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Abstract

Background: The complex composition of different cell types within a tissue can be estimated by deconvolution

of bulk gene expression profiles or with various single-cell sequencing approaches. Alternatively, DNA methylation

(DNAm) profiles have been used to establish an atlas for multiple human tissues and cell types. DNAm is

particularly suitable for deconvolution of cell types because each CG dinucleotide (CpG site) has only two states per

DNA strand—methylated or non-methylated—and these epigenetic modifications are very consistent during

cellular differentiation. So far, deconvolution of DNAm profiles implies complex signatures of many CpGs that are

often measured by genome-wide analysis with Illumina BeadChip microarrays. In this study, we investigated if the

characterization of cell types in tissue is also feasible with individual cell type-specific CpG sites, which can be

addressed by targeted analysis, such as pyrosequencing.

Results: We compiled and curated 579 Illumina 450k BeadChip DNAm profiles of 14 different non-malignant

human cell types. A training and validation strategy was applied to identify and test for cell type-specific CpGs. We

initially focused on estimating the relative amount of fibroblasts using two CpGs that were either hypermethylated

or hypomethylated in fibroblasts. The combination of these two DNAm levels into a “FibroScore” correlated with

the state of fibrosis and was associated with overall survival in various types of cancer. Furthermore, we identified

hypomethylated CpGs for leukocytes, endothelial cells, epithelial cells, hepatocytes, glia, neurons, fibroblasts, and

induced pluripotent stem cells. The accuracy of this eight CpG signature was tested in additional BeadChip datasets

of defined cell mixtures and the results were comparable to previously published signatures based on several

thousand CpGs. Finally, we established and validated pyrosequencing assays for the relevant CpGs that can be

utilized for classification and deconvolution of cell types.

Conclusion: This proof of concept study demonstrates that DNAm analysis at individual CpGs reflects the cellular

composition of cellular mixtures and different tissues. Targeted analysis of these genomic regions facilitates robust

methods for application in basic research and clinical settings.
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Background
The human body comprises hundreds of different cell

types, but a clear and commonly accepted classification

is still elusive [1]. The cellular characterization is usually

based on ontogenetic origin within a tissue, cellular

morphology, and particularly on expression of cell type-

specific surface markers. These markers can also be used

to isolate and purify distinct cellular subsets, e.g., by flow

cytometry upon labeling with specific antibodies. How-

ever, most cell types do not have a unique panel of sur-

face markers and bulk analysis without physical sorting

masks the contribution of rare cell types [2, 3]. In the

advent of single-cell omics data, e.g., by transcriptomics,

ATAC-seq, or even single-cell proteomics, it is possible

to discern between cells by molecular means on a cell-

by-cell basis [4]. However, these methods require fresh

material, they are relatively expensive, and clear demar-

cation of cell types remains a challenge. Alternatively, it

is possible to use transcriptomic or epigenetic bulk data

to estimate the cellular composition in tissues based on

deconvolution algorithms [2, 5–8]. Better insight into

the composition of cell types may support pathological

assessment, target identification, and staging of various

diseases [6, 9]. To this end, a robust, simple, and cost-

effective method to estimate the cellular composition in

a given tissue sample would be advantageous.

DNA methylation (DNAm) at CG dinucleotides (CpGs)

is a stable and heritable modification that is directly linked

to cellular differentiation [9–11]. It can be analyzed quan-

titatively on single base resolution and—in contrast to

gene expression—every cell has only two alleles, which

makes DNAm ideally suited for deconvolution approaches

[12]. Amongst the first applications was the estimation of

leukocyte subsets in blood [5]. More recently, it has been

shown that comprehensive human cell type DNAm pro-

files facilitate the estimation of the origin of circulating

cell-free DNA [7]. Deconvolution may either be based on

a reference dataset, or it can be trained reference-free [9,

13, 14]. So far, epigenetic deconvolution was mostly based

on genome-wide DNAm profiles, generated by the Illu-

mina BeadChip technology. This method is relatively cost-

effective and provides a very broad insight into genome-

wide DNAm patterns. However, targeted methods for

DNAm analysis, such as pyrosequencing of specific CpGs,

may facilitate faster and even more cost-efficient analysis

with less starting material, while reducing batch to batch

variation and other technical challenges [15]. We have re-

cently developed targeted DNAm signatures for pyrose-

quencing of individual CpGs to achieve deconvolution of

leukocyte subsets that correlate with conventional blood

counts [16]. In this study, we followed the hypothesis that

the relative proportion of fibroblasts or even the complex

cellular composition of human tissues can be estimated by

targeted analysis of DNAm at individual CpGs.

