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Abstract: Risk management is an ongoing process that includes several stages of mapping and
identification, analysis, and evaluation, planning, and implementation to reduce risks and ensure
ongoing control. Risk management along the supply chains has become more significant in recent
years due to an increased complexity of the relationships between components in the chain as well
as various disruptions such as climate change, COVID-19, or geo-political scenarios. The current
literature alongside the increase in complexity and frequency of risk events, leads us to the single,
most prominent challenge in risk management today: the auditor’s subjectivity in determining the
risk levels. Simply stated, two different auditors may assess a given situation differently due to their
specific history and experience. Specifically, it seems to be extremely difficult to find cases in which
different auditors, working on the same organization, made the same risk assessment. With that in
mind, this research aims to reduce the human subjectivity bias and reach a risk evaluation that is
as objective as possible, by using the machine learning approach. For this aim the paper introduces
a new risk assessment framework based on factors analysis and artificial neural network as the
predictive model. We first introduced a new approach of deconstructing the risk factors into their
basic elements and analyzing them as a feature vector. Next, we collected unique, real-world data of
risk surveys and audit reports from 60 industrial companies of various industries (from plastic and
metal factories to logistic and medical devices companies). Lastly, we constructed a neural network
to predict the risk levels of operational processes in the industry. We trained our model on 42 samples
and managed to achieve a R2 score of 0.9 on the test set of 18 samples. Our model was validated and
managed to predict the risk accuracy with R = 0.95 in accordance with the human auditor results.

Keywords: supply chain; risk management; operational risk

1. Introduction

Operational risk management is an ongoing process that includes several stages
designed to reduce risks and ensure ongoing controlled processes. In the industry, risk can
be viewed as the effect of uncertainty on achieving one’s goals. Thus, risk is the probability
that any event that affects the target quantitatively or qualitatively might occur. The
practical effect of the risk is a joint function of its occurrence probability and its potential
damage. In practice, it is also customary to refer to elements that reduce damage by
applying protection and control mechanisms.

Risk management in the industry and supply chains has become more significant in
recent years due to the increased complexity of the relationships between different compo-
nents in the chain. While in previous years mass production required fewer components
and modifications, today’s supply chain includes many more participating parties (suppli-
ers, customers, regulators, competitors), and therefore is more vulnerable to disruptions
and malfunctions.

In addition to the complexity of the production processes, we are currently witnessing
an increase in various types of disruptions causing substantial losses, for example, climate
change, the COVID-19 pandemic, and varied geo-political scenarios (Russia–Ukraine
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war). Key factors affecting vulnerable points include volatility and disruptions on the
demand side by customers; supply-side concerns (e.g., fluctuations in raw material prices,
supply failures, logistical difficulties); regulatory and bureaucratic issues (e.g., political
changes, tax systems, administrative barriers); infrastructure deficiencies (in production
and information systems); and catastrophes such as terrorist attacks, natural disasters and
pandemic (Wagner and Bode 2009). Another work (Qazi et al. 2016) proposed classifying
the risk categories into those arising from non-coordination between supply and demand,
and risks arising from disruption of activity. Alternatively, the risks can be divided into
accidents, operational catastrophes, and strategic uncertainty. For example, the recent
COVID-19 pandemic caused a worldwide shortage of containers, reduced flights, and
higher rate of worker absences due to lockdowns causing billions of dollars in damages
(Pereira Gaspar et al. 2020). This example demonstrates the issue of reliability and accuracy
in delivery dates and the importance of a structured risk management process to reduce
exposure and disruptions in the flow of supplies.

The current literature alongside the abovementioned increase in complexity and fre-
quency of risk events, leads us to the single, most prominent challenge in risk management
today: the auditor’s subjectivity in determining the risk levels. Simply stated, two different
auditors may assess a given situation differently due to their specific history and experience.
While the Delphi method can be used to assess risk and reduce subjectivity, it requires
averaging the assessments of a large panel of auditors (e.g., Perera et al. 2014), which
obviously is not an applicable practice due to financial costs to the firms. As of today, it
seems to be extremely difficult to find cases in which even two different auditors, working
on the same organization, made the same risk assessment and evaluation.

This challenge is worth investigating as a subjective risk assessment process might
cause various problems for industries and organizations: first, low risk assessment results
might damage the companies in their preparation for mitigating these risk factors, which
might lead to severe monetary losses. Second, subjective assessment leaves too much room
for managers to “cherry pick” their risk evaluator in a way that will not interfere with their
managerial agendas or strategic plans for the organization. Lastly, the subjectivity and
freedom in the risk assessment operation also reduces the accountability from the auditors
themselves, which consequently might lead to poor professional expertise.

