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Abstract. — Following the ideas of Bontekoe et al. who noticed that the classical Maximum Entropy Method
(MEM) had difficulties to efficiently restore high and low spatial frequency structure in an image at the same time, we
use the wavelet transform, a mathematical tool to decompose a signal into different frequency bands. We introduce the
concept of multi-scale entropy of an image, leading to a better restoration at all spatial frequencies. This deconvolution
method is flux conservative and the use of a multiresolution support solves the problem of MEM to choose the α
parameter, i.e. the relative weight between the goodness-of-fit and the entropy. We show that our algorithm is efficient
too for filtering astronomical images. A range of practical examples illustrate this approach.
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1. Introduction

In the field of image deconvolution, one of the most pop-
ular techniques is the Maximum Entropy Method (MEM)
introduced initially by Burg (1967) and Ables (1974) for
spectral analysis. Subsequently MEM was reformalized
and improved a lot to provide an efficient technique of
deconvolution by Skilling & Gull (1984), and Skilling &
Bryan (1984). It is based on the idea that a given real-
ization of a random variable (a non deterministic signal
for instance) carries a certain amount of information mea-
sured by the entropy (Shannon 1948; Jaynes 1957). Thus,
when trying to invert an ill-posed problem like the decon-
volution of a signal, with the difficulties inherent in the
presence of additive noise characteristic of an experimen-
tal signal, the entropy is used as a regularizing functional
to constrain the solution, and give the simplest (in the
sense of the amount of contained information) possible
compatibility with the data. However the classical Max-
imum Entropy Deconvolution encounters technical prob-
lems such as finding an optimal value of α, i.e. the relative
weight between the goodness-of-fit and the entropy. It has
been observed also that a “low” value of α favours high
frequency reconstructions, but gives a poorly regularized
result, while a “high” α leads to a restored image with
good regularization but in which the high frequency struc-
tures are under-reconstructed. Therefore, Bontekoe et al.
(1994) have introduced the concept of Pyramid Maxi-
mum Entropy reconstruction which is a special application
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of multi-channel maximum entropy image reconstruction
techniques (Gull & Skilling 1991). They consider an image
f as a weighted sum of a visible space pyramid of resolu-
tion f =

∑
i fi, i = 1, K, which corresponds via a set of

Intrinsic Correlation Functions (ICFs) to a hidden-space
pyramid hi, i = 1, K on which the constraint of maxi-
mum entropy is applied. A major difficulty arises when
summing the contributions corresponding to the different
channels: the weights appear to be somewhat arbitrary or
at least, difficult to determine theoretically. Another dif-
ficulty they encountered lies in the choice of the default
constant (model) in each channel. Trying to advance fur-
ther, we have reformulated this idea, using the appropriate
mathematical tool to decompose a signal into channels of
spectral bands, the wavelet transform. We show that the
default value (model) at each wavelet scale is linked physi-
cally to the standard deviation of the noise present at this
scale. Introducing the concept of multiscale entropy, we
show that we minimize a functional depending on the de-
sired solution regularized by minimizing the total amount
of information contained at each resolution. We also use
the concept of multiresolution support (Starck et al. 1995)
which preserves the significant wavelet coefficients from a
regularization, and leads to a fixed α for all types of im-
ages, removing the problem of its determination. Finally,
we show that this method is very simple to use since there
is no parameter to be determined by the user, and we
give significant examples of deconvolution of blurred as-
tronomical images showing the power of the method, es-
pecially to reconstruct weak structures and strong ones
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simultaneously. We point out that one can derive a very
efficient filtering method.