Results
Compilation of global DNAm profiles of different cell

types

To identify cell type-specific CpGs for targeted methyla-

tion assays and tissue deconvolution, we curated and

compiled 579 samples from 46 different studies, mostly

generated with the Illumina 450K BeadChip technology.

We only considered non-malignant samples and re-

trieved datasets of the following purified and character-

ized human cell types: fibroblasts, mesenchymal stromal

cells (MSCs), adipocytes, astrocytes, leukocytes, endothe-

lial cells, melanocytes, epithelial cells, glia, hepatocytes,

muscle cells, muscle stem cells, neurons, and induced

pluripotent stem cells (iPSCs). Four hundred nine sam-

ples were used as a training set and 170 samples from

independent studies were used as a validation set (Add-

itional file 1: Fig. S1A and Table S1) [7, 17–61]. Multidi-

mensional scaling (MDS) of genome-wide DNAm

profiles revealed that samples of the same cell type clus-

ter together across different studies, supporting the no-

tion that the cell type has major impact on DNAm

patterns (Fig. 1a; Additional file 1: Fig. S1B).

DNA methylation at fibroblast-associated CpGs can be

indicative of fibrosis

Initially, we selected CpGs that might discern fibroblasts

from other cell types. Such fibroblast-specific DNAm

patterns could reflect the relative proportion of fibro-

blasts, for example for staging of fibrotic diseases. In our

previous work, we addressed differences in DNAm pro-

files of fibroblasts versus MSCs, albeit classification of

these cell types is hardly reflected by clear functional or

molecular characteristics [63]. This is also reflected by

their close relationship in the MDS plot. Therefore, we

have decided to group both cell types together into the

fibroblast category for subsequent analysis. To select

fibroblast-specific CpGs that are either characteristically

methylated or unmethylated in fibroblasts, we filtered

for CpGs based on (1) the highest difference in mean

DNAm in fibroblasts versus other cells and (2) small

variance in DNAm levels within each of the two groups

(Fig. 1b). CpG candidates were evaluated in terms of

classification performance and ranked based on results

from a 10-fold cross-validation setup. Based on this, we

selected cg18096962 (associated with the lncRNA RP11-

60A8.1) as hypermethylated and cg18005280 (associated

with the gene leucine rich repeats and immunoglobulin

like domains 1 [LRIG1]) as hypomethylated CpG site

(Additional file 1: Fig. S1C,D). The difference in DNAm

levels between these CpGs ([β value at cg18096962] − [β

value at cg18005280]), referred to as FibroScore, could

clearly distinguish fibroblasts from most other cell types

(Fig. 1c, d). Only muscle stem cells, which have been dif-

ferentiated for 24 h towards the myogenic lineage and
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Fig. 1 Selection of cell type-specific CpGs for fibroblasts. a Multidimensional scaling (MDS) plot of the training data set (n = 409) demonstrates

that samples cluster by cell type across different studies. All CpGs shared between the 450K and EPIC BeadChip were considered (except XY

chromosomes). b Differential mean DNAm levels of fibroblasts/MSCs versus all other cell types were plotted against the sum of variances within

both groups. The CpGs, which have been selected for the FibroScore, are indicated. c DNAm levels (β values) of the two selected CpGs of the

FibroScore in the training set. Numbers correspond to classification accuracy in percentage values. d DNAm levels of the two selected CpGs and

the FibroScore for the validation set. Only muscle stem cells, which might closely resemble MSCs, were classified with fibroblasts/MSCs. Numbers

correspond to classification accuracy in percentage values. e DNAm levels of the two selected CpGs and the FibroScore as determined by

pyrosequencing in samples of different cell types. Almost all cell preparations (with exception of the HaCat cell line) were classified correctly. f

