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Abstract

There is currently an active debate on which RDMA

primitive (i.e., one-sided or two-sided) is optimal for dis-

tributed transactions. Such a debate has led to a number

of optimizations based on one RDMA primitive, which

was shown with better performance than the other.

In this paper, we perform a systematic comparison be-

tween different RDMA primitives with a combination of

various optimizations using representative OLTP work-

loads. More specifically, we first implement and com-

pare different RDMA primitives with existing and our

new optimizations upon a single well-tuned execution

framework. This gives us insights into the performance

characteristics of different RDMA primitives. Then we

investigate the implementation of optimistic concurrency

control (OCC) by comparing different RDMA primitives

using a phase-by-phase approach with various transac-

tions from TPC-C, SmallBank, and TPC-E. Our results

show that no single primitive (one-sided or two-sided)

wins over the other on all phases. We further conduct

an end-to-end comparison of prior designs on the same

codebase and find none of them is optimal.

Based on the above studies, we build DrTM+H, a new

hybrid distributed transaction system that always em-

braces the optimal RDMA primitives at each phase of

transactional execution. Evaluations using popular OLTP

workloads including TPC-C and SmallBank show that

DrTM+H achieves over 7.3 and 90.4 million transac-

tions per second on a 16-node RDMA-capable cluster

(ConnectX-4) respectively, without locality assumption.

This number outperforms the pure one-sided and two-

sided systems by up to 1.89X and 2.96X for TPC-C with

over 49% and 65% latency reduction. Further, DrTM+H

scales well with a large number of connections on mod-

ern RDMA network.

1 Introduction

Distributed transactions with serializability and high

availability provide a powerful abstraction to program-

mers with the illusion of a single machine that executes

transactions with strong consistency and never fails. Al-

though distributed transaction used to seem slow [19],

the prevalence of fast networking features such as

RDMA has boosted the performance of distributed trans-

actions by orders of magnitudes [51, 5, 11, 18]. RDMA

NIC (RNIC) provides high bandwidth, ultra-low latency

datagram communication (two-sided primitive), together

with offloading technology (one-sided primitive): the net-

work card can directly access the memory of remote ma-

chines while bypassing kernel and remote CPUs.

Recently, there is an active debate over which RDMA

primitive, namely one-sided or two-sided, is better

suited for distributed transactions. One-sided primitive

(e.g., READ, WRITE, and ATOMIC) provides higher perfor-

mance and lower CPU utilization [10, 11, 51, 5]. On

the other hand, two-sided primitive simplifies applica-

tion programming and is less affected by hardware re-

strictions such as the limitation of RNIC’s cache capac-

ity [16, 18].

It is often challenging for system designers to choose

the right primitive for transactions based on previ-

ous studies. Most work on RDMA-enabled transactions

presents a new system built from scratch and compares

its performance with previous ones using other code-

bases. Some only compare the performance of differ-

ent primitives or designs using micro-benchmarks. This

makes their results hard to interpret: differences in hard-

ware configurations and software stacks affect the observ-

able performance. Further, different RDMA primitives

may significantly affect the overall performance [16, 17].

There have been several valuable studies in the

database community in comparing different transactional

systems [55, 13]. Harding et al. [13] conduct a compre-

hensive study on how different transaction protocols be-

have under different workloads in a distributed setting us-

ing a single framework. However, for a particular proto-

col, there may be many different implementations which

have very different performance, especially when em-

bracing new hardware features like RDMA.

In this paper, we conduct the first systematic study on

how different choices of RDMA primitives and designs

affect the performance of distributed transactions.1 Un-

like most previous research efforts which compare differ-

ent overall systems, we compare different designs within

1Note that optimizing distributed transaction protocol is not the focus

of this work.
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a single execution framework. The goal is to provide

a guideline on optimizing distributed transactions with

RDMA, and potentially, for other RDMA-enabled sys-

tems (e.g., distributed file systems [26, 38] and graph

processing systems [52, 36, 58]). In summary, this paper

makes the following contributions:

A primitive-level comparison using a well-tuned RDMA

execution framework (§4). We implement and tune an

execution framework with all RDMA implementation

techniques we know so far. We then systematically

compare the performance of different primitives with

existing and our newly proposed optimizations using

micro-benchmarks that simulate common transactional

workloads. The main results are the following (§4.2):

• One-sided primitive has better performance than

two-sided with the same round trips.

• Two-sided primitive has better scalability with small

payloads in large clusters.

• Two-sided primitive can be faster than one-sided when

receiving ACK is done off the critical path.

A phase-by-phase evaluation of transactional exe-

cution (§5). We carefully study different primitives

at different phases of transactional execution, includ-

ing all optimizations proposed on both primitives,

and then present their performance. More specif-

ically, we focus on transactions with optimistic

concurrency control (OCC)2 for strong consistency

and primary-backup replication for high availabil-

ity. Nowadays OCC is widely used for transactions,

from centralized databases [47, 49, 21] to distributed

databases [11, 57, 24, 5, 18]. OCC is efficient and

scalable on common workloads which stimulates many

OCC-based RDMA-enabled transactions [11, 5, 18].

The protocol contains four steps: Execution, Validation,

Logging and Commit phase. We show that no single

primitive always wins over the other. To gain optimal

performance for such phases, the main findings include:

• Using hybrid primitives for the execution (§5.1) and

validation phases (§5.2).

• Using two-sided primitives for the commit

phase (§5.3)

• Using one-sided primitives for the logging

phase (§5.4).

• Using hybrid primitives and one-sided primitives for

the read and validation phases of read-only transac-

tions, respectively (§5.5).

2We use the shorter but more general term transactions to refer to dis-

tributed transactions executed using OCC in the rest of this paper.
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Fig. 1: A phase-by-phase overview of transaction processing

with OCC. C, P, and B stand for the coordinator, the primary

and the backup of replicas, respectively. P1 is read and P2
is written. The dashed, solid, and dotted lines stand for read,

write, and hardware ack operations, and rectangles stand for

record data.

An end-to-end study of existing and our new system

on a single platform (§6). By further leveraging results

from our phase-by-phase evaluations, we built DrTM+H, a

hybrid design that optimizes every phase executed with

appropriate primitives (§6.1). Evaluations using two pop-

ular OLTP workloads on a 16-node RDMA-capable clus-

ter show that DrTM+H can perform over 7.3 and 90.4 mil-

lion transactions per second for simplified TPC-C and

SmallBank respectively. Further, our hybrid design does

not suffer from scalability issues on an emulated 80-node

connection setting (§6.2). Note that we do not make lo-

cality assumptions like previous work [18].

We finally make a comparable study on how previous

systems leverage RDMA by evaluating three representa-

tive designs upon a single execution framework. To emu-

late previous systems, we choose the primitives and opti-

mizations at each phase as the original design and imple-

ment them using the same codebase and transaction pro-

tocol. The experimental results show that none of them

has the optimal performance (§6.3). Our hybrid design

can outperform the pure two-sided design (FaSST) and

the pure one-sided design (DrTM+R) by up to 2.96X and

1.89X for simplified TPC-C, respectively.

The source code of our execution framework and

DrTM+H, including all benchmarks, are available at

https://github.com/SJTU-IPADS/drtmh.

2 Background

2.1 RDMA and Its Primitives

RDMA (Remote Direct Memory Access) is a network

feature with high speed, low latency, and low CPU over-

head [10, 17]. It has generated considerable interests in

applying it in modern datacenters [11, 46, 12]. RDMA is

well known for its one-sided primitive including READ,

WRITE and ATOMIC operations, which can directly ac-

cess the memory of a remote machine without involv-

ing kernel and remote CPUs. Because RDMA bypasses

the kernel and traditional network stack, RPC implemen-

tations over RDMA (two-sided primitive) can also have
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orders of magnitude higher throughput than those using

TCP/IP [10, 18].