With that in mind, this research aims to reduce the human subjectivity bias and reach
a risk evaluation that is as objective as possible, by using a machine learning approach.
Such an algorithm will be the first stage in a holistic AI tool that will support managers’
strategic decision making, as it is well established that increasing supply chain resilience
could be very influential and important for organizations (Belhadi et al. 2021).

Specifically, in this work we developed a new methodology to automate and objectify
the risk assessment process as follows. First, we introduce a new approach of deconstruct-
ing the risk factors into their basic, atomic elements and analyze them as a feature vector,
that can be utilized as an input layer in a machine learning model. The vector represents the
actual status of each sub-process as a numeric parameter convention. Next, we collected
unique, real-world data of risk surveys and audit reports from 60 Israeli industrial compa-
nies of various industries (from plastic and metal factories to logistic and medical devices
companies). These reports were manually cleansed and converted from textual written
reports to our predefined set of 17 deconstructed risk factors. This rare data resulted in
a small but highly valuable data set for training a machine learning model. Noteworthy,
this transformation from written text to predefined categorial data reduces the amount
of noise in the data as it creates a well-defined reference point for the human auditors to
consider. Lastly, we constructed a neural network-based algorithm to predict the risk levels
of operational processes in industry. We trained our model on 42 samples and managed to
achieve an R2 score of 0.9 on the test set of 18 samples. We validated our model on two
additional samples and managed to verify that similarity of the real risk assessment and
the predicted risk assessment as was output by our model.
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Our work presents the first step in moving the risk assessment practice from a subjec-
tive, qualitive assessment, to a more objective, quantitative one. The method comprised the
entire risk assessment process: the auditor will approach the firm with a well-defined set of
parameters to review, his numeric report will then be fed into a trained machine learning
model, and a risk value output will be given by the model. To summarize, our suggested
method can be deployed as a useful tool to companies and organizations that are interested
in evaluating their risk management process in an unbiased approach.

2. Literature Review

For many years, mathematical tools have been used to study risk management in
supply chains. In recent years, research has begun to consider additional tools based on
artificial intelligence and multi-agent systems. Aspects covered include (1) supply chain
and production risk management classifications, (2) modern tools for dealing with risk
management challenges in our complexed environment, and (3) specific solutions for
isolated parts of the process. Despite the improvements these offer, they do not suggest a
general and systematic approach to risk management problems.

2.1. Definitions and Categories

A relevant paper was an extensive literature review of 224 international articles on sup-
ply chain risk management, published between 2003 and 2013 (Ho et al. 2015). The review
classified the papers into the categories of “definitions,” “types,” “factors,” and “methods”
for managing risks in the supply chain. Additionally, it also classified risk management
methods as either quantitative or qualitative according to their main processes, including
risk detection, risk assessment, risk reduction, and risk monitoring. Moreover, together
with perspectives gleaned from other researchers, a list of potential factors affecting the five
common types of risk in demand, supply, manufacturing, transport, and information was
also developed. This was a starting point for creating a supply chain risk index model and
was consequently used in our work as an additional resource for defining the deconstructed
risk factors. The review paper also points out ten gaps in the literature and proposed cor-
responding research directions, which the authors believe will help researchers conduct
influential studies in supply chain risk management. Another recent literature review
(Pournader et al. 2020) gave a thorough insight into recent years and current research in the
field of SCRM and some future directions. Initial findings of the literature review show that
data analysis for supply chains is a growing issue, and a range of predictive and synthetic
documents emphasize its promise and importance. The literature pays scant attention to
the use of machine learning for supply network management, except for few predictive
analyses of demand. A literature survey on risk management and artificial intelligence
(Baryannis et al. 2019a) revealed that 53% of the examined studies do not provide decision-
making ability, while 39% do not offer administrative insights to assist decision-making.
Only 8% provide a decision support system, mostly in agent-based categories, machine
learning, and big data. Hence, most studies are limited in their ability serve as the basis
for a decision-making framework. Based on these findings, we now consider the case of
predicting supply disruptions, which is very topical. Over the past decade, researchers
have noted that the increased complexity in large-scale global supply chains has made
them vulnerable to network-related environmental, organizational, and organizational
risks, causing supply chain risk management to become a fundamental problem.