2. Image restoration using the MEM

We consider the data characterized by its intensity dis-
tribution I(x, y), corresponding to the observation of an
object O(x, y) through an optical system. We assume that
the process of degradation is linear with additive noise:

I(x, y) = (O ∗ P )(x, y) +N(x, y) (1)

where P (x, y) is the point spread function (PSF) of the
imaging system, and N(x, y) is additive noise. We want
to determine O(x, y) knowing I(x, y) and P (x, y). For this
paper, we shall consider Gaussian noise but in the case
of Poisson, or Poisson plus Gaussian, we can reduce the
problem to the Gaussian case (Murtagh et al. 1995) us-
ing the Anscombe transform (1948) and its generalization.
We also consider that the number of “points” in the data
is the same as the number of pixels in the original image
O. This inverse problem is ill-posed because of the noise,
making the previous system of equations lack a unique so-
lution. The Maximum Entropy Method (MEM) which is a
stochastic approach to the problem was initially suggested
by Jaynes (1957). Among an infinite number of solutions
to Eq. (1), it helps to choose the one that maximizes its en-
tropy i.e. minimizes the amount of information contained
in the solution. In other words, it is often said that this
method gives the simpliest solution compatible with the
data, I.

Using Bayes’s theorem to evaluate the probability of
the realization of the original image O, knowing the data
I, we have

Prob(O|I) =
Prob(I|O).Prob(O)

Prob(I)
(2)

Prob(I|O) is the conditional probability of getting the
data I given an original image O i.e. it represents the
distribution of the noise. It is given, in the case of uncor-
related Gaussian noise with variance σ2

I by:

Prob(I|O) = exp(−
∑

pixels

(I − P ∗O)2

2σI2
) (3)

The Eq. (2) denominator is independent of O and is con-
sidered as a constant. Prob(O) is the a priori distribution
of the solution O. In the absence of any information on
the solution O except its positivity, the maximum entropy
principle suggests to take

Prob(O) = exp(αS(O)) (4)

where S(O) denotes the entropy of the image O.

Given the data, the maximum likehood principle ap-
plies by maximizing Prob(O|I), or equivalently by maxi-
mizing the product of the two previous equations. Taking
the logarithm, we thus need to maximize

ln(Prob(O|I)) = αS(O) −
∑

pixels

(I − P ∗O)2

2σI2
(5)

which is a linear combination of two terms: the entropy of
the image, and a quantity corresponding to χ2 in statis-
tics measuring the discrepancy between the data and the
predictions of the model.

The solution is found by minimizing

J(O) =
∑

pixels

(I − P ∗O)
2

2σI2
− αS(O) =

χ2

2
− αS(O) (6)

where α is a parameter that can be seen alternatively
as a Lagrangian parameter or a value fixing the relative
weight between the goodness-of-fit and the entropy S. Sev-
eral entropy definitions have been proposed:

– Burg (1987):

Sb = −
∑

pixels

ln(O) (7)

– Frieden (1975):

Sf = −
∑

pixels

O ln(O) (8)

– Gull & Skilling (1991):

Sg =
∑

pixels

O −m−O ln(O/m) (9)

The last definition of the entropy has the advantage of
having a zero maximum when O equals m, but requires
the concept of a model, m, which is in practice the value
of the background. The determination of the α param-
eter is not an easy task and in fact it is a very serious
problem that faces the ME method. In the historic MAX-
ENT algorithm of Skilling and Gull, the choice of α is
such that it must satisfy the ad hoc constraint χ2 = N
when the deconvolution is achieved, N being the num-
ber of degrees of freedom of the system i.e. the number
of data points in the deconvolution problems. But this
choice systematically leads to an under-fitting of the data
(Titterington 1985) which is clearly apparent for imaging
problems with little blurring. In reality, the χ2 statistic is
expected to vary in the range N ±

√
2N from one data re-

alization to another. In the Quantified Maximum Entropy
point of view (Skilling 1989), the optimum value of α is
determined by including its probability P (α) in Bayes’
equation and then by maximizing the marginal probabil-
ity of having α, knowing the data and the model m. In
practice, a value of α which is too large gives a result-
ing image which is too regularized with a large loss of
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resolution. A value which is too small leads to a poorly
regularized solution showing unacceptable artifacts. Tak-
ing a flat model of the prior image softens the discon-
tinuities which may appear paradoxical for astronomical
images containing often some clusters of stars. Therefore
the basic ME method appears to be not very appropriate
for this kind of image which contains high and low spatial
frequencies at the same time. Another point to be noted
is a ringing effect of the MEM algorithm producing arti-
facts around bright sources. To solve these problems while
still using the maximum entropy concept, some enhance-
ments of the MEM method have been proposed. Notic-
ing that neighbouring pixels of reconstructed images with
MAXENT could have values differing a lot in expected
flat regions (Charter 1990), Gull & Skilling introduced
the concepts of hidden image h and Intrinsic Correlation
Function C (ICF) (Gaussian or cubic spline-like) in the
Preblur MAXENT algorithm. The ICF describes a min-
imum scale length of correlation in the desired image O
which is achieved by assuming that

O = C ∗ h (10)

This corresponds to impose a minimum resolution in the
solution O. Since the hidden space image h is not spatially
correlated, this can be regularized by the entropy Sg(h) =∑
h −m− h ln( hm).