Fig. 2 presents the workflow of these two primi-

tives. No matter which primitive an application uses,

the client (sender) uses a similar interface to post re-

quests to (and poll results from) the server (receiver) via

the RDMA-capable NIC (RNIC). The interface, called

queue pairs (QPs), is used to communicate between the

client (sender) and server (receiver). The client starts an

RDMA request by posting the requests (called Verbs) to

the sender queue, which can either be one-sided or two-

sided verbs. The client can get the completion events of

requests by polling a completion queue (CQ) associated

with the QP. For two-sided primitives, the server polls re-

quests from a receiver queue, calls a local RPC routine

and posts results back to the sender queue.

Moreover, QPs have different transport modes which

support different sets of primitives, as summarized in Ta-

ble 1. The Reliable Connected (RC) mode supports all

RDMA primitives, while the Unreliable Datagram (UD)

mode only supports two-sided primitive (SEND/RECV).

On the other hand, UD is connectionless so the applica-

tion can use fewer UD QPs than RC QPs [18].

2.2 RDMA-enabled Distributed Transactions

There is an active line of research in using RDMA for

serializable distributed transactions [11, 5, 18]. Most of

such systems use variants of optimistic concurrency con-

trol (OCC) for consistency [22] and variants of primary-

backup replication (PBR) for availability [23]. PBR uses

fewer round trips and messages to commit one transac-

tion than Paxos [11], which fits distributed transactions

in a well-connected cluster.

Although these systems have different design choices

and leverage different RDMA primitives, they use a sim-

ilar transaction protocol (OCC)3 to execute and commit

serializable transactions. The operations performed in

the protocol can be briefly summarized as four consec-

3While DrTM [51] implements a two phase locking (2PL) scheme us-

ing HTM and RDMA, it provides no high availability support and a

later version [5] uses a variant of OCC to provide high availability. We

are not aware of other RDMA-enabled distributed transaction systems

using 2PL. Hence, we focus on OCC in this paper.

Table 1: Different transport modes of QP and supported opera-

tions. RC, UC, and UD stand for Reliable Connection, Unreliable

Connection, and Unreliable Datagram, respectively.

SEND/RECV WRITE READ/ATOMIC

RC ✓ ✓ ✓

UC ✓ ✓ ✗

UD ✓ ✗ ✗

utive phases, as shown in Fig. 1. A transaction first exe-

cutes by reading the records in its read set (Execution).

Then it executes a commit protocol, which locks the

records in the write set and validates the records in the

read set is unchanged (Validation). If there is no con-

flicting transaction, the coordinator sends transaction’s

updates to each backup and waits for the accomplish-

ment (Logging). Upon successful, the transaction will be

committed by writing and unlocking the records at the

primary node (Commit). Note that the execution order

of the protocol is very important. For example, the trans-

action is considered to be committed if and only if the

log replies have been received [11, 18]. Thus the commit

phase must be executed after the completion of logging.

OCC can be directly used to execute read-only trans-

actions, which is an important building block for modern

applications [25]. A read-only transaction may use a two-

phase protocol: the first phase reads all records (Read),

and then the second phase validates all of them have not

been changed (Validation).

3 Execution Framework

To provide an apple-to-apple comparison on different

primitives and transactions, we implement an execution

framework for RDMA, which contains both one-sided

and two-sided RDMA primitives, various prior optimiza-

tions and our newly proposed optimization.

3.1 Primitives

Symmetric model. We use a symmetric model in our ex-

periments as prior work [51, 5, 11, 18]. In a symmet-

ric model, each machine acts both a client and a server.

On each machine, we register the memory with huge

pages for RNIC to reduce RNIC’s page translation cache

misses [10].4

QP creation. We use a dedicated context to create QPs

for each thread; otherwise, there will be false synchro-

nizations within the driver even each thread uses its own

QP. The performance impact is shown in Fig. 3(a)5. The

root cause is that each QP uses a pre-mapped buffer to

send MMIOs to post requests while the buffer may be

shared. The buffer is allocated from a context according

to Mellanox’s driver implementation, where each context

4Currently, we use kernel’s native huge page support (i.e., 2MB), which

is sufficient for our current workloads.
5The details of experimental setup can be found in §4.1.
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has limited buffers. For example, the mlx4 driver [41]

uses 7 dedicated buffers and 1 shared buffer. This means

that if the context is used to create more than 8 QPs,

then extra QPs have to share the same buffer. Even if

each thread uses one exclusive QP, the throughput of a

shared context drops by up to 63% with the increase of

threads. The overhead comes from synchronizations on

the shared MMIO buffer.

One-sided primitive. Each thread manages n RC QPs to

connect to n machines. We use standard Verbs API to

post a one-sided request to the QP corresponding to the

machine. RDMA WRITE requests with payloads less than

64 bytes are inlined to improve throughput [16]. Note

that we do not simply wait until the completion of the

operation (§3.2): we execute other application requests

or RPC functions for better utilizing CPU and network

bandwidth.

Two-sided primitive. Unlike one-sided primitive which

has a simple and straightforward implementation, there

are many proposed RPC implementations (two-sided

primitive) atop of RDMA [10, 16, 18, 26, 46, 39]. They

can be categorized into SEND/RECV verb based [18],

RDMA WRITE based [10, 39, 46, 26] and hybrid

one [16].

We use SEND/RECV verbs over UD QP as our two-

sided implementation in this paper for three reasons.

First, in a symmetric setting, SEND/RECV verbs over UD

has better performance than other implementations over

RDMA, especially for transaction systems [18]. This is

also confirmed in our experiment (see Fig. 3(b)). Sec-

ond, based on our studies of one-sided RDMA perfor-

mance, one-sided RDMA based RPC is unlikely to out-

perform UD based RPC especially for small messages.

The peak throughput of one-sided WRITE reaches 130M

reqs/s when the payload size is smaller than or equal

to 64 bytes (Fig. 5). For an RPC communication, two

RDMA WRITEs are required (one for send and one for re-

ply). Thus, the peak throughput of RPC implemented by

one-sided RDMA operations is about 65M reqs/s, lower

than that of the implementation based on SEND/RECV

over UD (79M reqs/s).

Discussions. SEND/RECV over UD does not provide a

reliable connection channel. Therefore, it may be un-

fair to compare it to RC based two-sided implementa-

tions which have reliability guarantees. However, since

RDMA network assumes a lossless link layer, UD

has much higher reliability than expected [18]. Further,

packet losses can be handled by transaction’s proto-

col [18].

3.2 Optimizations Review and Passive ACK

Many optimizations have been proposed in prior work to

better leverage RDMA [10, 16, 17]. We first briefly re-

view them here and show that when using RDMA prop-

erly, one-sided primitive yields better performance than

two-sided primitive with the same round trips. We fur-

ther propose a new optimization, Passive ACK, which im-

proves RDMA primitives when the completion acknowl-

edgement (ACK) of the request is not on the critical path

of the application.

Coroutine (CO). Even the latency of RDMA operations

reaches several microseconds, it is still higher than the ex-

ecution time of many applications [18]. Thus, it is worth

to use coroutines to further hide the network latency by

sending multiple requests from different transactions in a

pipelined fashion. FaSST [18] uses coroutine to improve

the throughput of its RPC. FaRM [10, 11] optimizes both

one-sided operations and RPCs using an event loop to

schedule transactions with RDMA operations. We use

a set of coroutines to execute application logic at each

thread. Each coroutine yields after issuing some network

requests (including both one-sided and two-sided ones),

and they resume the execution until they receive the com-

pletions of one-sided requests (or the replies of two-sided

RPCs). Typically, a small number of coroutines is suffi-

cient for RDMA latency hiding (e.g., 8) [18].

