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ABSTRACT

Metagenome assembly from short next-generation sequencing data is a challenging

process due to its large scale and computational complexity. Clustering short reads by

species before assembly offers a unique opportunity for parallel downstream

assembly of genomes with individualized optimization. However, current read

clustering methods suffer either false negative (under-clustering) or false positive

(over-clustering) problems. Here we extended our previous read clustering software,

SpaRC, by exploiting statistics derived from multiple samples in a dataset to

reduce the under-clustering problem. Using synthetic and real-world datasets we

demonstrated that this method has the potential to cluster almost all of the short

reads from genomes with sufficient sequencing coverage. The improved read

clustering in turn leads to improved downstream genome assembly quality.

Subjects Bioinformatics, Microbiology, Data Science

Keywords Metagenome clustering, Short-read clustering, Apache Spark

INTRODUCTION
Metagenome sequencing holds the key to comprehensively understand the structure,

dynamics and interactions of underlying microbial communities and their implication

to health and environment (Chiu &Miller, 2019; Tringe & Rubin, 2005; Thomas, Gilbert &

Meyer, 2012). As these samples often consist of thousands of different species with

highly uneven richness, exceptional sequencing depth is required to study relatively rare

species. As a result, except for a few cases (Brown et al., 2017), the majority of metagenome

sequencing projects relied on cost-effective, short-read sequencing technologies. These

projects routinely produce a huge amount of data of 100–1,000 giga-bases (Gb) or

more (Howe et al., 2014; Shi et al., 2014). The largest project so far is the Tara Ocean

Metagenomics project, where 7.2 tera-bases (Tb) was generated and the Prokaryote subset

alone contains 28.8 billion short reads (Sunagawa et al., 2015).
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As the majority of members of these microbial communities are not known,

assembling the short reads into draft genomes, or metagenome assembly, is a key step in

metagenomics. Metagenome assemblers have to deal with both scale (billions of short,

100–250 bp reads) and complexity problems (thousands of different species with a highly

uneven abundance distribution). Most assemblers first assemble the short reads into

longer contigs, then cluster the contigs into individual draft genomes through the binning

process (Roumpeka et al., 2017; Kang, Rubin & Wang, 2016). The assembly step in these

software tools simultaneously tackles the computational and algorithmic challenges by

constructing a huge de Bruijn graph and subsequently partitions it in parallel (reviewed

in Breitwieser, Lu & Salzberg (2017) and Quince et al. (2017)). These tools, including

MEGAHIT (Li et al., 2015), metaSpades (Nurk et al., 2017) and MetaHipmer (Georganas

et al., 2018), have achieved considerable success and are widely used. To overcome the

limitation of this “assembly-then-cluster” approach that does not allow optimization for

individual genome assembly, a “cluster-then-assembly” alternative has recently been

proposed. This strategy first clusters the reads based on their genome of origin (Guo et al.,

2015; Shi et al., 2018), and then each cluster can be assembled individually and potentially

optimized. Tools adopting this strategy take advantage of the scalability and robustness

of Apache TM Hadoop (Guo et al., 2015) or Spark (Shi et al., 2018) platforms to

construct and partition an overlap graph in parallel.

We previously reported that an Apache SparkTM-based read clustering method,

SpaRC, that showed a great potential in achieving good scalability and clustering

performance (Shi et al., 2018). SpaRC can be flexibly deployed to the cloud or HPC

computing environments. However, the demonstrated clustering success was limited

to long-read sequencing technologies. Even though SpaRC can form pure clusters

(low false positives), clustering short-read datasets suffered a false negative problem, or one

genome is clustered into many small clusters (under-clustering). This is not desirable

as most of the metagenome datasets are based only on short-read sequencing technologies.

Clustering short reads to recover single genomes has been previously shown to be possible

by a latent strain analysis approach (LSA, Cleary et al. (2015)). However, clustering

metagenome reads directly based on k-mer statistics across multiple samples is very

challenging (Wang et al., 2012; Liao et al., 2013).

