al. 2010) and 18% in 2005 (Ploeg
et al. 2005). Recently, Aragón-Sánchez and colleagues
reported 14.7% post-operative mortality following above
knee amputations (Aragon-Sanchez et al. 2010). In England
a significant decrease occurred in mortality rates, from
18.6% in 2003 to 15.2% in 2007, supporting a promising
trend (Moxey et al. 2010). Long term mortality following
LEA, however, remains unacceptably high. Several recent
reports place 5-year survival rates following any LEA at
approximately 50% (Hambleton et al. 2009; Papazafiropoulou
et al. 2009). When major amputations (above knee) are
considered alone, 5-year survival rates are as low as 11%
(Morbach et al. 2009).

An estimated 2.8 million Canadians will have developed
diabetes by 2012 (Canada Diabetes Report, 2009). The
prevalence of diabetes in Canada has increased steadily
from 4.9% to 6.2% from 2002–03 to 2006–07, representing
over two million Canadians (Canada Diabetes Report
2009). Current estimates suggest that 220 million people
worldwide have diabetes, and that number is expected to
climb to 336 million by the year 2030 (WHO Fact Sheet No
312, 2009) (Wild et al. 2004). There is no indication that
the burden of chronic wounds is shrinking. With the
growing prevalence of diabetes, obesity and an aging
population, the impact of chronic wounds is deserving of
greater attention in healthcare research (Armstrong et al.
2007; Harding and Queen 2010). Selection of target
molecules for treatment of chronic wounds based on studies
of acute wound repair can be difficult and time consuming
due to the complexity of acute wound repair. To expedite the
search for target molecules we can take advantage of the
accumulating knowledge of fibrotic skin lesions, such as
keloid scars, hypertrophic scars and scleroderma. Careful
dissection of these conditions of “overhealing”may offer hints
towards treating non-healing chronic wounds (Table 1).

Chronic wounds vs. fibrosis

Fibrosis is a general term describing pathological conditions
in which the healing process has continued, unchecked, to the

point where normal tissue is replaced by scars, resulting in
impaired/lost function. The central features of fibrotic diseases
include; increased growth factor activity, decreased protease
activity and decreased fibroblast senescence (Fig. 1) (Wynn
2007). The culmination of these features is excess matrix
deposition and scar formation. Although the etiology of
chronic wounds is not fully understood, three major differ-
ences have been described between chronic and acute
wounds; 1) reduced growth factor activity, 2) increased
protease activity and 3) increased fibroblast senescence
(Schultz and Mast 1998; Harding et al. 2002). Interestingly,
excessive inflammation is common to both chronic wounds
(Cochrane 1977; Trengove et al. 2000) and fibrosis
(Abraham and Varga 2005). The key difference is that
chronic wounds become stalled in an inflammatory state, but
fibrotic diseases progress beyond the initial inflammation
and enter an aggressive fibrotic state (Abraham and Varga
2005). In bleomycin-induced fibrosis, the initial bout of
excessive inflammation is characterized by increased numb-
ers of macrophages (Kraling et al. 1995). Being a major
source of the pro-fibrotic growth factors PDGF and TGFβ,
increased macrophage numbers promote an elevated fibrotic
response (Yamamoto and Nishioka 2005). The elevated
fibrotic response results in the increased and sustained
activity of myofibroblasts, which are responsible for elevated
collagen production, matrix contraction and continued
secretion of TGFβ (Tomasek et al. 2002; Yamamoto and
Nishioka 2005). In contrast, chronic wounds suffer from
reduced expression of key growth factors, such as PDGF and
TGFβ, which impedes fibroblast activation and construction
of the granulation tissue (Robson 1997; Galkowska et al.
2006). Increased protease activity, originating from excessive
neutrophil infiltration (Cochrane 1977) and compounded by
reduced protease inhibitor levels, serves to degrade important
matrix components such as collagens (Wysocki et al. 1993;
Vaalamo et al. 1999; Liu et al. 2009; Yang et al. 2009) and
growth factors (Chen et al. 1997). These deficiencies are
further exacerbated by the senescent state of fibroblasts
within the wound, which impairs the response to the already
scarce growth factors (Hasan et al. 1997; Stanley et al. 1997;
Hehenberger et al. 1998; Mendez et al. 1998; Loot et al.
2002; Yang et al. 2009). A question of critical importance is
why, or how, do fibrotic skin lesions progress beyond the
initial excessive inflammation, whereas chronic wounds
become stalled (Fig. 1)?