2.2. Digitization and Big Data

Industry and supply chain risk management has evolved in the era of information
systems and digitization. A study reviewing the impact of digitization, Industry 4.0, and
big data concluded that adopting new technologies may contribute to reducing the domino
effect in supply chain risk (Ivanov et al. 2019). However, it explicitly states that more
research is required before offering decision-supporting systems for risk management,
including the use of agent and machine learning algorithms to optimize stochastic systems.
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Another research (Fan et al. 2015) offers a model for managing supply chain risks in the era
of big data, emphasizing planning and process control. It collects and analyses extensive
data from many sensors and internal/organizational and external sources to provide
decision makers with a report on the situation, which could then be used to redesign the
chain. The authors (Giannakis and Louis 2016) show that supply chain data analysis can
also be implemented in purchasing and managing supply risks and supplier performance,
allowing global supply chains to adopt an initiative instead of a reactive response to supply
chain risks. However, in all the above-mentioned work there is no predictive model based
on the collected data, but only a practical data fusion for ease of presentation.

2.3. New Tools and Frameworks

Several recent papers offer solutions for specific parts of the supply chain. For example,
using analytical tools in big data systems to detect fraud by rogue suppliers to reduce risks
in the supply chain and increase its reliability (Zage et al. 2013). The ability of machine
learning techniques and methods to predict the duration of activities in projects was
demonstrated in (Braga et al. 2008), using several methods including decision tree, support
vector machines, bagging-bootstrap aggregating predictors, and neural networks. The
study concludes that using integrated machine learning techniques improved the reliability
and accuracy of project duration forecasts. In our opinion, some of these techniques
should also be applied to the supply chain risk management framework. Agent-based
approaches and networks can predict and learn, and one study (Giannakis and Louis 2016)
offers a multi-agent system for managing risks in the supply chain capable of learning.
Preliminary tests have been conducted of a few machine learning techniques; however,
they were left as a theoretical practice without any usage of real data. Another recent study
(Baryannis et al. 2019b) provides conceptual frameworks for managing supply chain risks
using machine learning techniques and big data but did not continue to implement and
evaluate this framework. Despite there only being a few studies that implement learning,
they conclude that it should be possible to rely on AI to uncover new knowledge that
decision makers can combine with their expertise to make optimal decisions in the supply
chain risk management process.

The untapped potential of big data analysis and AI in supply chain risk management
has also been identified by (Ivanov et al. 2019), whose digitalization framework presents
a cyber supply chain built on traditional supply chain analysis. Their cyber supply chain
relies on harnessing the power of big data, the Internet of Things, the cloud, and blockchain
technologies. The authors emphasize the need for research that examines the relationship
between these technologies and risk management in the supply chain, a need their current
survey confirms. Throughout the literature, it is evident that different AI techniques
are partially applicable to the various stages of risk management in the supply chain
(e.g., mathematical programming). Approaches succeed in reducing risks but are unable to
support automated decision-making and automated learning. Agents and machine learning
techniques are less effective in modelling complex systems such as supply networks.

That said, there may be limitations on adopting machine learning to evaluate risks in
industry. To date, a thorough review of machine learning applications for engineering and
risk assessment is yet to be published (Hegde and Rokseth 2020). Therefore, a structured
examination is needed to answer research questions concerning the machine learning meth-
ods for risk assessment, including the best methods suited for the purpose; industry leaders
in adopting machine learning; applying and testing machine learning; geographical trends;
types of data used to develop algorithms; what stage risk assessments are best assisted
by machine learning; and what trends can be expected. The extensive literature review
covering a variety of industries provides an up-to-date snapshot in the field. Descriptive
analysis is widespread, however, except for demand forecasting, few present cases show
how data analysis can be used in supply chains.

Indeed, this extensive review reveals no literature on the use of machine learning or
new methodologies to improve risk management processes and accuracy as we propose in
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this framework. Therefore, we propose exploring integration, modelling, and optimization
combined with AI techniques capable of making automated decisions based on prediction
and learning for effective management of risks in the supply chains. In this research we
selected the main risk factors based on the reviewed papers and their relevancy to supply
chain and production companies. From our point of view, the selected risk factors reflect
the relationships between companies in the supply chain as well as operations within the
company. We mainly focused on the major production part of the chain and on its interfaces
with suppliers and customers.

3. Materials and Methods

Understanding the risk management process is important for mapping the current
gaps and challenges prior to applying a new computerized model that improves the accu-
racy of analyses made by decision makers. In this section, we briefly describe the workflow
commonly applied by auditors when conducting risk assessment and managing risk. Our
methodology is based on minimizing the human bias by systematic deconstruction of the
risk factors and evaluating them in high resolution to improve accuracy. In this research we
used an artificial network model with input layer of risk factors and output of risk result
(probability of the risk) to train a model for predicting future risk. Substantial materials
were reviewed and used by the authors (risk surveys, audit reports, and international
standards and regulations) to establish a generic set of risk factors that will serve as the
skeleton of the research on deconstructing risk elements.

