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Abstract

Background: Analysis of somatic mutations provides insight into the mutational processes that have shaped the

cancer genome, but such analysis currently requires large cohorts. We develop deconstructSigs, which allows the

identification of mutational signatures within a single tumor sample.

Results: Application of deconstructSigs identifies samples with DNA repair deficiencies and reveals distinct and

dynamic mutational processes molding the cancer genome in esophageal adenocarcinoma compared to

squamous cell carcinomas.

Conclusions: deconstructSigs confers the ability to define mutational processes driven by environmental exposures,

DNA repair abnormalities, and mutagenic processes in individual tumors with implications for precision cancer

medicine.
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Background
The set of somatic mutations observed in a tumor reflects

the varied mutational processes that have been active dur-

ing its life history, providing insights into the routes taken

to carcinogenesis. Exogenous mutagens, such as tobacco

smoke and ultraviolet light, and endogenous processes,

such as APOBEC enzymatic family functional activity or

DNA mismatch repair deficiency, result in characteristic

patterns of mutation [1, 2]. Thus, through studying the full

landscape of mutations present in a tumor and identifying

the genomic footprint of mutational signatures that have

contributed to them, processes molding the cancer

genome during evolution can be revealed and individual

therapeutic strategies considered if distinct DNA repair

defects are identified [3]. Analysis of mutational signatures

has the potential to reveal previously unknown mutagens

and occult environmental exposures, such as herbal sup-

plements containing aristolochic acid [3].

Recently, Alexandrov and colleagues developed an al-

gorithm using non-negative matrix factorization (NMF)

and model selection to extract the signatures of muta-

tional processes present in a catalog of cancer genomes

[4]. Each extracted signature is characterized by the frac-

tion of mutations found in each of the 96 trinucleotide

contexts. Additional mutation features such as the pres-

ence of indels, dinucleotide mutations, or transcriptional

strand bias could also be incorporated into the definition

of a mutational signature.

Their published Wellcome Trust Sanger Institute

(WTSI) Mutational Signature Framework offers an elegant

approach to first identify the signatures of mutational pro-

cesses present in a set of tumor samples and then apply

those signatures to the samples to determine the contribu-

tion of each mutational process to each individual sample.

However, in order to accurately deconvolute signatures,
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the number of tumor samples available must be suffi-

ciently large. In simulations, Alexandrov et al. found that

at least 200 whole genome samples were required to de-

termine the signatures of 20 mutational processes [5].

With exome sequencing covering only ~1 % of the human

genome, resulting in fewer mutations identified, they esti-

mated that it would take thousands of samples to extract

the majority of mutational processes that have been func-

tional during tumor life histories.

Using their framework, Alexandrov et al. analyzed

approximately five million mutations from over 7000

cancer genomes and exomes to identify a set of 21 sig-

natures found to be present across 30 tumor types [4].

About half of these signatures could be attributed to

known mutational processes, such as tobacco smoke,

exposure to ultraviolet light, activity of the APOBEC

family of cytidine deaminases, DNA mismatch repair

deficiency, or mutations in POLE. Many signatures,

corresponding to the activity of both known and unknown

mutational processes, were found across multiple tumor

types. Due to the ubiquitous nature of many of the signa-

tures found, there has been interest in quantifying their

presence and prevalence in additional tumor samples.

However, this is not always possible under the current

mutational framework.

In order to address this challenge, we present a method

to determine the contributions of each mutational process

from a set of published signatures in a single tumor

sample.

Implementation
Overview of the software

The deconstructSigs approach determines the linear

combination of pre-defined signatures that most ac-

curately reconstructs the mutational profile of a single

tumor sample. It uses a multiple linear regression model

with the caveat that any coefficient must be greater

than 0, as negative contributions make no biological

sense. The deconstructSigs package is an extension for

R, a free programming language and software environ-

ment widely used for statistical computing and graphics.