The FibroScore is significantly higher in lung fibrosis versus healthy control tissue (GSE63704; 450K data) [62]. ***p < 0.001. g The FibroScore is

significantly higher in liver cirrhosis versus healthy control tissue (GSE60753; 450K data) [29]. *p < 0.05
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might therefore closely resemble MSCs, were classified

in the fibroblast category [50]. To further validate applic-

ability of these CpG sites for targeted DNAm analysis, we

analyzed DNA samples from cultured cells, frozen blood,

and commonly used cell lines with pyrosequencing (Fig. 1e).

Only one immortalized cell line was misclassified by the

FibroScore: HaCat (spontaneously transformed keratinocytes

for epithelial cells), which might be due to aberrant DNAm

patterns by malignant transformation. Thus, targeted analysis

of the two CpGs might be indicative of the fraction of fibro-

blasts/MSCs in tissue. In fact, when we applied the Fibro-

Score to Illumina BeadChip datasets of lung fibrosis

(GSE63704, Fig. 1f; Additional file 1: Fig. S1E) and liver cir-

rhosis (GSE60753, Fig. 1g; Additional file 1: Fig. S1F), we ob-

served a significantly higher FibroScore in the fibrotic tissues

as compared to healthy controls (two-sided t test: p= 2.51 ×

10−12, and p= 0.0396, respectively) [29, 62].

FibroScore correlates with overall survival in various

types of cancer

Cancer-associated fibroblasts (CAFs) determine the

tumor microenvironment and play a crucial role for

progression of malignancies [64]. Therefore, we antici-

pated that the FibroScore might also be of prognostic

relevance for various types of cancers. To address this

question, we utilized 32 datasets from The Cancer Gen-

ome Atlas (TCGA) and determined the FibroScore based

on the DNAm at the two relevant CpGs. For each

cancer type, the patient data was then stratified by

the median FibroScore. A higher FibroScore was indi-

cative of a significantly worse overall survival in chro-

mophobe renal cell carcinoma (TCGA-KICH, p =

0.001), mesothelioma (TCGA-MESO, p = 0.002), uter-

ine corpus endometrial carcinoma (TCGA-UCEC, p =

0.034), adrenocortical carcinoma (TCGA-ACC, p =

0.034), and head and neck squamous cell carcinoma

(TCGA-HNSC, p = 0.046) (Fig. 2). Brain lower-grade

glioma showed a significantly better survival outcome

in patients with a higher FibroScore (TCGA-LGG,

p = < 0.001). These results are reflected in the cox-

proportional hazards adjusted survival curves for

FibroScore (Additional file 1: Fig. S2). For all other

cancer types, the stratification by the median Fibro-

Score did not reveal a significant association with

Fig. 2 The FibroScore is associated with overall survival in several types of cancer. Hazards ratios from Cox proportional hazards models for

datasets from The Cancer Genome Atlas (TCGA). Depicted are six types of cancer for which there is a significant difference in overall survival for

patients with either high or low FibroScore. Unless specified otherwise, models take into account sex, age, tumor stage, and the FibroScore

stratified by the median (450K BeadChip data). If some of these parameters were not available, we indicated missing cofactors next to the

reference: s = sex, a = age, and n = stage
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overall survival (Additional file 1: Fig. S3). These re-

sults support the notion that the DNAm at fibroblast-

associated CpGs might be indicative of the fraction of

CAFs, which is relevant for progression of various

types of cancer.