3.1. Risk Management Process Method in Practice Today

The risk management process is an ongoing effort that includes identifying, analyz-
ing, and assessing the risks and providing responses to each scenario on strategic and
operational management levels. During the risk identification stage, the possible causes
of disruptions and the impact of the events are examined for both external and internal
factors. The work begins with data collection, interviews, and observations of the processes.
Next, the process of risk analysis includes determining the risk level of each event given
the probability, results, additional effects, and control mechanisms for reducing the risk
and their effectiveness. Finally, a comprehensive assessment of the risk considers the
previous stages and consequently decisions can be made with respect to addressing each
risk. Decisions may range from taking no action and accepting the full risk (for low-risk
events) to taking a range of preventive actions; most severely, a target might be abandoned
due to the high risk. The flow chart in Figure 1 shows the risk management process, which
is also accepted in the industry and is commonly used as a standard method.
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The risk matrix (RM) model is a commonly used method to describe risks in the
industry (Thomas et al. 2013). This methodology, presented in Figure 2, shows that a higher
risk level, (the red squares in the RM model) is the product of elements very likely to occur
and the severity of the potential damage. Higher risk levels call for an immediate response,
while lower risk levels (the green squares) are risks that can be accepted without taking
prompt significant actions.
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Another interesting model was proposed in a research (Paltrinieri et al. 2019) that
contains an additional dimension (the z-axis) that describes the experts’ knowledge of the
probabilities that are related to the uncertainties in the model, as shown in Figure 3. Risk
factors that have a poor expert knowledge may increase their overall risk assessment. To
counter it, the decision makers might decide to gather additional knowledge on that risk
factor, which will clarify its potential effect. Similarly, we strive to reduce the uncertainties
in the risk assessment process by injecting additional expert knowledge into the framework
via machine learning algorithms.
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3.2. Implementing Neural Networks in the Risk Assessment Process

To begin developing our suggested methodology, we first created an exhaustive list of
parameters that are commonly examined by risk auditors and built a standard checklist
that covers most of the operational risks. Next, we converted the findings of 60 genuine
risk survey reports in accordance with that checklist. We then fitted the relevant total
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operational risk of each survey, according to actual findings, as a dataset to train a machine
learning model to predict such risks.

3.2.1. Data Gathering and Pre-Processing

To meet the goal of applying machine learning tools, sufficient data need to be collected
and preprocessed. Risk assessment work is unique because the data available for the
auditors are usually highly classified business information that is not publicly available.
Moreover, human auditors do not use commonly defined methods and scales for the risk
assessment process. Therefore, attaining data for the purpose of our goal was challenging.

3.2.2. Risk Factors—The Selection and Design Phase

• The selection of the most relevant risk factors is based on analyzing over 700 audit
reports, risk surveys and research papers, produced in 2004–2022, in the field of
operational risk management. This step is a unique opportunity to gain insights into
the best practice process using confidential business information.

• Thorough review of relevant standards and regulations in the risk management such
as ISO standards (ISO 31000:2018(En), Risk Management—Guidelines n.d.), SOX–
Sarbanes–Oxley Act (Lander 2002), COSO model (COSO 2013), and COBIT framework
(De Haes and Van Grembergen 2009). These standards were used by the authors in
their experience in the industry.

• Applying the Pareto 80-20 principle (Harvey and Sotardi 2018) to select the most
commonly used risk factors in the supply chains and operations world. In the process-
ing and selection phase we neglected unique and specific risk factors that were not
covering most industries, to produce the commonly applied factors.

• Analyzing each of the selected risk factors and breaking them down into their sub-
elements in which the auditors may easily assess, as well as will fit as an input vector
into our ML algorithm.

It is important to note that the current state of the risk assessment practice is that the
human auditors do not have a well-defined and agreed upon set of parameters that they
investigate. Some industry standards do exist (as shown above), but many others, those of
a more qualitative nature, do not have an agreed upon procedure for their assessment. For
instance, reviewing what is known as “corporate culture” might yield different practices.
Some auditors will look at ethical codes, others at HR protocols, and yet others might
review management practice regarding whistleblowers. Each auditor has its own way
of doing things, and the academic literature does not have insights into that matter. Our
selected parameters (see below) are not claimed to be optimal or exhaustive. They provide
a first step of common parameters that are well agreed upon, and in the future specific
industries should strive to provide a more fine-tuned list for themselves.