Current targets for treatment of chronic wounds

Platelet-derived growth factor-BB

Does increased recruitment of macrophages in bleomycin-
induced fibrosis provide the answer to progressing chronic
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wounds beyond inflammation? Fibrosis results from
excessive extracellular matrix (ECM) production, primar-
ily by a specialized type of activated fibroblast, termed
myofibroblasts, so-called as they highly express the
protein α-SMA (Trojanowska 2008). Macrophages re-
lease the pro-fibrotic growth factor PDGF (Yamamoto and
Nishioka 2005), which plays a key role in the expansion
and persistence of myofibroblast populations (Bostrom et
al. 1996; Heldin and Westermark 1999; Trojanowska
2008) by modulating fibroblast migration, proliferation
and activation (Barrientos et al. 2008). PDGF also
contributes to TGFβ expression and thus represents a
crucial initiator of granulation tissue formation (Heldin
and Westermark 1999).

PDGF includes a family of homo and heterodimeric
proteins (PDGF-AA, PDGF-AB, PDGF-BB, PDGF-CC
and PDGF-DD), which bind to transmembrane tyrosine
kinase receptors (Bennett et al. 2003; Barrientos et al.
2008). In the fibrotic disorder systemic sclerosis (SSc),
expression of PDGF-BB receptors is increased within and
around dermal vasculature (Klareskog et al. 1990). Bron-
choalveolar lavage fluid from SSc patients contains signifi-
cantly elevated levels of PDGF-AA and -BB (Ludwicka et
al. 1995). Cells isolated from SSc skin biopsies express
elevated PDGF-B and PDGF receptor, compared to normal
patients (Zheng et al. 1998). The c-Abl inhibitors imatinib
(Distler et al. 2007), dasatinib and nilotinib (Akhmetshina et
al. 2008), act downstream on non-receptor tyrosine kinases
of both TGFβ and PDGF to block the production of ECM
proteins (Daniels et al. 2004). Bleomycin-induced dermal
thickening and myofibroblast accumulation is prevented by
oral administration of these inhibitors in a mouse model
(Distler et al. 2007; Akhmetshina et al. 2008), suggesting that
PDGF may be an excellent target for the treatment of fibrosis
(Beyer et al. 2010; Leask 2010), but also highlighting PDGF
as an obvious therapeutic agent for chronic wound. As a
potent chemoattractant for fibroblasts (Seppa et al. 1982),
PDGF is important for progression of wound repair beyond
inflammation and into the proliferative phase (Gao et al.
2005). In animal models, delivery of PDGF to wounds
increases fibroblast infiltration, TGFβ expression, collagen
deposition, granulation tissue formation and the repaired
skin’s breaking strength (Pierce et al. 1988, 1989; Mustoe et
al. 1990); resulting in accelerated wound closure. Moreover,
these benefits are also achieved in models of chronic wounds
(Mustoe et al. 1989, 1991). It has since been shown that
PDGF-BB is absent in non-healing chronic wounds, but
present in actively healing pressure ulcers (Pierce et al.
1995).

PDGF is currently the only growth factor approved for
use by the FDA in the treatment of diabetic foot ulcers and
is marketed under the name Regranex®. Application of
rhPDGF-BB is preceeded by debridement, or wound bed

preparation, which is the attempt to remove the infected and
necrotic components of an ulcer and establish a pseudo-
acute wound environment (Kirshen et al. 2006). Delivery of
rhPDGF-BB to debrided wounds improved closure of non-
diabetic chronic pressure ulcers (Robson et al. 1992) and
deep pressure ulcers (Mustoe et al. 1994). In neurotrophic
diabetic ulcers, treatment resulted in 48% of wounds
closing where as 25% of wounds closed in the placebo
group (Steed 1995). In a multi-center study, administration
of 100 μg/g becaplermin (rhPDGF-BB) to diabetic ulcers
resulted in closure of 50% vs. 35% (treatment vs. placebo)
of wounds (Wieman et al. 1998). The smaller effect size
reported by Wieman in comparison with Steed possibly
reflects inherent variability in the larger, multi-center study,
thus more closely representing a realistic effect size with
wide spread use. The addition of rhPDGF-BB to diabetic
wounds has therefore produced statistically significant,
although modest, increases in wound closure over placebo.
At best, 50% of wounds treated with rhPDGF-BB closed,
the majority of which can be attributed to standard wound
care (placebo) alone. Perhaps a limitation of PDGF based
treatments is its ability to recruit inflammatory cells such as
macrophages and neutrophils (Deuel et al. 1982). Where as
macrophages are a major source of TGFβ (Roberts and
Sporn 1993) and are required for wound repair (Leibovich
and Ross 1975), neutrophils are not required for wound
repair in the absence of gross infection (Simpson and Ross
1972). Neutrophils are a source of inflammatory cytokines
(IL-1, -6 and TNFα) (Barrientos et al. 2008), reactive oxygen
species and damaging proteolytic enzymes (Diegelmann and
Evans 2004). Without additional signals, which are absent in
chronic wounds, it is possible that the pro-inflammatory role
of PDGF may prevail. Thus complex interaction of the
multitude of growth factors and matrix elements present in
acute wounding may not be suitably recapitulated with
rhPDGF-BB alone.