This package relies on the Bioconductor library BS.geno-

me.Hsapiens.UCSC.hg19 [6] to acquire mutational context

information. It also uses reshape2 [7] for plotting. The

R package is publicly available on the CRAN webpage:

https://cran.r-project.org/. A detailed README file is also

available complete with examples of how to use the

package.

Basic usage

The most basic initial input to the deconstructSigs pack-

age consists of a data frame containing the mutational

data for a tumor sample set. This structure must contain

the genomic position and base change for each mutation,

as well as a sample identifier. Using the command “mut.-

to.sigs.input”, as shown below, the mutational data for one

to many tumors is converted to an n-row and 96-columns

data frame where n is the number of unique samples

present.

sigs.input < - mut.to.sigs.input(mut.ref = sample.mut.ref,

sample.id = "Sample", chr = "chr", pos = "pos", ref = "ref",

alt = "alt")

The input data frame T is generated by calculating the

fraction of mutations found in each of the possible 96

trinucleotide contexts for each tumor sample. By default,

no additional normalization is performed. However, when

T contains only the counts of each mutation in each trinu-

cleotide context, the user may choose to set an additional

parameter to normalize by the number of times each tri-

nucleotide context is observed in the region sequenced.

Trinucleotide counts for exome and genome data are pro-

vided in the package for this normalization. Alternatively,

a user can also generate their own T data frame to use as

input into deconstructSigs. A signatures matrix S of k

rows and 96 columns is also defined, either calculated

from published data [4] or provided by the user, where k is

the number of supplied signatures. S consists of the frac-

tion of times a mutation is seen in each of the 96 trinucle-

otide contexts for each signature k. Given these two

inputs, T and S, deconstructSigs computes weights Wi (for

each signature i from 1 to k) such that each signature has

a weight. These weights are determined such that a recon-

structed tumor sample matrix R, which is computed as T-

(SW), minimizes a given error threshold e.

This step is called with the function “whichSignatures”

as shown below.

output.sigs = whichSignatures(tumor.ref = randomly.

generated.tumors, signatures.ref = signatures.nature2013,

sample.id = "1")

To determine the weights W that will best recreate T,

an iterative approach is taken. First, we exclude any sig-

natures containing a single trinucleotide context making

up more than 20 % of the signature definition which is

not present in T. This is done to account for the fact

that some signatures are almost entirely characterized by

mutations in specific trinucleotide contexts, and thus,

without mutations found in those contexts, it is unlikely

that that signature is active. From the remaining signa-

tures, an initial mutational signature is chosen that most

closely reflects the mutational profile of the given tumor

sample by minimizing the sum-squared error (SSE) be-

tween the mutational profile of the tumor sample T and

the mutational signature Si. The weights, W, are initial-

ized such that the initial signature chosen, Si, is the only

signature contributing to the reconstructed tumor muta-

tional profile, thus being assigned a normalized weight of

1. A forward selection process subsequently determines,

for each signature, the optimal weight that minimizes the
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SSE between the given tumor sample and the recon-

structed tumor profile. From this set of possible

weights, the weight corresponding to the signature that

results in the overall lowest SSE is provided in W. This

iterative process repeats until the difference between

the SSE before and after the alteration of the weights

matrix is less than an empirically chosen error thresh-

old of 0.001.

Finally, the weights W are normalized between 0 and 1

and any signature with Wi < 6 % is excluded. This 6 %

threshold was chosen by randomly generating tumors in

silico whose mutational profiles were perturbed to be

distant from the ideal theoretical sample. Initially, a set

of 500 tumors representing a random combination of up

to 10 of the published mutational signatures [4] was

simulated. Because a tumor will never reflect a perfect

combination of mutational signatures, these simulated

tumors were perturbed by changing the calculated value

at each trinucleotide context by up to ±5 %. These per-

turbed tumor samples were analyzed with deconstructSigs

and the calculated weights were compared with the theor-

etical weights used to generate the set of simulated tumors.