Since in astronomical images many scale lengths are
present, the Multi-channel Maximum Entropy Method
(Weir 1991, 1992) uses a set of ICFs having different scale
lengths, each of them defining a channel. The visible-space
image is now formed by weighted summing the visible-
space image channels Oj:

O =
K∑
j=1

pjOj (11)

where K is the number of channels. Like in Preblur
MAXENT, each solution Oj is supposed to be the result
of the convolution between a hidden image hj with a low
pass filter (ICF) Cj:

Oj = Cj ∗ hj (12)

But such a method has several drawbacks:

1. The solution depends on the width of the ICFs
(Bontekoe et al. 1994).

2. There is no rigorous way to fix the weights pj for non
unitary ICFs (Bontekoe et al. 1994).

3. The computation time increases linearly with the num-
ber of pixels.

4. The solution obtained depends on the choice of the
models mj (j = 1..K) which were chosen to be a con-
stant c independent of the channel.

In 1993, Bontekoe et al. (1994) used a special ap-
plication of this method they called Pyramid Maximum
Entropy on IRAS data from the survey database. The
pyramidal approach allows to have constant ICF width,
and the computation time is reduced. It is demonstrated
(Bontekoe et al. 1994) that all weights can be fixed (pj=1
for each channel).

This method eliminates the three first drawbacks, and
gives a better reconstruction of the sharp and smooth
structures. But in addition to the last drawback, a new
one is added: as the images Oj have different sizes (due
to the pyramidal approach), the solution O is built by du-
plicating the pixels of the sub-images Oj of each channel.
This procedure is known to produce artifacts due to the
appearance of high frequencies incompatible with the real
spectrum of the true image Ô. However, this inconvenient
can be easily overcome by duplicating the pixels before
convolving with the ICF (Kester, private communication),
or expanding the channels using linear interpolation. Thus
the introduction of the “pyramid of resolution” has solved
some problems and brought lots of improvements from
the classic ME, but also raised other questions. In the
following developments, we propose another way to use
the information at different scales of resolution using the
appropriate mathematical tool, the wavelet transform. We
show that the problems encountered by Bontekoe et al. are
overcome with this approach, especially the reconstruction
of the object O which becomes natural. Furthermore, the
wavelet transform gives a good framework for using a noise
modeling. This modeling allows to preserve the significant
wavelet coefficients (not due to the noise) from a regular-
ization. The regularization becomes adaptive, depending
on both the position in the image and the scale.

3. Formalism of multiscale MEM

3.1. Multiscale entropy

The concept of entropy following Shannon’s or Skilling
and Gull’s definition is a global quantity calculated on the
whole image O. It is not matched to quantify the distri-
bution of the information at different scales of resolution.
Therefore, we have proposed the concept of multi-scale
entropy of a set of wavelet coefficients {wj} by

Sm(O) =
1

σI

∑
scalesj

∑
pixels

σj(wj(x, y)−mj

−|wj(x, y)| ln
|wj(x, y)|

mj
) (13)

The multi-scale entropy is the addition of the entropy
at each scale.

The coefficients wj are wavelet coefficient, and we take
the absolute value of wj in that definition because the val-
ues of wj can be positive or negative and a negative signal
contains also some information in the wavelet transform.
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The advantage of such a definition is the fact we can use
previous works concerning the wavelet transform and im-
age restoration (Starck & Murtagh 1994), (Murtagh et al.
1995). The noise behaviour has been studied in the wavelet
transform (Starck & Bijaoui 1994) and we can estimate
the standard deviation of the noise σj at the scale j from
the standard deviation of the noise σI in the data (see in
(Starck & Pantin 1995) how to have a robust estimation
of σI).