Outstanding requests (OR). Even coroutine overlaps

computation with I/O from different transactions, it

is still important to send requests from one transac-

tion in parallel. This further increases the utilization of

RNICs and reduces the end-to-end latency of transac-

tions, i.e., there is no need to wait for the completion of

one request before issuing another one. For example, the

read/write set of many OLTP transactions can be known

in advance [37]. Therefore, it is possible to issue these

reads and writes in parallel.

Doorbell batching (DB). There are several ways to issue

multiple outstanding requests to RNIC. A common ap-

proach is to post several MMIOs corresponding to differ-

ent requests. On the other hand, doorbell batching rings

a doorbell to notify RNIC to fetch multiple requests by

itself using DMA [17]. MMIO is costly which usually re-

quires hundreds of cycles. Therefore, doorbell batching

can reduce CPU overhead on the sender side and make
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Fig. 4: A sample of passive ACK for two-sided primitive.

a better usage of PCIe bandwidth, since it only requires

one MMIO per batch to ring the doorbell.

One restriction of doorbell batching is that only re-

quests from one QP can be fetched by the RNIC in

a batched way. This means that different one-sided re-

quests cannot be batched together if they are not sent to

the same machine. Due to this limitation, doorbell batch-

ing is usually applied to two-sided implementation based

on UD QP [18].

Passive ACK (PA). The performance can be further im-

proved if the completion of requests (ACK) is done off

the critical path of transactional execution. We achieve

this by acknowledging the request passively.

For one-sided primitive, the request is marked as

unsignaled, and then the completion of the request is con-

firmed passively after a successful polling of one subse-

quent signaled request. This avoids consuming RNIC’s

bandwidth.6 For two-sided primitive, the optimization

has the potential to double the throughput in a symmet-

ric model by piggybacking the reply messages with the

request messages. As shown in Fig. 4, passive ACK can

save half of the messages (replies).

It should be noted that not all of the completions

can be acknowledged passively. For example, one-sided

READ requires a completion event; otherwise, the applica-

tion does not know whether the read is successful or not.

Fortunately, in transactional execution, a transaction is

considered to be committed when the log has been suc-

cessfully written to all backups (see Fig. 1). Hence the

write-back request at the commit phase can be acknowl-

edged passively.

4 A Primitive-level Performance Analysis

In this section, we first present our execution frame-

work with both one-sided and two-sided primitive of

RDMA. We then present the basic performance of dif-

ferent RDMA primitives, including raw RDMA perfor-

mance and the performance of micro-benchmarks. The

micro-benchmarks simulate common transactional work-

loads. These experimental results serve as the guideline

for using the appropriate primitives for transactions.

6Verbs from the same send queue are processed in a FIFO manner [2].
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4.1 Setup

Testbed. Unless otherwise specified, we use a local rack-

scale RDMA-capable cluster with 16 machines for all

experiments. Each machine is equipped with two 12-

core Intel Xeon E5-2650 v4 processors, 128GB of RAM,

and two ConnectX-4 MCX455A 100Gbps Infiniband

NIC via PCIe 3.0 x16 connected to a Mellanox SB7890

100Gbps InfiniBand Switch.

Execution. We run 24 worker threads (same as the num-

ber of available cores per machine) on each machine in

our experiments. Each worker thread runs an event loop

to execute transactions, handles RPC requests, and polls

RDMA events. The events of RDMA including the com-

pletion of one-sided RDMA requests and the reception

of RPC requests/replies. We follow FaSST [18] by us-

ing coroutine from Boost C++ library to manage context

switches between clients when issuing network requests.

Boost coroutine is efficient in our experiments, which has

very low overhead for context switch (about 20 ns).

4.2 Primitive-level Performance Analysis

RDMA raw performance. Prior work has shown that

two-sided primitives have better performance and scala-

bility than one-sided ones [18]. This conclusion is drawn

from an old generation of RNIC (ConnectX-3). Further,

they only show the poor scalability of one-sided primi-

tive using small payloads (less than 32 bytes). We extend

their evaluation [18] on raw RDMA performance to show

that: one-sided primitives have better performance than

two-sided ones using 16 nodes, as shown in Fig. 5(a).

More importantly, the scale of the cluster only affects

one-sided primitives with small payloads. For example,

with our emulated 80-node connection setting, one-sided

primitives still outperform two-sided ones when data pay-

loads are larger than 64 bytes.

Emulating massive RDMA connections. On our 16-node

cluster, we create 5 RC QPs to connect to each ma-

chine at each worker. The number of QPs (5x16 QPs

per thread) is sufficient to run in an 80-node cluster. We

choose the QPs randomly to post upon issuing a request.

Note that the total number of QPs (960 per NIC) has ex-

ceeded the total number of QPs that can be cached at

RNIC.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation    237



Primitive evaluation. Fig. 5(a) presents the evaluation re-

sults of the primitive analysis. For read operations, one-

sided primitives (READ) outperform two-sided ones by

up to 1.6X when payload size is below 64 bytes, and

by up to 1.37X for larger payloads. For write operations,

one-sided primitives (WRITE) outperform reads on small

payloads but get a similar trend on large payloads (from

1.03X to 1.35X). Note that we do not incur memory

copy overhead for two-sided primitives, as done in prior

work [18], since adding such overhead will affect the

performance of two-sided ones, especially for large mes-

sages.

Fig. 5(b) further presents the results on an emulated 80-

node connection setting. The performance of one-sided

READ becomes slow-growing with the decrease of pay-

loads from 128 bytes. This is because RNIC experiences

QP cache misses at this time.7 However, one-sided READs

can still outperform two-sided primitives when payloads

are larger than 64 bytes. Because the cost of data transfer

instead of QP cache misses dominates the performance

for larger payloads.

A final takeaway is that, although one-sided ATOMIC

is relatively slow [17], it can still achieve 48M reqs/s

on each machine, which is much higher than the re-

quirements of many workloads (e.g., TPC-C). Therefore,

the performance will not be the main obstacle to lever-

age one-sided atomic primitives in transactional execu-

tion (e.g., distributed spinlock). We evaluate this ap-

proach in the transactional workload (§5.2).

Micro-benchmarks. Better performance in raw through-

put does not always mean better performance in real ap-

plications. We use two micro-benchmarks to compare

how different primitive performs under common transac-

tional workloads, and how previous optimizations affect

the performance (Fig. 6).

Workloads. We use a workload with multi-object reads

and writes to compare the performance of different

RDMA primitives. This workload simulates common

operations in transactional workloads: at the execution

phase, transaction reads multiple records from remote

servers; at the commit phase, transaction writes multiple

updates back to remote servers. Note that the workloads

use fixed-length 64-byte payloads, and issue 10 opera-

tions.

Effects of optimizations. We first show how existing op-

timizations improve the performance of each primitive

from Fig. 6. Coroutine, outstanding requests and door-

bell can be applied to both workloads.

Coroutine hides the latency and improves the perfor-

mance of one-sided and two-sided by 7X and 6.46X, re-

7We use PCIe counters to measure QP cache misses, similar to pmu-

tools (https://github.com/andikleen/pmu-tools).
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Fig. 6: A comparison of one-sided and two-sided primitives for

multiple-object (a) reads and (b) writes with 64-byte payloads.

spectively. Adding outstanding requests by posting more

requests per batch further improve the throughput due to

better uses of RNIC’s processing capability.