Deconvolution of cell types based on individual cell type-

specific CpGs

Subsequently, we followed the question if targeted ana-

lysis of individual CpGs might also reflect the

composition of tissues. To this end, we have identified

characteristic CpG sites for additional cell types using a

similar procedure of CpG selection as mentioned above

(difference in mean DNAm, variance in DNAm levels

and classification performance). Notably, for all cell

types—except for iPSCs, which resemble a ground state

of non-differentiated cells—we identified more hypo-

methylated than hypermethylated CpGs in our feature

selection (Fig. 3a). One hypomethylated CpG site was se-

lected for every cell type, most of which were within

Fig. 3 Cell type-specific CpG sites are preferentially hypomethylated. a Selection of cell type-specific CpGs for leukocytes, endothelial cells,

epithelial cells, fibroblasts/MSCs, glia, hepatocytes, neurons, and iPSCs. The difference of mean β values of each cell type versus all other cell types

was plotted against the sum of variances within both groups. CpGs for subsequent deconvolution are highlighted. b DNAm levels of the eight

selected CpGs in the training, validation, and pyrosequencing datasets. The vast majority of samples revealed the expected cell type-specific

hypomethylation, albeit pyrosequencing of liver cell lines (Hep3B and HuH-7) did not reveal hypomethylation at cg27197524 as expected for

primary cells. Glia and neuron samples were not available for pyrosequencing. Numbers correspond to classification accuracy in

percentage values
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introns and exons of corresponding genes (Additional

file 1: Fig. S4): cg23068797 (DNM2, dynamin-2) for fi-

broblasts, cg10673833 (MYO1G, myosin IG) for leuko-

cytes, cg06631999 (STMN1, stathmin) for epithelial cells,

cg27197524 (POLE, DNA polymerase epsilon catalytic

subunit A) for hepatocytes, cg06421238 (WSCD1, WSC

domain-containing protein 1) for endothelial cells,

cg27309098 (AGAP1, Arf-GAP with GTPase, ANK re-

peat and PH domain-containing protein 1) for glia,

cg09998451 (RAB3A, ras-related protein Rab-3A) for

neurons, and cg21548464 (lncRNA DLEU1, deleted in

lymphocytic leukemia 1) for iPSCs [65, 66]. Cell type-

specific hypomethylation was validated with the Illumina

BeadChip data from the validation set and by pyrose-

quencing of various cell types and tissues (Fig. 3b). To

estimate if the cell type-specific differential DNAm

might also be reflected in gene expression levels, we uti-

lized the Primary Cell Atlas [67]. In fact, MYO1G,

WSCD1, RAB3A, and DLEU1 seemed to reveal cell type-

specific upregulation, albeit only the CpG for MYO1G

was located in the promoter region (Additional file 1:

Fig. S5).

We used the mean DNAm levels for the selected CpGs

in eight distinct cell types in the training dataset as our

reference matrix when applying the non-negative least

squares (NNLS) deconvolution algorithm (Fig. 4a; Add-

itional file 2). The NNLS algorithm could then be used

to generate estimates for the cellular composition of tis-

sues and DNA mixes, based on the DNAm of eight

CpGs. To assess the performance of our deconvolution

model, we used a 450K Illumina BeadChip dataset of

neuron-glia-DNA-mixes in incremental proportions

[68]. Our predictions correlated very well with the neur-

onal/glial proportions, with only a small fraction of other

cell types being predicted as present (Fig. 4b; Additional

file 1: Fig. S6A). Alternatively, we tested non-negative

matrix factorization (NMF) and EpiDISH, which performed

not as well as the NNLS approach (Additional file 1: Fig.

S6A,B) [69, 70]. Next, we tested the deconvolution perform-

ance on 450K data from in vitro DNA mixes of various dif-

ferent cell types [7]. Our training set did not include

categories for lung and colon epithelial cells and therefore

we assigned them to our epithelial cell category. Again, the

predictions of our NNLS approach overall closely repre-

sented the real composition of cell types and the results were

similar to the previously described deconvolution results that

considered about 6000 CpGs [7] (Fig. 4c; Additional file 1:

Fig. S6C). We then tested if deconvolution of different cell

types would also be feasible by targeted methods. Therefore,

we prepared five in vitro DNA mixes of five different cell

types in varying proportions and analyzed all cell type-

specific CpGs by pyrosequencing. The estimated compos-

ition closely resembled the previously mixed fractions

(Fig.4d; Additional file 1: Fig. S6D).