In this article, we describe a new method to target the under-clustering problem of

SpaRC by exploiting statistics derived from multiple, independent samples in short-read

datasets. This method first estimates the abundance of each read cluster using a set of

short, representative k-mers, and then calculates the similarity among the clusters and uses

it to construct a graph of clusters. Finally, it partitions the cluster graph to obtain larger

read clusters. We name the new clustering algorithm developed here as “global clustering”,

as it deals with cross-sample information from the entire dataset. Conversely, the

clustering algorithm in SpaRC we had reported previously is now renamed as “local

clustering”, as it only deals with read overlap information. We implemented the global

clustering algorithm on the Apache Spark platform to achieve data scalability and

computing robustness. In addition, we adopted minimizers (Roberts et al., 2004) as a

replacement for k-mers to improve computing and memory efficiency. We compared the
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clustering performance of the global clustering algorithm to the local clustering using a

synthetic mouse gut microbiome dataset from the CAMI2 project (Sczyrba et al., 2017).

Several clustering parameters were also explored to gauge their influence on global

clustering performance. Using a real-world metagenome dataset, we showed that

clustering the reads before the assembly can greatly improve the assembly quality of the

species with high sequencing coverage.

MATERIALS AND METHODS

Clustering strategies

An overview of the two clustering strategies is shown in Fig. 1. The local clustering strategy

in the original SpaRC has been described in Shi et al. (2018). In brief, during the local

clustering step, we cluster reads by their overlap. The read clusters are further clustered

into bigger clusters by the global clustering strategy, which we will describe in detail below.

Local clustering improvement with minimizers

In SpaRC, the number of shared k-mers is used to estimate similarity between reads

(Shi et al., 2018). As it takes 100–200 times more space after reads are transformed into

k-mers and edges, SpaRC is neither space nor time-efficient. To improve computing

efficiency, we implemented a new function to use minimizers (Roberts et al., 2004)

instead of k-mers to estimate similarity between reads. As many adjacent shared k-mers

can be represented by a single minimizer without losing sensitivity, in theory, the

minimizer-based method should greatly reduce the memory requirement in SpaRC

(as fewer k-mers and edges will be produced). In practice we did observe a 3.2-fold

memory usage reduction, and 3.3-fold speed-up (Fig. S1). It is worth noting that

minimizers may not be applicable to uncorrected long reads from PacBio and Nanopore

sequencing technologies due to their high error rate.

Global clustering

Reads from a genome can form many read clusters after the local clustering step, leading

to low clustering completeness. The ultimate goal of global clustering is to predict all

the read clusters originated from the same genome. It does this based on the assumption

that the sequencing coverage of each region of a genome, defined by the read clusters,

closely resembles the sequencing coverage of the same genome across different

metagenomic samples. In other words, if two clusters, c1 and c2, belong to the same

genome g. After c1 and c2 are assembled into contigs C1 and C2, the coverage of C1 and

C2 in sample S, in theory, should be equal to the coverage of g.

Estimating the sequencing coverage of an underlying genome based on a

cluster of unassembled reads

In the context of single genome assembly, the sequencing coverage of a genome can

be robustly estimated from unassembled reads by k-mer analysis (Chor et al., 2009; Lo &

Chain, 2014). Similarly, we can estimate the sequencing coverage of the latent genome

represented by a read cluster. As shown in Fig. 1B, clusters from different genomes,
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Figure 1 An overview of the clustering strategies. (A) Local clustering: short reads sequences from

multiple samples of a microbial communities (such as derived from different sample sites or times, S1,

S2…Sm) are combined and clustered using the scalable overlap-based clustering algorithm in SpaRC.

Many small clusters are formed and reads from the same genomes scatter across many clusters (under-

clustering). (B) Estimating genome coverage from unassembled read clusters. In the left illustration, two

read clusters show different k-mer frequency peaks, each corresponding to the coverage of their

underlying genome (dotted lines). In the right illustration, multiple read clusters derived from the same

genome in theory will have the same genome coverage in a given sample, while the height of the peak

(number of k-mers) can be very different depending on the size of the read clusters. (C) Global clustering.

First, sequencing coverage of each small cluster from the local clustering step is estimated and a cluster

coverage matrix is derived. Second, a square similarity matrix is obtained by computing pair-wise cosine

similarities between all clusters. Finally, a graph is constructed using clusters as nodes and their similarity

as weighted edges. Larger clusters containing all the reads from individual genomes can be obtained by

partitioning the graph using the Label Propagation Algorithm (LPA).