This analysis revealed that false positives had weights Wi

routinely less than 6 % (Figure S1a in Additional file 1).

Additionally, this 6 % cutoff only resulted in 38 instances

where a signature was incorrectly excluded for a false nega-

tive rate of 1.4 % (Figure S1b in Additional file 1). A recon-

structed tumor mutational profile R based on these final

weights is determined as described above. A schematic of

our deconstructSigs approach is outlined in Fig. 1a. To

visualize the output, two plotting functions are available.

The first compares the reconstructed tumor mutational

profile with the original input tumor profile and is called

using “plotSignatures”. Figure 1b shows an example of the

generated plot. The second is a pie chart that shows the

weights of each signature assigned in the sample and is

called with “makePie”. They both use the output list given

by “whichSignatures” as input.

Results
Comparison with WTSI Mutational Signature Framework

To investigate how deconstructSigs compares with the

results generated by a user running the published WTSI

Mutational Signature Framework on a new set of samples,

we analyzed available data from The Cancer Genome

Atlas (TCGA) on bladder urothelial carcinoma (BLCA),

breast invasive carcinoma (BRCA), colon adenocarcinoma

(COAD), glioblastoma multiforme (GBM), head and neck

squamous cell carcinoma (HNSC), lung adenocarcinoma

(LUAD), lung squamous cell carcinoma (LUSC), and

skin cutaneous melanoma (SKCM) cancers (https://

tcga-data.nci.nih.gov/tcga). The specific mutation files

for these tumor types are detailed in Additional file 2.

We first implemented the WTSI Mutational Signature

Framework to independently extract signatures present

in each cancer type. Twenty-six mutational signatures

were extracted using the WTSI Mutational Signature

Framework as described in McGranahan et al. [8]. For

some TCGA cancer types, we found that the number of

available samples was too low to achieve the resolution

necessary to extract all the signatures previously associ-

ated with that cancer type. Reassuringly, the majority of

signatures (20/26) extracted matched in profile those

published by Alexandrov et al. [4] and were consistent

with those original signatures. The age related signatures,

1A and 1B, were considered together as one signature.

Two of the discordant signatures appeared to be a mix of

two or three of the original signatures, highlighting again

the importance of large sample numbers for accurately

deconvoluting novel mutational signatures.

All the newly extracted signatures were then used, as

S, with deconstructSigs to analyze the same cohort of

samples. This allowed for a direct comparison between

the weighted proportions produced by the WTSI Muta-

tional Signature Framework and those inferred with

deconstructSigs. For every signature present in a given

sample, we observed a statistically significant correlation

(Additional file 3) between the contributions of that sig-

nature in the two independent methods (Fig. 2). These

data indicated that we could consistently identify the sig-

natures present in an individual tumor sample using

deconstructSigs.

The SSE between the reconstructed mutational profile

and the observed one, obtained by calculating the frac-

tion of mutations present in each trinucleotide context,

was consistently similar between the two approaches

(Figure S2a in Additional file 4). The SSE calculated from

both methods was higher in samples with a lower muta-

tion count (Figure S2b in Additional file 4), highlighting

the importance of having a sufficient number of mutations

to identify and assign signatures characterized by 96-

substitution classifications. This is of particular import-

ance when the profile of the mutational signature is flat

or without a strong peak at any of the trinucleotide

contexts, as in these instances the mutational process

could affect a greater number of trinucleotide contexts

and a full profile would only be observed with sufficient

mutations. Consequently, deconstructSigs warns the

user if a sample contains fewer than 50 mutations.