Doorbell batching does not always improve the per-

formance of one-sided primitive, but it constantly im-

proves the throughput of two-sided ones. This is because

doorbell batching can only apply to a single QP, which

is suitable for UD-based two-sided implementation. On

the contrary, one-sided requests are sent through multi-

ple RC QPs, which reduces the chances of using door-

bell batching. Further using doorbell batching requires

bookkeeping the status of posted requests, which adds

additional overhead.

Offloading when completion is required. By enabling

passive acknowledgement (PA), the performance of

one-sided WRITE is further improved by 1.13X, while

that of two-sided primitive is nearly doubled (1.96X)

due to the reduction of half of the messages (for reply).

This makes the only case where two-sided outperforms

one-sided. Otherwise, one-sided primitive always has

better performance than two-sided ones. This is consis-

tent with the results in Fig. 5. For example, multiple

READs can achieve peak throughput about 8.43M, which

is close to the raw performance of one-sided READ (about

86.9M per machine).

5 A Phase-by-phase Performance Analysis

In this section, we study the performance of transac-

tions phase-by-phase with different RDMA primitives.

Table 2 summaries whether we apply the optimization

discussed in §3.2 at different phases of transactional exe-

cution. Below is some highlights of our phase-by-phase

analysis:

• One-sided primitive is faster when the number of

round trips is the same and the completion acknowl-

edgement of requests are required (§5.1,5.2,5.4,5.5).

• It is always worth checking and filling the lookup
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cache for one-sided primitive, even using two-sided

primitive (§5.1).

• One-sided primitive is faster, even using more network

round trips, for CPU-intensive workloads (§5.1).

• Two-sided primitive with passive ACK has compara-

ble or better performance than one-sided (§5.3).

Benchmarks. We use two popular OLTP benchmarks,

TPC-C [44] and SmallBank [42], to measure the perfor-

mance8 of every phase with different primitives, since

they represent CPU-intensive and network-intensive

workloads respectively. We use a partitioned data store

where data is sharded by rows and then distributed to all

machines. We enable 3-way logging and replication to

achieve high availability, namely each primary partition

has two backup replicas.

TPC-C simulates an order processing application. We

scale the database by deploying 384 warehouses to 16

machines. We use this benchmark as a CPU-intensive

workload. TPC-C is known for good locality: only around

10% of transactions access remote records. To avoid the

impact of local transactions, which our work does not fo-

cus on, we only run new-order transaction of TPC-C

and make transactions always distributed, which is a

major type of transaction (45%) and representative in

TPC-C.9

SmallBank simulates a simple banking application. Each

transaction performs simple reads and writes operations

on account data, such as transferring money between

different users. We use this benchmark as a network-

intensive workload because transaction only contains

simple arithmetic operations on few records. We do not

assume locality as previous work [18], which means that

all transactions use network operations to execute and

commit transactions. To scale the benchmark, we deploy

100,000 accounts per thread, while 4% of records are ac-

cessed by 90% of transactions.

5.1 Execution (E)

Overview. The transaction coordinator fetches the

records a transaction reads in the execution phase. This

requires traversing the index structure and fetching the

record. We can simply send an RPC to remote server to

fetch the record, which only requires one round-trip com-

munication. On the other hand, we can also leverage one-

sided RDMA READs to traverse the data structure and

read the record. This typically requires multiple round

trips but saves remote CPUs. Prior work has proposed

two types of optimizations to reduce the number of round

trips required by one-sided primitives [29, 10, 51, 30].

8We scale up the concurrent requests handled by the server to achieve

the peak throughput.
9For brevity, we refer to our simplified TPC-C benchmark as TPC-C/no.

Table 2: A summary of optimizations on RDMA primitives at

different phases (§3.2). OR, DB, CO and PA stand for outstanding

request, doorbell batching, coroutine, and passive ACK. RW and

RO stand for read-write and read-only transactions. I and II

stand for one-sided and two-sided primitives.

OR DB CO PA

I II I II I II I II

RW

E ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

V ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗

L ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗

C ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RO
R ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗

V ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗

RDMA-friendly key-value store. Many hash-based data

structures can be optimized to reduce the number of

RDMA operations for traversing the remote server to find

the given key, these include cuckoo hashing [29], hop-

scotch hashing [10], and cluster hashing [51]. We adopt

DrTM-KV [51], a state-of-the-art RDMA-friendly key-

value store in all experiments.

RDMA-friendly index cache. The ideal case for one-

sided primitive is to use one one-sided READ to get

the record back. DrTM [51] introduces a location-based

cache to eliminate the lookup cost (one RDMA READ)

in the common case. FaRM [11] and Cell [30] use a

similar design for caching the internal nodes of B-tree.

In our experiment, we maintain a 300MB index cache

on each machine, which will be used and filled in the

execution phase. Note that the index cache is quite ef-

fective since a relatively small cache is usually enough

for skewed OLTP workloads [15, 8, 3, 33, 20], such as

SmallBank [42], TATP [32], and YCSB [6].

Evaluation. Fig. 7 compares the performance of us-

ing one-sided and two-sided primitives for the execu-

tion phase on TPC-C/no and SmallBank, respectively.

Two-sided uses one RPC to fetch the record. One-sided

fetches records with at least two one-sided READs (one

for index and one for payload). One-sided/Cache always

fetches the indexes from the local index cache and then

get the record from a remote server using a single one-

sided READ. This presents an ideal case for the perfor-

mance of the execution phase using one-sided primitives.

TPC-C/no: One-sided/Cache outperforms Two-sided by

up to 1.45X in throughput (from 1.26X), and the me-

dian latency is only around 69% of Two-sided (from

89%). The benefits mainly come from the better perfor-

mance of one-sided READs. Two-sided outperforms One-

sided (no cache) by up to 1.28X in throughput. Without

caching, the coordinator requires an average of double

round trips (one for lookup and another for read) to fetch

one record.

Interestingly, when increasing the number of corou-
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Fig. 7: The performance of (a) TPC-C/no and (b) SmallBank

with different implementations of Execution phase.

tines, the peak throughput of One-sided (no cache) out-

performs that of Two-sided (about 13%). The median

latency is also slightly better when using more than

10 coroutines. The performance gain comes from lower

CPU utilization on each machine. This confirms the ben-

efits of using one-sided primitives when remote servers

are busy [29, 30]. The adaptive caching scheme in prior

work [29, 30] can be used to get better performance by

balancing CPU and network.

SmallBank: Not surprisingly, One-sided/Cache still out-

performs Two-sided by up to 1.36X in throughput due to

the better performance and CPU utilization of one-sided

READ. However, compared to One-sided (no cache), the

speedup of peak throughput for Two-sided reaches up to

2.01X (from 1.13X). This is due to two reasons. First,

without location-based cache, one-sided uses more round

trips to finish the execution phase. Further, the perfor-

mance of Smallbank is bottlenecked by network band-

width since it is a network-intensive workload.

Summary. If one round-trip RDMA READ can retrieve

one record using the index cache, one-sided primitive

is always a better choice than two-sided one. Otherwise,

two-sided primitive should be used when servers are not

overloaded. Hence, a hybrid scheme should be used in

the execution phase. Specifically, we should always en-

able the index cache and look from it before choosing ei-

ther one-sided primitive (on cache hit) or two-sided prim-

itive (on cache miss). We should also always refill the

cache even if two-sided primitive is chosen upon a miss.