These estimations can be naturally introduced in our
models mj

mj = kmσj (14)

The model mj at the scale j represents the value taken
by a wavelet coefficient in the absence of any relevant sig-
nal and in practice, it must be a small value compared
to any significant signal value. Following Gull & Skilling
procedure, we take mj as a fraction of the noise because
the value of σj can be considered as a physical limit un-
der which a signal cannot be distinguished from the noise
(km = 1

100).
The term σj which appears in Eq. (13) in front of the

“classical entropy” of Skilling & Gull can be considered as
a renormalization/weighting coefficient from one scale of
resolution to another one.

Extensive literature exists on the wavelet transform
and its applications (Chui 1992; Meyer 1992; Ruskai et al.;
1992; Starck 1993; Cohen et al. 1992). In this application,
we will consider the discrete à trous algorithm (described
in Holdschneider et al. 1989; Bijaoui et al. 1994) for its
simplicity to use. An image O(x, y) is decomposed into
wj(x, y)j = 1, np scales (where np is the total number of
wavelet scales) and a smooth image cnp(x, y) and we can
write:

O(x, y) = cnp(x, y) +

np∑
j=1

wj(x, y) (15)

Each scale wj(x, y) is obtained by calculating the differ-
ence between the last smoothed plane and the new one
resulting from the application of a low-pass filter h on the
last smoothed scale:

cj(k) =
∑
l

h(l) cj−1(k + 2j−1l) (16)

The signal difference wj between two consecutive resolu-
tions is:

wj(k) = cj−1(k) − cj(k) (17)

Thus, each wavelet scale wj contains the structures of the
image O having a given range of resolution/spatial fre-
quencies. The above à trous algorithm has been discussed
in terms of a single index, x, but is easily extendable to

two-dimensional space. The use of the B3 spline leads to
a convolution with a mask of 5× 5:
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In one dimension, this mask is: ( 1

16 ,
1
4 ,

3
8 ,

1
4 ,

1
16).

To facilitate computation, a simplification of this
wavelet is to assume separability in the 2-dimensional case.
In the case of the B3 spline, this leads to a row by row
convolution with ( 1

16 ,
1
4 ,

3
8 ,

1
4 ,

1
16); followed by column by

column convolution.

3.2. Multiscale entropy and multiresolution support

3.2.1. Multiresolution support definition

The multiresolution support was introduced in image
restoration to hold the significant structures at each scale
of resolution (i.e. in each wavelet scale). It consists in
a cube of boolean images, each one corresponding to a
wavelet scale. Such an image has the value TRUE if some
information is present at a given location in the scale, and
FALSE if not. The multiresolution support depends on the
initial image I, the noise level, the chosen algorithm for
the wavelet transform, and perhaps on some external con-
straints that can be imposed by the experimenter having
some a priori knowledge of the solution.

The multiresolution support in generated using the fol-
lowing process:

– Calculate the wavelet transform of the image I using
the chosen transform algorithm (the à trous algorithm
in our case).

– Estimate the standard deviation of the noise in a
wavelet scale j and deduce some significative thresh-
olds (Starck et al. 1994).

– The multiresolution support M is then obtained by
transforming the wavelet scales into binary planes us-
ing the rule:

M(j, x, y) =

{
1 if wj(x, y) ≥ kσj
0 if wj(x, y) < kσj

(18)

The parameter k fixes the threshold level. When con-
sidering a Gaussian and centered (with mean equal to
0) noise, the probability of having a realization of the
noise greater than 3 σ is about 10−3. This value is con-
sidered as a practical limit for a decision to distinguish
between the noise and a real signal. Thus a value k = 3
is generally used.