Full-size DOI: 10.7717/peerj.8966/fig-1
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in theory, will show different k-mer frequency peaks (genome coverage) in a given

sample, while clusters from the same genome will show similar peaks, even though the

number of k-mers at those peaks could be very different, with larger read clusters having

more k-mers. We therefore sample several k-mers around the k-mer frequency peak

of a cluster, and use the median of their counts among each sample to estimate the

coverage of this cluster in each sample. We term these k-mers as representative k-mers for

each cluster. Because very small clusters do not generate reliable k-mer spectra, we only

select clusters with more than 50 reads for further clustering. We modified the original

KMR function in SpaRC to track k-mer counts of each sample.

The cluster coverage information is stored in a m by n coverage matrix, where m is the

number of samples and n is the number of read clusters.

Calculating similarity between clusters

In the above cluster coverage matrix, every cluster is represented by a vector of counts.

If two clusters are derived from the same genome, we expect that their vectors should be

very similar. We chose cosine similarity to measure the similarity of cluster vectors as

it is most commonly used in high-dimensional positive spaces. After all pairwise

similarities are calculated, the coverage matrix is transformed into a n by n similarity

matrix, where n is the number of clusters. We only keep the similarity exceeding a

predefined threshold because of the sparse nature of this matrix. This threshold parameter

has a direct impact on clustering performance, as higher thresholds produce smaller

but purer clusters. An optimal threshold parameter could be determined by performing

a grid search for the one that gives the best clustering accuracy on a labeled dataset.

For real-world metagenome datasets without known reference, this parameter has to be

guessed.

Graph construction and partitioning

By using the cosine similarity calculated above as weighted edges and the clusters as nodes,

a weighted graph can be constructed. This cluster graph can then be partitioned into big

clusters the same way as in the local clustering step by using the Label Propagation

Algorithm (Raghavan, Albert & Kumara, 2007).

Cluster assembly and quality evaluation

We selected large clusters (more than 1,000 reads for CAMI2 and more than 8,000 reads

for MetaHIT) to assemble. Under these criteria, more than 90% of original reads were

retained in these two datasets. These largeread clusters were assembled with MEGAHIT

(ver 1.2.5-beta), (Li et al., 2015) using default parameters. The resulting contigs were

binned with MetaBAT 2.0 (Kang et al., 2019) using default parameters. Smaller clusters

were omitted from further analyses.

MetaQuast (ver 5.0.2) (Mikheenko, Saveliev & Gurevich, 2015) was used for

metagenome assembly evaluation. As MetaHIT dataset does not have known references,

we built a reference database by BLASTing the assembled contigs against NCBI

nonredundant reference genomes, and selected the subset of references that have

sequencing coverage of 30× or more (n = 68). There were many bins from the MetaHIT
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dataset having no genomes mapped to them, and they were omitted from further analyses.

There were also bins mapped to multiple genomes, and genomes split into multiple

bins. If the predominant part of a genome is included in a bin, then the completeness and

purity of this genome were calculated according to all the contigs within this bin. Genome

assembly quality evaluation metrics were obtained with MetaQuast using default

parameters.

Datasets

The MBARC-26 microbial community

This mock dataset is a synthetic community with real-world sequence data (Singer et al.,

2016). It contains Illumina reads from 23 bacteria and 3 Archaea species with known

reference genomes. The sequence length is (90–150) × 2 bp totaling 3.3 Gb (Table 1).

This dataset was used as a toy dataset for testing local clustering with minimizers.

CAMI2 mouse gut metagenome dataset

The benchmark experiments on global clustering were done on a simulated dataset from

the second CAMI Challenge (https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/

CAMISIM_MOUSEGUT/). This dataset was simulated using 791 reference genomes

derived from mouse gut microbiome, and it contains 64 samples with various genome

coverage. Some relevant statistics of this dataset is shown in Table 1. A complete list of the

organisms in this dataset is available at this URL (https://openstack.cebitec.uni-bielefeld.

de:8080/swift/v1/CAMI_DATABASES/taxdump_cami2_toy.tar.gz).