5.2 Validation (V)

Overview. To ensure serializability, OCC atomically

checks the read/write sets of the transaction in the val-

idation phase. The coordinator first locks all records in

the transaction’s write set and then validates all records

in the read/write set to ensure that they have not been

changed after the execution phase.

Lock. RDMA provides one-sided atomic compare and

swap operations (ATOMIC), which can be used to imple-

ment distributed spinlock [51, 5]. Although ATOMIC is

slower than other two-sided primitives, on recent gener-

ation of RNIC (e.g., ConnectX-4), ATOMIC can achieve

48M reqs/s, which is enough for many OLTP workloads
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Fig. 8: The performance of (a) TPC-C/no and (b) SmallBank

with different implementations of locking in Validation phase.

(e.g., TPC-C). More importantly, the throughput of two-

sided primitive (76M) was evaluated with an empty RPC

workload. When locking the record in the RPC routine,

the impact of CPU efficiency may change the relative per-

formance of one-sided and two-side primitives. This is

especially the case for the symmetric model adopted by

transaction systems [51, 5, 11, 18, 56], when the servers

are busy processing transactions.

Validate. Different from the execution phase, a single

RDMA READ is enough to retrieve the current version

of the record for validation, thanks to caching the index

in the execution phase of the transaction. Therefore, one-

sided primitive is always a better choice for read-only

records compared to two-sided one, according to the re-

sults in Fig. 5 and Fig. 7.

Optimization. OCC demands the validation should start

exactly after locking all records [47, 11]. This takes two

round trips for every read-write record in the validation

phase. Fortunately, the locked record can be validated im-

mediately since it can not be changed again. Therefore,

each read-write record can be handled by both one-sided

and two-sided primitives in one round trip. For one-sided,

the RDMA READ request will be posted just after the

RDMA CAS request in a doorbelled way to the same send

queue of target QP, since they are processed in a FIFO

manner. Further, with passive ACK, the CAS request can

be made unsignaled (§3.2). For two-sided, the RPC rou-

tine will first lock the record and then read its version.

On commodity x86 processors, compiler fences are suf-

ficient to ensure the required ordering.

Restriction of RDMA atomicity. Currently, the key chal-

lenge for using one-sided primitive (RDMA ATOMIC)

for distributed locking is that ATOMIC cannot correctly

work with CPU’s atomic operations (e.g., CAS). To rem-

edy this, local atomic operations must also use RNIC’s

atomic operations [51], which will slow down the vali-

dation phase of local transactions. Leveraging advanced

hardware features, like hardware transactional memory

(HTM), can overcome this issue [51].

Evaluation. Fig. 8 compares the performance of us-

ing one-sided and two-sided primitives for the valida-

tion phase on TPC-C/no and SmallBank, respectively.
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Fig. 9: The performance of (a) TPC-C/no and (b) SmallBank

with different implementations of Commit phase.

Since the read/write sets are the same in TPC-C/no and

SmallBank, one-sided will send one ATOMIC and one

READ sequentially to lock the record and retrieve the cur-

rent version in one round trip. We can see in Fig 8 that for

both workloads, one-sided primitive (ATOMIC) is faster,

even it has lower peak throughput.

Summary. Although RDMA ATOMIC is slower than

other RDMA network primitives, it may not be the bot-

tleneck for many applications and can further improve

the performance of many workloads. If the atomicity be-

tween RNIC and CPU will not cause a performance is-

sue, One-sided RDMA ATOMIC is a better choice to im-

plement distributed locking due to high CPU efficiency.

Otherwise, two-sided primitive is preferred in this phase

since local CASs are much faster than RNIC’s CASs.

5.3 Commit (C)

Overview. In the commit phase, the coordinator first

writes the updates of the transaction back and then re-

leases the locks. One-sided WRITE can be used to im-

plement the commit operation with two requests, one to

write updates back and one to release the locks (i.e., ze-

roing the lock state of the record).

Similar to the validation phase, two one-sided WRITEs

(one to write the update back and one to release the lock)

will be posted sequentially to the same QP in a door-

belled way, which preserves the required ordering (re-

lease after write-back). Therefore, the commit phase can

be handled by both one-sided and two-sided primitives

in one round trip.

Optimization with passive ACK. Since the transaction is

considered to be committed after the completion of log-

ging, the completion of the commit message can be ac-

knowledged passively by piggybacking with other mes-

sages. Thus we enable passive ACK optimization to both

one-sided and two-sided primitives in the commit phase.

Evaluation. Fig. 9 presents the performance of

TPC-C/no and SmallBank using different commit

approaches. Note that we use two-sided as the validation

implementation in this experiment. This is because

one-sided ATOMICs cannot work correctly with the

commit phase with two-sided primitive due to the

atomicity issue with our current RNIC.
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Fig. 10: The performance of (a) TPC-C/no and (b) SmallBank

with different implementations of Logging phase.

For both workloads, without passive ACK, one-sided

WRITEs are faster due to better CPU utilization at the re-

ceiver’s side. With passive ACK, two-sided is faster. This

is because, although two-sided primitive costs more CPU

at the receiver side, it can save CPU at sender side due to

doorbell batching [17] (see Table 2). One-sided primitive

requires multiple MMIOs to commit multiple records,

while two-sided primitive can chain these requests by us-

ing one doorbell. Passive ACK can further save the cost

of two-sided primitives when sending the replies back.

These results match up with the results observed in our

primitive-level performance analysis (§4).

Summary. To commit transactions, two-sided primitive

with passive ACK is the better choice.

5.4 Logging (L)

Overview. In the logging phase, the coordinator writes

transaction logs with all updates to all backups. After re-

ceiving the completion acknowledgements from all back-

ups, the transaction commits. The coordinator will notify

backups to reclaim the space of logs lazily by updating

records in-place.

One-sided primitive. To enable logging with one-sided

RDMA WRITE, each machine maintains a set of ring-

buffers for remote servers to log. The integrity of the

log is enforced by setting the payload size at the begin

and end of the message, similar to previous work [10].

Note that since we use RC (Reliable Connection) QP

to post one-sided WRITEs, the logging is considered suc-

cess after polling the ACK from the RNIC. We use two-

sided primitive to reclaim the log since it must involve

remote CPUs [11]. Since log reclaiming is not on the

critical path of transactional execution, this request can

be marked as unsignaled and the claiming can be done in

the background.

Two-sided primitive. Logging with two-sided primitive is

relatively simple. The RPC routine copies the log content

to a local buffer after receiving the log request, and then

it sends a reply to the sender. The log reclaiming can also

be executed in the background.

Evaluation. Fig. 10 presents the performance of

TPC-C/no and SmallBank using different logging ap-

proaches. For both of them, one-sided logging always
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Table 3: A summary of execution time (cycles) and payload size

(bytes) in different phases for TPC-C and SmallBank.

TPC-C SmallBank

Time Payload Time Payload

Execution 342 68 678 71

Validation 454 157 185 105

Logging 363 1006 134 149

Commit 108 34 87 20

has higher throughput and lower latency than its two-

sided counterpart, thanks to offloading write operations

to one-sided primitives. Using one-sided logging in-

creases the throughput of TPC-C/no and SmallBank by

up to 1.29X (from 1.24X) and 1.12X (from 1.10X), re-

spectively. One-sided logging has more improvements in

peak throughput in TPC-C/no since the payload size of

logs in TPC-C is much larger than that of SmallBank

(1,006B vs. 149B), as shown in Table 3.