Additionally, the analysis uncovered a number of false

positive mutational signatures that arise using the WTSI

framework, whereby samples were erroneously classified

as harboring a mutational signature. For instance, in a

colorectal carcinoma (TCGA-D5-6931) the WTSI Muta-

tional Signature Framework determined 20.4 % of the

mutational signature present was associated with a POLE

hyper-mutator phenotype. Nevertheless, visual inspection

of the mutational profile of this tumor did not reveal the
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A

B

Fig. 1 deconstructSigs workflow and output. a Given an input tumor profile and reference input signatures, deconstructSigs iteratively infers the

weighted contributions of each reference signature until an empirically chosen error threshold is reached. b Example of the plot generated by

the command ‘plotSignatures’. The top panel is the tumor mutational profile displaying the fraction of mutations found in each trinucleotide

context, the middle panel is the reconstructed mutational profile created by multiplying the calculated weights by the signatures, and the bottom

panel is the error between the tumor mutational profile and reconstructed mutational profile, with SSE annotated
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presence of a POLE-associated signature and no evidence

existed for the somatic exonuclease domain mutations in

POLE that produce this specific pattern of predominantly

C > A mutations in a TpCpT context and C > T mutations

in a TpCpG context (Fig. 3a).

To further explore the presence of both false positive

and false negative mutational signatures using the WTSI

mutational framework, we also repeated our analysis,

expanding the signature space in which deconstructSigs

could search. Thus, instead of using the newly extracted

signatures by the WTSI mutational signature framework

alone, we allowed deconstructSigs to use any of the ori-

ginal signatures [4]. For this analysis, we excluded any

cancer types where the number of samples was originally

too low such that extracting signatures using the WTSI

Mutational Signature Framework method resulted in sig-

natures that were a mixture of the published ones. In

these instances a comparison between these ‘mixed’ sig-

natures and the ability of deconstructSigs to identify

them using the published signatures as a reference set

could not be fairly made. The cancer types excluded

were BLCA, COAD, GBM, and SKCM.

Re-extracted signatures through a separate iteration of

the WTSI Mutational Signature Framework on new

samples are always slightly different from the originally

published ones, particularly when fewer samples are

used for extraction as each signature is less well re-

solved. Thus, we did not expect to see a perfect correl-

ation between the weights assigned by deconstructSigs

using the original signatures as reference and the contri-

butions found in our initial run of the WTSI Mutational

Signature Framework (as was observed in Fig. 2). However,

when we compared the weights assigned by deconstruct-

Sigs and the contributions by the WTSI Mutational Signa-

ture Framework, we saw a strong positive and statistically

significant correlation for all signatures except signature 3

and signature 5 (Additional files 5 and 6). Notably, sig-

natures 3 and 5 are characterized by relatively flat mu-

tational profiles, exhibiting few distinguishing patterns

of trinucleotide context.

Expanding the set of signatures also allowed us to

identify outlier samples that appear to harbor a different

set of mutational signatures compared with the rest of

the cancer type or sample set they were analyzed with.

Contributions can be missed by the WTSI Mutational

Signature Framework if the signature is not prevalent

enough in the sample set to be extracted as a separate

entity. For instance, the LUAD sample TCGA-67-6215

has clear indications of signature 17 activity, a signature

of unknown etiology (Fig. 3b). However, since signature

17 was not one of the signatures extracted through the

implementation of the WTSI Mutational Signature

Framework, it could not be identified as contributing

to the observed mutational spectrum. Likewise, the

deconstructSigs package assigned substantial contri-

butions from the signature associated with DNA mis-

match (MMR) repair deficiency (signature 6) to the

BRCA samples TCGA-A8-A08F, TCGA-A8-A09Z, and

TCGA-AN-A0AK (Fig. 3c), but signature 6 was not

extracted through the implementation of the WTSI

Mutational Signature Framework, nor was it associ-

ated with breast cancer in the work published in 2013

Fig. 2 Comparison of signature contributions identified with deconstructSigs and WTSI Mutational Signature Framework. Scatterplots represent

the relationship between the weighted proportions calculated using the WTSI Mutational Signature Framework method on a set of TCGA tumors

and those inferred with deconstructSigs from the same set of patients. Each point plotted represents the weights assigned by both methods to

one signature detected in a patient
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Fig. 3 (See legend on next page.)
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[4]. In two of these tumors, TCGA-A8-A09Z and

TCGA-AN-A0AK, mutations in mismatch repair genes

were evident (https://tcga-data.nci.nih.gov/tcga/). There

was an MLH1 nonstop mutation in TCGA-A8-A09Z and

separate MLH1 missense and splice site mutations, as well

as an MSH6 frameshift mutation in TCGA-AN-A0AK.