Platelet releasate

Platelet rich blood plasma contains multiple growth factors
(Schultz and Grant 1991), and the components of a fibrin
matrix (Mosesson 2005). Administration of autologous
plasma to chronic wounds more closely mimics the
complexity of the initial stages of natural wound repair,
including structural matrix components. Platelet rich plas-
ma (PRP) has been used for the treatment of chronic
wounds for over 20 years. Autologel™, a PRP product, is
prepared from a small sample of the patient’s blood plasma
mixed with a gel base, which is immediately applied to the
wound. Despite it’s long history of use, randomized
controlled clinic studies for PRP are lacking. Driver and
colleagues carried out the first FDA approved prospective,
randomized, blinded, placebo-controlled clinical trial of
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PRP (Autologel™) for diabetic foot ulcers (Driver et al.
2006). Although this study showed significance (81% vs.
42% of wounds closed, treatment vs. placebo), it suffered
from extensive exclusion of participants for a variety of
reasons. As the vast majority of persons with chronic
wounds fall outside of the numerous exclusion criteria
employed in this study, the applicability of this data is
limited. Margolis et al., in a retrospective, randomized,
controlled study of nearly 27,000 patients (of which 21%
were treated with platelet releasate), reported the overall
proportion of wounds healed at 50% vs. 41% (Margolis et
al. 2001). This is likely a much more realistic outcome
since it reflects the effectiveness of the treatment across a
very large group in the hands of many practitioners and not
the efficacy within a very idealized treatment group.

Use of platelet releasate for the treatment of chronic
wounds offers benefits over placebo, however, similar to
rhPDGF-BB, the increased incidence of wound closure is
modest. The limited success of platelet releasate may be
due to pro-inflammatory influences, which may undermine
the pro-fibrotic effects of growth factors contained within.
PDGF is potent chemoattractant for fibroblasts (Seppa et al.
1982; Lin et al. 2006), however, it does not increase
expression of collagen 1, a key component of granulation
tissue and scars (Tan et al. 1995; Jinnin et al. 2005).
Instead, PDGF increases expression of matrix metallopro-
teinase (MMP)-1, which contributes to collagen degrada-
tion (Tan et al. 1995). Interestingly, where as PDGF-BB
increases MMP-1 expression in human dermal fibroblasts,
TGFβ1 decreases MMP-1 expression and potently induces
collagen synthesis, contributing to matrix accumulation
(Ignotz and Massague 1986; Edwards et al. 1987; Tan et al.
1995). Thus TGFβ is a logical alternative to PDGF as a
pro-fibrotic therapeutic agent.

Transforming growth factor β

TGFβ expression during acute wound repair contributes to
progression of granulation tissue formation and matrix
deposition, where its ability to stimulate collagen produc-
tion is so potent that is can lead to fibrosis (Barrientos et al.
2008). Platelets and macrophages are the major sources of
TGFβ during the inflammatory phase (Clark 1996).
Fibroblasts are the key TGFβ target cells during the
proliferative phase of wound repair. PDGF and TGFβ
together promote myofibroblast differentiation, however,
PDGF does not stimulate α-SMA expression (Tomasek et
al. 2002). TGFβ drives α-SMA expression and is required
for differentiation of fibroblasts into myofibroblasts, the
major contributors to collagen production and matrix
remodeling (Desmouliere et al. 1993, 2005; Tomasek et
al. 2002). Increased TGFβ signaling results in decreased
expression of proteases, such as MMPs, and increased

expression of tissue inhibitors of MMPs (TIMPs) (Edwards
et al. 1987), thereby further contributing to matrix accu-
mulation. TGFβ signaling has been extensively reviewed
elsewhere (Leask and Abraham 2004; Varga and Abraham
2007). Briefly, there are three isoforms of TGFβ: TGFβ1,
TGFβ2 and TGFβ3. The actions of these isoforms are
largely overlapping with the possible exception of TGFβ3,
which has been shown to have anti-fibrotic influences
(Shah et al. 1995). Activated TGFβ binds to heteromers of
the TGFβ type I and type II receptors. Type I receptors
(ALK5) phosphorylate Smad2 and Smad3 which go on to
bind Smad4 and translocate to the nucleus. Once in the
nucleus the Smad complex binds to Smad binding elements
in target genes (Fig. 2) (Massague and Wotton 2000).
TGFβ has also been known to signal through focal
adhesion kinase (FAK), extracellular signal-regulated
kinases (ERK), c-Jun N terminal kinases (JNK) and p38
(Leask 2008). Target genes of TGFβ signaling include α-
SMA, MMPs, TIMPs, periostin, connective tissue growth
factor (CCN2) and collagen I (Kocher and Madri 1989;
Igarashi et al. 1993; Takeshita et al. 1993; Holmes et al.
2001; Verrecchia et al. 2001).