MetaHIT human gut metagenome dataset

To benchmark SpaRC on real-world datasets, we compiled a human microbiome

metagenomic dataset from the MetaHIT project (https://trace.ncbi.nlm.nih.gov/Traces/

sra/sra.cgi?study=ERP000108) by selecting 228 samples with a read length of 75 × 2 bp

from the total 264 samples. These reads were mapped to a reference database and

161 reference genomes with at least 5× coverage were selected for assembly accuracy

evaluation.

Computing environments

Read clustering experiments were performed on Amazon Web Service (AWS)’s Elastic

MapReduce (EMR, emr-5.17.0). Depending on the size of the dataset, a number of

Table 1 Datasets used in this study.

Dataset CAMI2 MBARC-26 MetaHIT

# Samples 64 1 228

# Genomes 791 26 161a

Read length (bp) 2 × 150 (90–150) × 2 75 × 2

Total size (Gb) 320 3.3 522

Note:
a Number of reference genomes the reads mapped to.
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r4.2×large instances were used to form a cluster, and the configuration details are shown in

Table 2.

RESULTS

Global clustering greatly improves short read clustering performance

In order to test whether multiple samples derived from the same microbial community

could be leveraged to improve short read clustering performance, we designed a control

dataset by taking 10% of the reads from 50 samples from the CAMI2 synthetic

metagenome dataset (Materials and Methods). The smaller dataset allowed us to reduce

computation cost and obtain results faster. We clustered the reads using two clustering

methods: in the “local clustering” method, we combined all the reads from the 50 samples

for clustering and selected clusters with 50 reads or larger; in the “global clustering”

method, we further applied the global clustering module to these clusters to form big

clusters (Material andMethods). This labeled synthetic dataset enabled us to systematically

compare the clustering performance between these two methods for cluster size,

purity, completeness. The results are shown in Fig. 2. We used the same purity and

completeness metrics as in Shi et al. (2018). Briefly, the purity of a cluster is defined as the

percentage of reads from the predominant genome within the cluster, while the

completeness of a cluster is defined as the percentage of all the reads from the predominant

genome that are captured by the cluster. Because almost identical strains from the same

species were engineered in the dataset, both of the two metrics, especially purity, likely

underestimate species-level clustering performance. For example, if a species has two

closely related strains with equal number of reads, clusters derived from this species

will have a purity of 50%. We therefore also measured cluster purity at the species level.

In this experiment, the parameters were k = 41, m = 22, min_shared_kmers=2,

max_degree=25, representative k-mer count = 100, and cosine threshold=0.925.

Table 2 Configuration of AWS EMR.

Parameter Setting

# of cores/node 8

Memory/node 61

Storage/node 300 GB SSD

Ethernet 10 Gbps

Spark version 2.3.1

Hadoop version 2.8.4

Cluster mode YARN

# of executors/node 2

Driver memory 40 GB

Driver cores 5

Memory/executor 24 GB

Cores/executor 3

HDFS block size 32 MB
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Figure 2 A comparison of the clustering performance between local clustering and global clustering.

(A) The distribution of clustered reads among the clusters for local clustering (light gray) and global

clustering (dark gray). X-axis is cluster size (log10) and y-axis is the percent of reads that are clustered at a

given cluster size. Cluster size refers to the number of reads in a cluster. (B) Violin plots of cluster

completeness and purity (at genome level and species level). Global clustering metrics are plots filled in

dark gray. The units on y-axis are percentages. (C) A scatter plot of sequencing coverage of the genomes

and their completeness from local clustering (light gray triangles) and global clustering (dark gray

circles). X-axis is the sequencing coverage (log2) and y-axis is the completeness in percentage.

Full-size DOI: 10.7717/peerj.8966/fig-2
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The local clustering step resulted in 78.29% of the reads clustered into many small

clusters (n = 378,829), with the largest cluster having only 10,151 reads. The majority of the

clustered reads 99.08% are distributed in clusters with 1,000 reads or less (Fig. 2A).

In contrast, after the global clustering step the number of clusters is significantly reduced

(n = 10,083), 78.49% of reads are in clusters with 1,000,000 or more reads, and the

largest cluster contains 6,836,687 reads. Consequently, the median completeness of the

clusters from the global clustering is also 19.58 times larger than that from the local

clustering (19.97% vs 1.02%, Fig. 2B). The increase in completeness came at the expense of

some purity loss (median purity from 97.95% to 93.25% at the genome level%), but most

of the clusters are still pure , especially at the species level (median purity decreased

slightly, from 100% to 99.78%) (Fig. 2B).

