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Procedural learning is a fundamental cognitive function that facilitates efficient

processing of and automatic responses to complex environmental stimuli. Here, we

examined training-dependent and off-line changes of two sub-processes of procedural

learning: namely, sequence learning and statistical learning. Whereas sequence learning

requires the acquisition of order-based relationships between the elements of a

sequence, statistical learning is based on the acquisition of probabilistic associations

between elements. Seventy-eight healthy young adults (58 females and 20 males)

completed the modified version of the Alternating Serial Reaction Time task that was

designed to measure Sequence and Statistical Learning simultaneously. After training,

participants were randomly assigned to one of three conditions: active wakefulness,

quiet rest, or daytime sleep. We examined off-line changes in Sequence and Statistical

Learning as well as further improvements after extended practice. Performance in

Sequence Learning increased during training, while Statistical Learning plateaued

relatively rapidly. After the off-line period, both the acquired sequence and statistical

knowledge was preserved, irrespective of the vigilance state (awake, quiet rest or

sleep). Sequence Learning further improved during extended practice, while Statistical

Learning did not. Moreover, within the sleep group, cortical oscillations and sleep spindle

parameters showed differential associations with Sequence and Statistical Learning. Our

findings can contribute to a deeper understanding of the dynamic changes of multiple

parallel learning and consolidation processes that occur during procedural memory

formation.

Keywords: procedural learning, sequence learning, statistical learning, sleep, EEG, consolidation

Frontiers in Psychology | www.frontiersin.org 1 January 2019 | Volume 9 | Article 2708

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2018.02708
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2018.02708
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2018.02708&domain=pdf&date_stamp=2019-01-09
https://www.frontiersin.org/articles/10.3389/fpsyg.2018.02708/full
http://loop.frontiersin.org/people/583227/overview
http://loop.frontiersin.org/people/598555/overview
http://loop.frontiersin.org/people/587464/overview
http://loop.frontiersin.org/people/661486/overview
http://loop.frontiersin.org/people/661473/overview
http://loop.frontiersin.org/people/582557/overview
http://loop.frontiersin.org/people/184168/overview
http://loop.frontiersin.org/people/16525/overview
http://loop.frontiersin.org/people/16488/overview
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


Simor et al. Deconstructing Procedural Memory

INTRODUCTION

Procedural learning, the development of perceptual and motor
skills through extensive practice is a crucial ability that facilitates
efficient processing of and automatic responses to complex
environmental stimuli. Procedural learning is evidenced by
enhanced performance as well as functional changes in the neural
network underlying behavior (Howard et al., 2004; Fletcher
et al., 2005). Learning performance does not only depend on
training during acquisition but also on the post-learning period
(Karni et al., 1998; Doyon et al., 2009; Durrant et al., 2011).
Nevertheless, there are intensive debates questioning whether
the acquired memories are stabilized or enhanced during post-
learning, off-line periods (Maquet et al., 2000; Krakauer and
Shadmehr, 2006; Peigneux et al., 2006; Rickard et al., 2008;
Doyon et al., 2009; Nemeth et al., 2010; Pan and Rickard, 2015;
Mantua, 2018). Mixed findings emerging in this field suggest
that different processes within the procedural learning domain
may show different trajectories during learning and off-line
periods. At least two processes underlying procedural learning
can be distinguished: sequence learning and statistical learning
(Nemeth et al., 2013; Kóbor et al., 2018). Sequence learning
refers to the acquisition of a series of (usually 5–12) stimuli that
repeatedly occur in the same order (with no embedded noise
in deterministic sequences, or with some embedded noise in
probabilistic sequences). In contrast, statistical learning refers to
the acquisition of shorter-range relationships among stimuli that
is primarily based on frequency information (i.e., differentiating
between more frequent and less frequent runs (e.g., pairs,
triplets, etc.) of stimuli. Previous research has not directly
contrasted the consolidation of these two processes. Here, we
show - using a visuomotor probabilistic sequence learning task
- that performance in sequence learning compared to statistical
learning (acquisition of order vs. frequency information) shows
marked practice-dependent improvements before and after off
line periods.

Studies on sequence learning showed enhanced behavioral
performance after an off-line period spent asleep compared
to an equivalent period spent awake, especially if individuals
acquired an explicit, abstract or complex representation of
the sequence (Robertson et al., 2004; Spencer et al., 2006;
King et al., 2017). On the other hand, learning probabilistic
sequences (Song et al., 2007a; Nemeth et al., 2010), in contrast
to deterministic ones, does not seem to benefit from post-
learning sleep on the behavioral level, while on a neural level,
it has been shown that post-learning sleep is involved in the
reprocessing and optimization of the acquired probabilistic
sequential information (Peigneux et al., 2003). Importantly, in
these probabilistic sequence learning studies the behavioral index
of learning encompassed the acquisition of both order- and
frequency-based information, thus, the consolidation of sequence
learning and statistical learning was not examined separately
(Song et al., 2007a,b; Nemeth et al., 2010). There are several
studies that investigated the long term retention of statistical
learning (Kim et al., 2009; Nemeth et al., 2010; Kóbor et al.,
2017), and there is limited evidence that statistical learning in
the auditory domain benefits from sleep (Durrant et al., 2011,

2013). Nevertheless, the consolidation, and more specifically, the
role of sleep in statistical learning within the visuomotor domain
remains largely unexplored.

The Alternating Serial Reaction Time (ASRT) task is a unique
tool to investigate statistical and sequence learning within the
same experiment (Howard and Howard, 1997; Nemeth et al.,
2013). In this perceptual-motor four-choice reaction time (RT)
task, participants are required to respond to visual stimuli
appearing on the screen. In this task, predetermined sequential
(termed as pattern) trials alternate with random ones (e.g.,
2R4R3R1R, where numbers correspond to the four locations
on the screen presented in the same sequential order during
the entire task, and the letter R represents randomly chosen
locations) that results in some chunks of stimuli being more
frequent than others (see Figure 1) and enables us to measure
the acquisition of both order and frequency information. Namely,
sequence learning is defined as acquiring order information, in
that consecutive elements in the sequence (denoted with numbers
in the above example) can be predicted with 100% certainty
based on the previous sequence element (i.e., the 2nd order
transitional probability for the sequence trials is equal to one),
while random trials are unpredictable (random stimuli can occur
at any of the four possible locations with the same probability).
However, as mentioned above, the alternating stimulus structure
also results in some chunks of stimuli (three consecutive trials,
called triplets) occurring more frequently than others (62.5%
vs. 12.5%, respectively). For instance, the triplet 2X4 (where X
denotes any location out of the four possible ones) would occur
more frequently as its first and third item can originate either
from sequential/pattern or random stimuli. In contrast, the triplet
2X1 would occur less frequently as this combination can originate
only from random stimuli (for more details see Figure 1 and the
section “Materials and Methods”). Statistical learning is defined
as acquiring this frequency information [which also represents
a 2nd order regularity, where the transitional probability is less
than one; for more detailed explanation see (Kóbor et al., 2018)].
To disentangle sequence and statistical learning in the ASRT task,
sequence learning is assessed by contrasting sequential/pattern
and random stimuli, while controlling for frequency information
(i.e., analyzing only high-frequency trials). In contrast, statistical
learning is assessed by contrasting high- vs. low-frequency trials
while controlling for order information (i.e., analyzing only the
random trials) (Nemeth et al., 2013; Kóbor et al., 2018). The
learning trajectories for both sequence and statistical learning can
be tracked by how different behavioral indices, such as RT and
accuracy, change over the course of the task (Howard et al., 2004;
Nemeth et al., 2013). To the best of our knowledge, no study
has yet tracked the temporal dynamics of learning sequential
structures (order information) as well as statistical probabilities
(frequency information) within the same experimental design
focusing not only on the learning phase but also on consolidation
and on further performance changes in a post-consolidation
testing phase.

