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Deconstructing Multiantenna Fading Channels
Akbar M. Sayeed, Senior Member, IEEE

Abstract—Accurate and tractable channel modeling is critical
to realizing the full potential of antenna arrays in wireless commu-
nications. Current approaches represent two extremes: idealized
statistical models representing a rich scattering environment and
parameterized physical models that describe realistic scattering
environments via the angles and gains associated with different
propagation paths. However, simple rules that capture the effects
of scattering characteristics on channel capacity and diversity are
difficult to infer from existing models. In this paper, we propose
an intermediate virtual channel representation that captures the
essence of physical modeling and provides a simple geometric in-
terpretation of the scattering environment. The virtual represen-
tation corresponds to a fixed coordinate transformation via spatial
basis functions defined by fixed virtual angles. We show that in an
uncorrelated scattering environment, the elements of the channel
matrix form a segment of a stationary process and that the vir-
tual channel coefficients are approximately uncorrelated samples
of the underlying spectral representation. For any scattering en-
vironment, the virtual channel matrix clearly reveals the two key
factors affecting capacity: the number of parallel channels and the
level of diversity. The concepts of spatial zooming and aliasing are
introduced to provide a transparent interpretation of the effect of
antenna spacing on channel statistics and capacity. Numerical re-
sults are presented to illustrate various aspects of the virtual frame-
work.

Index Terms—Beamforming, capacity, channel modeling, diver-
sity, fading, MIMO channels, scattering, spectral representation.

I. INTRODUCTION

A NTENNA arrays hold great promise for bandwidth-ef-
ficient communication over the harsh wireless channel.

Recent studies have indicated linear increase in capacity with
the number of antennas [1], [2]. Maximal exploitation of an-
tenna arrays in wireless communication necessitates accurate
yet tractable modeling of the multi-input multi-output (MIMO)
channel coupling the transmitter and receiver. Existing models
represent two extreme approaches. On the one hand is a widely
usedstatisticalmodel that is an idealized abstraction of spatial
propagation characteristics and assumes independent fading be-
tween different transmit-receive element pairs. This model has
been heavily used in capacity calculations (see, e.g., [1] and [2])
and in the development of space-time coding techniques (see,
e.g., [3]). On the other hand are parametricphysicalmodels,
inspired by array processing techniques, that explicitly model
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signal copies arriving from different directions (see, e.g., [4]).
Although these models are more accurate descriptions of the ac-
tual propagation environment, they are nonlinear in spatial an-
gles, thereby making it rather difficult to incorporate them in
transceiver design and capacity computations. Furthermore, the
two approaches to MIMO channel modeling exist in virtual iso-
lation. A connection between them is very much desirable so
that insights derived from them can be cross-leveraged.

The two main characteristics of fading spatial channels from
a communication theoretic viewpoint are thecapacityanddi-
versityafforded by the scattering environment. Physical models
relate the scattering environment to the channel coefficients and
dictate their statistics. The statistics, in turn, determine the diver-
sity and capacity afforded by the channel. There have been some
recent attempts at bridging the gap between the two modeling
philosophies (see, e.g., [5]–[7]). However, simple rules that cap-
ture the effects of scattering and array characteristics on capacity
and diversity are difficult to draw in general. Some qualitative
trends, such as the decorrelation of channel coefficients with in-
creased antenna spacing, can be inferred and have been observed
in practice.

In this paper, we propose a new intermediatevirtual channel
representation that keeps the essence of physical modeling
without its complexity, provides a tractablelinear channel
characterization, and offers a simple and transparent inter-
pretation of the effects of scattering and array characteristics
on channel capacity and diversity. The virtual representation
is analogous to representing the channel in beamspace or
the wavenumber domain, which are concepts that have been
widely studied in array processing [8]. Specifically, the virtual
representation describes the channel with respect to fixed
spatial basis functions defined by fixed virtual angles that are
determined by the spatial resolution of the arrays. Consider a

matrix with elements representing a channel
with transmit and receive antennas. As we will see, for
uniformly spaced virtual angles, are related to the
virtual channel coefficients via a two-dimensional
(2-D) Fourier transform

(1)

where and . This paper studies
the structure and statistics of imposed by physical
scattering characteristics.

The deceptively simple Fourier relation (1) yields many
useful insights. First, in an uncorrelated scattering envi-
ronment, constitute a segment of a wide sense

1053-587X/02$17.00 © 2002 IEEE



2564 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 10, OCTOBER 2002

stationary process, and are samples of the under-
lying spectral representation (and, hence, are approximately
uncorrelated). Second, the virtual representation yields an
insightful “imaging” interpretation of the scattering geometry;
a realistic channel consisting of a superposition of scattering
clusters with limited angular spreads is represented by the
virtual matrix consisting of nonvanishing submatrices
corresponding to different clusters. Combined with the uncor-
related nature of , this yields a simple and intuitive
relationship between an arbitrary scattering environment and
the corresponding channel statistics, capacity, and diversity. In
particular, the structure of provides a simple interpretation
of the effect of scattering on the two key factors affecting
capacity: the number of parallel channelsand the level of
diversity associated with each parallel channel. Third, the
virtual representation reveals that all scatterers are not created
equal! It induces a virtual partitioning of scattering paths that
explicitly exposes their contribution to capacity and diversity.
Finally, via the concepts of spatial zooming and aliasing, the
virtual framework also provides a transparent picture of the
effect of antenna spacing on channel statistics and capacity.

Section II presents a general physical model for spatial
MIMO channels, introduces the virtual channel representation,
and develops the relationship between the two. Section III
discusses the imaging interpretation of the virtual channel
matrix in clustered scattering environments. Section IV charac-
terizes the statistics of the virtual channel matrix imposed by a
given scattering environment. In Section V, we use the virtual
representation to characterize the effects of antenna spacing
on capacity for any given scattering environment. Section VI
discusses capacity calculations via the virtual representation
and includes numerical examples to illustrate various aspects of
the framework. Section VII contains some concluding remarks
and directions for future work.