Validation of our deconvolution approach for complex

tissue was hampered by the availability of DNAm pro-

files for samples with a defined composition of cell types.

Therefore, we applied our deconvolution to various non-

malignant tissue samples from TCGA (Additional file 1:

Fig. S7A). Overall, the estimates for the different cell

types are compatible with the assumed real cellular com-

position of the tissue. Furthermore, we have also applied

our targeted pyrosequencing approach to various DNA

samples from tissues, and the predictions indicated simi-

lar composition of different cell types as estimated for

the Illumina BeadChip data (Additional file 1: Fig. S7B).

Discussion
Epigenetic modifications govern cellular differentiation

into specific lineages and therefore DNAm is ideally

suited for cellular characterization [71–73]. Previous ap-

proaches for DNAm-based deconvolution of different

cell types utilized larger signatures with multiple CpGs

from Illumina BeadChip datasets [5, 7, 14]. Our proof of

concept study demonstrates that estimates for the cellu-

lar composition are also feasible by targeted analysis of

individual CpGs. Currently, classification of cell types is

often based on antibody detection of individual epi-

topes—thus, estimates of the cellular composition by in-

dividual CpGs may be feasible, too.

There is always a trade-off between different

methods: combining a multitude of CpGs into bio-

informatic predictors generally increases the precision

of epigenetic signatures [74]. On the other hand, the

precision of DNAm measurements at individual CpGs

is higher in pyrosequencing data as compared to β

values on Illumina BeadChips [75]. Furthermore, the

choice of regimen depends on various other aspects

as cost, amount of DNA, and privacy regulations

(summarized in Additional file 1: Table S2): The an-

ticipated costs for consumables may vary considerably

between different countries and institutions, but they

are projected to be lower for pyrosequencing than for

Illumina BeadChips. It is not trivial to compare work-

ing time as this is largely dependent on the number

of samples that can be processed in parallel. However,

the targeted analysis with pyrosequencing is feasible

within 2 to 3 days, whereas processing and analysis of

Illumina BeadChips takes longer in most core facil-

ities. The recommended amount of genomic DNA is

lower for pyrosequencing (about 10–20 ng per reac-

tion) than for Illumina BeadChips (250–500 ng DNA,

albeit also feasible with less [7]). The availability of

instrumentation and of bioinformatics support needs

to be considered, but again these requirements are

overall lower for targeted sequencing. Furthermore,

regulatory requirements, such as data protection, priv-

acy regulations, and certification of the procedures,
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may be easier met with targeted approaches. While

we focused on pyrosequencing in this study, there are

several alternative approaches for site-specific DNAm

analysis, such as the Sequenom’s EpiTYPER assay,

Single Base Primer Extension Assay (SNaPshot), droplet

digital PCR (ddPCR), or bisulfite amplicon sequencing

(BA-seq). In a recent study, we compared the accuracy of

pyrosequencing, ddPCR and BA-seq for epigenetic age

Fig. 4 Deconvolution of cell mixtures based on individual cell type-specific CpGs. a Heatmap of mean β values of the reference matrix (450K data

of the training set), which is used for deconvolution. b Deconvolution of in vitro neuron-glia-DNA-mixes from dataset GSE41826 [68]. The

predicted cell fractions by our NNLS-based deconvolution with eight CpGs are depicted. c Deconvolution of eight different in vitro DNA mixes

from dataset GSE122126 [7]. The real composition of DNA fractions is plotted next to the predictions by the signatures of Moss et al. (estimates

for leukocyte subsets, epithelial cells, and others were combined). The estimates with our NNLS model closely resembled the DNA mixtures of

different cell types. Data for DNA mix 4 was lacking one of the eight CpGs and was therefore excluded. d Deconvolution of in vitro DNA mixes

measured with pyrosequencing. Five different mixes of five different cell types in different proportions were measured at the eight different sites.