Additionally, TCGA-A8-A09Z had a total of 1438 muta-

tions with 253 small insertions or deletions and TCGA-

AN-A0AK had a total of 1317 mutations with 352 small

insertions or deletions, both indicative of a microsatellite

instability high (MSIH) phenotype. The median number

of mutations from the BRCA TCGA cohort is 38 and

median number of insertions or deletions is 4.

Taken together, these results highlight the power of

analyzing tumors on an individual basis, allowing the de-

tection of mutational processes only active in a small

subset of the samples considered.

Identifying signatures in multi-region sequencing data

To further determine the performance of deconstructSigs,

we examined a cohort of 19 tumors collected from six pa-

tients diagnosed with either LUAD or LUSC, with one

tumor exhibiting an adenosquamous histological subtype.

Multi-region whole-exome and/or genome sequencing

was previously performed in these patients as described in

de Bruin et al. [9] with mutations temporally dissected

into trunk and branch mutations and the fraction of muta-

tions occurring in each of the six possible base substitu-

tion classes previously established [9]. Given the limited

number of tumor samples, the mutational catalogues from

these samples were not amenable to a de novo analysis

with the WTSI Mutational Signature Framework. We

therefore used deconstructSigs with the 23 original sig-

natures [4] to establish the contribution of individual

mutational signatures to the samples.

Whilst our original analysis utilized C > A mutations

as a surrogate measure of a smoking signature resulting

from tobacco exposure, deconstructSigs enabled us to

refine this analysis. This new analysis allowed us to deter-

mine the specific contribution of signature 4, known to be

associated with the number of smoking pack years [1, 4],

rather than the more general C > A mutation class. Con-

sistent with the previous analysis, we observed that the

smoking associated signature (signature 4) was present at

a higher fraction in the clonal mutations originating in the

tumor trunk and found at a lower fraction in the subclonal

mutations in the tumor branches (Fig. 4a). Indeed, in three

of the five patients analyzed (L001, L004, and L008), the

smoking signature was not assigned at all in the branches.

We next investigated the assigned weights of the APO-

BEC-associated signatures (signature 2 and signature 13)

and found that in the LUAD subtypes, the signature was

more pronounced in the branches than in the trunk

(Fig. 4b), consistent with our published observations.

These results demonstrate the utility of deconstruct-

Sigs leveraging well-established signatures to determine

the contribution of given mutational signatures to indi-

vidual tumors, refining mutational processes present in

cancer subclones.

Exploring signatures in esophageal carcinoma

To further determine the utility of deconstructSigs, we

applied our framework to each esophageal tumor (ESCA),

both adenocarcinomas and squamous cell carcinomas

from TCGA (https://tcga-data.nci.nih.gov/tcga). The

mutation files were obtained from Broad Institute MAF

dashboard (https://confluence.broadinstitute.org/display/

GDAC/MAF+Dashboard). Notably, in the original publi-

cation by Alexandrov et al. [4], these two cancer types

were considered in aggregate given the limited number of

samples available. Using deconstructSigs, it was possible

to directly compare esophageal tumors originating from

these different cell types. In addition, in order to shed light

on both the prevalence of mutational processes and their

dynamics during tumor evolution, we also applied the

deconstructSigs package to temporally dissected mutations

(Additional file 7), according to published methods [8]. This

allowed us to identify different mutational processes

contributing to early and late/subclonal mutations.