As the success of genome clustering should heavily depend on its sequencing coverage,

we next explored the relationship of cluster completeness as a function of genome

sequencing coverage (Fig. 2C). For local clustering, higher sequencing coverage seems to

have little effect on cluster completeness. In contrast, higher sequencing coverage does

translate into higher completeness, suggesting global clustering effectively leverages

multiple sample statistics for read clustering. After the sequencing coverage reaches a

sufficient threshold (100×, Fig. 2C), the completeness of most genomes exceeds 80%.

The performance of short read clustering can be improved by

increasing the number of samples

We next explored the relationship between the number of samples in a dataset and the

global clustering performance. Intuitively, more samples should enable a more robust

estimation of the similarity between clusters and lead to better clustering performance.

By limiting the total size of the datasets to 25 Gb to reduce the computation cost, we made

several datasets with varying number of samples (5, 10, 20, 50) randomly selected from the

CAMI2 synthetic metagenome dataset (Materials and Methods). We obtained clusters

from these datasets by running SpaRC with the same parameters (k = 41, m = 22,

min_shared_kmers=2, min_read_per_cluster=50) for local clustering, and

representative_kmer_count=100 for global clustering.

As in the previous section, we evaluated the purity and completeness of the resulting

clusters. As shown in Fig. 3, the median purity of the clusters at the genome level slightly

dropped as the number of samples increases, from the highest 96.96% (at n = 5) to the

lowest 88.89% (at n = 20, Fig. 3A). This is likely caused by the fact that more samples

may contain more strain variation, and currently SpaRC can not distinguish very similar

strains. Consistent with this notion, the purity measured at the species level remains largely

unchanged (Table S1). In contrast, the completeness continuously increases with

increasing number of samples (median completeness rises from 7.69% at n = 5 to 19.97% at

n = 50, Fig. 3B). This result supports the hypothesis that more samples enhance global

clustering performance, likely due to better estimation of cluster similarity.

The ultimate goal of read clustering is to recover the complete set of any genome

without any contamination from other genomes. In order to measure how many genomes

can be recovered by read clustering, here we define “a clustered genome” as a read cluster

Li et al. (2020), PeerJ, DOI 10.7717/peerj.8966 9/19

http://dx.doi.org/10.7717/peerj.8966/supp-2
http://dx.doi.org/10.7717/peerj.8966
https://peerj.com/


that simultaneously satisfies two criteria: purity >95% and completeness >80%. It is

worth noting that these criteria are very strict. As strain-level heterogeneity can greatly

reduce purity, and one small region larger than a read with no sequencing coverage, either

due to statistical sampling or systematic sequencing biases, will greatly decrease

completeness.

The clustered genomes from 5, 10, 20 and 50 samples are 0, 1, 5 and 7, respectively

(Fig. 3C). Since the ability to obtain a clustered genome depends on the sequencing

coverage, and there are 20 genomes with at least 100× coverage, this translates to a

recovery rate of 35% with 50 samples. Other genomes with lower sequencing coverage

also benefit from more samples included in clustering, as Fig. 3C shows the extent of

recovery for all genomes with a sequence coverage >10×. The details of these 7 recovered

genome can be found in Table S1.

Parameters that may impact clustering performance

There are 10 parameters in the local clustering algorithm (Shi et al., 2018). In the

global clustering step two more parameters are added, where the number of representative

k-mers used to estimate cluster abundance (rp) and cosine similarity threshold (cs)

to control graph complexity. While some of these parameters only affect computing

efficiency, there are four parameters that in theory may affect clustering accuracy:

k-mer(k)/minimizer(m) length, min_shared_kmers among reads (minsk), rp and cs.

In theory higher k, minsk, and cs all lead to smaller clusters with lower completeness but

higher purity, and vice versa. Higher rp should make the estimation of cluster abundance

more accurate with a small cost in computing efficiency. To explore the effect of these

Figure 3 Clustering performance with a different number of samples. (A) Median purity comparison

among a different number of samples. X-axis is the number of samples and y-axis is median purity.