TGFβ is central to fibrosis, where it drives excessive
collagen production and myofibroblast differentiation (Wei
et al. 2010), leading to matrix accumulation and contrac-
tion. The role of TGFβ in fibrosis has received a lot of
attention and is the topic of several reviews (Leask and
Abraham 2004; Pannu and Trojanowska 2004; Varga and
Pasche 2009). Accumulating evidence implicates inappro-
priately elevated TGFβ signaling in the progression of SSc.
Examples include: increased TGFβ receptor expression
(Kawakami et al. 1998; Kubo et al. 2002; Pannu et al.
2004), increased Smad3 mRNA, protein levels and phos-
phorylation levels (Mori et al. 2003). Additionally, Smad3/
4 nuclear localization is increased in SSc fibroblasts, both
in the absence of TGFβ stimulation and in the presence of
TGFβ blocking antibodies (Mori et al. 2003). The targeting
of TGFβ directly in fibrosis has been successful in animal
models. Injection of TGFβ neutralizing antibodies to the
edges of dermal wounds in rats, results in reduced scar
formation, where as addition of TGFβ increases scarring
(Shah et al. 1992). Topical application of the P144 peptide,
which interferes with TGFβ/receptor association, reduces
bleomycin induced dermal thickening, Smad2/3 phosphory-
lation and α-SMA positive myofibroblast numbers (Santiago
et al. 2005). Treatment strategies targeting TGFβ in fibrosis
are numerous (Varga and Pasche 2009), but have so far
shown limited success (Denton et al. 2007).

TGFβ’s pro-fibrotic role in acute wounds and fibrosis
makes it an interesting target for treatment of chronic
wounds. Indeed, TGFβ1 expression is reduced in diabetic
and venous foot ulcers, compared to uninjured skin (Jude et
al. 2002). In a rabbit ischemic ulcer model, topical
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application of rhTGFβ1 increased wound healing signifi-
cantly (Beck et al. 1990; Zhao et al. 1994). These studies
used young ischemic rabbits for their experiments. The
combined effect of age and ischemia was address by Wu et
al. They found that 60-month-old ischemic rabbits did not
response to application of rhTGFβ (Wu et al. 1999). From
this observation they concluded that TGFβ signaling must
be defective in the aged ischemic model and topical
application of TGFβ may not benefit healing of human
chronic wounds. It is worth mention that, due to the

cartilage within the rabbit ear, the model chosen in this
series of experiments does not allow for a significant
contribution of contraction in healing (Mustoe et al. 1991).
Perhaps this feature of the model masks the effects of
TGFβ with respect to myofibroblast differentiation and
activity. Never the less, the limited benefit of TGFβ in
animal models has been mirrored by the studies of Robson
and colleagues, who investigated the application of TGFβ2
on human chronic venous ulcer healing. The study
incorporated an open-label trial in which patients received
either 0.5 μg/cm2 bovine TGFβ2 (bTGFβ2) in a lyophi-
lized collagen matrix or placebo (matrix only). bTGFβ2
treatment resulted in a significant increase in wound closure
after a 6-week regime (Robson et al. 1995). In the parallel
closed-label trial, however, 2.5 μg/cm2 bTGFβ2 treatment
offered no benefit over the placebo. The authors suggest
that increased variation in the control groups undermined
the effect of treatment in the closed-label study (Robson et
al. 1995). With a small number of patients (n=12/group) it
is possible that sampling error played a significant role. We
must be cautious, however, of how we interpret open-label
study data since the placebo effect has been shown in
earlier examples to dominate the effectiveness of treat-
ments. At a minimum, this study stresses the requirement
for large-scale randomized, blinded, multi-center, placebo-
controlled clinical trials.