II. M ULTIANTENNA CHANNEL MODELING

Consider a transmitter array with elements and a receiver
array with elements. In the absence of noise, the transmitted
and received signals are related as

(2)

where
-dimensional transmitted signal;
-dimensional received signal;

channel matrix coupling the transmitter and receiver
elements.

We index entries of as : ,
. Most capacity calculations assume that

consists of independent, identically distributed (iid) Gaussian
random variables, which is an idealized, rich scattering environ-
ment (see, e.g., [1], [2]). Our objective is to impose structure on

by modeling the scattering characteristics of physical chan-
nels. This would in turn enable us to assess channel capacity in
realistic scattering environments and to study the effect of an-
tenna spacing and scattering characteristics on capacity and di-
versity. Our workhorse for attaining this objective is the virtual
channel representation introduced in Section II-C

A. Uniform Linear Antenna Arrays

In this paper, for simplicity of exposition we focus on one-di-
mensional (1-D) uniform linear arrays (ULAs) of antennas at
both the transmitter and receiver and consider far-field scat-
tering characteristics, that is, the scatterers are sufficiently far
from both the transmitter and receiver. The essential ideas apply
to arbitrary array geometries as well. Let and denote
the antenna spacing at the transmitter and receiver, respectively.
Then, the channel matrix can be described via the array steering
and response vectors given by

(3)

where and are related as

(4)

is the wavelength of propagation, and is the normal-
ized antenna spacing. The angleis measured relative to the
horizontal axis (see Figs. 2 and 3). The vector represents
the signal response at the receiver array due to a point source in
the direction . Similarly, represents the array weights
needed to transmit a beam focussed in the direction. We note
that due to the finite array aperture, the receiver array collects
some signals from directions in the neighborhood of, and the
transmit array couples energy at angles in the neighborhood of

as well.
Periodicity in : Note that (4) defines a one-to-one map be-

tween and . However, the
steering and response vectors in (3) are periodic inwith period
1. Throughout the paper, we will consider the principal period

for . This implies that for , scatterers out-
side the range alias into
the principle period for . This observation, which is illustrated
in Fig. 1, is fundamental to understanding the effect of antenna
spacing on capacity, as discussed in Section V. We will develop
our channel representation framework in the spatial variable.

B. Physical Modeling of Scattering Environment

For ULAs at the transmitter and receiver, the channel matrix
can be generally modeled as

(5)

(6)

where represents the physical scattering, and we call
it thespatial spreading function. However, due to the periodicity
of the steering and response vectors, the range of integrals in
(5) can be replaced with the principal unit period for. More
specifically, define , , and
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(a)

(b)

Fig. 1. Plots of� as a function of� as defined in (4). (a)� = 0:5. (b)� = 1:9.

for , . Then, (5) can be
equivalently written as

(7)

(8)

where denotes the value of in the principal period
. As evident from (6) and (7), is a 2-D Fourier

transform of . We note that in many realistic envi-
ronments, is nonvanishing in smaller regions corre-
sponding to scattering clusters with limited angular spreads, as
illustrated in Fig. 2. Each cluster is represented by a nonvan-
ishing subkernel of with support ,

, and . Clustered scattering envi-
ronments are discussed in more detail in Section III.

Fig. 2. Schematic illustratingphysicalchannel modeling. Each scattering path
is associated with a fading gain(� ) and a unique pair of transmit and receive
angles (� , � ) corresponding to scatterers distributed within the angular
spreads.

A widely useddiscretephysical model, which is a special
case of (5), is illustrated in Fig. 2 and is given by

(9)

which corresponds to

(10)

in (5). In the above model, the transmitter and receiver
are coupled via propagation along paths with
and as the spatial angles seen by the transmitter
and receiver, respectively, and as the corresponding
independent path gains. In the matrix representation
in (9), ,

, and
is an diagonal matrix. In

the spirit of (8), the discrete model may also be expressed as

(11)
Note that the discrete model (9) islinear in the path gains
but nonlinearin the spatial angles .

C. Virtual Channel Representation

The finite dimensionality of the spatial signal space1 can be
exploited to develop alinear virtual channel representation that
uses spatial beams infixed virtualdirections. This is similar to
beamspace and wavenumber domain in array processing litera-
ture [8]. Without loss of generality, we assume that bothand

are odd and define: and .
The virtual channel representation, which is illustrated in

Fig. 3, can be expressed as

(12)
where the matrices
and are defined by

1Due to finite number of antenna elements and finite array aperture.
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Fig. 3. Schematic illustratingvirtual channel representation of the scattering
environment depicted in Fig. 2. The virtual angles are fixeda priori, and their
spacing defines the spatial resolution. The channel is characterized by the virtual
coefficientsfH (q; p) = h g that couple theP virtual transmit angles
f' g with theQ virtual receive anglesf' g.

the fixed virtual angles , and and are full-rank.
The matrix is the virtual channel representation.
In contrast to the discrete model (9), the virtual representation
is linear and is characterized by ( and are fixed).
However, is not diagonal in general.

Uniform sampling of the principal period is a natural choice
for virtual spatial angles

(13)

which results in the steering/response vectors (3) being sinu-
soids with frequencies and yieldsunitary matrices

and , discrete Fourier transform matrices, in fact. The
corresponding fixed angles in thedomain are

(14)

as illustrated in Fig. 4 for different values of. The virtual
channel coefficients represent the coupling between
the virtual transmit angles and the virtual receive
angles . Note from Fig. 3 that the virtual representation
does not distinguish between scatterers that are within the spa-
tial resolution: the scatterers corresponding to physical angles

and in Fig. 2, for example. Furthermore, for virtual
angles where there is no scattering, the corresponding coeffi-
cients are approximately zero (e.g., and in Fig. 3).

Note from Fig. 4 that for , a limited spatial horizon
is covered by the fixed anglesin (14). However, as discussed
earlier and illustrated in Fig. 1, values ofoutside the limited
range alias into the principal period of.