3.2.3. Methodology for Numerical Evaluation

Each parameter was given a value: 1 = an appropriate level of performance, 0 = a
neutral level, and −1 = material weakness. Table 1 shows the complete list of these 17 pa-
rameters. In addition to these parameters, each compiled report included risk probability
value, in accordance with the human auditor assessment. To accurately determine the
values for each parameter {−1, 0, 1}, each parameter was graded based on a set of common
sub-parameter values.
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Table 1. List of parameters in the input layer.

No. Parameter

1 Organizational culture and corporate governance

2 Document processes and procedures

3 New vendor handling process

4 Purchase orders

5 Inventory control

6 Payment control

7 Sole supplier dependency

8 Sole raw material dependency

9 Long lead time

10 Information systems supporting the processes

11 Frequency of the action

12 Frequency of failure in the process

13 Ability to stop the action in case of hazard

14 Level of mission’s complexity

15 Dependency of accumulated success factors (non-parallel)

16 Dependency of accumulated failure factors (parallel)

17 Susceptibility to random and unstable factors on the process completion

For example, the first parameter, “Organizational culture and corporate governance”
was compiled from the following sub-parameters:

• High level of organizational responsibility—Is there an ethical code of conduct for
the employees? Do they receive periodic training regarding this? Is there a culture of
debriefing and learning?

• Commitment to the Organization—Is there a high level of employee turnover? Are
the employees and managers loyal to the system? Were there issues of breach of
contract or procedures by the staff? Were there integrity problems with the staff?

• Culture of exploring and learn lessons—Are there procedures regarding audits and
learned lessons? Is it well documented?

• Culture of correcting defects—Are there procedures regarding corrective actions? Is
there a plan for testing the implementation of correct procedures?

• Credibility and integrity of the management team and staff—Are there procedures
for employee screening? Does the organization conduct credibility tests? Are employ-
ees required to sign NDA?

• High level of employee turnover—Is the rate of turnover relatively high? What is the
mean seniority period?

• Employee training and certification processes—Are there special training sessions
for new workers? What is the certification procedure for employees? Is there an annual
training plan?

• Collaborations between employees—What is the level of collaboration between the
teams and between individuals?

• Human backing and preservation of organizational knowledge—Are there docu-
mented procedures and thorough documentation of the important know-how infor-
mation?

• Organizational structure appropriate to needs—Are there sufficient employees in
the existing structure to enable proper operation? Are the employees as professional
as required?

Here are some detailed examples of the sub-parameters:
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• Procedures and process documentation

� Procedures are updated and well documented
� Detailed and approved procedures
� Distributed procedures to relevant staff
� Procedures are implemented in practice

• Vendor handling

� Checking new suppliers and confirming procedure
� Existence of ISO certification for the suppliers
� Carrying out supplier surveys in the field
� Annual supplier evaluation procedure
� Control of changes in supplier details

• Establishment of purchase orders

� Approval of requirements by a qualified entity
� Receiving multiple quotes and lowering costs
� Arranging a purchase order is organized
� Order confirmation and budget approval

• Receivers to inventory

� Warehouse inspection procedures
� Testing and counting records
� The inventory system is updated

• Payment control

� Control over orders and receipts
� Existence of control between the certificate of receipt and the invoice
� Adequate control over suppliers and payments

• Dependence on sole supplier and relationships with suppliers

� Dependence on major suppliers
� Long-term relationships with reliable suppliers

• Dependence on a major raw material

� Dependence on main raw material or special spare parts

• Long turnaround times and items phase out equipment

� Long lead time items

• Information systems support

� High data integrity
� Back up procedures
� Professional IT staff
� Data security and BCP (business continuity plan) procedures

4. Results
4.1. Applying the New Model on Real Database

The authors managed to acquire real operational risk data from surveys conducted by
different professional auditors. These data were made available because of the personal
expertise and access of the principal author, a senior risk analyst, and his colleagues. Real
risk assessment reports from the last ten years were gathered and compiled by quantifying
the free form text and numerical assessments according to seventeen parameters we defined
as relevant risk factors.