Recent evidence suggests that the rather disappointing
results of TGFβ addition to chronic wounds may be due to
dysregulation of the TGFβ signaling cascades (Hasan et al.
1997; Cowin et al. 2001; Jude et al. 2002; Pastar et al.
2010). Together these studies establish a trend towards
reduced TGFβ receptor expression, although the data is
somewhat conflicting when looking at the expression of
specific receptors. Convincingly, TGFβ responsive genes
are strikingly reduced in venous ulcers (Pastar et al. 2010).
A growing body of evidence now clearly identifies
additional, or accessory, signaling pathways induced by
TGFβ and necessary for appropriate context-specific TGFβ
signaling. As will be discussed in the coming sections,
these non-canonical TGFβ signaling pathways are of
particular importance to wound repair and fibrosis. More-
over, context-specific modulation of these pathways is
increasingly becoming a role of matricellular proteins.

Old players, but new rules in chronic wound
regeneration

Non-canonical TGFβ signaling

In addition to Smad signaling, TGFβ is known to signal
through Smad independent, non-canonical pathways, which
have been implicated in myofibroblast differentiation,

Fig. 2 Cannonical pro-fibrotic TGFβ signaling is initiated by the
binding of active TGFβ to TGFβ receptors. Type I receptors
phosphorylate receptor-Smads 2 and 3, which associate with Smad4
and translocate to the nucleus. In the nucleus the Smad complex
interacts with Smad binding elements, promoting gene expression.
Among the many genes influenced by TGFβ signaling are collagens I
and III, α-SMA, fibronectin, TIMPs and periostin. Additionally,
increased Smad7 expression creates a negative feedback loop, limiting
pathway activation. The pro-fibrotic roles of periostin are summarized
here. Via interactions with the ECM and BMP-1, periostin facilitates
collagen crosslinking through activation of lysyl oxidase. Periostin’s
influences on cell behaviours include altered proliferation, migration
and adhesion. Recent evidence suggests that periostin plays a role in
liberation of TGFβ from the latency-associated proteins in an MMP-2/
9 dependent manner
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matrix contraction and fibrosis. Serini and colleagues
showed that adhesion to the ED-A splice variant of
fibronectin (ED-A FN) is required for myofibroblast
differentiation from human subcutaneous fibroblasts (Serini
et al. 1998). Although binding to ED-A FN does not cause
differentiation, per se, blocking specific ED-A FN binding
disrupts TGFβ-induced α-SMA expression (Serini et al.
1998); demonstrating a role for adhesive signaling in TGFβ
response. Stimulation of adherent human lung fibroblasts
with TGFβ results in increased FAK phosphorylation and
α-SMA expression (Thannickal et al. 2003). TGFβ-
induced α-SMA and collagen 1 expression has been shown
to require FAK and JNK activation in mouse embryonic
fibroblasts (Liu et al. 2007). When human fibroblasts are
maintained in suspension or treated with the FAK/Src
inhibitor, PP2, FAK phosphorylation is lost and TGFβ-
induce α-SMA expression is abolished (Thannickal et al.
2003). Interestingly, Smad2 phosphorylation remains
TGFβ responsive, even when cells are maintained in
suspension (Thannickal et al. 2003); suggesting non-
canonical signaling critically regulates myofibroblast dif-
ferentiation, one of the core features of fibrosis. Fibroblasts
isolated from fibrotic lesions in patients with SSc show an
increased ability to contract a collagen matrix. This
heightened contractility can be reduced by treatment with
inhibitors of; TGFβ type 1 receptor activation, ERK
activation and proteoglycan synthesis (Chen et al. 2005).
Furthermore, genetic deletion of the heparan sulphate
proteoglycan, syndecan 4, results in loss of TGFβ-
induced ERK phosphorylation, α-SMA incorporation into
stress fibers and contractility (Chen et al. 2005).

Non-cononical TGFβ signaling has been suggested to
modulate, or fine tune, the response to TGFβ in a gene and
context specific manner (Leask and Abraham 2004). As a
result, these accessory pathways have gained the interest of
fibrosis researchers since they offer potential targets for the
treatment of fibrosis without disrupting the pleiotropic
TGFβ/Smad pathway, which may be problematic for basal
tissue functioning (Leask 2008). Modulation of TGFβ’s
impact on healing via non-canonical signaling is a function
that is becoming more and more prominent in a group of
proteins known as matricellular proteins. Moreover, com-
bined, TGFβ and matricellular proteins may highlight the
appropriate direction for new therapeutics for chronic
wounds.

Matricellular proteins in fibrosis and acute wound repair

Matricellular proteins are non-structural ECM components,
which bind cell surface receptors to mediate interactions
between the cell and its ECM thereby exerting control over
essential events (migration, proliferation, adhesion, etc.)
during wound repair (Bornstein 1995; Midwood et al.