(B) Median completeness comparison among different number of samples. X-axis is the number of

samples and y-axis is median completeness. (C) The number of clustered individual genomes with purity

>95% and completeness >80% among different number of samples. There are 97 genomes with

sequencing coverage >10× in this dataset. Different shades of gray represent different completeness levels.

X-axis is the number of genomes and y-axis is the number of samples.

Full-size DOI: 10.7717/peerj.8966/fig-3
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parameters on clustering accuracy, we ran SpaRC with different sets of parameters on the

25 Gb dataset with 50 samples. In each of the parameter sets, only one parameter varies

while the other three were held constant. The rest of the parameters were used as their

default values. We used several metrics including number of reads clustered (bigger is

better), number of clusters formed (bigger is worse), median cluster purity, median cluster

completeness and number of clustered genomes to measure clustering performance.

The results are shown in Table 3.

Overall, there is no single best parameter that can maximize all metrics. In general,

the most abundant genomes (number of clustered genomes) are less likely to be affected by

these parameters except a few extreme cases (where k-mers are set too small or cluster

similarity thresholds are too low). In those extreme cases over-clustering happened, as

only a small number of clusters formed with very low median purity. These parameters,

except the number of representative k-mers, can greatly affect the median purity

and completeness. Longer k-mers and requiring more shared k-mers among reads

increases median purity and completeness. These improvements are likely driven by

better clusters from the genomes with medium to high sequencing coverage. If these

parameters became very large, the number of reads clustered dramatically decreases

(under-clustering), but these genomes do not seem to be affected. For example, the number

of clustered reads drops from 60,953,377 at minsk=1 to only 26,643,712 at minsk=5, but

the median completeness and purity reaches their peak. The un-clustered reads at high

minsk presumably are derived from a lot of genomes with low sequencing coverage, as

Table 3 Clustering performance vs different parameters.

Parameter #Reads

clustered

#Clusters Median

purity

Median

completeness

#Clustered

genome

k-mer length (k) 31 58,400,733 9,324 82.10 16.15 2

41 60,791,068 15,784 91.83 18.75 7

51 58,333,152 14,265 92.61 23.00 7

61 54,935,695 12,795 93.97 25.64 7

Min_share_k-mers (minsk) 1 60,953,377 13,401 91.26 20.57 7

2 58,333,152 14,265 92.61 23.00 7

3 54,991,601 14,836 94.40 26.30 7

4 41,027,671 14,806 95.00 33.32 6

5 26,643,712 13,598 96.33 42.78 7

Representative k-mers (rp) 9 60,791,068 15,784 91.80 18.75 7

50 61,794,152 10,119 92.98 19.99 7

100 61,736,159 10,083 93.25 19.97 7

Cosine similarity threshold (cs) 0.85 61,386,721 6,065 76.73 33.33 4

0.875 60,689,758 10,347 88.24 31.04 5

0.90 59,665,880 12,538 95.37 28.75 7

0.925 58,408,305 13,570 93.13 25.90 7

0.95 55,285,172 19,826 93.64 18.76 7

Note:
Numbers in bold indicate best results within each category.
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bigger k-mer size decreases the correct k-mers present in the dataset and makes their

counts more noisy (Chikhi & Medvedev, 2013).

The number of representative k-mers used for cluster abundance estimation seems to

have a very minor effect on clustering performance. If the number is too low, then the

performance is slightly lower.

As expected, very low cluster similarity thresholds cause over-clustering, and very high

ones lead to under-clustering. Same as the other parameters, the best parameter choice

should be determined by the underlying scientific requirements to balance sensitivity and

specificity.

Assembly quality comparison between SpaRC-based and the classic

approach

Compared to the current metagenome assembly strategy without clustering, that is,

assemble the entire dataset followed by binning (hereafter referred as “the classical

approach”), clustering the reads into individual clusters by SpaRC followed by assembly

and binning (hereafter referred as “SpaRC-based approach”) may produce better results.

To test this hypothesis, we carried out both approaches on the above CAMI2 testing

dataset (Methods) and compared their assembly results.