Although sequence learning and statistical learning seem to
require different cognitive mechanisms (Nemeth et al., 2013) in
everyday learning scenarios, humans might rely simultaneously
on both forms of learning. Nevertheless, previous studies
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FIGURE 1 | The modified Alternating Serial Reaction Time (ASRT) task. (A) Pattern and random trials are presented in an alternating fashion. Pattern trials are

marked with a picture of a dog, random ones with that of a penguin. Pattern trials always appear in a given location with high probability. Random trials include trials

that appear in a given location with high probability and trials that appear in a given location with low probability. (B) As the ASRT task contains an alternating

(Continued)
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FIGURE 1 | Continued

sequence structure (e.g., 2R4R3R1R, where numbers correspond to the four locations on the screen and the letter R represents randomly chosen locations), some

runs of three consecutive elements (called triplets) occur more frequently than others. For subsequent analyses, we determined for each stimulus whether it was the

last element of a high-frequency triplet (black frames) or the last element of a low-frequency triplet (purple frames). (C) We assessed Statistical Learning by

comparing the responses for those random elements that were the last elements of a high frequency triplet, opposite to those that were the last of a low frequency

triplet. In contrast, Sequence Learning was quantified as the difference between responses for pattern elements (which were always high frequency triplets) vs.

random-high frequency triplet elements. (D) Study Design. The training phase consisted of five epochs (25 blocks). The testing and retesting phases comprised one

and two epochs (that is, 5 and 10 blocks), respectively.

investigated the consolidation of these processes in separate task
conditions. Therefore, the first aim of our study was to examine
the consolidation of sequence learning and statistical learning
simultaneously, in the same experimental context. Previous
studies suggest that sequence learning may, whereas statistical
learning may not benefit from post-learning sleep or more
specific oscillatory activity (slow wave activity and spindles);
however, these studies applied awake control groups engaged in
daytime activities during the off-line periods (King et al., 2017).

As the amount of interference might influence off-line
memory processing (Mednick et al., 2011), our second aim was to
examine the off-line change of sequence learning and statistical
learning after three different post-learning conditions: active
wakefulness, quiet rest, and daytime sleep. We hypothesized
that sequence learning would be enhanced after sleep and
quiet rest (i.e., due to low interference) compared to active
wakefulness, whereas off-line change in statistical learning would
be independent from the post-learning condition.

Although post-learning sleep seems to facilitate learning
capacity in different cognitive domains (Feld and Diekelmann,
2015), several studies indicate that not sleep per se, but specific
oscillations during sleep facilitate post-sleep improvements in
behavioral performance (Rasch and Born, 2013). Among these
oscillations, slow waves and sleep spindles emerge as important
candidates that reflect processes of memory consolidation and
synaptic plasticity (Diekelmann and Born, 2010; Fogel and
Smith, 2011; Ulrich, 2016). Slow waves around 1 Hz and
especially fast sleep spindles (13–16 Hz) are considered as
hallmarks of the reactivation and neocortical redistribution
of hippocampus-dependent memories (Diekelmann and Born,
2010). In addition, slow frequency oscillations ranging between
1 and 8 Hz were linked to the restorative (homeostatic) function
of sleep (Achermann et al., 1993; Marzano et al., 2010). In
order to examine the associations between cortical oscillations
and behavioral performance, we explored the EEG correlates
of off-line changes in sequence and statistical learning. We
hypothesized that slow frequency oscillations and fast sleep
spindles within the sleep group would be positively associated
with the post-sleep gains in sequence learning, but not with those
of statistical learning.

MATERIALS AND METHODS

Participants
Participants (all native Hungarians) were selected from a
large pool of undergraduate students from the Eötvös Loránd
University in Budapest. The first step of the selection procedure

consisted of the completion of an online questionnaire
assessing sleep quality and mental health status. Sleep-related
questionnaires included the Pittsburgh Sleep Quality Index
(PSQI, Buysse et al., 1989; Takács et al., 2016), and Athens
Insomnia Scale (AIS, Soldatos et al., 2003; Novák, 2004).
Participants that showed poor sleep quality based on previous
normative measurements were not included. The Hungarian
version of the short (nine item) Beck Depression Inventory (BDI,
Rózsa et al., 2001) was used to exclude participants with signs
of mild to moderate/severe depression, therefore, participants
only with a score less than 10 were included. Respondents
reporting current or prior chronic somatic, psychiatric or
neurological disorders, or the regular consumption of pills other
than contraceptives were also excluded. In addition, individuals
reporting the occurrence of any kind of extreme life event
(e.g., accident) during the last 3 months that might have had
an impact on their mood, affect and daily rhythms were not
included in the study. Only right-handed individuals as verified
by the Edinburgh handedness inventory (Oldfield, 1971) were
invited to the laboratory. At the first encounter with the assistant,
participants were instructed to follow their usual sleep-wake
schedules during the week prior to the experiment and to refrain
from consuming alcohol and all kinds of stimulants 24 h before
the day of the experiment. Sleep schedules were monitored
by sleep agendas, as well as by the adapted version of the
Groningen Sleep Quality Scale (Simor et al., 2009) in order to
assess individuals’ sleep quality the night before the experiment.
The data of participants reporting poor sleep quality the night
before the experiment (>7 points) were not considered in the
analyses.

After the above selection procedure, 96 right-handed
(28 males, Mage = 21.66 ± 1.98) participants with normal
or corrected-to-normal vision were included in the study.
Participants were randomly assigned to one of three groups:
an Active Wake, a Quiet Rest, or a Nap group. Individuals
unable to fall asleep in the Nap group (N = 10) as well as those
falling asleep in the awake groups (N = 5) were excluded from
the final analyses. Furthermore, 3 additional participants were
excluded due to the absence of learning in the training session.
Therefore, the final behavioral analyses were based on the data of
78 participants (20 males,Mage = 21.71 ± 1.97), with 25, 26, and
27 participants in the Active Wake, Quiet Rest, and Nap group,
respectively (see Table 1). In case of the EEG analyses, the data of
12 participants was excluded due to technical artifacts rendering
EEG recordings less reliable. Therefore, physiological analyses
were restricted to EEG data with sufficient quality (Active Wake,
N = 20; Quiet Rest, N = 21, Nap, N = 25). All participants
provided written informed consent before enrollment and
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TABLE 1 | Descriptive characteristics of groups.

Variable Active wake group (N = 25)

Mean (SD)

Quiet rest group (N = 26)

Mean (SD)

Nap group (N = 27) Mean

(SD)

p-value

Age (years) 22.08 (2.04) 22.00 (1.94) 21.15 (1.83) p = 0.16

Gender (male, %) 28% 22% 27% p = 0.88

GSQS 1.96 (1.72) 2.31(2.13) 2.33 (1.96) p = 0.75

Stress scale (before the Learning phase) 2.65 (2.09) 2.55 (1.43) 3.33 (1.98) p = 0.35

Stress scale (before the Retesting phase) 2.59 (1.28) 2.00 (1.33) 1.77 (1.41) p = 0.17

KSS (before the Learning phase) 6.44 (1.26) 6.81 (1.13) 6.19 (1.52) p = 0.24

KSS (before the Retesting phase) 5.64 (1.19) 5.96 (1.70) 6.62 (1.30) p = 0.05

Digit span 6.32 (1.31) 5.88 (1.14) 6.26 (1.06) p = 0.36

Counting span 3.91 (1.50) 3.59 (0.72) 3.48 (0.81) p = 0.33

WCST – number of perseverative errors 15.67 (9.23) 14.31 (3.23) 13.19 (5.86) p = 0.40

GSQS, Groningen Sleep Quality Scale; KSS, Karolinska Sleepiness Scale; WCST, Wisconsin Card Sorting Test. Higher scores in the KSS indicate lower sleepiness.

received course credits for taking part in the experiment. The
study was approved by the research ethics committee of the
Eötvös Loránd University, Budapest, Hungary (2015/279). The
study was conducted in accordance with the Declaration of
Helsinki.

Task
Behavioral performance was measured by the explicit version
of the Alternating Serial Reaction Time (ASRT) task (Figure 1,
Nemeth et al., 2013). In this task, a stimulus (a dog’s head,
or a penguin) appeared in one of four horizontally arranged
empty circles on the screen, and participants had to press the
corresponding button (of a response box) when it occurred.
Participants were instructed to respond as fast and accurate as
they could. The task was presented in blocks with 85 stimuli.
A block started with five random stimuli for practice purposes,
followed by an 8-element alternating sequence that was repeated
10 times. The alternating sequence was composed of fixed
sequence (pattern) and random elements (e.g., 2-R-4-R-3-R-1-
R, where each number represents one of the four circles on
the screen and “R” represents a randomly selected circle out
of the four possible ones). The response to stimulus interval
was set to 120 ms (Song et al., 2007a; Nemeth et al., 2010).
In the explicit ASRT task participants are informed about the
underlying structure of the sequence, and their attention is drawn
to the alternation of sequence and random elements by different
visual cues. In our case, a dog always corresponded to sequence
elements, and a picture of a penguin indicated random elements
(Figure 1A). Participants were informed that penguin targets had
randomly chosen locations whereas dog targets always followed a
predetermined pattern. They were instructed to find the hidden
pattern defined by the dog in order to improve their performance.
For each participant, one of the six unique permutations of the
four possible ASRT sequence stimuli was selected in a pseudo-
random manner, so that the six different sequences were used
equally often across participants (Howard and Howard, 1997;
Nemeth et al., 2010).