2004; Hamilton 2008). Although genetic deletion of
matricellular proteins typically results in very mild pheno-
types (Hamilton 2008), wound repair can be severely
compromised (Midwood et al. 2004; Hamilton 2008).
Matricellular proteins have diverse roles, spanning all
phases of wound repair. For example, efficient re-
epithelialization is facilitated by tenascin-C, where kerati-
nocyte migration is decreased in tenascin-C knockout mice
(Matsuda et al. 1999). Thrombospondin-1 has been shown
to activate latent TGFβ (Schultz-Cherry and Murphy-
Ullrich 1993). Macrophage infiltration is increased in the
presence of the matricellular protein osteopontin (Denhardt
et al. 2001).

The role of matricellular proteins in myofibroblast
behaviour has received considerable attention. Osteopontin
serves as a ligand for αvβ3 integrins where binding leads
to activation of FAK and numerous downstream pathways
(Sodek et al. 2000). Furthermore, osteopontin is required
for TGFβ-induced myofibroblast differentiation, where
deletion of osteopontin eliminates TGFβ-dependent
increases in α-SMA and ED-A FN expression (Lenga et
al. 2008). CCN2 promotes myofibroblast differentiation in
the presence of TGFβ (Leask 2008). Although, CCN2 is
considered to be a cofactor in fibrosis and not a fibrotic
agent itself (Leask 2010) it serves as a marker for severity
of fibrosis in SSc (Takehara 2003). CCN2 is required for
maximal induction of α-SMA and collagen 1 by TGFβ,
where TGFβ-induced FAK and Akt activation is reduced in
CCN2 null fibroblasts (Shi-wen et al. 2006). Furthermore,
CCN2 can also activate ERK through a syndecan-4-
dependent mechanism (Kennedy et al. 2007). Syndecan-4,
which was previously discussed as being required for many
facets of TGFβ-induced myofibroblast behaviour, is con-
sidered by some to be a matricellular protein (Woods 2001).
Human dermal fibroblasts are unable to contract a collagen
matrix in the presence of neutralizing antibodies for the
matricellular protein, vitronectin (Sethi et al. 2002).
Vitronectin incorporation into the ECM is inhibited by
exogenous galectin-1, yet another matricellular protein
(Moiseeva et al. 2003). Finally, CCN1/CYR61 acts through
integrins, ERK and p38 to cause myofibroblast senescence,
thus serving as a natural brake on fibrotic tissue remodeling
(Jun and Lau 2010). As a group, matricellular proteins can
encourage and inhibit critical events of acute and fibrotic
healing. Despite mounting evidence for the importance of
matricellular proteins in wound contraction and re-
epithelialization, no clinical trials are currently employing
these proteins for the resolution of chronic wounds. The
various influences of matricellular proteins documented to
date provide a multitude of avenues for exploration of
potential targets for fibrosis and chronic wounds. In the
following section we will use periostin as an example to
illustrate the deeply rooted influence of matricellular
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proteins on; cellular behaviour, acute wound repair and
fibrotic diseases.

Periostin

Periostin represents an, as yet, untapped resource in the
treatment of fibrotic and chronic wounds (Hamilton 2008).
Periostin has influences on many key aspects of acute
healing and fibrosis. Collagen synthesis, fibril assembly
and myofibroblast behaviour have all been increasingly
linked to periostin at a functional level. Furthermore, the
expression pattern of periostin following tissue injury
suggests that it plays a common role in various models of
acute wound repair.

Periostin is a secreted 90-kDa disulfide-linked, TGFβ
inducible protein, originally designated osteoblast specific
factor 2 (Takeshita et al. 1993; Horiuchi et al. 1999).
Structurally, periostin consists of a typical signal sequence,
an EMI domain responsible for binding to fibronectin, four
tandem fasciclin-like domains that are responsible for
integrin binding (Kim et al. 2002) and a C-terminal region
where multiple splice variants originate (Litvin et al. 2004)
(Fig. 3). Additionally, periostin has been shown to bind
collagen, tenascin-C, BMP-1 and itself (Kii et al. 2006;
Takayama et al. 2006; Norris et al. 2007; Kii et al. 2009;
Maruhashi et al. 2010). The ability of periostin to interact
with various integrin pairs (Gillan et al. 2002; Bao et al.
2004; Shao et al. 2004; Baril et al. 2007; Butcher et al.
2007) allows it to influence various biological effects
including cell proliferation, cell migration, cell adhesion
and epithelial to mesenchymal transformation (Horiuchi et
al. 1999; Katsuragi et al. 2004; Lindner et al. 2005; Yan and
Shao 2006; Vi et al. 2009; Li et al. 2010).