E. Pantin and J.-L. Starck: Deconvolution of astronomical images using the multiscale maximum entropy method 579

3.2.2. Multiresolution support and multiscale entropy

If the definition 13 is used for the multi-scale entropy,
the regularization acts on the whole image. We want to
fully reconstruct significant structures, without impos-
ing strong regularization, while eliminating efficiently the
noise. Thus the introduction of the multiresolution sup-
port in another definition of the multi-scale entropy leads
to a functional that answers these requirements:

Sms(O) =
1

σI

∑
scalesj

∑
pixels

A(j, x, y)σj(wj(x, y) −mj

−|wj(x, y)| ln
|wj(x, y)|

mj
) (19)

The A function of the scale j and the pixels (x, y) is
A(j, x, y) = 1 −M(j, x, y) i.e. the reciprocal of the mul-
tiresolution support M . In order to avoid some discontinu-
ities in the A function created by such a coarse threshold
of 3 σj, one may possibly impose some smoothness by con-
volving it with a B-spline function with a FWHM varying
with the scale j.

The degree of regularization will be determined at each
scale j, and at each location (x, y), by the value of the
function A(j, x, y): if A(j, x, y) has a value near 1 then
we have strong regularization; and it is weak when A is
around 0.

The entropy Ss measures the amount of information
only at scales and in areas where we have a low signal-
to-noise ratio. We will show in the next section how these
notions can be taken together to yield efficient methods
for filtering and image deconvolution.

4. Deconvolution using multiscale entropy

4.1. Method

We assume that the blurring process of an image is linear.
In our tests, the PSF was space invariant but the method
can be extended to space-variant PSFs.

As in the ME method, we will minimize a functional
of O, but considering an image as a pyramid of differ-
ent scales of resolution in which we try to maximize its
contribution to the multiscale entropy. The functional to
minimize is

J(O) =
∑

pixels

(I − P ∗O)2

2σ2
I

− αSms(O) (20)

Then the final difficulty lies in finding an algorithm to
minimize the functional J(O). We have used the iterative
“one step gradient” method due to its simplicity.

The solution is found by computing the gradient

∇(J(O)) = −P ∗ ∗ (I − P ∗O)

σ2
I

+α
1

σI

∑
scalej

[A(j)σjsgn(w
(O)
j ) ln(

| w(O)
j |
mj

)] ∗ ψ∗j (21)

where ψj(x, y) = 1
2jψ( x2j ,

y
2j ), and ψ is the wavelet func-

tion corresponding to the à trous algorithm (see (Starck
& Bijaoui 1994) for more details about this algorithm).

Then the “one step gradient” algorithm gives the iter-
ative scheme:

On+1 = On − γ∇(J(On)) (22)

Note that the second part of the Eq. (21) has always
a null mean value due to the fact that each scale is con-
volved by ψ∗j (and ψ∗j has a null mean value due to the
admissibility condition of the wavelet function). Then the
flux is not modified in the object O when applying the
iterative scheme (Eq. (22)).

The positivity of the restored image can be ensured
during the iterative process of functional minimization, by
applying a simple positivity constraint (threshold) to the
intermediate solution On. The iterative process is stopped
when the standard deviation of the residuals doesn’t show
significant change (relative variation≤ 10−3, and we check
that the χ2 value is in the range N ±

√
2N (it was always

the case in all the experiments, if not it would mean that
σI value is wrong).

4.2. Choice of the α parameter

In the classic ME, the α parameter quantifies the relative
weight between the goodness-of-fit, or chi-square, and the
degree of smoothness introduced by the entropy. This pa-
rameter is generally constant over the whole image and
therefore depends on the data (signal+noise). In our case,
the degree of regularization level applied on the non sig-
nificant structures at each wavelet scale j is controlled
by the term α

σI
A(j, x, y), and depends therefore on both

the scale j and the location (x, y). The regularization is
performed only at scales and positions where no signal is
detected (A(j, x, y) = 1). Then the α parameter has not
the same importance than in the classical MEM: α has
only to be high enough to regularize the solution at po-
sitions and scales where no signal has been detected. We
found experimentally that

α = 0.5 ∗max(PSF)/σI (23)

produces good results, and for any kind of images.