The task consisted of a total of 40 blocks. Participants
completed 25 blocks during the training phase. As the relatively
long training phase can introduce fatigue leading to a general

decline in performance measures (e.g., slower reaction times at
the end of the training phase that do not reflect the acquired
knowledge but the effect of fatigue), a retesting session after a long
delay (spent asleep or in wakefulness) can result in a spurious
increase in performance because of the release from fatigue.
This way, the measure of off-line consolidation is confounded
by the effect of fatigue (or more specifically, the release from
fatigue) (Pan and Rickard, 2015). In order to control for this
factor, the training session was followed by a short (3 min long)
break in order to minimize the fatigue effect due to massed
practice (Rickard et al., 2008; Rieth et al., 2010). After the break,
participants were tested on the task for 5 more blocks that
constituted the testing phase. Subsequently, participants spent
an approximately 1-h long off-line period in one of the three
conditions (Active Wake, Quiet Rest, and Nap). Finally, they
completed a retesting phase: 10 more blocks of the same task.

The training phase lasted approximately 30 min, the testing
phase 5 min, and the retesting phase 10 min. Awareness of
the sequence (pattern elements) was measured after each block.
Participants had to type in the regularities they noticed during
the task using the same response buttons they used during the
ASRT blocks. This method allowed us to determine the duration
(in terms of the number of blocks) participants needed to learn
the sequence correctly as defined by consistently reporting the
same sequence from that point on in the remaining blocks.

Trial Types and Learning Indices
The alternating sequence of the ASRT task forms a sequence
structure in which some of the runs of three successive elements
(henceforth referred to as triplets) appear more frequently than
others. In the above example, triplets such as 2X4, 4X3, 3X1,
and 1X2 (X indicates the middle element of the triplet) occur
frequently since the first and the third elements can either be
pattern or random stimuli. However, 3X2 and 4X2 occur less
frequently since the first and the third elements can only be
random stimuli. Figures 1B,C illustrate this phenomenon with
the triplet 2-1-4 occurring more often than other triplets such
as 2–1–3, 2–1–1, and 2–1–2. The former triplet types are labeled
as high-frequency triplets whereas the latter types are termed as
low-frequency triplets (see Figure 1C and Nemeth et al., 2013).
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The third element of a high-frequency triplet is highly
predictable (with 62.5% probability) from the first element of the
triplet. In contrast, in low-frequency triplets the predictability of
the third element is much lower (based on a probability of 12.5%).
According to this principle, each stimulus was categorized as
either the third element of a high- or a low-frequency triplet.
Moreover, trials are differentiated by the cues (dog and penguin)
indicating whether the stimulus belongs to the pattern or the
random elements. In case of pattern trials, participants can use
their explicit knowledge of the sequence to predict the trial,
thus we differentiate high-frequency triplets with the last element
being a pattern from those triplets in which the last one is a
random element. This way, the task consists of three trial types:
(1) elements that belong to the explicit sequence and at the same
time appear as the last element of a high-frequency triplet are
called pattern trials; (2) random elements that appear as the last
element of a high-frequency triplet are called random high trials;
and (3) random elements that appear as the last element of a low-
frequency triplet are termed random low trials (see the example
in Figure 1C).

To disentangle the two key learning processes underlying
performance on the explicit ASRT task, we differentiate Sequence
Learning and Statistical Learning (Figure 1C). Sequence Learning
is measured by the difference in reaction times (RT) between
random high and pattern elements (the average RT for random
high elements minus the average RT for pattern elements). These
elements share the same statistical properties (both correspond to
the third element of high-frequency triplets), but have different
sequence properties (i.e., pattern vs. random elements). Thus,
greater Sequence Learning is determined as faster responses to
pattern in contrast to random high trials. Statistical Learning is
assessed by comparing the responses for those random elements
that were the last elements of a high-frequency triplet, opposite to
those that were the last of a low-frequency triplet (the average RT
for random low elements minus the average RT for random high
elements). These elements share the same sequence properties
(both are random) but differ in statistical properties (i.e., they
correspond to the third element of a high or a low-frequency
triplet). Hence, faster responses to random high compared to
random low trials yields greater Statistical Learning. In sum,
Sequence Learning quantifies the advantage (in terms of RT) due
to the awareness of the sequential pattern, whereas Statistical
Learning captures purely frequency-based learning (Nemeth
et al., 2013).

Procedure
One to two weeks prior the experiment, participants were
invited to the laboratory in order to familiarize them with the
environment, and to assess their working memory and executive
functions based on the Wisconsin Card Sorting Test (PEBL’s
Berg Card Sorting Test; Fox et al., 2013) and the Digit Span
(Racsmány et al., 2005) and Counting Span (Conway et al.,
2005) tasks, respectively. Participants were instructed to complete
sleep agendas reporting the schedules, duration and subjective
quality of their sleep. On the day of the experiment, participants
arrived at the laboratory at 10.00 AM. They completed the
GSQS assessing previous nights’ sleep quality. Additionally, their

subjective stress levels scored on a 10-point Likert scale (“On a
scale from 0 to 10 how stressed are you feeling now?”), as well
as an item of the Hungarian version of the Karolinska Sleepiness
Scale (KSS, Akerstedt and Gillberg, 1990) to measure subjective
sleepiness were administered. In the Hungarian version of the
scale higher scores indicate a more refreshed state, that is, lower
sleepiness. Subsequently, EEG caps with 64 electrodes were fitted
by two assistants. Testing started at 11.30 AM and took place in
a quiet room equipped with a large computer screen, a response
box and EEG recording device. After listening to the instructions,
participants had the opportunity to practice the task in order
to get familiar with the stimuli and the response box; however,
all stimuli appeared in a random fashion during the practice
session.

This was followed by the explicit ASRT task composed of the
training phase, testing phase, off-line period, and retesting phase
(Figure 1D). In the ASRT task, short breaks were introduced
between blocks in the following way: first, at the end of each
block, participants were instructed to report the sequence they
encountered in that block (which took approximately 6 s on
average). Second, they received feedback for their accuracy and
RT performance on pattern trials (fixed 3 s). Third, participants
were notified (for a fixed 1 s) that the next block can be started
by pressing a response button when they are ready; on average,
participants continued the next block after approximately 4 s.
These breaks were somewhat longer for every fifth blocks (i.e.,
Block 5, 10, 15, etc.), where participants were instructed to
continue the next block after EEG data were saved by the
experimenter (which took approximately 20 s on average). Thus,
altogether, for themajority of blocks the between-block break was
∼14 s, and for every fifth block it was ∼29 s. Additionally, a 3-
min long break was inserted between the learning and the testing
phases during which the fitting of the EEG caps were monitored
and impedances were reset under 10 k�.

The off-line period extended from 12.30 to 13.30. Participants
assigned to the Active Wake group were instructed to watch
an approximately 1-h long documentary (They were allowed to
select from documentaries of different topics such as natural
sciences, nature or history). Participants of the Quiet Rest group
were asked to sit quietly with eyes closed in a comfortable chair.
They were instructed by the assistant to open their eyes for
1 min, every 5 min or in case the EEG recording showed any
sign of sleep onset (slow eye movements, attenuation of alpha
waves and presence of theta oscillations). Participants in the
Nap group had the opportunity to spend a daytime nap in the
laboratory. The off-line period took place (in all groups) at the
same room in which learning, testing and retesting occurred, and
was monitored by EEG. Before the retesting phase, participants
were asked to complete again the KSS and the scale assessing the
level of stress.

EEG Recording
The EEG activity was measured by using a 64-channel recording
system (BrainAmp amplifier and BrainVision Recorder software,
BrainProducts GmbH, Gilching, Germany). The Ag/AgCl
sintered ring electrodes were mounted in an electrode cap
(EasyCap GmbH, Herrsching, Germany) on the scalp according
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to the 10% equidistant system. During acquisition, electrodes
were referenced to a scalp electrode placed between Fz and
Cz electrodes. Horizontal and vertical eye movements were
monitored by EOG channels. Three EMG electrodes to record
muscle activity, and one ECG electrode to record cardiac activity
were placed on the chin and the chest, respectively. All electrode
contact impedances were kept below 10 k�. EEG data was
recorded with a sampling rate of 500 Hz, band pass filtered
between (0.3 and 70 Hz).