Transient increases in periostin expression are seen in
many connective tissue wound models. Nakazawa and
colleagues showed an increase in periostin mRNA follow-
ing induced tibial fractures in mice. Periostin expression
was significantly increased by day 3, peaking at day 7, in
preosteoblasts of the periosteum and undifferentiated

mesenchymal cells within the soft callus (Nakazawa et al.
2004). Periostin is abundantly expressed following 8 days
of balloon injury to rat carotid arteries, eventually decreas-
ing by 4 weeks post injury (Lindner et al. 2005). Li and
colleagues confirmed that periostin peaks at 7 days post
injury in this model (Li et al. 2006). To determine if
periostin induction is a feature common to other connective
tissue injuries, Lindner and colleagues created full thickness
incisional wounds in the skin of rats. Indeed, periostin
expression was detected in the fibroblasts, but not kerati-
nocytes, of the wound site (Lindner et al. 2005). The
expression pattern of periostin during dermal wounding has
since been further defined (Jackson-Boeters et al. 2009;
Zhou et al. 2010). After incisional wounding, periostin is
expressed in the dermis and basement membrane within the
dermal-epidermal junction (Zhou et al. 2010). In full
thickness excisional wounds, in which the dermis and
epidermis are completely removed, periostin expression
dominates the newly formed granulation tissue (Jackson-
Boeters et al. 2009). With expression beginning at day 3,
peaking by day 7 and eventually returning to basal levels
by 4 weeks (Jackson-Boeters et al. 2009), the temporal
expression pattern of periostin in skin mimics that in
vascular balloon injury and bone fracture. These observa-
tions strongly suggest that a common role for periostin may
exist in all connective tissue repairs. Interestingly, periostin
expression in dermal repair coincides with the expression of
α-SMA expression with the granulation tissue (Jackson-
Boeters et al. 2009). Furthermore, acquisition of a smooth
muscle cell phenotype, as determined by α-SMA expres-
sion, correlates with acquisition of periostin expression
both in vitro and in vivo (Lindner et al. 2005).

The functional role of periostin is not fully understood,
however, several lines of evidence point towards a role in
collagen deposition and myofibroblast differentiation. In
murine models of myocardial infraction and ventricular
hypertrophy (thickening of the myocardium), increased
periostin expression results in increased collagen deposition
(Katsuragi et al. 2004; Oka et al. 2007; Shimazaki et al.

Fig. 3 Domain structures of human periostin. Human full length
periostin (isoform 1) consists of a typical signal peptide (SP) sequence,
an EMI domain responsible for binding to fibronectin, four tandem
fasciclin-like domains that are responsible for integrin binding and a C-

terminal region (CTR) where multiple splice variants originate. Trypto-
phan 65 within the EMI domain is required for fibronectin binding. The
CTR has been shown to inhibit binding of periostin to several binding
partners. Numbers represent amino acid residues flanking each domain
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2008; Stansfield et al. 2009). Genetic ablation of periostin
results in increased incidence of ventricular rupture follow-
ing myocardial infarction due to reduced α-SMA positive
cells and impaired collagen formation (Shimazaki et al.
2008). Addition of recombinant periostin to pancreatic
stellate cells results in increased expression of key fibrotic
proteins such as: α-SMA, collagen 1, fibronectin, TGFβ1
and periostin (Erkan et al. 2007). Collagen fibrils from the
skin of periostin knockout mice are reduced in diameter and
display decreased crosslinking (Norris et al. 2007). The
consequences are reduced tensile strength and an alteration
of the visco-elastic properties of the skin (Norris et al.
2007). Recent insights into the functional role of periostin
in collagen crosslinking implicate periostin as a scaffold
protein, aiding in the incorporation of BMP-1 into the ECM
where it can activate lysyl oxidase (an enzyme involved in
collagen fibril crosslinking) (Maruhashi et al. 2010).

Keloid scars are fibrotic dermal lesions that result from
excessive production of ECM components, such as colla-
gen, during wound repair (Abergel et al. 1985). Periostin is
the single most up-regulated gene in keloid scars by cDNA
microarray analysis (Naitoh et al. 2005). Wang and
colleagues reported increased periostin expression in keloid
and hypertrophic scars, relative to normal human skin,
where periostin expression was positively correlated with
TGFβ1 expression (Wang et al. 2007). Periostin is highly
expressed in tissues affected by Dupuytren’s disease, a
progressive disease that results in a scar-like, collagen-rich
cord within the palmar fascia and permanent contracture of
the hand (Vi et al. 2009). Fibroblasts isolated from diseased
tissue have an increased ability to contract a collagen
matrix, which is further enhanced by addition of recombi-
nant periostin (Vi et al. 2009). Periostin-induced contractil-
ity is accompanied by an increase in α-SMA protein. In
addition to skin fibrosis, periostin has been associated with
bone marrow fibrosis, where it correlates with the severity
of fibrosis (Oku et al. 2008). Periostin has been implicated
with sub-epithelial fibrosis of bronchial asthma (Takayama
et al. 2006), where, recently, it has been shown to drive
TGFβ signaling (Sidhu et al. 2010). Over-expression of
periostin in human bronchial epithelial cells results in
increased periostin secretion, collagen synthesis and TGFβ
expression/protein/activity (Sidhu et al. 2010). Addition of
recombinant periostin to primary human bronchial epithe-
lial cells increased collagen expression in a TGFβ
dependent manner.