4.3. Experiments

4.3.1. Application 1

We have tested our algorithm with simulated data. The
simulated image contains an extended object, and several
smaller sources (Fig. 1, upper left). It has been convolved
by a gaussian PSF (σ = 2), and Gaussian noise has been
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Fig. 1. Simulated object (upper left), blurred image (upper right), deconvolved image by MEM (lower left), and deconvolved
image by Multiscale MEM (lower right)

added (Fig. 1, upper right). The ratio between the maxi-
mum in the convolved image and the standard deviation of
the noise is 50. The results of the deconvolution by MEM
and multiscale MEM are shown in Fig. 1 left and right.
The multiscale MEM method leads to a better regulariza-
tion, and the final resolution in the deconvolved image is
better (Fig. 1).

4.3.2. Application 2

In order to give quantitative results on the possibilities
of the multiscale MEM, we have tested it on a simulated
image of the ISOCAM mid-infrared camera put on the in-
frared satellite ISO. The simulation consists in a faint ex-
tended object (galaxy, integrated flux=1 Jy) near a bright
star (point-like: 10 Jy) (Fig. 2 upper left). It has been
blurred using the 1.5′′ pixel field of view PSF, and noise
was added (Fig. 2 upper right): the two objects are mixed
and the galaxy is barely detectable. After deconvolution
using the multiscale MEM (see Fig. 2 bottom right), the
two objects are separated. The restored star has a flux of
10.04 Jy, and the SNR of the reconstructed image is 22.4

dB (SNR = 10 log10(
σ2

Signal

σ2
Residuals

)). These results show that

multiscale MEM is very efficient when we compare it to
other methods (see Tab. 1), and prove the reliability of the
photometry after deconvolution. It is clear in this exam-
ple that photometry cannot always be done directly from
the data, and a deconvolution is often necessary, especially
when objects are mixed.

4.3.3. Application 3

We have tested our deconvolution method on astronomi-
cal 64 by 64 pixels images obtained with an mid-infrared
camera: TIMMI placed on the 3.6 ESO telescope (Chile).
The object studied is the β Pictoris dust disk. The image
was obtained by integrating 5h on-source. The raw im-
age has a peak signal to noise ratio of 80. It is strongly
blurred by a combination of seeing, diffraction (0.7 arcsec
on a 3 m class telescope) and additive Gaussian noise. The
initial disk shape in the original image has been lost after
the convolution with the PSF. Thus, we need to decon-
volve them to get the best information on this object i.e.
the exact profile and thickness of the disk and compare
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Fig. 2. Simulated ISOCAM image (upper left), blurred image using the 1.5 pixel field of view PSF (upper right), the deconvolved
image by MEM (lower left), and deconvolved image by multiscale MEM (lower right)

it to models of thermal dust emission (Lagage & Pantin
1994). We used the multiscale ME method to deconvolve
this image. The algorithm took about thirty iterations to
converge. The deconvolved image (Fig. 3) shows that the
disk is extended at 10 µm and asymmetrical (the right side
is more extended than the left side). We have compared
our method to the standard Richardson-Lucy (Richardson
1972), (Lucy 1974) algorithm which shows poor regular-
ization (see Fig. 3, at upper right) and an inability to
restore faint structures; and also to the classical MEM.
The deconvolved image using the multiscale ME method
proves to be more efficient for regularizing than the other
standard methods, and leads to a good reconstruction of
the faintest structures of the dust disk.

5. Conclusion

In the field of signal deconvolution, the maximum entropy
method gave an attractive way of regularization and im-
proved a lot the existing techniques. However, several diffi-
culties were remaining: the most important is perhaps the
inability to find an optimal regularizing parameter (α) to

reconstruct efficiently the high and low spatial frequencies
at the same time while having a good regularization.

Compared to the classical MEM, our method has a
fixed α parameter and there is no need to determine it:
it is the same for every image. The iterative scheme al-
ways converged in our experiments. Furthermore, this new
method is flux-conservative and thus reliable photometry
can be done on the deconvolved image. In Bontekoe et
al. 1994, it was noticed that the “models” in the multi-
channel MEM deconvolution should be linked to a physical
quantity. We have shown here that this is the case since
it is a fraction of the standard deviation of the noise at
a given scale of resolution. Bontekoe et al. have opened a
new way of thinking in terms of multiresolution decompo-
sition, but they did not use the appropriate mathematical
tool which is the wavelets decomposition. Using such an
approach, we have proven that many problems they en-
countered are naturally solved. The result is an efficient
“easy to use” algorithm since the user has no parameter
to supply.
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Fig. 3. Beta Pictoris: raw image (upper left) and deconvolved images using: Richardson-Lucy’s method (upper right), classical
MEM (lower left), and multiscale MEM (lower right)
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Appendix 1: Multiscale entropy applied to filtering