As shown above, the effectiveness of clustering depends on sequencing coverage, we

therefore evaluated the assembly performance for genomes with coverage of 100× or

above, 50–100× and 30–50×, respectively. We observed a comparable number of

mis-assemblies from both approaches (Table S2), so we focused on the following four

metrics: genome coverage (percent of reference covered by the assembled contigs),

contamination (percent of contigs not belonging to the reference at the species level),

N50 and L50 (measuring contiguity of the assembly). Specially, we only reported genome

bins with at least 95% purity, or less than 5% contigs from other species. We evaluated

their assembly accuracy in terms of near-complete genomes (95% genome coverage and

above) and fairly complete genomes (80–95% genome coverage). The results are shown in

Fig. 4.

At high sequencing coverage (100× or above), the SpaRC-based clustering approach

was able to recover more near-complete genomes than the classical approach, 16 for

SpaRC vs 11 for Classic (Fig. 4A). Among them, the SpaRC approach assembled

6 genomes that were not completely assembled by the classical approach, while missed

only one assembled by the classical approach (Fig. 4B). The number of fairly complete

genomes assembled by the two approaches are comparable at this sequencing coverage.

Besides, 11 genomes assembled by the classical approach have smaller L50s and larger

N50s while 6 genomes assembled by SpaRC approach do (Table S2). As sequencing

coverage is getting lower, the classical approach has an advantage over the SpaRC-based

approach, especially when coverage drops to below 50× (Fig. 4A). These genomes tend

to spread across many small pure clusters. This result is consistent with the above

clustering performance analyses, suggesting there is still an “under-clustering” problem for

global clustering.
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We added a binning step using MetaBAT after the assembly of each of the clusters

because some of the large ones are mixtures of a few genomes. Clusters with more than

100,000 reads contain 3.125 genomes on average, suggesting the species complexity of

these clusters are much more reduced comparing to the original metagenome. The metrics

presented in Fig. 4 were calculated after the binning step.

To test whether these conclusions can be generalized to real-world datasets, we applied

the two approaches to a human microbiome dataset (MetaHIT, “Methods”). As there is no

ground truth for this dataset, we mapped the metagenomic short reads to NCBI

Figure 4 Assembly accuracy comparison between two alternative strategies on CAMI2 simulated

dataset (A and B) and the MetaHIT human microbiome dataset (C and D). “Classic”: The classical

approach for metagenome assembly (MEGAHIT-MetaBAT), “SpaRC”: Clustering-based assembly

approach (SpaRC-MEGAHIT-MetaBAT). (A) Number of recovered genomes at 100× and above,

50–100×, 30–50× sequencing coverage, respectively. Recovered genomes are shown at two completeness

levels. (B) Overlap between the near-complete genomes between the two approaches at sequencing

coverage 100× and above. (C) Number of recovered genomes at 100× and above, 50–100×, 30–50×

sequencing coverage, respectively. Recovered genomes are shown at two completeness levels. (D) Overlap

between the near-complete genomes between the two approaches at sequencing coverage 100× and

above. Full-size DOI: 10.7717/peerj.8966/fig-4
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non-redundant reference genome database, and used the 68 genomes with 30× or more

sequencing coverage as a reference set.

Similar to the previous experiment on CAMI2 dataset, the SpaRC-based approach

can cluster genomes with 100× sequencing coverage from MetaHIT dataset, and this

ability decreases dramatically as coverage decreases. The SpaRC-based clustering approach

was able to recover 9 near complete genomes with 100× or more coverage (total 16), while

the classic method recovered 10 (Fig. 4C). Among them, SpaRC approach recovered

3 genomes that were not completely recovered by the classical approach, while missed

4 genomes (Fig. 4D). For a complete list of the recovered genomes from these two

approaches on the two datasets, please refer to Table S3.

The above results suggest that adding a clustering step can complement the common

metagenome assembly strategy, at least for the species with high sequencing coverage.

Execution time of SpaRC on the MetaHIT dataset

Assembling large metagenome datasets using MEGAHIT requires a large amount of RAM

on the server. It took 24.63 h on a single node with 64 CPU cores and 488 GB RAM

(r4.16×large, a Memory-Optimized instance of AWS Elastic Compute Cloud) to assemble

the MetaHIT dataset. As for SpaRC-based approach, we were able to distribute the

read clustering step on an AWS Elastic MapReduce (EMR) cluster with 350 nodes, each

with 8 CPU cores and 61 GB of RAM (Table 1). The clustering step took 8.9 h to complete.