The role of periostin in acute wound repair and in
fibrotic diseases has received a lot of attention in the past
10 years. Research into chronic wounds, however, is
lacking and very few studies have looked at periostin in
this context. Of particular importance, expression of
periostin following injury coincides with fibrotic, not
inflammatory, stages of repair (Jackson-Boeters et al.

2009). In fact, chronically inflamed skin contains very little
periostin, with levels lower than that of normal skin (Zhou
et al. 2010).

Future work must exploit the influence of matricellular
proteins, like periostin, on acute wound repair and apply them
to pathological healing conditions. Matricellular proteins are
expressed during development, but are typically absent in the
adult, except during tissue remodeling or repair (Bornstein
1995). Their tight regulation during wound repair and
absence in adult tissues makes matricellular proteins an ideal
localized target for therapies (Midwood et al. 2004).

Future directions

Optimization of a favorable wound environment, via
debridement and possibly protease inhibitors, will certainly
form the foundation of any future treatment regimes. To
date, resolution of chronic wounds via administration of
growth factors has produced limited benefits. Future
treatment strategies must integrate the wealth of knowledge
available from studies of acute and fibrotic repair, partic-
ularly the importance of cross talk between cells, structural
matrix components, growth factors and matricellular pro-
teins. The importance of the matrix on cell behaviour
should not be underestimated in choosing alternative target
molecules.

Historically, the introduction of physical matrices to
chronic wounds has primarily focused on maintaining a moist
environment to encourage healing (Queen et al. 2004).
Examples of these modern dressings include hydrocolloid
dressings, alginates and foam dressings (Qin and Gilding
1996; Chaby et al. 2007). Despite weak evidence of clinical
efficacy, these products have obtained wide spread use
(Chaby et al. 2007). One limitation of these dressings is their
lack of biological activity, although hybrids containing
biologically active components are now available (Donaghue
et al. 1998; Murakami et al. 2010).

Introduction of exogenous ECM components, such as
collagens fibronectin and fibrin, provide a scaffold on
which cells can migrate into the wound area (Greiling and
Clark 1997), while also greatly influencing the behaviour of
cells through binding of surface receptors and activation of
signaling pathways (Schultz and Wysocki 2009). One
currently available ECM based product is de-cellularized
porcine small intestine submucosa (SIS), which is marketed
under the name OASIS® Wound Matrix (Mostow et al.
2005). In a randomized clinical trial, OASIS® Wound
Matrix was shown to be at least as effective as Regranex®
(rhPDGF-BB) in healing diabetic foot ulcers (Niezgoda et
al. 2005). Interestingly, growth factors embedded within
SIS can influence cell behaviours such as proliferation and
cell morphology (Voytik-Harbin et al. 1997). We propose

310 C.G. Elliott, D.W. Hamilton



that an ECM based bioactive scaffold can also provide a
vehicle for delivery of matricellular proteins, where the
choice of matricellular proteins can be tailored to the
etiology of the target wound. Realization of such a
treatment, however, depends on a greater understanding of
the role of matricellular proteins in the pathogenesis of
chronic wounds.

Conclusions

The burden of chronic wounds on healthcare systems
worldwide is enormous. With no signs that the prevalence
of diabetes will decrease in the near future there is
continued demand for new and effective treatments for
chronic wounds. Parallels between the state of fibrotic
diseases and the needs of chronic wounds (increased
proliferation, increased matrix synthesis and increased
matrix contraction) provide an interesting opportunity to
discover new therapeutic targets relevant to both patholo-
gies. Treatment of chronic wounds currently involves
repeated debridement followed by application of moist
dressings. The development of advanced treatment strate-
gies, as discussed here, has been beneficial in compliment-
ing current wound care practice. Efficacy of these strategies
has been limited, however. This is likely due to the
complexity and diversity of chronic wounds. Our limited
understanding of how molecules such as TGFβ and
periostin, for example, interact slows progress in designing
better treatments. Therefore, in order to produce new and
effective treatments we must increase our understanding of
the etiology of chronic wounds, with particular attention to
the role of matricellular proteins.
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