To apply our model to real world companies, we used risk surveys prepared by profes-
sional auditors at 60 selected companies. The first task was to fit the narrative and findings
of each process into our parameters and relevant checklists to create a stable database for
the model. For example, we chose two companies: company #2, a metal recycling company
in northern Israel that had many operational problems including working accidents and
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frauds; and company #3, a manufacturer of plastic pipes in eastern Israel, which is well
run and fully controlled. These reports were prepared and edited over a period of three
months to provide the boards of directors with insights into the operational risks of each
company to reduce risk and improve efficiency. Table 2 shows how the text from the risk
surveys was converted into a table of parameters. Then, each parameter in each company
was graded {−1, 0, 1} according to the adequacy of its execution of the said operation, as a
sum of its preliminary sub-parameters.

Table 2. Example of two companies from the sample.

Parameter# Company 2 Company 3 Details

Organizational culture and
corporate governance −1 1

Company #2 has high turnover and personnel problems; and few
scams and frauds were discovered.
Company #3 has very low staff turnover; a good code of conduct,
and ethical procedures are circulated by management

New vendor handling process −1 1

Company #2 has poor procedures and documents regarding
selecting and appraising suppliers. Company #3 has adequate
procedures for selecting suppliers and well-established
annual appraisals.

Purchase orders 0 1

Company #2 has poor procedures and documents for purchase
order confirmation and control.
Company #3 has an adequate ERP system that applies rules to
control purchase processes.

Inventory control 0 1

Company #2’s inventory has no ERP control and the inventory
count shows many inventory differences.
Company #3 has very good inventory control and reports show
that inventory integrity is high.

Information systems
supporting the processes −1 1

Company #2 has much software, but without interfaces and
connectivity between them, the IT staff has many missions but does
not respond promptly due to shortage of professional staff.
Company #3 has a strong IT team and very good support on time
to service calls.

Total risk
probability 0.7 0.4

The total operational risk probability calculated using the authors’ methodology corre-
sponds directly to the findings of the risk survey reports. The probabilities by the human
auditor were given in a matrix or in a text that reflect their assessment as low, medium,
or high. We transformed the assessment to numerical values, where 0–0.3 represent low
probability, 0.4–0.7 represent medium probability, and 0.8–1 refer to high-risk probability.
In each company, the narrative and the risk matrix correlated with the risk score and faults
and weaknesses that were found. Company #2 received a probability value of 0.7, which
represents relatively high risk. Company #3 has stronger controls and minor weaknesses,
and was graded 0.4, which is relatively low. In this preliminary project, we set the total risk
probability as a target, to train the model.

4.2. Set-Up Phase and Training

With the newly available data, we are now faced with a supervised predication prob-
lem. There are data from 60 observations, each with 17 parameters (valued {−1,0,1}), and a
score in the range [0,1] that represents the total risk assessed for that specific organization.
Appendix A presents a sample of this dataset. We then constructed a neural network with
17 input neurons, 20 hidden neurons in the next layer and a single output neuron which
outputs a value in the [0,1] range. This architecture is not claimed to be optimal for the
problem at hand and was constructed ad hoc via trial and error. To train the network we
divided the dataset into 42 training samples, 9 validation samples, and 9 testing samples.
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The model was constructed in MATLAB and the network was trained using two different
algorithms, Levenberg–Marquardt and Bayesian regularization. The latter yielded a higher
level of accuracy.

4.3. The Trained Neural Network Results

After training the neural network and completing the validation and testing, the
findings fit well. The R correlation coefficient fit between output data and the target of the
model was high (R = 0.951), which represents a significant positive linear relationship and
allows proper prediction with relatively low error rate. Table 3 shows the sets’ structures
and results after the runtime. The graph in Figure 4 was created at the end of the process
runtime and shows the parameters resulting from the network.

Table 3. Sample size and composition.

Set Samples MSE R

Training 42 0.00244 0.941

Validation 9 0 0

Testing 9 0.00256 0.952

Total 60
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4.4. Validation Phase

To validate our new model, we used two additional, real-life test cases and predicted
their risk probabilities, without introducing them to our model in the training or testing
phases. Our goal was to predict the risk levels computed by the algorithm and comparing
it to the score of the auditors’ assessment in the field.

As described above, our proposed prediction method using a new model requires
preparation, preprocessing the data and formatting for the input layer structure, following
construction of the neural network that produces the computed risk probability. We
analyzed the findings for two plants, retrieved raw data from audit reports, organized it by
parameters and graded each item. Plant A had poor internal controls; its risk survey and
audit showed many weaknesses. For example, it received (−1) for “Document processes
and procedures” due to the lack of written work procedures on the production floor
and no standards or protocol distribution to employees. Plant B had better management
and working procedures, therefore receiving much high scores (1) due to its appropriate
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practices. Finally, we entered the 17 parameters for each plant into the neural network and
executed the predict operation to receive the calculated output of the model.