In order to remove muscle and eye movement related artifact
from the awake EEG data (Active Wake and Quiet Rest groups),
EEG preprocessing was performed using the Fully Automated
Statistical Thresholding for EEG artifact Rejection (FASTER)
toolbox1 (Nolan et al., 2010) implemented in EEGLAB (Delorme
and Makeig, 2004) under Matlab (The Mathworks). The data
was first re-referenced to the Fz electrode, notch filtered at
50 Hz, and band-pass filtered between 0.5 and 45 Hz. Using a
predefined z-score threshold of ±3 for each parameter, artifacts
were detected and corrected regarding single channels, epochs,
and independent components (based on the infomax algorithm
Bell and Sejnowski, 1995). This way, data was cleared from
eye-movement, muscle and heartbeat artifacts. The data was
then re-referenced to the average of the mastoid electrodes (M1
and M2). Remaining epochs containing artifacts were removed
after visual inspection on a 4-s long basis. In case of the
sleep recordings (Nap group), data was re-referenced to the
average of the mastoid electrodes, and sleep stages as well as
conventional parameters of sleep macrostructure were scored
according to standardized criteria (Berry et al., 2012) by two
experienced sleep researchers. Periods of NREM sleep (Stage
2 and SWS) were considered for subsequent analyses. Epochs
containing artifacts were visually inspected and removed on
a 4-s basis. Wrong channels (N = 6 in the dataset of the
Nap group) were replaced by the average of the neighboring
channels.

Spectral power and sleep spindle analyses of artifact-free
segments were performed by a custom made software tool
for EEG analysis (FerciosEEGPlus, © Ferenc Gombos 2008–
2017). Overlapping (50%), artifact-free, 4-s-epochs of all EEG
derivations were Hanning-tapered and Fourier transformed by
using the FFT (Fast Fourier Transformation) algorithm in order
to calculate the average power spectral densities. The analyzed
frequencies spanned between 0.75 and 31 Hz in the Nap group,
and between 1.5 and 25 Hz in the awake groups. Low frequencies
(0.75–1.5 Hz) were not considered in the awake conditions
due to the negligible and unreliable contribution of measurable
cortical activity at this frequency range during wakefulness.
In addition, frequencies above 25 Hz were unreliable in the
awake data due to technical and movement-related artifacts.
We summed up frequency bins to generate five frequency
bands for the wake groups: delta (1.5–4 Hz), theta (4.25–
8), alpha (8.25–13), sigma (13.25–16), and beta (16.25–25 Hz)
frequency bands, and five frequency domains for the sleep
group: delta (0.75–4 Hz), theta (4.25–8), alpha (8.25–13), sigma
(13.25–16), and beta (16.25–31 Hz) frequency ranges. In order

1http://sourceforge.net/projects/faster

to reduce the number of parameters, we averaged bandwise
spectral power measures of Frontal (frontal: Fp1, Fpz, Fp2,
AF3, AF4, F7, F5, F3, F1, Fz, F2, F4, F6, F8, frontocentral and
frontotemporal: FT7, FC5, FC3, FC1, FC2, FC4, FC6, FT8),
Central (central, centrotemporal and centroparietal: T7, C5, C3,
C1, Cz, C2, C4, C6, T8, CP5, CP3, CP1, CPz, CP2, CP4, CP6,
TP8), and Posterior (parietal, parietotemporal and occipital:
P7, P5, P3, Pz, P2, P4, P6, P8, POz, O1, Oz, O2) electrode
derivations.

We quantified sleep spindling activity by the Individual
AdjustmentMethod [IAM, (Bódizs et al., 2009; Ujma et al., 2015)]
that considers individual spectral peaks to detect spindles in
each participant. This method defines frequency boundaries for
slow and fast spindles based on the spectral power of NREM
sleep. These individualized boundaries are used as frequency
limits for slow and fast spindle bandpass filtering (FFT-based,
Gaussian filter, 16 s windows) of the EEGs. Thresholding of the
envelopes of the band-pass filtered recordings are performed
by individual and derivation-specific amplitude criteria (see the
description of the method in more detail in Bódizs et al., 2009;
Ujma et al., 2015). We used spindle density (spindles/min) and
the average amplitude (µV) of slow and fast spindles as different
measures of spindling activity. To reduce the number of statistical
comparisons, we averaged spindle measures of Frontal, Central,
and Posterior electrode derivations similarly to spectral power
measures.

Statistical Analyses
Statistical analyses were carried out with the Statistical Package
for the Social Sciences version 22.0 (SPSS, IBM) and R (R Core
Team, 2014). The blocks of the explicit ASRT task were collapsed
into epochs of five blocks to facilitate data processing and to
reduce intra-individual variability. The first epoch contained
blocks 1–5, the second epoch contained blocks 6–10, etc. We
calculated median reaction times (RTs) for all correct responses,
separately for pattern, random high and random low trials for
each epoch and each participant. Note that for each response
(n), we defined whether it was the last element of a high- or
a low-frequency triplet. Two kinds of low-frequency triplets
were eliminated: repetitions (e.g., 222, 333) and trills (e.g.,
212, 343). Repetitions and trills corresponded to low frequency
triplets for all participants and individuals often show pre-
existing response tendencies to such triplets (Howard et al.,
2004). By eliminating these triplets, we attempted to ensure
that differences between high vs. low-frequency triplet elements
emerged due to learning and not to pre-existing response
tendencies.

To show the performance trajectories of RTs for different trial
types, and to explore their differences, we performed a mixed
design analyses of variance (ANOVA) with EPOCH (1–8) and
TRIAL TYPE (pattern, random high, random low) as within-
subject factors, and GROUP (Active Wake, Quiet Rest, Nap) as
a between-subject factor. To evaluate the effect of epoch and trial
type we performed post hoc comparisons (Fisher’s LSD).

In order to examine the changes in Statistical and Sequence
Learning that occur during the training phase, we applied a
mixed-design ANOVA with EPOCH (1–5) and LEARNING
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TYPE (Statistical Learning, Sequence Learning) as within-subject
factors, and GROUP (Active Wake, Quiet Rest, and Nap) as a
between-subject factor. Post hoc comparisons were applied to
evaluate changes in performance during the training phase in case
of Sequence and Statistical Learning.

To examine off-line changes occurring between testing and
retesting sessions we used a similar mixed-design ANOVA with
EPOCH (6–8) and LEARNING TYPE (Statistical Learning,
Sequence Learning) as within-subject factors, and GROUP
(Active Wake, Quiet Rest, and Nap) as a between-subject factor.
Post hoc comparisons were run to contrast performances of the
testing phase (6th epoch) and the retesting phases (7th and 8th
epochs).

Greenhouse–Geisser epsilon (ε) correction was used if
necessary. Original df values and corrected p-values (if
applicable) are reported together with partial eta-squared (η2) as
a measure of effect size.

Finally, we aimed to examine the associations between EEG
spectral power measured during the off-line period and change
in learning performance across the testing and retesting phase,
in each group separately. Off-line changes in Sequence and
Statistical Learning were defined as the difference between
the learning scores of the first retesting (7th epoch) session
and the testing session (6th epoch). Thus, a positive value
indicated improvement in learning performance after the off-line
period. Furthermore, we aimed to examine whether EEG spectral
power measured during off-line periods predicted additional
performance change after longer re-learning, therefore, we
calculated a secondary off-line change score contrasting learning
scores of the 8th (2nd half of the retesting session) with those of
the 6th epoch (testing session).

The associations between sleep spindles and off-line changes
of the above measures were also examined (within the sleep
group only). Pearson correlation coefficients or (if normality was
violated) Spearman rank correlations were run between spectral
power values (of each region and band) and off-line changes in
learning scores. The issue of multiple comparisons was addressed
by the False Discovery Rate correcting for type 1 error (Benjamini
and Hochberg, 1995).

RESULTS

Group Characteristics
Groups were matched in age, gender, working memory, executive
function, and initial sleepiness and stress level (Table 1).
However, after the 1 h long off-line period, the groups differed
in sleepiness (F2,75 = 3.19, p = 0.05). Post hoc test showed
that the Nap group scored significantly higher on the KSS
(indicating lower sleepiness on the Hungarian version of the
KSS scale where higher scores indicate a more refreshed
state, that is, lower sleepiness) than the Active Wake group
(p = 0.02), however, the difference was not significant after FDR
correction.

Sleep parameters of the Nap group are listed in Table 2. In
the Nap group, only one participant reached REM phase during
sleep, thus we only report the characteristics of Non-REM sleep.

TABLE 2 | Descriptive characteristics of sleep parameters in the Nap group.