D. Relationship Between the Virtual Representation and
Physical Models

Since and are unitary, is related to as

(15)

(a)

(b)

Fig. 4. Schematic illustrating beams in the� domain corresponding to the
fixed virtual angles for different values of�. The plots correspond to an
11-element ULA. (a)� = 0:5. (b)� = 1:5.

and thus, is unitarily equivalentto and captures all
channel information. In fact, is a 2-D discrete Fourier
transform of [see (1))]. From (15), the elements of are
related to the physical model (7) as

(16)

(17)

We note from (16) that are samples of a smoothed
version of at the virtual angles; the smoothing is
done by the kernel that integrates to . The
smoothing kernel gets peaky around the origin with increasing

and . Thus, we have the following sampling approximation
for sufficiently large and :

(18)

can be expressed in matrix form for the continuous phys-
ical model as

(19)
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(a)

(b)

Fig. 5. Plots ofjf (� � � )j versus�. � represents the physical angle of
a scatterer. Values ofjf (q=Q � � )j corresponding to samples at the virtual
angles are also marked. (a)Q = 5, and� = �0:23. (b)Q = 11, and� =
0:13.

where and are
the projections of and onto the fixed virtual
response and steering vectors, respectively. Similarly, for the
discrete model, we have

(20)

(21)

where

, and
. Plots of as a function

of are shown in Fig. 5 for two different values of and
( represents the location of a physical scatterer). The values
of corresponding to samples at the virtual
angles (equivalently, elements of ) are also marked.
As is evident, the projections onto virtual angles peak in the

neighborhood of the physical angle and the peak is more
pronounced for larger .

E. Virtual Path Partitioning

We now derive an approximate relationship of
to the discrete physical model via a virtual partitioning of the
propagation paths. Define the following partition of path indices

(22)

is the set of all paths whose receive angles (after
shifting them into the principle range) are within of the
th virtual receive angle . is similarly defined

with respect to virtual transmit angles. Note that

(23)
Using this partition, we can express the aliased spreading func-
tion for the discrete model (11) as

(24)

and the channel matrix via (7) as

(25)

and (21) reduces to

(26)

since and are peaky around
, , and . Equations (24)

and (26) state that the scattering contribution to the virtual angle
pair is proportional to the number
of paths whose angles lie in the rectangularvirtual
spatial binof size centered on ( , ):

(27)

Based on the above path partitioning, we define the notion
of distinctpaths that is insightful in the contribution of paths to
capacity and diversity (see Section VI). We say that two paths
aredistinct if they can be distinguished in either transmitor re-
ceive virtual angles, that is, they belong to distint sets or

. We say that two paths arestrictly distinct if they can be
distinguished in both transmitandreceive virtual angles, that is,
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they belong to distinct sets and , or, equivalently, their
transmit/receive angles lie in distinct spatial bins . Note that
the number of paths that lie in each spatial bin affects the
statistics of . Sufficiently many paths in each bin would
result in Gaussian statistics via the central limit theorem. Con-
versely, for fixed number of paths, we would expect the statistics
to deviate from Gaussian as we increase the number of antennas
(and, hence, the array aperture) while keeping the spacing fixed.
Fewer paths would contribute to each [and ] due
to the increased spatial resolution.

F. Relationship to Other Models

The physical model (5) can represent any linear channel and
can account for many particular scenarios that have been studied
by other researchers. For example, effects of mutual coupling
can be incorporated by multiplying with a coupling matrix
[9], [10]. This can be readily captured by the physical model (5)
by including an appropriatecoupling spreading functionwith

in a multiplicative fashion or by imposing appro-
priate statistics on . Similarly, several recent studies
have used the ring model for scatterers [11] around a mobile
handset to analyze the channel between an elevated base station
and a mobile (see, e.g., [5], [6], [12], [13]). This can be readily
accounted for (for the downlink, for example) by choosing

(mobile receiver), appropriately choosing the transmit angular
spread seen by the base station, and imposing appropriate
statistics on . A related effect (the so-calledpinhole
effect[5]) can also be accounted for by using a cascade of chan-
nels of the form (5) with appropriately chosen angular spreads
and statistics.

III. V IRTUAL REPRESENTATION OFREALISTIC CHANNELS

Realistic scattering environments can be modeled via a super-
position of clusters with limited angular spreads (see, e.g., [13]).
The virtual matrix provides an intuitively appealing repre-
sentation for such environments: Different clusters correspond
to different nonvanishing sub-matrices of . Equations (18)
and (26) form the basis of this “imaging” interpretation. Fur-
thermore, as we show in Section IV, the nonvanishing elements
of are approximately uncorrelated under the assumption of
uncorrelated scattering.

Fig. 6 illustrates the imaging interpretation of via
contour plots of for different scattering environ-
ments. , , and is generated
via the discrete model using and iid zero-mean
Gaussian path gains. For example, Fig. 6(a) depicts two
point scatterers, and Fig. 6(b) depicts two -wide
clusters. The size of a particular sub-matrix of is de-
termined by the size of the corresponding cluster and the
antenna spacing. To illustrate this, consider a single cluster
with angular spreads and

in the domain. The cor-
responding sub-matrix is nonvanishing for ,

, where ,
, and similarly, and

.2 Note that for a given spread in
the domain, the size of the sub-matrix is larger for larger
antenna spacings. The rank of the sub-matrix is given by

. For example,
for the top left cluster in Fig. 6(b),
and . For and

, this yields and
, resulting in a 5 5 sub-matrix with

rank 5. The rank of (and ) is closely approximated by the
sum of the ranks ofstrictly distinctsub-matrices (with disjoint
supports in both transmit and receive virtual angles).