After running the new dataset, the risk probabilities computed by the model showed
very good fit with the auditor’s conclusions in their field reports. The model, as shown in
Table 4, assigned plant A, with its weak procedures, a high-risk probability and received a
poor rating by the auditor (output = 0.8738), while plant B, with robust internal controls,
strong working procedures, and well-managed staff that also received a good rating by the
auditor (that reflects a low-risk probability) yielded a low-risk probability by our model
(output = 0.4366). For research purposes, we are satisfied by these initial results, and believe
that the proposed development will improve the fit, thereby reducing errors in the network
and application of our new decision-support tool.

Table 4. Parameters of two plants for validating the model.

Parameter Plant A Plant B

Organizational culture and corporate governance status −1 1

Document processes and procedures level −1 1

New vendor handling process 0 1

Purchase orders control −1 0

Inventory security and safety levels control 0 0

Payment control −1 1

Sole supplier dependency risk −1 0

Sole raw material dependency risk 0 0

Long lead time risks 0 1

Information systems supporting the processes −1 0

Frequency of the risky actions 0 1

Frequency of failure in the process 0 1

Ability to stop the action in case of hazard −1 0

Level of mission’s complexity −1 1

Dependency of accumulated success factors (non-parallel) −1 1

Dependency of accumulated failure factors (parallel) 0 0

Susceptibility to random and unstable factors on the
process completion −1 1

Computed risk probability by the ANN 0.8738 0.4366

5. Discussion

In this work we developed a new methodology to automate and objectify the risk
assessment process. First, we introduced a new approach of deconstructing the risk factors
into their atomic elements and analyzing them as a feature vector, that can be utilized as an
input layer in a machine learning model. The vector represents the actual status of each
sub-process as a numeric parameter convention. Next, we collected unique, real-world
data of risk surveys and audit reports from 60 mid-size (between 100 and 600 employ-
ees) manufacturing companies from various sectors (from plastic and metal factories to
logistic and medical devices companies with suppliers, production, and customer-related
operations). These reports were manually cleansed and converted from textual written
reports into our predefined set of deconstructed risk factors. This rare data resulted in a
small but highly valuable data set for training a machine learning model. Noteworthily,
this transformation from written text to predefined categorial data reduces the amount
of noise in the data as it creates a well-defined reference point for the human auditors to
consider. Lastly, we constructed a neural network to predict the risk levels of operational
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processes in the industry. Specifically, we trained our model on 42 samples and managed
to achieve an R2 score of 0.905 on the test set of 18 samples. We validated our model on
two additional samples to verify that the predicted risk probability that was output by our
model is like that of the human auditors.

There are additional theoretical and practical implications that can be drawn from this
research. This new framework can be applied to predict risk probability in the same context
as the prediction of activity duration in projects as was suggested in (Braga et al. 2008),
using neural networks tools. Their study concluded that using integrated machine learning
techniques improved the reliability and accuracy of project duration forecasts. Another
implication that can be deduced from this work is of harnessing the power of big data in the
risk management process (Ivanov et al. 2019). This can be done, for example, by establishing
a universal database of elementary risk factors and their associated probabilities, by many
auditors in their specific industries. The practical usage of the wisdom of the crowd as a
vast input vector to the machine learning algorithm will increase the model’s reliability
and can be customized to specific sectors due to their unique risk factors. Another example
in the same context is of automatic data collection from various sensors (either human or
automated). which would enable a real-time adaptation of the risk assessment matrices.
For instance, upon sensing low inventory levels or missing human resources forms, such
automated assessment would adapt its parametric values and the overall risk assessment
will revise automatically. Our parametric model is general enough to be adapted in full or
using specific parts of it according to data availability.

To the best of our knowledge, our work suggested here is the first of its kind that tries
to formally conceptualize the whole practice of the risk assessment process. Interviews
with expert auditors in their fields revealed that there is no formal education for that
job and no professional accountability. This, in turn, leads to a reality in which different
auditors look at different aspects of the firms and present different risk matrices. The lack
of professional accountability is one of the main factors for subjectivity in the analysis
and lack of formal methodology in conducting the work. Our work presents the first step
in moving that practice from a subjective qualitive assessment, to a more objective and
quantitative one. We suggested a method that comprised the entire process: the auditor
will approach the firm with a well-defined set of parameters to review, his numeric report
will then be fed into a trained machine learning model, and a risk value output will be
given by the model. To summarize, our suggested method can be deployed as a useful tool
by companies and organizations that are interested in evaluating their risk management
process in an unbiased approach. While there are still many challenges to tackle (some of
which can be seen in the next section below), the main contribution of our work is that of
the presentation of the framework itself.