Shown are mixed versus estimated cellular fractions with our NNLS-based deconvolution
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predictions [76]: pyrosequencing provided very robust re-

sults, albeit the PCR bias might be smaller in ddPCR. The

accuracy was slightly lower for BA-seq, but this method

enables longer reads with more neighboring CpGs that

may be considered for pattern analysis and it can facilitate

multiplexing [77]. In principle, the cell type-specific gen-

omic regions identified in this study could also be ad-

dressed by these alternative methods for site-specific

DNAm analysis. Taken together, genome scale approaches

with larger libraries of CpG sites as well as targeted

methods have advantages and limitations, which need to

be considered.

Albeit feature selection for cell type-specific CpGs did

not take biological relevance into consideration, several

of them were associated with potentially functionally

relevant genes. DNAm and gene expression are often

correlated, but not always in the expected direction of

negative for promoter CpGs and positive for gene-body

CpGs [22]. Particularly, the hypomethylation in

cg10673833, which is located in the promoter region of

MYO1G, may contribute to higher expression of this

gene in leukocytes. It needs to be considered that regula-

tion of gene expression is also dependent on many other

regulatory mechanisms and epigenetic modifications,

such as histone code, DNA accessibility, and higher

order chromatin conformation. These features may also

be cell type-specific, and it is conceivable they can also

be utilized for cellular deconvolution in the future.

Fibroblasts are embedded into the extracellular matrix

in native tissue, but there is no distinct cell marker that

allows reliable quantification of this subset. Our Fibro-

Score was significantly increased in lung fibrosis and

liver cirrhosis. Targeted pyrosequencing of the two

CpGs may therefore provide a simple estimate for rela-

tive changes of fibroblasts, e.g., for staging of fibrotic dis-

eases. Furthermore, cancer-associated fibroblasts (CAFs)

play a central role for tumorigenesis, progression, and

metastasis in many cancers [78, 79]. It has been shown

that the fraction of CAFs, which was estimated for ex-

ample by the percentage of cells that stained positive for

alpha smooth muscle actin, is associated with overall

survival in several types of solid cancer [80, 81]. Our

findings support the notion that an epigenetic fibroblast

signature can support stratification of cancer samples. In

the future, it will be important to better understand the

epigenetic heterogeneity of CAFs and how these signa-

tures are affected by epigenetic aberrations of the malig-

nant clone. While the FibroScore may be indicative of

the relative fraction of fibroblasts in tissue, it does not

provide a quantitative measure for the percentage of fi-

broblasts. To this end, we have further developed our

targeted approach for deconvolution of various cell types

in tissue. It is difficult to access the accuracy of our

NNLS-based deconvolution for tissue samples, since we

were lacking precise and validated information on their

cellular composition. Nevertheless, the results of the

in vitro mixes showed that deconvolution with individual

cell type-specific CpGs is feasible.

A bottleneck of our analysis is the limited number of

defined cellular subsets with available DNAm profiles.

The lack of precise measures to distinguish between cell

types is also reflected by the ongoing quest of the Hu-

man Cell Atlas Project, to define all human cell types in

terms of distinctive molecular profiles and to connect

this information with classical cellular descriptions (such

as location and morphology) [1]. For example, fibro-

blasts and MSCs could possibly resemble the same type

of cell [82]. On the other hand, fibroblasts are very het-

erogeneous and can differ greatly depending on their tis-

sue of origin [83, 84]. For leukocyte subsets, it has been

suggested that particularly cell subset-specific hypome-

thylation is permissive for gene expression and regulates

corresponding cell functions [85]. Indeed, in our ana-

lysis, cell type-specific CpGs were predominantly hypo-

methylated—with the exception of iPSCs that resemble a

rather non-differentiated ground state. In previous work,

we have extensively studied characteristic DNAm pat-

terns of hematopoietic subsets [16], but we have chosen

to not over-represent the hematopoietic compartment in

our deconvolution approach and to therefore combine

all leukocytes into one category. Our hypomethylated

CpGs for leukocytes, fibroblasts, endothelial cells, epi-

thelial cells, hepatocytes, glia, neurons, and iPSCs cannot

span the many facets of cellular classification but at least

most cell types can be subordinated to at least one of

these broad categories.