In total, across these 169 esophageal tumors, eight

mutational signatures were evident, many of which were

found to contribute to varying degrees during different

periods of the disease course. The most prevalent signa-

ture in both esophageal adenocarcinoma and squamous

cell carcinomas, signature 1A, which likely reflects spon-

taneous deamination of methylated cytosines, was

(See figure on previous page.)

Fig. 3 Specific TCGA patient examples. Comparison of tumor mutational profiles and reconstructed profiles output from deconstructSigs and

WTSI Mutational Signature Framework. The reconstructed tumor profiles generated by using the signature weights assigned by the deconstructSigs

method and the WTSI Mutational Signature Framework method are given for three tumor samples. a A signature associated with POLE hypermutation,

signature 10, was identified in TCGA patient TCGA-D5-6931 using the WTSI Mutational Signature Framework (signature weight = 0.204) but not with

deconstructSigs. However, a POLE exonuclease domain mutation was not observed in this patient. b The mutational profile of patient TCGA-67-6215

showed activity of Signature 17 but as this signature was not considered a possible signature extracted in the first step of the WTSI Mutational

Signature Framework output, it was only called with deconstructSigs (signature weight = 0.634). c A signature associated with DNA mismatch

repair deficiency, signature 6, was identified by deconstructSigs (signature weight = 0.481) in patient TCGA-AN-A0AK but was not identified by

the WTSI Mutational Signature Framework. An MSH6 frameshift mutation was identified in TCGA-AN-A0AK indicating the DNA mismatch repair

deficiency signature identified is unlikely to be spurious
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detected in almost all ESCA tumors studied. Interest-

ingly, this signature was found to contribute significantly

more to early mutations compared with late mutations

in esophageal squamous cell carcinoma but not in

esophageal adenocarcinoma (ESCA squamous, p value =

0.006; ESCA adeno, p value = 0.716; Fig. 5a).

Signature 2, likely reflecting APOBEC-mediated muta-

genesis, was identified as contributing significantly more in

squamous cell compared with adenocarcinoma esophageal

cancers (p value = 0.01). Further, in squamous cell tumors,

APOBEC-mediated mutagenesis was found frequently

to be a late event, reflecting similar findings in lung

adenocarcinomas, head-and-neck tumors, and estrogen

receptor-negative breast cancers [8] (p value = 0.03; Fig. 5a).

Conversely, no significant trend was observed in esophageal

adenocarcinomas.

Another clear difference between esophageal tumors

of these two cell types was the presence of signature 17,

A

B

Fig. 4 Temporal dissection of mutational processes. Mutations called from a cohort of five LUAD (circles) and LUSC (triangles) patients with multi-region

sequencing were temporally dissected into trunk and branch mutations, described previously in [9]. One patient (L002) had a tumor exhibiting

an adenosquamous histological subtype, with separate regions being of different histology. For each patient, the fraction of contribution of

signatures associated with smoking (a) and APOBEC activity (b) was determined in the trunk and branch mutations. The smoking signature

was seen at higher fractions in the trunk mutations (blue) than the branch mutations (red), whereas the signature of APOBEC activity was seen

to contribute more to the LUAD branch mutations than LUAD trunk mutations or LUSC trunk or branch mutations

Rosenthal et al. Genome Biology  (2016) 17:31 Page 8 of 11



A

B

C

Fig. 5 (See legend on next page.)