The accuracy of the imaging interpretation of is
governed by both the number of antenna elements as well
as their spacing. For given spacing, the accuracy improves
with the number of elements because, to a first approx-
imation, the extent of smoothing (or spatial resolution)
in (16) is determined by the widths of the mainlobes of

— —which get
narrower for larger and , as is evident from Fig. 5. For
given and , the accuracy improves with increasedsince
the separation between two fixed scatterers increases invia
(4). The smoothing in (16) is a fundamental consequence of
limited array apertures, and the spacing of virtual angles is
commensurate with the spatial resolution.3 This has important
implications regarding the effect of scattering characteristics on
channel statistics, capacity, and diversity, which are exemplified
by our analysis based on virtual path partitioning.

Virtual channel representation clearly reveals the two key fac-
tors that affect the capacity of the spatial channel corresponding
to each cluster.

• The number of parallel channels, which is equal to the
rank of the sub-matrix, is determined by the number of
transmit and receive virtual angles that lie within the
cluster angular spreads.

• The level of diversity associated with each parallel
channelis determined by the number of virtual receive
angles that couple with each virtual transmit angle, and
vice versa. This depends on the nature of scattering within
the cluster, as will be elaborated upon in the following.

-Diagonal Virtual Modeling: To illustrate how the level of
diversity is determined by the nature of scattering, let
and . Consider a single cluster covering the en-
tire spatial horizon ( , and

). On one extreme is “diagonal scattering” ( approxi-
mately diagonal), which is illustrated in Fig. 6(c), in which each
transmit virtual angle couples with only a few corresponding
virtual receive angles resulting in low diversity. A corresponding
physical environment consisting of a single line of scatterers is
illustrated in Fig. 7(a). On the other extreme is “maximally rich
scattering” (all elements of nonzero), which is illustrated in
Fig. 6(d), in which each virtual transmit angle couples with all

2The indicesQ ;Q ; P ; P are defined to capture all of the energy in
the cluster. Depending on how the virtual beams couple with the cluster, the
coefficients on the edge of the sub-matrix may contribute relatively small power.

3Even if we have high-resolution measurements ofĜ(� ; � ) available, ac-
tual system performance will be governed by a smoothed version whose reso-
lution is commensurate with the array apertures.
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(a) (b)

(c) (d)

Fig. 6. “Imaging” of the scattering environment viaHHH .P = Q = 21 and contour plots ofjH (q; p)j are shown. The horizontal axis represents transmit angles
(column indexp), and the vertical axis represents receive angles (row indexq). (a) Two point scatterers centered at(� ; � ) = (�=8;��=8) and(��=8; �=8).
(b) Two�=8� �=8-wide clusters centered at(�=8;��=8) and(��=8; �=8). (c) “Diagonal” scattering, in which each transmit angle couples with only a few
corresponding receive angles. (d) Maximally rich scattering, in which each transmit angle couples with all receive angles.

virtual receive angles resulting in maximum diversity. A corre-
sponding physical geometry consisting of multiple lines of scat-
terers is illustrated in Fig. 7(b). This suggests that we can capture
a rich class of scattering environments depicting different levels
of diversity by imposing structure on the nonvanishing elements
of . One possibility is the following simple-diagonal vir-
tual model that spans the two extreme cases

(28)
where is the number of diagonals above and
below the main diagonal. Diagonal scattering corresponds to

, and maximally rich scattering corresponds to
. As we elaborate in Section VI, for the same received SNR,

these two channels have nearly identical ergodic capacities but
radically different outage capacities due to higher diversity in

the latter case. The schematic in Fig. 8 summarizes the structure
of and its implications for capacity and diversity dictated by
the imaging interpretation in clustered scattering environments.

IV. CHANNEL STATISTICS

In this section, we discuss the statistics ofand imposed
by the physical model, which yields useful insights into the ef-
fect of scattering on capacity and diversity. We assume an uncor-
related Rayleigh scattering environment, that is, is
a family of zero-mean Gaussian random variables

(29)

for some reflecting the channel power as a func-
tion of . In line with the terminology used for temporal
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(a)

(b)

Fig. 7. Conceptual schematic illustrating physical geometry associated with
“diagonal” and “maximally rich” scattering. (a) Diagonal scattering consisting
of a line of scatterers. (b) Rich scattering consisting of multiple lines of
scatterers.

Fig. 8. Schematic depicting the decomposition ofHHH for a clustered
scattering environment into nonvanishing sub-matrices (with uncorrelated
entries). Each sub-matrix is in turn modeled as ak-diagonal matrix, reflecting
the nature of scattering in the cluster. The size of a sub-matrix determines the
capacity, and the number of diagonals represents the diversity afforded by the
cluster.

channels (see, e.g., [14]), we call the spatial scat-
tering function. It follows from (8) that for the aliased spreading
function, we have

(30)

(31)

For the discrete physical model, the assumption of uncorrelated
scattering corresponds to

(32)

and we have

(33)

under the assumption that different paths correspond to distinct
physical angles.

A. Channel Power

Define the total channel power as

trace (34)

In idealized statistical models (rich scattering),
, and . We now compute the

power distribution in and imposed by the physical
model.

Using (7) and (30), the channel power in (34) is given by

and (35)

(36)

where the second equality in (35) corresponds to the discrete
model. We conclude that in an arbitrary scattering environment,
just as in the iid case, channel power is uniformly distributed be-
tween . However, unlike the iid case, are
correlated for clustered scattering environments, as discussed in
Section IV-B.

The power in can be computed from (16) and
(30) as

(37)

(38)

where the last approximation is based on the fact that
and are peaky around and

(for sufficiently large , ), respectively, and integrate to
and . Using (24) for the discrete model, it readily follows
that

(39)

which is an approximate partition of (33) imposed by the path
partitioning in Section II-E. Thus, from (33), (37), and (39), we
conclude that the power is distributed in as

(40)

(41)
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where the approximation in (40) is a Riemann sum approxima-
tion to the integral in (35), (41) applies to the discrete model and,
its approximation is based on virtual path partitioning. Equation
(41) is consistent with (26) and states that the power in
is equal to the sum of the powers of the paths that lie in the cor-
responding spatial bin defined in (27).