Filtering using the multiscale entropy leads to the mini-
mization of:

J(Ĩ) =
∑

pixels

(I − Ĩ)2

2σ2
I

− αSms(Ĩ) (24)

where I and Ĩ are the noisy and filtered image, α fixed
experimentally to 0.5/σI, σI the standard deviation of the
noise in the data I.

Then, the gradient of the functional with respect to Ĩ
must be calculated:

∇(J(Ĩ)) = −(I − Ĩ)
σ2
I

+
α

σI

∑
scalesj

[A(j)σjsgn(w
(Ĩ)
j ) log(

| w(Ĩ)
j |
mj

)] ∗ ψ∗j (25)

where ψj(x, y) = 1
2jψ( x2j ,

y
2j ), and ψ is the wavelet func-

tion corresponding to the à trous algorithm.

Then the “one step gradient” algorithm gives the iter-
ative scheme:

Ĩn+1 = Ĩn − γ∇(J(Ĩn)) (26)

where γ is its step.
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Fig. 4. a) original noisy spectrum; b) original spectrum and filtered spectrum by the median superimposed. c) filtered spectrum
(using Daubechies coefficient 8, and Donoho and Johnstone “universal” thresholding); d) both a) and c) superimposed. e)
filtered spectrum by multiscale MEM; f) both a) and f) superimposed
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Table 1. Quantitative results extracted from three images deconvolved by Lucy’s method, MEM, and multiscale MEM. The
first line gives the flux of the star. The second one, the integrated flux in the extended object, and the last line, the signal to
noise ratio of the deconvolved images. Since the two objects are mixed in the degraded image, it is impossible to attribute a
photometric measure to each one

Original image Data Lucy MEM Multiscale MEM

star Flux (Jy) 10 4.27 14.1 10.04

ext. object Flux (Jy) 1 0.33 1.33 0.94

SNR (dB) ∞ 1.03 4.51 4.45 22.4

Fig. 5. β Pictoris dust disk: Raw image (left) and filtered image (right) using multiscale ME

5.1. Experiments

Figure 4a shows a noisy spectrum. Upper right (4b), we see
the original and filtered (by the median) spectrum. The
median filtering is relatively efficient but it does not re-
store well the lines, i.e. some interesting information have
been suppressed during the filtering. Lower left (e), we see
the same spectrum, but filtered by the multiscale max-
imum entropy method, and right (f), both (a) and (e)
superimposed. The filtering is efficient, the lines are kept,
and no artifacts appears. To illustrate the damage that can
result from another wavelet transform, and another noise
suppression policy, the middle (c) version shows the result
of applying Daubechies’s coefficient 8 (Cohen et al. 1992),
a compactly-supported orthonormal wavelet. This was fol-
lowed by thresholding based on estimated variance of the
coefficients (Donoho & Johnstone 1993), but not taking
into account the image’s noise properties as we have done
(see Nason 1993). One sees immediately that a problem-
(or image-) driven choice of wavelet and filtering strategy
is indispensable.

We have also tested our filtering method on a mid-
infrared image of the β Pictoris dust disk described in

section “deconvolution experiments”, but obtained with
only 1h of integration time (see Fig. 5). The peak signal
to noise ratio is around 30. After filtering, the disk appears
clearly. For detection of faint structures (the disk here),
one can calculate that the application of such a filtering
method on this image provides a gain of observing time of
a factor around 60 (in the case of gaussian additive noise
leading to a signal to noise ratio

varying like the square root of the integration time).
Figure 6 shows a profile of the object (crosses). The pro-
files of the filtered images of the dust disk using multiscale
maximum entropy filtering (plain line) and Wiener filter-
ing (dots) are superimposed. Contrary to the Wiener fil-
tering, the multiscale maximum entropy algorithm doesn’t
degrade the resolution, while filtering efficiently.
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