6. Conclusions

The overarching goal of the research was to create a methodology and a basis for an
automated tool for risk assessment use in the industry. The findings of our initial work
shows that machine learning is a highly viable and effective paradigm for both shortening
the time needed to prepare a risk report and increasing the accuracy and objectivity of
the system that calculates the weighted risk. The high level of correlation found in the
research allows us to take the basic model a step further, and attempt to expand it by
introducing the ability to integrate automatic input from various sensors that provide data
from the factory’s production, logistical, and computer systems. With that in mind, our
vision for future work may continue in three different but complementary directions: a
methodological framework, theoretical risk arithmetic, and finally, a basis for a stand-alone
application for risk assessment in the field.

Our study takes the first step in an overall objective risk assessment process; how-
ever, it is not free of limitations. First, the dataset comprised 60 manufacturing-oriented
companies. It might be the case that other types of companies, such as research and
development-oriented firms will require additional parameters that are finer-tuned to
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their intrinsic characteristics. Second, the process of transforming the written reports into
categorized parameters still includes some form of subjective bias. We hope that in the
future this bias will be further reduced by working according to a formal protocol. Lastly,
the machine learning model that was constructed is most probably not the optimal one
for the dataset. Extensive research should be done to assess the problem parameters and
fit the best possible algorithm and meta-parameters to achieve better classification results.
Specifically, such optimization is of outmost importance as the size of the data set is small
with respect to the large amount of input neurons.

In respect to future work, first, with our newly constructed model that can predict and
quantify risk probability based on a set of predefined data parameters, we can proceed to
construct a methodological framework to unify auditors’ processes for working with the
model. The main goal of this methodology is to decrease the variability in assessments
by different auditors due to subjective bias in the assessment process by using structured
checklists containing few sub-levels. Next, we aim to lay the foundations for a theoretical
analysis for objectively measuring the risk probabilities. We will try to develop a systematic
approach to deconstruction of the risk factors into their predecessor factors and view them
as vectors in an array of elements. Our intuition is that it should be possible to view a
single operational risk as a compound value, according to its basic sub-factors and the
structure of their relationships as vectors. From our perspective, we can also indicate a
research direction for the relations between some risk factors that have low risk probability
and impact but produce a significant effect when combined. The last phase may offer an
automated decision support system based on our algorithm, enabling the management
team to obtain available RM updates on an ongoing basis. This framework may be a
significant practical contribution of our new model that will reduce bias and dependency
of the human auditor and introduce automation to the risk assessment process, and it
is not limited to supply chain risks only. Another aspect in future directions will be to
conduct interviews with the auditors themselves to obtain their takes and insights on the
new methodology and maybe use that information to construct a valid and established
work procedure for risk assessment.
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Appendix A

In this appendix we present a small fragment of 6 companies out of 60 that were used
to train and test the ANN model. Each company (marked 1–6) has detailed reports and
risk surveys in our records. Obviously, we must give the companies a serial number to
keep disclosure of discrete information. Our convention of scoring each parameter is by
allocating a numeric value: 1 = an appropriate level of integrity/low risk, 0 = a neutral risk
level, and −1 = material weakness/high risk as shown in Table A1:
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Table A1. Part of the dataset used to train the neural network.

Parameter\Company Number 1 2 3 4 5 6

Organizational culture and corporate governance 0 −1 1 0 0 1
Document processes and procedures −1 0 0 −1 0 0
New vendor handling process 0 −1 1 −1 0 1
Purchase orders 1 0 1 1 1 1
Inventory control 0 0 1 0 0 1
Payment control 1 1 1 0 0 1
Sole supplier dependency −1 0 1 −1 −1 0
Sole raw material dependency 0 0 0 −1 −1 1
Long lead time 0 −1 −1 0 −1 1
Information systems supporting the processes 0 −1 1 0 0 1
Frequency of the action 0 −1 0 −1 0 0
Frequency of failure in the process 0 −1 −1 0 0 0
Ability to stop the action in case of hazard 1 0 1 −1 0 0
Level of mission’s complexity 1 0 0 0 1 0
Dependency of accumulated success factors
(non-parallel) 1 1 1 1 0 1

Dependency of accumulated failure factors (parallel) 0 0 1 −1 0 0
Susceptibility to random and unstable factors on the
process completion 0 0 1 −1 0 0

Final risk probability 0.6 0.7 0.4 0.65 0.6 0.4
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