B. Channel Correlation—Spectral Representation
Interpretation for

In this section, we investigate the correlation imposed by the
physical model on and . We first consider the correlation
of . From (7) and (30), we have

(42)

(43)

(44)

where (43) holds for the discrete model, and the last approxima-
tion is based on virtual path partitioning. The above expressions
shows that constitutes a segment of a 2-D wide-
sense stationary (WSS) process since their correlation function
only depends on . We also conclude from
(42) that is the power spectral density (PSD) of

, and it corresponds to a line spectrum in the dis-
crete model with different lines corresponding to angles of dif-
ferent paths in (43). The virtual path partitioning approximates
the line spectrum in (43) with uniformly spaced lines corre-
sponding to virtual angles in (44).

The spectral representation interpretation implies that iid
(analogous to white noise) correspond to uniform

power distribution in over the entire range of

(45)

where . We can also conclude from (44)
that at least strictly distinctpaths are needed to result
in iid .

Given the WSS nature of under uncorrelated scat-
tering and the fact that and are related via a Fourier
transform [see (7)], we can interpret as the spectral

representation of (see, e.g., [15]). Similarly, from
(1) and (18), we conclude that are uniformly spaced
samples of the spectral representation. Consequently, we expect
the to be approximately4 uncorrelated, which in-
deed follows from (16) and (26)

(46)

(47)

where the last approximation holds for the discrete model under
virtual path partitioning. Finally, using (1), we can explicitly
relate the statistics of and as

(48)

which is analogous to the relationship between the PSD and the
correlation function of a WSS process.

Concatenated Vector Channel Correlation Matrix:We now
develop a revealing vector representation of (48). From (12), it
follows that

vec vec
(49)

where vec represents a vector obtained by stacking
the columns of , and represents the Kronecker product [16].
Here, we have used the identity vec vec
[16]. Let denote the correlation matrix of and

the correlation matrix of . The two correlation
matrices are related by

(50)

Since are approximately uncorrelated, is al-
ways approximately diagonal.5 Furthermore, it may have some
zero diagonal elements due to the sparse nature ofcorre-
sponding to scattering clusters (see Fig. 8). We note thatand

are also unitarily equivalent since the Kronecker product of
two unitary matrices is also unitary [16].

4The approximation improves with increasingP andQ as f (� ) and
f (� ) in (16) become progressively peaky.

5This property ofHHH is particularly useful in space-time code design from
the viewpoint of pairwise error probability calculations [22].
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Using (49), we can obtain a more explicit representation for
and in terms of the virtual representation

(51)

(52)

where [see (40) and (41)]. We note
that (52) is an approximate eigen-decomposition ofwith the
concatenated virtual basis functions
serving as the orthonormal eigenvectors and as the cor-
responding eigenvalues. The corresponding Karhunen–Loeve
representation relating the realizations ofand is (51).

The relation (52) between and provides useful in-
sight for relating the statistics of to the nature of physical scat-
tering via the -diagonal virtual model. Suppose that for
simplicity. The in (52) represent the power of the scat-
tering between theth virtual transmit and th virtual receive
angles. The nonzero represent the active scattering co-

efficients. For the -diagonal model, and
take the form

(53)

(54)

We note that and in (54) corre-
spond to maximally rich scattering [see Figs. 6(d) and 7(b)] and
yield the extreme case of iid . For diagonal vir-
tual scattering [see Figs. 6(c) and 7(a))], in (54),
is nonzero only for , and there is significant correlation
between elements of . As demonstrated in Section V, this ap-
proach for modeling progressively rich scattering (progressively
higher diversity) via a -diagonal virtual model provides a di-
rect link between the nature of scattering in each cluster and
the statistics induced by it, which is very insightful in capacity
calculations. In particular, (diagonal) and (iid) have
nearly identical ergodic capacities under appropriate power nor-
malization but significantly different outage capacities due to
higher diversity in .

V. EFFECT OF ANTENNA SPACING: SPATIAL

ZOOMING AND ALIASING

For any given scattering environment, antenna spacing can
have a marked effect on capacity and diversity. It is well known
that increasing antenna spacing can decorrelate the elements of

. In this section, we use the virtual channel representation to
provide a simple and intuitive explanation for the effect of an-
tenna spacing on channel statistics, diversity, and capacity. In
particular, we show that increasing antenna spacing not only
decorrelates the channel (and thus partially increases capacity
as well) but also directly contributes to increased capacity by
effectively increasing the number of parallel channels. Capacity
of each cluster depends on both the size of the corresponding
sub-matrix of as well as the number of nonvanishing en-
tries within it (captured by -diagonal modeling, for example).
Antenna spacing contributes to both factors. The key to this un-
derstanding is (4) relating the spatial variablesand and the
notion of spatial aliasing for , as illustrated in Fig. 1.

For simplicity of exposition, assume that .
Consider a square scattering cluster with angular spreads
in the domain given by and

. That is, the spreading function in the
domain is nonzero
only for . Fig. 9 shows one such cluster
with . The essential effect of increasing
antenna spacing is spatial zooming, as illustrated in Fig. 9;
the antenna array is able to zoom into the scattering cluster in
that maps to

,
in the domain.6 As illustrated in Fig. 9, the

small cluster in the domain occupies an increasingly larger
portion of the range as increases. In particular, the cluster
occupies the entire region for .

Another effect intimately related to spatial zooming isspatial
aliasing. When the edges of the cluster (edges of )
exceed the principal range as increases, they alias back into
the principal range as captured by in (8) and (11).
This effect is illustrated in Fig. 10 for four clusters with iden-
tical widths in the domain. For , all clusters have
widths of , as in Fig. 10(a). Doubling the spacing to

doubles the effective size of the clusters in thedo-
main and scales their centers as well, as shown in Fig. 10(b).
Finally, another doubling of spacing to results in clusters
occupying the entire range, as in Fig. 10(c). Spatial aliasing
of clusters 1, 3, and 4 is crucial to their covering the entire
region at . Considering the size of any one cluster, we
would expect an eight-fold increase in spacing for the clusters
to occupy the entire region. However, due to spatial aliasing,
only a four-fold increase is needed.