Summary. Since the logging phase can be offloaded us-

ing one-sided RDMA WRITEs with one round trip, one-

sided primitive is always preferred to write logs.
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Fig. 11: The performance of customer-position in TPC-E

with different implementations of the read-only transaction

(Read and Validation phases).

5.5 Read-only Transaction (R+V)

Overview. We use a simplified two-phase protocol to

run read-only transactions as prior work [25]. The first

phase reads all records like the execution phase, and the

second phase validates that the versions of all records

have not been changed, which is similar to the operations

in the validation phase for the records in read set. For

single-key read-only transactions, the validation phase

can be ignored. These transactions are popular in many

OLTP workloads (e.g., TATP [32]), as reported by prior

work [11, 18].

Evaluation. With a proper sharding, there is no dis-

tributed read-only transaction in TPC-C, which needs re-

mote data accesses. Further, there is only one single-

key read-only transaction in Smallbank (i.e., Balance),

which does not require the second phase (validation) [11,

18]. Therefore, we use the customer-position trans-

action in TPC-E [43] to evaluate the performance of dis-

tributed read-only transactions.
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Fig. 12: The performance of DrTM+H with the increase of ma-

chines for (a) TPC-C/no and (b) SmallBank.

TPC-E. is designed to be a more realistic OLTP bench-

mark, which simulates the workload of a brokerage firm.

One of well-known characteristics is the high proportion

of read-only transactions, reaching more than 79%. The

customer-position transaction is read-only and has

the highest execution ratio. It simulates the process of

retrieving the customer’s profile and summarizing their

overall standing based on current market values for all

assets. The assets prices are fetched in a distributed way.

Fig. 11 compares different choices of primitives for

distributed read-only transactions. As expected, by of-

floading read operations to RNICs and bypassing re-

mote CPUs, using one-sided primitives for both the read

and validation phases can gain the best performance

in both throughput and latency. One-sided outperforms

Two-sided by about 10% in peak throughput (0.19 vs.

0.21), and the median latency is around 80% of Two-

sided. Enabling the index cache (One-sided/Cache) in the

read phase will further improve the peak throughput by

close to 20% (0.25 vs. 0.21) and reduce the median la-

tency more than 20%.

Summary. The hybrid scheme used in the execution

phase (see §5.1) is also suitable to the first phase, and

one-sided READ is always a better choice for the second

phase (see §5.2). For single-key read-only transactions, a

single one-sided READ is usually efficient.

6 Fast Transactions using Hybrid Schemes

In this section, we conclude our studies of using RDMA

primitives for transactions by showing how to improve

the performance of prior designs by choosing appropri-

ate primitives and techniques at different phases of trans-

actional execution. This leads to DrTM+H, an efficient dis-

tributed transaction system using hybrid schemes.

6.1 Design of DrTM+H

DrTM+H optimizes different phases of the transaction by

choosing the right primitives guided by our previous stud-

ies (§4 and §5). DrTM+H supports serializable transaction

with log replication for high availability. Currently, we

have not implemented the reconfiguration and recovery,

which is necessary to achieve high availability. Yet, since

our replication protocol is exactly the same as the one
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used in FaRM [11], DrTM+H can use its method to recover

from failure.

Execution. DrTM+H uses a hybrid design of one-sided

READs with caching and two-sided RPC. If the record’s

address has been cached locally, one RDMA READ is suf-

ficient to fetch the record. Otherwise, DrTM+H uses RPC

to fetch the record and its address.

Validation. DrTM+H uses one-sided ATOMIC for valida-

tion if there is no atomic issue ( e.g., Network accesses

do not conflict with local ones). Otherwise two-sided is

preferred since using RDMA atomic operations will slow

down local operations [51].

Logging. DrTM+H always uses one-sided WRITEs to

replicate transaction logs to all backups and uses two-

sided primitive to lazily reclaim logs on backups.

Commit. DrTM+H uses one-sided WRITEs to commit if

one-sided ATOMIC is used in the validation phase. Other-

wise DrTM+H uses two-sided RPC. DrTM+H always uses

passive ACK optimization since the completion of com-

mit message is not on the critical path of transactional

execution.

Using outstanding request with speculative execution. In

§5.1, we disable the outstanding request optimization at

the execution phase to avoid requiring advance knowl-

edge of read/write set. However, this usually means that

transaction must fetch records one-by-one, which in-

creases the latency of a single transaction.10 We found

that even the record has not been fetched to local, the

transaction can still speculatively execute until the in-

volved value is really used. This can greatly reduce the

lifespan of a transaction. For example, the remote records

required by new-order transaction in TPC-C are in-

dependent. Thus DrTM+H uses speculative execution to

fetch these records in parallel.

6.2 Performance Evaluation

Fig. 12 presents the throughput and scalability of DrTM+H

using TPC-C/no and SmallBank. To show that DrTM+H’s

usage of one-sided primitive has good scalability on

a larger-scale cluster, we use the QP setting which is

enough to run on an 80-node cluster (DrTM+H-80). Each

10We still send multiple requests in parallel for different transactions

using coroutines.

Table 4: A review of the existing RDMA-enabled transaction

systems. I and II stand for one-sided and two-sided primitives.

RW-TX RO-TX

E V L C R V

FaRM I II+I I II I I

DrTM+R I I+I I I+I I I

FaSST II II II II II II

DrTM+H I/II I/II I I/II I/II I

thread uses 80 QPs (16x5) to connect to 16 nodes and

chooses the usage of QP in a round-robin way.

Performance and scalability. DrTM+H scales linearly

with the increasing of machines. The throughput of

TPC-C/no and SmallBank decrease 5% and 9% on

the emulated 80-node connection setting, respectively.

SmallBank is more sensitive to the number of QPs since

its payload size is much smaller than that of TPC-C/no.

However, SmallBank is still 1.3X higher than a pure two-

sided solution in throughput, with a significant decrease

in the tail latency. The 50
th (median), 90th, and 99

th la-

tency are reduced by 22%, 39%, and 49%, respectively.

Factor analysis. To investigate the contribution of the

primitive choices in DrTM+H, we conduct a factor anal-

ysis in Fig. 13. Due to space limits, we only report

the experimental results of TPC-C/no; SmallBank is

similar. First, we observe that using one-sided primi-

tives can significantly improve the throughput and la-

tency when servers are underloaded (1 coroutine). This

is because one-sided primitive has lower CPU utiliza-

tion and lower latency compared to two-sided one. Sec-

ond, by increasing coroutines, the two-sided implemen-

tation has close throughput with one-sided one. How-

ever, a hybrid scheme in DrTM+H improves both median

and tail latency. Finally, when leveraging RDMA, the

number of round trips has more impacts on latency but

not throughput, especially for CPU-intensive workloads

(e.g., TPC-C). When using 16 coroutines, the throughput

increases even using more network round trips (adding

one-sided READs). This is because coroutines hide most

of waiting for request’s completion while one-sided prim-

itive has lower CPU utilization.
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6.3 Comparison Against Prior Designs

There have been several designs to optimize transactional

execution using RDMA. To understand the effects of

RDMA primitive decisions, we implemented and eval-

uated emulated versions of FaRM [11], DrTM+R [5]

and FaSST [18].11 We adopted the same codebase and

transaction protocol (OCC) of DrTM+H, but choosing the

RDMA primitives and techniques at different phases of

transactional execution as the originals. Table 4 summa-

rizes the primitives used in the three systems and com-

pares the performance of emulated versions of them with

DrTM+H. Note that all existing optimizations on RDMA

primitives are enabled, including coroutine, outstanding

requests, and doorbell batching.