Rosenthal et al. Genome Biology  (2016) 17:31 Page 9 of 11



a signature of unknown etiology, exclusively in adeno-

carcinomas. Indeed, over 50 % of esophageal adenocar-

cinomas were found to exhibit an enrichment for T > G

and T > C mutations at CpTpT sites. The majority of

these tumors (65 %) showed a tendency for signature 17

to be an early event, often being replaced by signature

1A. For example, in one such tumor (TCGA-2H-A9GR),

early mutations were almost exclusively characterized as

signature 17 (90.4 %), while later arising mutations were

characterized by an increase in signature 1A at the ex-

pense of signature 17. These data corroborate recent

findings using multi-region sequencing [10]. Neverthe-

less, we also identified a subset of esophageal adenocar-

cinomas in which signature 17 increased in prevalence

over time. For example, TCGA-L5-A4OU exhibited a

marked increase in signature 17 among its late muta-

tions, accompanied by a decrease in signature 1A and

signature 5 (Fig. 5b, c).

Taken together, these results illustrate the utility of

deconstructSigs to reveal the mutational processes in

individual cancers, enabling comparisons of distinct

histologies within tumor types and the elucidation of

the dynamics of these mutational signatures over time.

Conclusions
Here we present a computational approach, deconstruct-

Sigs, which determines the composition of a given set of

mutational signatures in individual tumor specimens.

We have demonstrated that through using deconstruct-

Sigs we can consistently identify the same signatures of

mutational processes active in a single tumor sample

compared with the analysis of an entire sample set using

the WTSI Mutational Signature Framework [8]. We have

also shown some of the potential benefits of analyzing

samples on an individual basis, as a user can both detect

mutational processes active in only a small number of

samples and investigate well-established signatures without

having to consider or compile a large sample set. Fur-

thermore, we utilized this approach to consider how

the activity of mutational processes changes in individual

tumors over time.

Due to the recurrent nature of many mutational signa-

tures, present across multiple tumor types, there is much

interest in identifying these existing signatures in further

tumor samples. The input signature set, which by default

is the set of already published signatures, can also be a

user-defined parameter, so it is possible for it to be

adapted as mutational signatures are further identified and

refined through large-scale genomics analyses. For in-

stance, 30 signatures are now identified by the Wellcome

Trust Sanger Institute (http://cancer.sanger.ac.uk/cosmic/

signatures), some of which are identified in tumor types

not considered here, such as stomach cancer, kidney

clear cell carcinoma, and Hodgkin’s lymphoma. In future

studies and as new signatures are identified, these signa-

tures could be included in the input signatures set by the

user. Thus, we anticipate that deconstructSigs will com-

plement other efforts to define and identify mutational

processes.

Finally, as the sequencing of individual tumors becomes

increasingly common in a clinical setting, we expect

that the ability to determine contributions of specific

mutational processes within single samples will allow

for novel insights, revealing cancer vulnerabilities that

may guide clinical decision-making on a case-by-case

basis. It will be possible to identify potential environ-

mental exposures within individual tumors, which may

provide utility within a medico-legal setting. Finally,

this tool will enable the impact that previous therapies

have had on shaping the cancer genome to be defined

and further our understanding into the dynamic evolu-

tionary processes between primary and metastatic sites

within individual patients.

Availability of data and materials
The results published here are in part based on data

generated by TCGA project established by the National

Cancer Institute and National Human Genome Research

Institute. The data were retrieved through dbGaP

(Database of Genotypes and Phenotypes) authorization

(accession number phs000178.v9.p8). Information about

TCGA and the investigators and institutions that consti-

tute the TCGA research network can be found at http://

cancergenome.nih.gov/.

The multiregion sequencing data used can be found

in the European Genome-Phenome Archive (EGA,

https://www.ebi.ac.uk/ega/), under accession numbers

EGAS00001000840 and EGAS00001000809. The decon-

structSigs package (v1.6.0) is available on the Comprehen-

sive R Archive Network (CRAN, https://cran.r-project.org/)

(See figure on previous page.)