The effect of antenna spacing on capacity is revealed by
via (3), which states that are uniformly spaced sam-
ples of corresponding to the virtual angles. Thus, as

increases, increasingly more virtual angles couple with the
scatterers, resulting in increasingly more nonvanishing (and ap-
proximately uncorrelated) , thereby increasing the
rank of and, hence, capacity. Note that this increase in ca-
pacity happens without an increase in channel power or received
power in the case of a discrete channel [see (35)]. Similarly,

6In effect, the scattering cluster acts as a magnifying glass, providing a mag-
nified image of the transmitter array at the receiver and vice versa [1]. The mag-
nification increases with� and makes it possible for the receiver to resolve the
signals from different transmitter elements, which would not be possible without
scattering.
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Fig. 9. Schematic illustrating the effect of antenna spacing in a single-cluster
environment. The cluster has support[��=8; �=8] � [��=8; �=8] in the �
domain, which corresponds to[�0:19; 0:19]� [�0:19;0:19] in the� domain
for � = 0:5. Doubling the spacing to� = 1 zooms into the cluster and doubles
its � support. Finally, the cluster covers the entire� region for� = 1:31.

from (42) and (48), we conclude that decorrelate
with increased antenna spacing since the supports of
and increase. This effect also contributes to higher diver-
sity and capacity. Interestingly, we find that spatial aliasing,
which is considered an undesirable effect in traditionally array
processing applications, plays a positive role in increasing ca-
pacity!7 In Section VI, we discuss capacity issues in more detail
and present numerical results to quantify the effects of antenna
spacing on capacity associated with the environments in Figs. 9
and 10.

VI. CAPACITY CALCULATIONS

In this section, we illustrate the ease of computation and
simple interpretation afforded by virtual channel representation
for capacity calculations. Shannon capacity of a fading channel
observed over a finite duration is strictly zero. Thus, our focus
here is on outage capacity [18], which is a metric that is more
appropriate to fading channels. Outage capacity reflects the
maximum rate that can be guaranteed with a certain probability.
We first discuss two key parameters that control capacity and
relate them to scattering characteristics.

A. Parallel Channels and Diversity

The “image” of the scattering environment provided by
is intimately related to two key channel parameters from a com-
munication theoretic viewpoint: the number ofparallel chan-
nels, , that primarily controls capacity, and the level ofdi-
versity per parallel channel, , that primarily controls the slope
of the error probability curves as well as the slope of outage ca-
pacity curves. These two factors are evident in the lower bound
for capacity, conditioned on a channel realization, obtained by
Foschiniet al. [1] in their derivation of the BLAST architecture
for a system with antennas under rich scattering (iid)

bits/s/Hz (55)

7We thank one of the reviewers for this observation.

(a) (b)

(c)

Fig. 10. Schematic illustrating the effect of antenna spacing on a four-cluster
environment. The clusters have identical (1=8 � 1=8-wide) supports in the�
domain for� = 0:5, as depicted in (a). For� = 1, the support of the clusters
doubles and their centers get scaled relative to� = 0:5, as in (b). Doubling the
antenna spacing again to� = 2 makes the clusters occupy the entire� range, as
in (c). Clusters 1, 3, and 4 undergo spatial aliasing at� = 2. For example, the
center of cluster 3 scales to(3=4;�1=4), which gets aliased into the principle
range to(�1=4;�1=4).

where denotes a chi-squared random variable withde-
grees of freedom. The above relation states that the multiantenna
channel can be decomposed into parallel channels
with varying levels of diversity captured by .

quantifies the linear multiplier in capacity afforded by mul-
tiple antennas, and quantifies the stabilization of the random
SNR associated with each parallel channel.

, and the virtual path partitioning tells us that there
have to be at least strictly distinctphysical paths
corresponding to distinct virtual spatial bins (27) to achieve

. However, this does not guarantee maximum diversity
for each parallel channel. An example of this situation is “di-
agonal” scattering [ in (28)] corresponding to Fig. 7(a) that
achieves but . and if

, each virtual transmit angle must couple with
distinct virtual receive angles viadistinct paths in order to

achieve . This corresponds to receive diversity. On the
other hand, if , distinct virtual transmit an-
gles must couple to each virtual receive angle viadistinctpaths
in order to achieve . This corresponds to transmit diver-
sity. Thus, we need at least
strictly distinctpaths, corresponding to distinct virtual spatial
bins (27) to excite all the degrees of freedom in the channel and
achieve both and . This corresponds to maximally
rich scattering [ in (28)], corresponding to Fig. 7(b).

We note that the requirement for the paths to be distinct (for
diversity) and strictly distinct (for parallel channels) is impor-
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tant. Consider a 5 5 array and five propagation paths for
illustration. If the paths are distinct only in the transmit di-
rection, they can only be exploited for five-level transmit di-
versity. If they are distinct only in the receive direction, they
can only be exploited for full receive diversity. However, in
both above cases, the paths only contribute to a single parallel
channel ( and ). If the paths are
strictly distinct, they would contribute to five parallel channels
that could be exploited for maximum capacity ( ,

) or maximum transmit/receive diversity ( ,
) or a combination thereof ( ,

). As an extreme example, if all paths are confined to a
single virtual spatial bin (27), and will be close to 1 no
matter how many paths there are! Achieving and
requires maximum scattering spreads and maximally rich scat-
tering for . Smaller spreads and less rich scattering re-
sult in lower values of and for but can yield max-
imum values by sufficiently increasing. This is due to spatial
zooming and aliasing, which results in more virtual angles cou-
pling to the scatterers.