Emulating FaRM. FaRM [11] is designed to run trans-

actions atop of a global memory space over RDMA

networking. FaRM uses one-sided READ at the execu-

tion/logging phase and one-sided WRITE at the logging

phase, as well as a hybrid choice at the validation phase.

Moreover, FaRM adopts an RDMA-friendly memory

store (FaRM-KV) proposed in their prior work [10]. Our

emulated store (DrTM-KV) has been shown to have

a comparable performance even without the location

cache [51]. Further, our two-sided RPC implementation

has also better performance than the implementation in

FaRM [18] (see RC WRITE w/ IMM in Fig 3(b)). Hence,

we believe our emulated version has similar or even bet-

ter performance compared to the vanilla FaRM.

Emulating DrTM+R. DrTM+R [5] offloads all network

operations to one-sided RDMA primitives for CPU effi-

ciency, including using one-sided ATOMIC for locking re-

mote records in the validation phase. Further, DrTM+R

exploits hardware transactional memory (HTM) [14] to

handle local transactions, but does not leverage corou-

tines to obtain higher throughput. To focus on compar-

ing different choices of RDMA primitives, our emulated

version disables HTM (similar to the implementation of

DrTM-OCC [4]) but enables coroutine optimization.

Emulating FaSST. FaSST [18] proposes a well-

optimized RPC implementation (see UD SEND/RECV in

Fig 3(b)) based on two-sided primitives for running trans-

actions. Since our framework provides a similar UD-

based RPC implementation, it is straightforward to em-

ulate FaSST by using two-sided primitives at all phases

of transactional execution. Since FaSST uses a simplified

OCC protocol [18] by moving lock operations from the

validation phase to the execution phase, we use FaSST-

OCC to name the pure two-sided implementation on our

platform with OCC protocol, to avoid confusion.

11FaRM is not open-sourced, DrTM+R depends on hardware transac-

tional memory, and FaSST uses a simplified OCC and protocol.
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Fig. 14: An end-to-end comparison of different designs for (a)

TPC-C/no and (b) SmallBank.

Calibrating performance with FaSST. Since the source

code of FaSST is available and does not depend on

specialized hardwares, we compare the performance of

the original version and our emulated version using the

SmallBank benchmark with 24 threads and 1 NIC per

machine.12 Note that we also implement their specific

OCC protocol which can reduce one network round

trip with advance knowledge of transaction’s read/write

set.As shown in Fig. 13(d), emulating FaSST on our plat-

form can achieve comparable performance. Further, un-

der our guideline for using the appropriate primitives,

a hybrid design can also improve the implementation

of FaSST’s protocol by using one-sided primitives in

the validation phase and the logging phase. As shown

in Fig. 13(d), the hybrid choice (Hybrid FaSST) outper-

forms the original FaSST by up to 11% in throughput.

Evaluation. Compared to other prior designs, DrTM+H

always embraces the best performance in terms of

latency and throughput. Fig. 14 presents our results.

DrTM+H has the best throughput than previous designs

with the right choice of RDMA primitives and a set

of optimizations to better leverage the chosen primitive.

On TPC-C/no, DrTM+H’s throughput is up to 2.96X of

FaSST (from 1.41X), up to 1.89X of DrTM+R (from

1.12X) and up to 2.50X of FaRM (from 1.21X). When

using 16 coroutines, the median latency is reduced by

33%, 23% and 34%, respectively. We broke down the per-

formance improvements in §6.2. FaRM optimizes base-

line two-sided (FaSST) by using one-sided operation

for logging and execution. DrTM+R further adds loca-

tion cache and use one-sided for validation and commit.

In TPC-C/no, FaRM and DrTM+R outperforms FaSST

due to better leveraging one-sided primitives for CPU-

intensive workloads. DrTM+R outperforms FaRM due

to the usage of location cache at the execution phase and

the usage of atomics at the validation phase. FaSST has a

comparable performance to FaRM for SmallBank since

two-sided primitive is faster at the execution phase.

Latency breakdown. To study the performance influence

of choosing RDMA primitives, we further show the la-

tency breakdown in each phase for different designs

12The original FaSST does not support the TPC-C benchmark, and we

utilized the configuration as suggested by the authors of FaSST.
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Fig. 15: The latency breakdown of TPC-C/no using (a) 1 corou-

tine and (b) 16 coroutines.

in Fig. 15. By leveraging one-sided READs, the latency

of the execution phase is reduced by 13% and 41%

in FaRM and DrTM+R respectively, when using one

coroutine. However, the increase of coroutines can nar-

row the performance gap by hiding the latency of net-

work operations. FaSST can outperform FaRM by 22%

when using 16 coroutines, since FaRM requires more net-

work round trips to read remote data. To remedy this,

DrTM+R enables the location-based cache [51] for one-

sided operations and achieves the lowest latency (less

than 0.7ms). In the validation phase, DrTM+R has the

lower latency by offloading lock operations to RDMA

NICs. Using one-sided WRITEs, the latency of the log-

ging phase in DrTM+R and FaRM is reduced by about

69% and 75% respectively, compared to using two-sided

primitives (FaSST). Finally, DrTM+H can always choose

appropriate RDMA primitives to embrace the latency re-

duction at each phase. Note that DrTM+H has the lowest

latency at the commit phase due to enabling Passive ACK

optimization (§3.2), such that receiving the acknowledge-

ment of commit messages is done off the critical path.

Table 5: Different RDMA NICs used in the experiments. N de-

notes the number of nodes. C/N denotes the number of RNICs

per node. P/C denotes the number of ports per RNIC. Each ma-

chine is the same as in §4.1.

Name N C/N P/C RNIC

CX3 5 2 1 40Gbps ConnectX-3 InfiniBand

RoCE 2 2 1 100Gbps ConnectX-4 RoCE

CX5 2 1 1 100Gbps ConnectX-5 InfiniBand

7 Other RDMA NICs

The design choice of using specific RDMA primitive is

guided by our primitive analysis in §4. The analysis itself

depends on the performance of RNIC for different prim-

itives. So our results depend on specific RNIC hardware

characteristics.

In this section, we provide experiments using differ-

ent RDMA platforms to show how our results applied to

other settings. The experiment settings are summarized

in Table 5. In summary, if RNIC can provide better per-

formance for one-sided primitive using the same round
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Fig. 16: A comparison of one-sided and two-sided primitives

using ConnectX-3 RNICs for multiple-object (a) reads and (b)

writes with 256-byte payloads.

trip, our results generally hold. We have observed faster

one-sided primitive in recent generations of RNICs, like

ConnectX-4 (CX4) and ConnectX-5 (CX5). On the other

hand, if one-sided primitive cannot provide better perfor-

mance, which is the case in old generations of RNIC, like

ConnectX-3 (CX3), two-sided primitive shall be used.

ConnectX-3 (CX3). CX3 is an old generation of RNIC

released in 2011. It is well-known for its poor one-sided

performance [17, 18]. Using our micro-benchmarks, as

shown in Fig. 16, one-sided primitive cannot provide bet-

ter performance than two-sided primitive even using the

same number of network round trips. Further, one-sided

ATOMICS blocks RNIC operations [17] in CX3, resulting

in relatively poor performance.

The poor performance of one-sided primitive in CX3

makes two-sided primitive a better design choice. This

is because UD based two-sided primitive is less affected

by hardware restrictions [16, 17]. Fig. 17 shows the end-

to-end comparison of prior designs we reviewed in §6

using CX3. We can see that FaSST achieves the best per-

formance due to better performance of two-sided primi-

tives at each phase. FaRM uses slower one-sided prim-

itive with more round-trip at the execution phase (for

traversing the index). DrTM+R achieves the slowest per-

formance because its performance is bottlenecked by

the one-sided ATOMICS. Yet, DrTM+H can still choose

the right primitive based on the evaluation results and

achieve the best results.