Variable Mean (SD)

Sleep duration (min) 41.16 (12.35)

Sleep efficiency (%) 70.28 (16.27)

Wake duration (min) 16.53 (7.77)

S1 duration (min) 6.02 (3.62)

S2 duration (min) 17.93 (6.59)

SWS duration (min) 16.89 (12.82)

Fr. fast spindle density 6.37 (0.96)

Cent. fast spindle density 7.45 (0.83)

Post. fast spindle density 7.35 (0.93)

Fr. fast spindle amp. 4.56 (1.32)

Cent. fast spindle amp. 6.01 (1.56)

Post. fast spindle amp. 5.38 (1.38)

Fr. slow spindle density 7.31 (1.12)

Cent. slow spindle density 7.33 (1.19)

Post. slow spindle density 7.4 (1.16)

Fr. slow spindle amp. 3.91 (1.85)

Cent. slow spindle amp. 3.28 (1.49)

Post. slow spindle amp. 2.54 (0.96)

S1, Stage 1; S2, Stage 2; SWS, Slow Wave Sleep, Fr, Frontal; Cent, Central; Post,
Posterior.

Are Performance Trajectories of
Responses to Different Trial Types
Different Between Groups?
Overall, participants in the different groups responded with
similar RTs (main effect of GROUP: F2,75 = 0.80, p = 0.46,
η
2
p = 0.02). Irrespectively of trial types, RTs significantly decreased

across epochs (main effect of EPOCH: F7,525 = 175.26, p< 0.0001,
η
2
p = 0.70), indicating general skill improvements due to

practice (Figure 2). The GROUP × EPOCH interaction was
not significant (F14,525 = 1.18 p = 0.32, η

2
p = 0.03), suggesting

that general skill improvements were similar in the groups.
Furthermore, participants showed significant Sequence and
Statistical Learning (main effect of TRIAL TYPE: F2,150 = 52.04,
p < 0.0001, η

2
p = 0.41): they responded faster to pattern

than random high trials (p < 0.0001), and faster to random
high compared to random low trials (p < 0.0001). The
GROUP × TRIAL TYPE interaction was not significant
(F4,150 = 0.80, p = 0.46, η2

p = 0.02) indicating that there was no
difference between the groups in performance for different trial
types. In addition to that, the EPOCH x TRIAL TYPE interaction
was significant (F14,1050 = 11.93, p < 0.0001, η

2
p = 0.14),

indicating different learning trajectories in case of the three
trial types (see Figure 2). Although participants became faster
for all trial types during the course of the task, responses to
pattern trials showed greater gains in comparison to both random
trials: Average reaction times of pattern trials decreased from
357.89 to 257.56 ms (p < 0.0001), of random high trials from
370.98 to 326.14 ms (p < 0.0001), and of random low trials
from 388.26 to 349.65 ms (p < 0.0001). Practice-dependent
improvement in response to pattern trials was significantly higher
than the improvement in case of random high (t77 = 4.81,
p < 0.0001) and random low (t77 = 5.45, p < 0.0001) trials.
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FIGURE 2 | Performance during the training (Epochs 1–5), testing (Epoch 6) and retesting (Epochs 7–8) sessions. Mean reaction times and standard errors are

visualized in response to pattern (P), random high (RH), and random low (RH) trials during each epoch.

The improvement in responses to random high and random
low trials was only marginally different (t77 = 1.84, p = 0.07).
The GROUP × EPOCH × TRIAL TYPE interaction was not
significant (F28,1050 = 0.66, p = 0.68, η2

p = 0.02), suggesting that
performance trajectories to the different trial types were similar
among the groups.

Do Sequence and Statistical Learning
During Training Differ Between Groups?
Sequence and Statistical Learning during the training phase were
similar across the groups (main effect of GROUP: F2,75 = 1.10,
p = 0.34, η2

p = 0.03). Irrespectively of learning type, performance
improved across epochs of training (main effect of EPOCH:
F4,300 = 10.92, p < 0.0001, η2

p = 0.13). The GROUP × EPOCH
interaction was not significant (F8,300 = 0.59, p = 0.68,
η
2
p = 0.02), suggesting that improvement during training was

similar between the groups. In addition, the main effect of
LEARNING TYPE was significant (F1,75 = 3.93, p = 0.05,
η
2
p = 0.05): participants showed greater Sequence Learning

compared to Statistical Learning (M = 32.50 vs. M = 19.64,
p < 0.0001). The GROUP × LEARNING TYPE interaction was
not significant (F2,75 = 0.81, p = 0.45, η

2
p = 0.02), suggesting

that the difference between Sequence and Statistical Learning
were similar among the groups. Furthermore, a significant
interaction between EPOCH and LEARNING TYPE emerged
(F4,300 = 5.52, p = 0.002, η

2
p = 0.07): as illustrated in Figure 3,

participants, on average, exhibited a steep increase in Sequence
Learning during the training phase [the average learning score
increased from 13.09 to 53.31 from the 1st epoch to the
5th (p < 0.001), whereas Statistical learning occurred in the
beginning of the task and remained unchanged by the end of
the training phase (the average learning score increased from
17.28 to 18.64 from the 1st epoch to the 5th, p = 0.68). The
GROUP × EPOCH × LEARNING TYPE interaction was not
significant (F8,300 = 0.58, p = 0.72, η

2
p = 0.02), suggesting that

training-dependent patterns of Sequence Learning and Statistical
Learning were similar across the groups.

Beyond the group-level results presented in the previous
paragraph, we performed an additional analysis to reveal learning
trajectories on a subject-by-subject basis. We categorized each
subject’s learning trajectory during training by a combination
of curve fitting and visual inspection. For comparability,
we performed the same steps for Sequence and Statistical
learning (see Figures 4A,B, respectively) and found that
∼33% of participants showed gradually increasing Sequence
learning during training, while the trajectory for Statistical
learning was gradually increasing only in ∼16% of participants
[χ2(1) = 3.80, p = 0.05]. Compared to these percentages, a
relatively smaller number of participants exhibited a step-like
increase in learning performance: ∼10% of participants for
Sequence learning and ∼4% of participants of Statistical learning
(p = 0.15). Additionally, a small portion of participants exhibited
a decreasing pattern, with the best performance at the beginning
of the task (∼5% of participants for Sequence learning, and∼13%
of participants for Statistical learning; p = 0.42). The learning
trajectory of themajority of participants did not clearly follow any
of the patterns described above. These learning trajectories were
categorized as ‘Other pattern’ (∼53% of participants for Sequence
learning, and ∼66% of participants for Statistical learning;
p = 0.81). These participants exhibited relatively large changes
in performance from one epoch to another and then returned
to the previous performance level. The timing of these larger
changes in performance was evenly distributed across epochs.
It is plausible that these participants explored different (explicit
or implicit) strategies over the course of learning that may have
resulted in large changes in some epochs compared to their
overall learning performance. Note, however, that the primary
focus of our study was not to test these possible strategies but to
compare Sequence and Statistical learning trajectories across the
three experimental groups (Quiet Rest, Active Wake, and Nap).
Importantly, the distribution of subgroups exhibiting different
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FIGURE 3 | Learning and off-line changes in Sequence and Statistical Learning. Sequence Learning is quantified as the difference in reaction times to random high

elements vs. pattern elements. Statistical Learning is quantified as the difference in reaction times to random low elements vs. random high elements. Means and

standard errors of Sequence Learning and Statistical Learning during each epoch. Sequence Learning exhibited a steep increase during training and additional

practice after the off-line periods, whereas Statistical Learning remained unchanged throughout the sessions.

learning trajectories was similar across the three experimental
groups both for Sequence learning [χ2(6) = 0.91, p = 0.99] and
for Statistical learning [χ2(6) = 1.98, p = 0.92].

Early Statistical Learning Effects During
Training
To provide further insights into the trajectory of Statistical
learning, we performed additional analyses by focusing on block-
level and below block-level data. The first set of analyses aimed to
determine the time point when participants successfully extracted
the statistical regularities from the stimulus stream. First, we
computed Statistical learning scores for each block of Epoch 1,
and tested if these Statistical learning scores were significantly
different from zero. We found significant Statistical learning
effect already in Block 1 of the ASRT task [t(73) = 2.12, p = 0.04,
Cohen’s d = 0.25]. Next, we zoomed into Block 1 to further
test this learning effect. In this analysis, we split Block 1 into
two halves and computed Statistical learning scores for each
participant, for each half. This level of granularity seemed the
most appropriate so that all participants had at least a few
random-high trials (∼4 trials on average, ranging from 2 to
9), enabling us to compute learning scores for all participants.
These Statistical learning scores were submitted into one sample
t-tests, which showed that Statistical learning scores did not reach
significance in the first half of Block 1 [t(73) = 1.11, p = 0.269,
Cohen’s d = 0.13], while they were significant in the second half
of Block 1 [t(73) = 1.99, p = 0.05, Cohen’s d = 0.23]. This analysis
thus demonstrates that statistical regularities are learned (albeit
very quickly) and the observed significant Statistical learning
scores at the very early phase of the task are not due to other (not
learning-related) preexisting tendencies.