Conclusions
Our results demonstrate that individual CpGs, which are

particularly hypomethylated in specific cell types, can be

used to estimate the fraction of fibroblasts or the com-

position of cellular mixes and tissues. In contrast to

genome-wide DNAm profiles, targeted analysis, e.g., by

pyrosequencing, provides new perspectives for small

amounts of DNA and to derive robust procedures ac-

cording to directives for in vitro diagnostic devices. Such

analysis may be useful to gain insight into the compos-

ition of unknown tissue specimen or to correlate the

percentage of specific cellular subsets with clinical pa-

rameters. Furthermore, it might provide estimates for

the composition of cell-free DNA (cfDNA), which is in-

creasingly relevant for liquid biopsy [7, 86].

Methods
Data acquisition and processing of DNAm profiles

We compiled a curated dataset of DNAm profiles (450K

and EPIC Illumina BeadChip platforms) of well-

characterized and non-malignant human cell types. All
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analysis and data retrieval was performed with the R

programming language v3.6.2 and functions from Bio-

conductor v3.9. The data was retrieved from Gene Ex-

pression Omnibus (through the GEOquery v2.52.0 R

package (GEOquery, RRID:SCR_000146), Additional file

1: Table S1), and data processing was performed using

the minfi v1.30.0 R package (minfi, RRID:SCR_012830)

and in-house scripts. Features were limited to CpGs

shared between the 450K and EPIC platforms, and we

excluded probes related to sexual chromosomes and

probes not shared across all samples (missing data),

resulting in 415,366 CpGs for further selection. During

the data acquisition process (at time of analysis), several

samples and features were dropped due to conflicting or

missing names, bad file formatting, and missing data. In

the end, we had a total of 579 samples from 14 different

cell types. For samples where raw data was available

(IDAT files), ssNoob normalization method was applied

[87]; otherwise, no additional normalization of beta

values was performed. To avoid bias and overfitting,

samples were divided into two independent datasets, a

training (n = 409) and validation set (n = 170). Datasets

from The Cancer Genome Atlas (TCGA) project (level 1

methylation array data) were downloaded and prepro-

cessed with the TCGAbiolinks v2.12.6 (TCGAbiolinks,

RRID:SCR_017683) and SeSAMe v1.2.0 packages in R

(except for TCGA-STAD, which at the time of the ana-

lysis was unreachable) following their respective pipe-

lines (Fig. 2; Additional file 1: Fig. S2) [88, 89].

Gene expression data (Affymetrix UG 133 Plus 2.0)

from corresponding genes of the selected cell type-

specific CpGs was extracted from www.biogps.org and

the Primary Cell Atlas dataset [67]. Groups have been

adjusted to fit the selected cell types. Redundant samples

(e.g., time course experiments), experimentally treated

samples (e.g., drugs, antibodies), tissue samples, and cells

differentiated from iPSC or ES cells have been removed

from the dataset (from a total of 754 samples, down to

383). If different probe sets were available for one gene,

we selected the one that addressed the entire gene and

correlated best with gene expression.

Feature selection and signatures for classification and

deconvolution

In order to find the best CpGs to perform classification,

we subjected the training data to a stratified k-fold

cross-validation setup (k = 10). We defined Ci as our cell

of interest and Cother as the class that englobes all the

other cell types. For a given fold, we calculate the differ-

ence in means between Ci and Cother (dMean) and the

sum of variances within Ci and Cother (sVar) for each

CpG. The relationship between mean and variances is

exemplified in Fig. 1b, where we assume that CpGs with

higher absolute dMean, and lower sVar were considered

more discriminative. To capture a set of discriminative

CpGs, we define a parabola function and select all CpGs

for which y < (ax)2 (Fig. 1b). Initially, a is set to 0.1. If

less than 10 hypermethylated (x > 0) or 10 hypomethy-

lated (x < 0) CpGs are selected, a is incremented by 0.1

until the previous criteria is reached. Next, we compute

the area under the precision-recall curve (AUPR) on the

remaining folds and scale it by the absolute dMean [90].

We consider here hypo- and hypermethylated CpGs sep-

arately for estimating dMean. The above procedure is re-

peated for each fold. A final score is obtained by the

average scaled AUPR multiplied by the proportion of

folds where a CpG was selected as a top scoring candi-

date. This is then used to obtain a final CpG ranking.