These results suggest that SpaRC is not as good as the classic approach in terms of

costs and computational efficiency, instead it offers an advantage to scale up to bigger

datasets (over assemblers only run on single nodes), and overall shorter computational

execution time.

DISCUSSION
Even with global clustering, there is still a lot of room left to further improve the accuracy

of metagenome read clustering, as both under-clustering and over-clustering problems are

still outstanding. One idea is to employ better metrics to improve the prediction that

different clusters belong to the same species. The read clustering problem is similar to the

metagenome binning problem. In the unsupervised metagenome binning problem, contigs

are further clustered into genomes based on two metrics, tera-nucleotide-frequency

(TNF) and abundance co-variation. TNF represents sequence composition biases among

different species, and it is a useful metric to group contigs with similar sequence

composition together during the binning process (Kang et al., 2015). Here we have already

applied the abundance co-variation metric to improve clustering. The application of the

TNF metric, however, is not straightforward, as TNF may not be reliably estimated

from unassembled reads. Future analyses will be needed to integrate more information

such as TNF into the clustering framework to reduce the requirement of many samples,

given the fact that most of the metagenome shotgun sequencing experiments were carried

out on single samples. The representative k-mer approach we used here is rather a

naive one for efficient computing, but there are a few existing solutions that might be
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leveraged to further improve the accuracy of cluster similarity calculation, such as the

strategy in Girotto, Pizzi & Comin (2016).

Another idea to improve the accuracy of metagenome clustering may be leveraging

long read sequencing technologies. Long read technologies (such as PacBio and

Nanopore) are increasingly applied to metagenome sequencing, a hybrid clustering

approach leveraging long reads to cluster short reads may also greatly increase clustering

performance. Long reads should be very helpful to increase clustering completeness as

they span the regions where short reads have low coverage, and improve clustering purity

at the strain level as they can distinguish repeats and closely related species or strains.

The global clustering step added more parameters to the entire clustering pipeline.

We have shown that clustering accuracy can be influenced by some of these parameters,

including k-mer/minimizer size, minimum shared k-mers to detect overlap, and

abundance similarity thresholds among clusters to construct the cluster graph. Deriving

an optimal set of parameters is challenging because it is likely dependent on the underlying

data characteristics and the scoring metrics. Further, searching for an optimal

parameter set from a large parameter space on a large dataset using grid-search or

random-search strategies is computational prohibitive. There isn’t an evident law to select

the default parameters. This problem may be a good candidate for Bayesian optimization

(Snoek, Larochelle & Adams, 2012; Hutter, Hoos & Leyton-Brown, 2011).

It was worth noting that while the global clustering procedure improves clustering

completeness, but this comes at a small cost of lower clustering purity. This is a trade-off

inherent to all clustering problems, and the above suggested potential improvements,

including better metrics, longer reads and optimal parameters, may only improve

completeness or purity, but not both. TNF can help completeness, while introducing

impurity as TNF signals from smaller clusters tend to be noisy. Long reads can help

link small clusters, but they are not useful to separate impure clusters because of their

limited sequencing coverage. Larger k-mer/minimizer sizes, more k-mers/minimizers

required for a valid overlap, larger abundance similarity thresholds can all lead to clusters

with higher purity, but will inevitably also lead to lower clustering completeness.

Running SpaRC on very large metagenome datasets like the MetaHIT was still very

challenging. In addition to requiring a large number of nodes, the memory overflow

problem may occur during the execution when the number of executors per node or

the number of cores per executor is not set properly. Some parameters may have a

data-dependent nature and have to be manually experimented. Future work is needed

for a data-driven approach for selecting appropriate parameters before carrying out

large-scale experiments.

CONCLUSIONS
In summary, we extended our previous work on the Apache Spark-based read clustering

by exploiting species co-variation across different metagenome samples to improve

clustering completeness. Using complex control datasets with many samples, we showed

the global clustering algorithm can dramatically improve both cluster size and genome

completeness with only short reads. Besides the benefit of scalability offered by the Spark
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platform, the clustering-then-assembly strategy we presented here may also empower

users to optimize the assembly process, such as trying different assemblers/parameters

on individual species to achieve better genome coverage, strain resolution, etc. Even

without these optimizations, we showed that this strategy can recover additional genomes

missed from the classic approach.
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