This rapid learning effect is in fact not surprising if we consider
that 80 trials are presented in the first block, and ∼50 of those
trials can be categorized as high frequency triplets (occurring in
pattern or random positions). As there are 16 individual triplets

that are high frequency, that means that participants encounter
each individual triplet approximately four times in the first block
already. In contrast, there are 48 individual triplets that are low
frequency, and participants encounter these individual triplets
approximately (or less than) once in a block. Thus, the observed
significant Statistical learning scores (i.e., the difference between
the random-high and random-low frequency trials) suggests that
participants are so sensitive to the frequency statistics that as little
as, on average, four presentations of the same trials are sufficient
to show speeded responses to them.

Nevertheless, it is important to highlight that significant
learning does not necessarily mean that participants have a
stable knowledge about the statistical regularities. Thus, even
though the Statistical learning scores are already significant at
the early phase of learning and these scores numerically do
not change as the task progresses, it is reasonable to assume
that more practice can help strengthen the acquired knowledge.
We ran an additional analysis to test this assumption. In this
analysis, we focused on block-level data and computed Cohen’s
d effect sizes for the block-level Statistical learning scores. These
effect sizes were substantially smaller in the first five blocks of
the ASRT task (0.27 on average for Blocks 1–5, i.e., Epoch 1)
compared to the later blocks (blocks of Epoch 2: 0.45, Epoch 3:
0.51, Epoch 4: 0.53, Epoch 5: 0.50). This difference in the effect
sizes suggests that, although participants were able to extract the
statistical regularities from the stimulus stream very early in the
task, additional training helped them strengthen the acquired
statistical knowledge.

Are Off-Line Changes in Sequence and
Statistical Learning Different Across the
Groups?
The three groups did not show different patterns of Sequence
and Statistical Learning from the testing to the retesting sessions,
as neither the main effect of GROUP (F2,75 = 0.65, p = 0.53,
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FIGURE 4 | Sequence (A) and Statistical (B) learning trajectories for individual subjects. Each participant’s learning trajectory is presented in a light gray color, while

the average learning trajectory for that subgroup is presented in a darker gray color for the ‘Gradual learning,’ ‘Decreasing pattern,’ and ‘Other pattern’ panels. For

the ‘Stepwise learning’ panel, the light and dark gray colors represent subgroups of participants depending on the timing of their performance increase (no average

learning trajectory is presented).

η
2
p = 0.02), nor the interactions GROUP× EPOCH (F4,150 = 0.52,

p = 0.67, η2
p = 0.01), GROUP × LEARNING TYPE (F2,75 = 0.65,

p = 0.53, η
2
p = 0.02), and GROUP × EPOCH × LEARNING

TYPE (F4,150 = 0.73, p = 0.55, η2
p = 0.02) emerged as significant

predictors. The lack of a group effect is shown in Figure 5 that
illustrates off-line changes (7th minus the 6th epoch) in Sequence
and Statistical Learning separately for each group. Similarly to the
training phase, participants exhibited higher scores in Sequence
Learning than in Statistical Learning (main effect of LEARNING
TYPE: F1,75 = 10.72, p = 0.002, η

2
p = 0.13). Moreover, learning

indices produced robust changes across epochs as indicated by
a significant main effect EPOCH (F2,150 = 18.99, p < 0.0001,
η
2
p = 0.20). More specifically, overall performances (regardless

of learning type) were unchanged from the testing phase (6th
epoch) to the first retesting epoch (7th) (p = 0.86), but improved
(p < 0.0001) from the testing phase to the end of the retesting
session (8th epoch), and from the first retesting epoch to the
second (7th epoch vs. 8th epoch) (p < 0.0001). Furthermore,
Sequence Learning and Statistical Learning scores showed
different patterns after the off-line period (see Epoch 7 and 8 in
Figure 3), as indicated by the significant EPOCH × LEARNING
TYPE interaction (F2,150 = 5.31, p = 0.009, η

2
p = 0.07). Neither

Sequence Learning nor Statistical Learning seemed to show
immediate (early) gains after the off-line period. Sequence
Learning scores did not significantly change from the testing

phase to the first epoch of retesting (6th epoch, M = 47.02
vs. 7th epoch, M = 47.69, p = 0.85). Similarly, Statistical
Learning remained unchanged from testing to the first retesting
(6th epoch, M = 21.39 vs. 7th epoch, M = 19.96, p = 0.56).
Nevertheless, additional practice produced robust changes in
Sequence Learning, that increased significantly from the testing
phase to the second epoch of the retesting phase (8th epoch,
M = 68.19, p = 0.001), whereas Statistical Learning did not show
any significant changes by the end of the retesting phase (8th
epoch:M = 23.51, p = 0.41).

To further explore potential group differences during the off-
line period we ran additional ANOVAs separately for Sequence
and Statistical learning scores considering their different learning
curves. Based on these ANOVAs, we found no group differences
in the consolidation (6th epoch vs. 7th epoch) of the acquired
knowledge (Sequence learning: p = 0.35, Statistical learning:
p = 0.78). Similarly, no group differences emerged in the
additional increase between 7th epoch and 8th epoch (Sequence
learning: p = 0.65, Statistical learning: p = 0.36).

Awareness of the Sequence in the
Groups
For the analysis of sequence awareness, two participants’ data
had to be excluded due the technical issues during collection of
sequence reports (one data from the active wake and one data
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FIGURE 5 | Off-line changes in learning indices within the three groups. Off-line changes were calculated by the learning scores of the 7th epoch minus the

respective learning scores of the 6th epoch. Dots show individual data points, the vertical line within the boxes show the medians, boxes represent the first and third

quartiles, whiskers indicate the interquartile range of 1.5.

from the nap group). Additionally, eleven participants could not
report the correct sequence consistently during training (N = 3
in the active wake, N = 3 in the nap, and N = 5 in the quiet rest
group), and therefore they were also excluded from the following
analyses. Importantly, there were no group differences in the
number of participants who could or could not report the correct
sequence consistently and were excluded (chi-square = 1.77,
p = 0.78).

On average, participants could report the correct sequence
consistently from the 6th block (M = 6.58, SD = 7.04), with no
differences across the groups (F2,64 = 1.53, p = 0.23). Overall, the
block number from which participants could consistently report
the correct sequence showed a significant negative correlation
with the Sequence learning scores (r = −0.28, p = 0.02). Thus,
the earlier participants could find the correct sequence and report
consistently thereafter, the better their overall Sequence learning
was. No association was observed between the block number and
the Statistical learning scores (r =−0.06, p = 0.63), suggesting that
sequence awareness primarily affected Sequence learning but not
Statistical learning.

Finally, we conducted an ANOVA for the Sequence learning
scores of the training phase (Epoch 1–5), including the block
number from which participants could consistently report the
correct sequence as a covariate to check how sequence awareness
affected the time course of learning across groups. The ANOVA
revealed a significant main effect of EPOCH (F4,244 = 10.53,
p< 0.001, η2

p = 0.147), indicating better Sequence learning scores
as learning progressed. This effect was modulated by the block
number on a trend level (F4,244 = 2.58, p = 0.08, η

2
p = 0.041),

suggesting that the earlier participants could report the correct
sequence, the better their Sequence learning became across
training. Importantly, no significant group differences emerged
either in overall learning or in the trajectory of learning even after
taking into account the block number as a covariate (ps > 0.21).

A similar ANOVA was conducted for the consolidation
analysis (Epoch 6–8). This ANOVA also revealed a significant
main effect of EPOCH (F2,122 = 8.34, p < 0.001, η

2
p = 0.120),

which is consistent with the previous ANOVA conducted for
these epochs, showing increase in Sequence learning scores due
to additional training (Epoch 7 vs. Epoch 8, see Figure 3).
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This effect was not modulated by the block number (p = 0.49).
Furthermore, no significant group differences emerged either in
overall learning scores or in the trajectory of learning scores
across these epochs, even after taking into account the block
number as a covariate (ps > 0.32). These results altogether
suggest that, although the timing when participants gained
explicit knowledge about sequence affects their Sequence learning
scores, this effect is similar across the groups both during training
and consolidation.