B. Capacity Expressions

For simplicity, let . Consider the noisy channel
, where is the transmitted power , and

is zero-mean complex Gaussian noise vector with
. Conditioned on the knowledge of (or ) at the receiver,

channel capacity is approximately8 given by [1], [2]

bits/s/Hz (56)

where we have used unitary equivalence ofand . The er-
godic capacity is given by , where the expec-
tation is over the statistics of . For a clustered scattering en-

8The expression in (56) is an approximation since it strictly applies to full iid
HHH orHHH . A closed-form expression for the exact capacity of a sparseHHH is
an open problem. Nevertheless, (56) serves as a useful approximation forHHH

consisting of smaller nonvanishing sub-matrices with uncorrelated (and in some
cases iid) elements. A detailed discussion of this technical issue is beyond the
scope of this paper and will be reported elsewhere.

vironment, the corresponding decomposition of (see Fig. 8)
can be used to induce an approximate decomposition of (56).
Fig. 8 strictly applies to an environment in which the clusters
(and the corresponding sub-matrices) are strictly distinct, that is,
they have disjoint supports in both transmit and receive angles.
In general, some clusters may overlap on either the receive or
transmit side, in which case, the overlapping clusters will con-
tribute to additional diversity as well as interference. For ex-
ample, consider of the form

(57)

corresponding to five clusters. Strictly distinct clusters
correspond to , , and . The sets of
clusters , , and
are distinct in receive angles, whereas the sets of clusters

, , and are dis-
tinct in transmit angles. The capacity is governed by
or , where the first form is useful for distinguishing
clusters in receive angles, and the second form for distin-
guishing them in transmit angles. In this case, we have (58) and
(59), shown at the bottom of the page. The diagonal blocks
correspond to sets of distinct clusters9 that mainly contribute to
parallel channels and diversity, whereas the off-diagonal blocks
represent the interference between them. However, since the
different cluster sub-matrices are uncorrelated, the diagonal
blocks dominate, especially as the size of the sub-matrices
increases. Thus, when the number of antennas is large, we
have the approximate decompositions for (56), shown in (60)
and (61) at the bottom of the page, where is the number of
strictly distinct clusters, (60) distinguishes clusters in receive
angle, and (61) distinguishes them in transmit angles. In (60),

is the number of clusters that overlap inreceiveangles
with the th strictly distinct cluster, and are the
corresponding sub-matrices. For example, in (57), ,

, and . Similarly,
in (61), is the number of clusters that overlap intransmit

9Distinct in receive angles in (58) and in transmit angles in (59).

(58)

(59)

bits/s/Hz (60)

bits/s/Hz (61)



SAYEED: DECONSTRUCTING MULTIANTENNA FADING CHANNELS 2575

angles with the th strictly distinct cluster, and
are the corresponding sub-matrices. In (57), ,

, and . The above
interpretation of the capacity of an arbitrary spatial channel in
terms of can be summarized as follows.

A spatial channel corresponding to an arbitrary clustered
scattering environment represented by can be decomposed
into independent virtual spatial sub-channels corresponding
to strictly distinct clusters. The number of parallel channels
(PC) and diversity per parallel channel in each sub-channel
are contributed by both the strictly distinct clusters as well as
clusters that overlap with them in receive or transmit virtual an-
gles as exemplified by(60) and (61), respectively. Within each
sub-channel, PC is determined by the sizes of the constituent
cluster sub-matrices, and is determined by the nature of scat-
tering in the clusters that can be captured by a-diagonal model
(with uncorrelated entries) for the sub-matrices.

C. Numerical Examples

We now present some numerical results to illustrate various
aspects of the virtual representation framework. Our illustra-
tions are in the context of both an idealized rich scattering en-
vironment and more realistic environments consisting of scat-
tering clusters with smaller angular spreads. In all cases,

and SNR dB . The iid
channel matrices have unit variance complex Gaussian entries,
resulting in . In clustered scattering environ-
ments, each cluster is simulated via the physical model (9) using

paths. The channel power is equally distributed be-
tween the clusters. Within each cluster, each path is associated
with random that are uniformly distributed within the
angular spreads of the cluster. The path gains are simulated as
iid zero-mean complex Gaussian random variables with power

adjusted so that equals the total power associated with
that cluster ( for the environment in Fig. 10). The outage
capacity plots are computed from 1000 independent channel re-
alizations.

Fig. 11 compares the capacity of-diagonal approximations
to the true channel matrix in both an idealized rich scattering
environment and a more realistic environment consisting of
a limited spread cluster. In the iid case, which is depicted in
Fig. 11(a), for computing in (28) is computed from
via (15) with . The matrix is scaled so that
the received SNR is the same in all cases. The scaling factor
is given by , ,
which equals for (diagonal approximation) and 1
for (full matrix). As evident from Fig. 11(a), the
outage capacity curve is much steeper for the full iid matrix
compared with the diagonal approximation due to higher
diversity in the former case. Furthermore, the performance of a
three-diagonal approximation is fairly close to the iid channel
(ten-diagonal), demonstrating that for the same received SNR,
the three-diagonal system captures most of the diversity ad-
vantage. The ergodic capacities are 60.4, 65, and 60 bits/s/Hz
for the iid, diagonal, and three-diagonal channels, respectively.
Note that the diagonal channel yields a slightly higher ergodic
capacity, even though its outage capacity performance is worse.

(a)

(b)

Fig. 11. Capacity comparison ofk-diagonal approximations. (a) Maximally
rich (iid) scattering environment. Thek-diagonal approximations are scaled so
that all matrices have same average power—the level of diversity is the main
difference between the approximations. (b) Realistic environment consisting of
a �=4 � �=4-wide cluster centered at the origin. The channel power is not
normalized in this case. Both the level of diversity and received SNR contribute
to differences in performance.

This may be attributed to the lack of interference between the
parallel channels in the diagonal case.