RDMA over Converged Ethernet (RoCE). RoCE is a

network protocol which allows RDMA to run atop of an

Ethernet network. It uses Ethernet as the link layer com-

pared to the Infiniband network. Since RoCE only uses

a different link layer, it usually has little effects on the

comparison between one-sided and two-sided primitives.

Fig. 18 presents the results of micro-benchmarks using

ConnectX-4 RNICs in an RoCE cluster. One-sided prim-
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Fig. 17: An end-to-end comparison of different designs for (a)

TPC-C/no and (b) SmallBank using ConnectX-3 RNICs.
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Fig. 18: A comparison of one-sided and two-sided primitives

using RoCEv2 NICs for multiple-object (a) reads and (b) writes

with 256-byte payloads.

itive still has better performance, except when two-sided

one uses the passive-ACK optimization.

Fig. 19 further presents the end-to-end comparisons

of prior designs using the RoCE cluster. We can achieve

similar results as in §6. Note that both workloads achieve

a better performance in this experiment. This is because

both workloads use 2-way replication due to the restric-

tions of cluster size.

ConnectX-5 (CX5). Finally, we evaluate different sys-

tems using CX5, the later product of CX4. Due to the

restrictions of RNIC (1 per machine), we utilize threads

on the same socket for the experiments using CX5.

Fig. 20 presents the performance of primitive level

analysis. One-sided primitives can achieve better perfor-

mance, even when applying passive-ack optimization for

two-sided primitive. This result is as we expected since

Mellanox marks CX5 and CX4 as the same generation

RNIC in its document (while CX3 is the previous gen-

eration RNIC). Fig. 21 further presents the end-to-end

comparisons on TPC-C/no and SmallBank using CX5.

The results are similar to results when using CX4.

8 Discussion

Trends, features, and extensions. Our studies focus

on Mellanox ConnectX-4 RNIC. Previous generations

of RNICs like ConnectX-3 yields slower performance

of one-sided READs. However, we have seen a trend
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Fig. 19: An end-to-end comparison of different designs for (a)

TPC-C/no and (b) SmallBank using RoCEv2 NICs.
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Fig. 20: A comparison of one-sided and two-sided primitives

using ConnectX-5 RNICs for multiple-object (a) reads and (b)

writes with 256-byte payloads.

that one-sided primitives become faster and more scal-

able in recent RNICs, from Connect-IB to ConnectX-

4 to ConnectX-5. Further, new generation RNIC may

introduce more features for one-sided primitives. For

example, ConnectX-5 integrates one-sided WRITE with

NVM [27]. This suggests an optimistic opinion about

providing offloading features in modern data centers.

On the other hand, one-sided primitive still has many

limitations due to the lack of expressiveness [51]. For

example, it is not competent for complicated operations,

like searching in a sorted store. Furthermore, one-sided

primitive is unlikely to have orders of magnitude higher

performance than messaging, because we have also seen

a trend on providing fast messaging rate in later gener-

ation RNICs [28]. Hence, how to properly choose the

right primitive is very important given a specific work-

load. This paper gives an example of how to optimize

transactional processing with a combination of different

primitives in a phase-by-phase way. The resulting system

and insights may be reused for further studies.

Some proposed RDMA extensions, including the co-

herence of atomic operations, atomic object reads [9],

and multi-address atomics [35], may provide further ex-

ploration spaces once being commercialized. We believe

that there will be a continued line of research in this field

with more new features, implementations and application

domains.
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Fig. 21: An end-to-end comparison of different designs for (a)

TPC-C/no and (b) SmallBank using ConnectX-5 NICs.

Emulating a large-scale RDMA cluster. Currently, we

mainly focus on emulating massive RDMA connections

in a rack-scale cluster, because QP cache misses will

dominate the impact on the performance of various prim-

itives. Consequently, we do not consider other scalabil-

ity issues in a real large-scale RDMA cluster. For exam-

ple, a large cluster has to use multiple layers of RDMA

networking such as multiple switches or congestion con-

trol mechanism [60]. However, such aspects affect all net-

work primitives instead of affecting only primitives. We

plan to further validate our conclusion on a real, large

RDMA-capable cluster in future.

9 Related Work

Existing RDMA optimizations. A set of optimizations

on how to better leverage RDMA have been proposed.

FaRM [10] proposes a set of techniques to mitigate cache

pressure of RNIC, including using huge page to reduce

page entries stored in RNIC and sharing QPs between

threads to reduce the connections. HERD [16] first dis-

covers the benefits of using UD QPs for messaging to

improve performance and scalability. A recent guideline

paper of RDMA [17] describes several optimizations on

better leveraging RDMA features, including using door-

bell mechanism to post a batch of requests. It also studies

how low-level factors (e.g., payload inlining) impact the

overall performance. FaSST [18] argues that UD, though

unreliable as its name, has high reliability in modern dat-

acenters because RDMA assumes a lossless link layer.

Hence, UD QP is well suited for two-sided primitives.

Finally, LITE [46] proposes a kernel indirection layer for

RDMA which improves the scalability and programma-

bility of RDMA. Many of such optimizations can be used

cumulatively to improve performance. We apply most of

them in our execution framework to make a fair compar-

ison between one-sided and two-sided primitives, except

for LITE. Because the optimization requires modifying

the kernel and is not designed for our scenario.

Comparisons on RDMA primitives. Prior work has

done valuable comparisons on different RDMA primi-

tives [16, 10, 11, 18]. Our work continues such com-

parisons with a comprehensive study of both RDMA

primitives and state-of-the-art optimizations. Further, we

show that, even if one primitive performs better in micro-

benchmarks, applications still need careful choices of

RDMA primitives and optimizations to achieve the op-

timal performance.

Fast distributed transaction systems. We continue the

line of research of providing fast distributed transac-

tions [45, 7, 59, 31, 53, 51, 1, 24, 11, 57, 1, 54, 5, 18, 56].

Some systems leverage variants of OCC for consis-

tency [24, 11, 5, 18], while others use algorithms such

as 2PL [51] and SI [56] to handle workloads with more

contentions. This paper uses OCC as an example to illus-

trate the effectiveness of a novel combination of RDMA

primitives. We believe our insights on RDMA primitives

may be applied to other concurrency control algorithms.

Other RDMA-enabled systems. A large number of sys-

tems have used RDMA features to improve performance.

These include transaction processing systems [51, 11, 5,

18, 56, 50], key-value stores [30, 29, 16, 10, 40], dis-

tributed file systems [26, 38], consensus algorithms [34,

48] and graph processing systems [52, 36, 58]. Such sys-

tems also have different RDMA primitive choices accord-

ing to their own demands. Our study may also inspire an

optimal use of RDMA primitives on such systems.

10 Conclusion

We have presented a detailed analysis of how different

choices of RDMA primitive affect the performance of

transactional execution. Unlike previous studies, we com-

pare different primitives and techniques using one well-

optimized RDMA framework. This makes the compari-

son of techniques and primitives comparable and com-

prehensive. The main observations made by our study is

that no single primitive is the winner all the time, even

at different phases of transactional execution. We then

propose a hybrid solution which uses the most appropri-

ate primitive at each phase of transactions. This not only

improves the throughput but also reduces the latency of

transactions. Finally, our study gives hints about whether

it is cost-effective to offload RDMA one-sided, or just

use two-sided for easy porting. We hope this can stim-

ulate and provide a guideline for future co-design with

RDMA.
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