Associations Between EEG Spectra and
Off-Line Changes
Off-line changes in Sequence Learning as indexed by the
difference scores between the 7th (first half of retesting phase)
and the 6th epochs’ (testing phase) scores were positively
associated with frontal theta power (r = 0.44 p = 0.028)
within the nap group. Off-line changes in Sequence Learning
were not associated with spectral EEG power measures in the
either of the awake (AW, QR) groups. Additional off-line-
changes in Sequence Learning as indexed by the difference
scores between the 8th (second half of retesting phase) and the
6th epochs’ (testing phase), showed a positive association with
frontal theta power (r = 0.52, p = 0.008) within the nap group
only. Nevertheless, these correlations did not reach statistical
significance after FDR correction of multiple comparisons (all
ps > 0.05). Since region-wise averaging of electrodes might not
capture associations between behavioral measures and spectral
power of a more local nature, we examined (on an exploratory
level) the associations between theta activity and off-line changes
(7th vs. 6th epoch and 8th vs. 6th epoch) in Sequence Learning
within the nap group. As shown in Figure 6, associations with
theta band power were prominent at frontal electrode sites,
peaking at left frontopolar locations in case of immediate off-
line changes (Figure 6A), as well as in case of additional off-line
changes in performance (Figure 6B). Finally, we examined the
associations between off-line (7th vs. 6th epoch and 8th vs. 6th
epoch) changes in Sequence Learning and bin-wise EEG spectral
power averaged across all electrodes (within the Nap group).
Immediate (7th vs. 6th epoch) and delayed (8th vs. 6th epoch)
post-sleep improvement in Sequence Learning correlated only
with slow frequency activity between 2 and 7.75 Hz (all bins
p < 0.01).

Immediate and additional off-line changes (7th vs. 6th epoch
and 8th vs. 6th epoch) in Statistical Learning were not associated
with spectral power measures within the nap group, and no other
associations emerged within the Quiet Rest and Active Wake
groups.

In sum, individual differences in off-line changes in Statistical
Learning assessed immediately after the long delay (6th vs. 7th
epoch) and after extended practice, (6th vs. 8th epoch) were
not associated with spectral EEG power measures in any of the
three groups. On the other hand, immediate and delayed post-
sleep improvements in Sequence Learning were predicted by
high delta and theta activity during sleep within the Nap group.
Nevertheless, these correlations did not remain significant after
correction for multiple comparisons.

Associations Between Sleep Spindles
and Off-Line Changes
Off-line change (7th vs. 6th epoch) in Sequence Learning showed
a negative correlation with slow spindle density at Frontal
(r = −0.52, p = 0.008), Central (r = −0.54, p = 0.006), and
Posterior (r = −0.53, p = 0.006) derivations. Slow spindle
amplitude, fast spindle density and amplitude were not associated
with the off-line change in Sequence Learning. Negative
correlations between slow spindle density and off-line change
in Sequence Learning remained significant after FDR correction
(p = 0.036).

Off-line change in Statistical Learning was negatively
correlated with fast spindle amplitude (Frontal: r = −0.43,
p = 0.03; Central: r = −0.47, p = 0.02; Posterior: r = −0.44,
p = 0.03), but was not related either to fast spindle density or slow
spindle density/amplitude. Correlations between fast spindle
amplitude and off-line change in Statistical Learning were not
significant after FDR correction (all ps > 0.05).

To examine whether the negative correlation between off-line
changes in performance and spindle parameters were linked to
overall Sequence/Statistical Learning ability, we applied partial
correlations with learning performance of the training phase as
a covariate. Learning performance here was computed as the
differences in Sequence and Statistical learning between the 5th
and the 1th epochs of the training phase. Slow spindle density
remained a negative correlate of off-line change in Sequence
Learning even after controlling for this initial Sequence Learning
performance (Frontal: r = −0.5, p = 0.006; Central: r = −0.52,
p = 0.009; Posterior: r = −0.51, p = 0.005).

Similarly, partial correlations were computed between fast
spindle amplitude and off-line change in Statistical Learning with
Statistical Learning performance as a covariate. The correlations
showed trends after partialling out this initial Statistical Learning
performance (Frontal: r = −0.37, p = 0.07; Central: r = −0.43,
p = 0.03; Posterior: r = −0.36, p = 0.08).

Additional (delayed) off-line-changes in Sequence and
Statistical Learning as indexed by the difference scores between
the 8th (second half of retesting phase) and the 6th epochs’
(testing phase) were not associated to any of the extracted spindle
parameters.

DISCUSSION

Our aim was to investigate performance trajectories in Sequence
and Statistical Learning during extensive practice and after
off-line periods spent in different vigilance states. In order
to examine these processes in the same experimental context,
we applied a paradigm that simultaneously measured sequence
and statistical learning by delineating order and frequency-
based information. Our findings indicate that Sequence and
Statistical Learning follow different learning curves. Whereas
performance in Sequence Learning exhibited an increase during
training, Statistical Learning was rapidly acquired and remained
unchanged throughout training. During the off-line period,
both forms of learning were preserved as no significant off-
line changes emerged in either Sequence or Statistical Learning.
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FIGURE 6 | Associations between NREM theta power and off-line changes in Sequence Learning. (A) Pearson correlations between NREM theta band power and

immediate (7th vs. 6th epoch) post-sleep changes in Sequence Learning. (B) Spearman Rho correlations coefficients between NREM theta band power and delayed

(8th vs. 6th epoch) post-sleep changes in Sequence Learning. The heat plots on the right indicate the magnitude of correlation coefficients, the scatterplots on the

left show the association in a prominent (left frontal) electrode site. In case of 6B the correlation coefficient remained unchanged (r = 0.64, p < 0.001) after the

exclusion of the outlier. The figures show uncorrected p-values (before FDR correction). For the immediate off-line changes, only Fp1, Fp2, AF3, AF4 locations

remained significant after FDR correction. For the additional off-line changes, frontal channels Fp1, Fpz, Fp2, AF3, AF4, F7, F5, F3, F1, Fz, F2, F4, F6, F8 as well as

FC4, FC5, CP5, and P5 locations remained significant after FDR correction.

Nevertheless, Sequence Learning improved after additional
practice (i.e., in the retesting phase), whereas Statistical Learning
remained stable regardless of further training compared to the
testing phase. Performance trajectories were similar across the
groups: Performance during training and consolidation did not

differ between the Active Wake, Quiet Rest, and Nap groups.
EEG spectral power assessed during the off-line periods was
not associated with off-line changes in Sequence and Statistical
Learning in the awake groups. Within the Nap group we
found a trend indicating a positive association between frontal
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theta band power and off-line change in Sequence Learning. In
addition, frontal theta power predicted further improvements
in Sequence Learning after additional practice. Within the
Nap group, slow spindle density was negatively associated
with post-sleep improvement in Sequence Learning, and fast
spindle amplitude was negatively associated with post-sleep
improvement in Statistical Learning.

Our data suggests that sequence and statistical learning
are markedly different sub-processes of procedural learning.
Frequency-based information is acquired rapidly and appears
to undergo less prominent changes during further training
compared to the acquisition of order-based information that may
exhibit further performance improvements. Our fine-grained
analyses revealed that statistical learning occurs already in the
first block of the task. This finding suggests that participants are
so sensitive to the frequency statistics that as little as, on average,
four presentations of the same trials are sufficient to show
speeded responses to them. Nevertheless, the further analysis of
effect sizes showed that, although participants were able to extract
the statistical regularities from the stimulus stream very early in
the task, additional training helped them strengthen the acquired
statistical knowledge.

Rapid statistical learning has also been reported before: for
instance, in the ASRT study of Szegedi-Hallgató et al. (2017),
statistical learning was apparent already in the first epoch
in the Explicit group but seemed to have larger individual
differences in the Implicit groups as only one of the two
Implicit groups exhibited significant statistical learning in the
first epoch (see Supplementary results and figures in Szegedi-
Hallgató et al., 2017). Similarly, in Kóbor et al. (2018) study,
statistical learning was observed in the first epoch of the explicit
version of the ASRT task, along with a significant sequence
learning as well. Consequently, a possible explanation for the
very rapid statistical learning is that, in an explicit condition,
the instructions and motivation to learn can have an overarching
effect, providing a cognitive state, in which not only the instructed
sequential but also the uninstructed statistical regularities can
be learned quickly. Although this was not in the primary
focus of these previous studies, if we take a closer look at the
learning trajectories, it appears that statistical regularities are
extracted very early and no (or very little) further gains may be
observed during training if explicit instructions are given for the
sequential information (Szegedi-Hallgató et al., 2017; Kóbor et al.,
2018). In contrast, in the implicit conditions, statistical learning
may undergo further improvements during training (Szegedi-
Hallgató et al., 2017), above and beyond the strengthening of
the acquired knowledge as suggested in the previous paragraph.
These observations support the interpretation that explicit
instructions and the motivation to learn can have an overarching
effect in that not only the instructed sequential but also the
uninstructed statistical regularities can be learned more quickly.
Interestingly, a recent study showed that, if the task is fix-
paced instead of self-paced, no such overarching effect can be
observed, suggesting a complex interplay of multiple factors
that may influence the effect of explicit instructions on learning
(Horváth et al., 2018). Further studies should directly test these
factors.