Fig. 11(b) compares the capacity of-diagonal approxima-
tions for a -wide cluster centered at

. The channel power is not normalized in this case; the
powers are 121.6, 23.3, and 93.3 for the full, diagonal, and
two-diagonal approximations. As evident, the capacity of the
two-diagonal approximation is fairly close to that of the full iid
channel. This is because and are relatively small in this
case due to limited scattering spread. The ergodic capacities are
33.8, 23.2, and 31.8 bits/s/Hz for the full, diagonal, and two-di-
agonal approximations, respectively, and the differences in ca-
pacities also reflect differences in received SNR in addition to
diversity.

We now illustrate the effect of antenna spacing on capacity
by simulating channels corresponding to the scattering environ-
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(a) (b)

(c) (d)

(e) (f)

Fig. 12. Effect of antenna spacing on capacity for the single-cluster environment depicted in Fig. 9. Contour plots ofE[jH (q; p)j ] and outage capacity curves
for both the clustered channel and an iid channel are shown. (a) Contour plot ofE[jH (p; q)j ] for � = 0:5. (b) Outage capacity plots for� = 0:5. (c) and (d)
correspond to (a) and (b) for� = 1:0 and (e) and (f) correspond to� = 1:31. Note that the support ofE[jH (p; q)j ] closely matches the supports in Fig. 9. For
� = 1:31 the clustered channel has the same capacity as the iid channel due to maximum zooming.



SAYEED: DECONSTRUCTING MULTIANTENNA FADING CHANNELS 2577

(a) (b)

(c) (d)

(e) (f)

Fig. 13. Effect of antenna spacing on capacity for the four-cluster environment in Fig. 10. Contour plots ofE[jH (q; p)j ] and outage capacity curves for both
the clustered channel and an iid channel are shown. (a) Contour plot ofE[jH (p; q)j ] for � = 0:5. (b) Outage capacity plots for� = 0:5. (c) and (d) correspond
to (a) and (b) for� = 1:0 and (e) and (f) correspond to� = 2:0. Note that the support ofE[jH (p; q)j ] closely match the supports in Fig. 10. For� = 2:0 the
clustered channel has the same capacity as the iid channel due to spatial zooming and aliasing.
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ments depicted in Figs. 9 and 10. We compare the outage ca-
pacity of the clustered channel to that of an iid channel with the
same . As the examples in Figs. 12 and 13 demonstrate, any
scattering environment with limited angular spreads can yield
an iid channel matrix via the zooming and aliasing effects by
increasing antenna spacing.

Fig. 12 corresponds to the single-cluster environment de-
picted in Fig. 9. Two quantities are plotted for three antenna
spacings , 1.0, and 1.31. First, a contour plot of

is provided to show the support of
and the effect of spatial zooming on it. Second, an outage
capacity plot is provided along with the outage capacity of an
iid channel (with the same) for comparison. As evident from
Figs. 12(a), (c) and (e), the effective size of the cluster in the
domain increases due to spatial zooming asincreases. This
is accompanied by a corresponding increase in capacity due to
increase in the number of parallel channels and decorrelation of
channel coefficients as increasingly more virtual angles couple
with the scatterers. We note that the ergodic capacity of the iid
channel is 60.4 bits/s/Hz, and that of the clustered channel is
33.9, 52.6, and 59.8 bits/s/Hz for 0.5, 1.0 and 1.31. Recall
from Fig. 9 that for 1.31, the cluster covers the entire

region, thereby effectively yielding an iid channel. This is
confirmed by Fig. 12(e) and (f).

Fig. 13 illustrates the effect of antenna spacing on capacity for
the four-cluster environment depicted in Fig. 10. Again, contour
plots of and outage capacity plots are shown
for 0.5, 1.0, and 2.0. Fig. 13(a), (c), and (e) corresponds
to Fig. 10(a)–(c), respectively. The ergodic capacity of the iid
channel is 60.4 bits/s/Hz, and that of the clustered channel is
34.8, 53.9, and 60.2 bits/s/Hz for 0.5, 1.0 and 2.0. Recall
from Fig. 10(c) that for 2.0, the clusters cover the entire
region due to spatial zooming and aliasing, thereby resulting in
an iid channel. This is confirmed by the plots in Fig. 13(e) and
(f).

VII. CONCLUSIONS

Fundamental understanding of the interaction between the
signal space and the channel is key to reliable communication
near capacity. The virtual representation framework introduced
in this paper captures the essence of such interaction in the spa-
tial dimension afforded by multiantenna systems. For uncorre-
lated scattering, we show that the channel matrix forms a seg-
ment of a stationary process and that the virtual channel matrix
serves as its uncorrelated spectral representation. Via the no-
tions of virtual path partitioning and spatial zooming/aliasing,
the framework also provides a transparent characterization of
the effects of physical scattering and array characteristics on
channel statistics, capacity, and diversity. We have presented
the essential ideas here, and more work needs to be done to
fully develop the framework and to enable its practical applica-
tion. We are currently working on augmenting the spatial frame-
work in this paper to include temporal and spectral dimensions
that leverages our recent work on time- and frequency-selective
channels [19], [20].

One of the most promising potential applications of this
work is the development of space-time coding techniques

(see, e.g., [3]) for realistic channels. This is facilitated by the
fact that decomposes an arbitrary clustered channel into
independent subchannels whose structure is very similar to the
iid model exploited in existing space-time coding techniques;
the sub-channels are represented by nonvanishing sub-ma-
trices of with approximately uncorrelated entries. One
direction for refining the ideas in this paper is the investigation
of alternative spatial basis functions that could entail better
smoothing properties and/or account for the effects of mutual
antenna coupling as well as arbitrary array geometries. Prolate
spheroidal and wavelet bases could be promising candidates in
this context. Another direction is the development of models
that are more accurate than the-diagonal model to reflect the
nature of scattering in each cluster. Finally, testing the ideas
presented here in an experimental setup would be invaluable in
refining the framework. Interestingly, certain types of antenna
arrays, namely,lens arrays[21], inherently perform a spatial
Fourier transform in the analog front-end. We are currently
collaborating with researchers at the University of Colorado
to further investigate this connection and its implications
for practical design of multiantenna wireless communication
systems.
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