This measure selects CpGs present in more folds, having

higher AUPR and higher absolute dMean. The best iPSC

CpG was not suitable for primer design for pyrose-

quencing and therefore the second best was selected for

this cell type. For the FibroScore, we used the F1-score

(without scaling) and selected from the best CpGs, one

hypo- and one hypermethylated CpG, after initial

screening with pyrosequencing.

Deconvolution of cell type proportions

Using the cell type-specific CpGs previously selected for

classification and their mean methylation value (for each

cell type) on the training dataset as our reference matrix,

we applied a reference-based non-negative least-squares

(NNLS) algorithm [16, 69]. An application for cell type

deconvolution is provided as a separate Excel tool (Add-

itional file 2) and as the DeconvolutionApp, https://cost-

alab.ukaachen.de/shiny/tmaie/deconapp/ (accessed 24

July 2020) [91].

Survival analysis

A multivariate survival analysis was performed on

TCGA data using Cox proportional hazards models, tak-

ing into account (when available) sex, age, tumor stage,

and the FibroScore stratified by median. Plots were cre-

ated with the survival v3.1.12 and survminer v0.4.6 pack-

ages in R [92, 93]. P values are based on the log-rank

test.

Cell culture

Human mesenchymal stromal cells [94], dermal fibro-

blasts [84], human umbilical vein endothelial cells

(HUVECs) [38], and iPSCs [94, 95] were isolated and

thoroughly characterized as described in our previous

work. Human cell lines HepG2, HuH-7, Hep3B, and

HaCat were maintained at RWTH Aachen Medical

School under standard culture for isolation of genomic

DNA. For HepG2 and HaCat, DNA was directly isolated

from cryopreserved vials.

Schmidt et al. BMC Biology          (2020) 18:178 Page 9 of 13

http://www.biogps.org
https://costalab.ukaachen.de/shiny/tmaie/deconapp/
https://costalab.ukaachen.de/shiny/tmaie/deconapp/


Isolation of genomic DNA and bisulfite conversion

Genomic DNA from cells and tissues was isolated with

the NucleoSpin® Tissue Kit (Macherey-Nagel) and from

blood (150 μl) with the QIAamp DNA Blood Mini Kit

(Qiagen). DNA concentration was measured using the

NanoDrop™ 2000 spectrophotometer (Thermo Scien-

tific™) and bisulfite converted using the EZ DNA Methy-

lation Kit (Zymo Research).

Pyrosequencing

Bisulfite converted DNA (10–20 ng) was amplified with

a region-specific biotinylated/unmodified DNA primer

pair (Metabion; Additional file 1: Table S3) using the

PyroMark PCR Kit (Qiagen) according to the manufac-

tures instructions: Initial activation at 95 °C for 15 min,

then 45 cycles of 30 s at 94 °C, 30 s at 56 °C, and 30 s at

72 °C followed by a final extension at 72 °C for 10 min.

Pyrosequencing was performed on the PyroMark Q96

and the Q48 Autoprep platforms. Exemplary pyrograms

are provided in Additional file 1: Fig. S8. The assay for

the neuron-specific CpG site was designed for the com-

plementary strand to stay within a more reasonable se-

quencing distance. The results were analyzed using the

Pyro Q-CpG 1.0.9 or the PyroMark Q48 Advanced Soft-

ware, respectively.

Quantification and statistical analysis

In total, we used DNAm profiles of 579 samples from 46

different studies for training and validation sets. The py-

rosequencing signatures were validated with four cell

lines, 12 MSC samples, 6 fibroblast samples, 4 HUVEC

preparations, 5 iPSC lines, 8 blood samples, and 14 dif-

ferent tissue samples. To estimate the significance of dif-

ferential DNAm and FibroScore in the lung fibrosis and

liver cirrhosis datasets, we utilized the two-sided t test:

*** < 0.001, ** < 0.01, * < 0.05. P values for overall survival

in cancer are based on the log-rank test.
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