Fig. 5 Signatures present in esophageal carcinoma. a The signatures identified in a cohort of ESCA tumors by deconstructSigs, using the input

reference signatures from [4]. The prevalence, defined as the fraction of patients the signature was detected in, is plotted for each mutational

signature identified, and the proportion of patients with a higher fraction of early (red) or late (blue) mutations corresponding to that signature is

shown. b, c A specific analysis of two esophageal adenocarcinomas exhibiting signs of signature 17 activity. The mutational profiles are given for

all the mutations identified in both tumors, as well as the mutations classified as early or late. Signature 17 was identified as the largest contributor to

the early mutations of patient TCGA-2H-A9GR (b) whereas it was identified as the contributing to the generation of the majority of late mutations in

patient TCGA-L5-A4OU (c)
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under a GPL-2 license. It has also been deposited to

Zenodo (https://zenodo.org/) with a DOI (http://

dx.doi.org/10.5281/zenodo.45311).
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Additional files

Additional file 1: Figure S1. Weights assigned to false positives and

false negatives in a randomly generated tumor cohort. A random cohort

of 500 tumors containing 2646 total signatures was generated with

known signature contributions of the published signatures. This cohort

was subjected to up to a ±5 % random perturbation to more accurately

reflect a ‘non-perfect’ theoretical tumor sample. Running deconstructSigs

on these simulated tumor samples resulted in some outputs containing

false positives, where a signature was erroneously identified as

contributing to the sample (a). The weights assigned to these false

positive results were seen almost uniformly have been under 6 % for

each signature (marked at the red line). b False negatives, where a

signature was erroneously rejected as contributing to the sample,

occurred 38 times from the analysis of the randomly simulated tumors

for a false negative rate of 1.4 %. The weights of all of the false negatives

were under 6 %, indicating that the use to this cutoff does not increase

the tendency of deconstructSigs to call false negatives. (PDF 111 kb)

Additional file 2: Supplementary methods, containing the specific

TCGA mutation files used in all analyses. (DOCX 86 kb)

Additional file 3: Table S1. The mutational signature contribution to

each TCGA tumor sample studied as determined by deconstructSigs and

WTSI Mutational Signature Framework. Signatures used as input to

deconstructSigs were limited to those extracted using the WTSI

Mutational Signature Framework approach. (TXT 464 kb)

Additional file 4: Figure S2. Comparison of the SSE between

deconstructSigs and WTSI Mutational Signatures Framework. a SSEs

between the input tumor mutational profile and reconstructed

mutational profile were calculated for each TCGA tumor analyzed. The

calculated SSEs from using the WTSI Mutational Signatures Framework

were compared with those from using deconstructSigs. Each point

represents the SSE as calculated through use of the signature weights

assigned by the WTSI Mutational Signatures Framework and the SSE

as calculated through the use of the signature weights assigned by

deconstructSigs. The SSE is consistent between the two approaches.

b Relationship between SSE and overall mutation count. As the

mutation count of the tumor sample increases, the calculated SSE

decreases. (PDF 632 kb)

Additional file 5: Figure S3. Comparison of signature contributions

between deconstructSigs and WTSI Mutational Signature Framework

using reference signatures. Cancer types with unambiguous signatures

extracted using WTSI Mutational Signatures Framework [8] were re-analyzed

with deconstructSigs and allowed to use any of the originally published

signatures [4]. For the signatures that were extracted using WTSI Mutational

Signature Framework, a comparison between the weights assigned by

deconstructSigs and those originally calculated by WTSI Mutational

Signatures Framework is plotted. A table of the values of all weights

assigned by deconstructSigs can be found in Table S2 (Additional file 6).

(PDF 321 kb)

Additional file 6: Table S2. The mutational signature contribution to

each TCGA tumor sample studied as determined by deconstructSigs and

WTSI Mutational Signature Framework. The full published set of

mutational signatures [4] was allowed to be used as input to

deconstructSigs. Tumor types considered were limited to those where

only unambiguous signatures could be extracted using the WTSI

Mutational Signature Framework to allow for direct comparison with the

input reference signature set. (TXT 359 kb)

Additional file 7: Table S3. Mutations from TCGA ESCA cohort and

their timing (early/late). (TXT 811 kb)
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