Nevertheless, it is important to note that statistical learning
typically occurs implicitly (i.e., without conscious intent to learn
and without awareness about the learning situation itself or about
the actual regularities) and relatively quickly, already in one
learning session (e.g., Song et al., 2007a; Nemeth et al., 2013;
Kóbor et al., 2017). In contrast, it has been previously shown
that acquiring the alternating sequence structure (frequently
referred to as higher-order sequence learning) in the ASRT
task typically occurs after 4 days of practice if learning is
implicit (Howard and Howard, 1997; Howard et al., 2004),
while this can be substantially faster if explicit instruction is
provided to the participants (Nemeth et al., 2013). Accordingly,
participants quickly formed explicit knowledge about the
sequence. Therefore, we think that the current study design
was suitable to measure both sequence and statistical learning,
bringing them in the same time frame of acquisition (i.e.,
showing significant learning in one learning session for both
measures).

The present study narrows down the concept of statistical
learning by regarding it as only one of the processes that is
the sensitivity to frequency information. From a theoretical
perspective, however, it is important to note that at the level
of transitional probabilities, statistical learning (in this narrow
sense) and sequence learning could be considered as similar.
Namely, both are statistical learning in a broader sense. When
acquiring frequency information (statistical learning in the
narrow sense), a 2nd order probabilistic sequence should be
learned, in which there are always one probable continuation and
some less probable continuations for the first two elements of
a given three-element stimulus chunk (Szegedi-Hallgató et al.,
2017; Kóbor et al., 2018). When acquiring order information
(sequence learning), the 2nd order transitional probability is
equal to one; namely, consecutive elements in the sequence could
be predicted with 100% certainty from the previous sequence
element (Kóbor et al., 2018).

Our finding of different learning trajectories within one
learning session is in line with the results of Kóbor et al.
(2018) well as corroborates earlier data (Nemeth et al., 2013)
that showed different developmental trajectories of sequence
and statistical learning between 11 and 40 years of age but
did not analyze the time course of these learning types.
Beyond the group-level results, we performed an additional
analysis to characterize learning trajectories on a subject-by-
subject basis. This analysis revealed that one-third of participants
showed gradually increasing Sequence learning during training,
and this proportion was significantly higher than the number
of participants who exhibited gradually increasing Statistical
learning, confirming differences in learning trajectories for
Sequence vs. Statistical learning beyond the group-level findings.
Nevertheless, the majority of participants exhibited a learning
trajectory other than gradual. It is plausible that these participants
explored different strategies over the course of learning that
may have resulted in large changes in some epochs compared
to their overall learning performance. Further investigations
should directly focus on individual level heterogeneity and test
which factors/characteristics predict learning trajectories on the
individual level.
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We had a special focus on the off-line change and the effect
of sleep on Sequence Learning and Statistical Learning. In order
to differentiate between the specific effects of sleep and from the
indirect effect of reduced interference during off-line periods,
we included a quiet rest control group into the design. On
the behavioral level, we found no sleep-dependent consolidation
neither in Sequence Learning nor in Statistical Learning. The
lack of evidence for the beneficial influence of sleep on statistical
learning is in line with previous studies that used probabilistic
sequence learning tasks (Peigneux et al., 2003, 2006; Song et al.,
2007a; Nemeth et al., 2010; Hallgató et al., 2013), however, we
should note that these studies did not differentiate between
order-based and frequency-based learning mechanisms. Here, we
aimed to investigate the influence of sleep on pure (frequency-
based) statistical learning in the perceptual-motor domain. Other
studies examined sleep-dependent consolidation on statistical
learning in the auditory domain (Durrant et al., 2011, 2013)
and contrary to our results, found improved performance after
sleep compared to wakefulness. Discrepancies between these
studies and our findings might stem from methodological
differences (overnight sleep and longer daytime naps in Durrant
and colleagues’ study) as well as the examined modality
(auditory system vs. perceptual-motor system). Nevertheless, it
is important to highlight that Durrant et al. (2011) did not
include a quiet rest condition that might be favorable in napping
studies.

Interestingly, and contrary to our expectations sleep did
not facilitate off-line improvement in Sequence Learning either.
In case of perceptual-motor sequence learning, Robertson and
colleagues (Robertson et al., 2004) reported sleep-dependent
consolidation in the explicit version of the Serial Reaction Time
task using deterministic sequences. Discrepant findings between
the present and Robertson and colleagues’ study can be the result
of different sequence structures applied in the SRT and ASRT
task. In addition, other confounding factors, such as the effects
of fatigue or reactive inhibition (Török et al., 2017) might have a
different impact on these tasks. For instance, effects of fatigue are
typical to occur in learning tasks (Rickard et al., 2008; Brawn et al.,
2010; Pan and Rickard, 2015), however, ASRT learning scores
seem to be relatively immune against the influence of fatigue
(Török et al., 2017). Furthermore, recent studies raised concerns
about the reliability of the deterministic SRT task (Stark-Inbar
et al., 2017; West et al., 2017) while the ASRT proved to be a
more reliable measure of sequence learning (Stark-Inbar et al.,
2017).

Performance in Sequence and Statistical Learning did not
show off-line improvements immediately after the long delay
period; however, performance in Sequence Learning exhibited
further gains after additional practice, suggesting that post-
sleep increases in our case were also largely dependent on
further practice. Interestingly, delayed (training-dependent) off-
line improvements were associated with slow oscillatory activity
within the Nap group. This finding suggests that not sleep
per se, but low-frequency oscillations are associated with
delayed performance gains after sleep and additional practice.
Our findings indicate that slower oscillatory activity including
the (high) delta and the theta frequency ranges (from 2 to

7.75 Hz) during daytime sleep might be predictive of post-
sleep improvements in Sequence Learning. Slow frequency
oscillations peaking at anterior locations and spanning between
1 and 8 Hz reflect the homeostatic and restorative capacity
of sleep as power in these frequencies is increased after
prolonged wakefulness (Borbély et al., 1981; Marzano et al., 2010)
in fronto-central derivations. Furthermore, the homeostatic
increase in spectral power between 2 and 7 Hz is state-
independent (Marzano et al., 2010) making these oscillations
likely candidates to reflect restorative processes during a
daytime nap, with lower homeostatic pressure. Whether
the association between slow frequency activity and further
improvement in Sequence Learning reflects processes of sleep-
related memory consolidation or a non-specific effect of
restorative sleep facilitating performance remains a question of
further research.

Sleep spindle parameters within the Nap group were
negatively associated with off-line changes in performance: slow
spindle density and fast spindle amplitude showed negative
associations with early off-line changes in Sequence Learning
and Statistical Learning, respectively. These findings are hard
to interpret as they are at odds with the majority of previous
findings that reported a positive association between spindle
parameters, general cognitive abilities, and off-line gains in
performance in a variety of declarative and procedural learning
tasks (see Rasch and Born, 2013 for a comprehensive review).
Still, negative correlations were also reported to some extent
although in samples including children (Chatburn et al.,
2013), and psychiatric patients (Nishida et al., 2016). In our
study, associations between spindle parameters and off-line
changes in performance might not simply stem from trait-
like effects, as associations were unchanged if we controlled
for the confounding effects of training-dependent learning
performance. Nevertheless, given the lack of baseline EEG
measurements, we cannot fully discern trait- and state-like
effects in the present study. Moreover, only the association
between slow spindle density and the off-line change in Sequence
Learning remained significant after the correction for multiple
comparisons, whereas previous studies mainly linked sleep-
dependent cognitive benefits to fast spindle activity. In sum,
off-line changes in Sequence Learning and Statistical Learning
were associated with different spindle parameters, nevertheless,
the relevance of these associations should be examined in further
studies, including baseline sleep measurements without pre-sleep
learning experience.

To conclude, here we were able to assess the time-course of
two fundamental learning processes, namely Sequence Learning
and Statistical Learning separately and showed that Statistical
Learning is acquired rapidly and remains unchanged even after
extended practice, whereas Sequence Learning may develop
more gradually. On the behavioral level, both sequence and
statistical knowledge were retained and were independent of
whether the off-line period included sleep or not. Although
our measures of cortical oscillations assessed during the off-
line period showed associations with behavioral performance
within the sleep group to some extent, the influence of sleep-
specific oscillations on Sequence and Statistical learning should
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be examined in future studies. Nevertheless, our findings suggest
that sleep does not have an all-in-one-effect on memory
consolidation, and future studies should focus on mapping
systematically which learning and memory mechanisms might
and might not benefit from sleep and related oscillatory activity.
Learning and memory should be assessed on a process level
(such as Sequence Learning and Statistical Learning in the current
study) in order to characterize the time-course of these processes
on the behavioral level as well as their neural correlates more
precisely.
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