Deconvolution of multiple
images of the same object

Leonid P. Yaroslavsky and H. John Caulfield

Deconvolution of images of the same object from multiple sensors with different point spread functions as
suggested by Berenstein [Proc. IEEE 78, 723 (1990); Stochastic and Neural Methods in Signal
Processing, Image Processing, and Computer Vision, S. Chen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.
1569, 35 (1991)], opens new opportunities in solving the image-deconvolution problem, which has
challenged researchers for years. We attack this problem in a more realistic formulation than that used
by Berenstein; it explicitly takes into account image sensor noise and the necessity for adaptive
restoration with estimation of all required signal and noise parameters directly from the observed noisy
signals. We show that arbitrary restoration accuracy can be achieved by the appropriate choice of the
number of sensor channels and the signal-to-noise ratio in each channel. The results are then extended

to the practically important situation when true images in different sensor channels are not identical.

1. Introduction

Since very early publications in the 1960’s, image
deconvolution has remained one of the most popular
and challenging problems for academic research in
image processing. A number of approaches have
been investigated since that time (for references, see,
for instance Refs. 1-3): inverse and pseudoinverse
filtering, least-squares methods, the method of maxi-
mum entropy, constrained deconvolution and itera-
tive restoration methods, Bayesian methods based on
statistical models of images, etc. All of them show,
more or less, applicability for the models involved into
substantiation of the methods. However, to our
knowledge, no method is regularly used for solving
real, practical problems, except possibly the method
of maximum entropy, which has been shown to be
reasonably effective in stellar astronomy and similar
applications in which images represent small objects
on more or less uniform background. The reason of

When this research was performed, L. P. Yaroslavsky worked
with the Biomedical Engineering and Instrumentation
Problem /National Center for Research Resources, National Insti-
tutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892;
his permanent address is the Institute of Information Transmis-
sion Problems, Russian Academy of Sciences, Yermolovoy 19,
Moscow 101447, Russia. H. J. Caulfield is with the Department of
Physics, Alabama A & M University, Post Office Box 1268, Normal,
Alabama 35762-1268.

Received 16 September 1992; revised manuscript received 29
June 1993.

0003-6935/94/112157-06$06.00/0.

© 1994 Optical Society of America.

the failure for real applicability of the image-
restoration methods is connected to the so-called ill
posedness of the problem, which means that the
number of independent degrees of freedom of the
distorted signal is generally less than that of the
original one. There are two main sources of the loss
of the signal’s degrees of freedom (we do not speak
now about the sensor’s noise, which always accompa-
nies blur introduced by the image sensor). These
are boundary effects and zeros in the frequency
responses of the imaging systems. Because of the
boundary effects, parts of the original signal near the-
borders of the image frame are lost. Because of
zeros in the frequency responses of the imaging
systems, some signal spectral components are lost
and do not come to the output of the systems.
Therefore signal restoration by necessity requires the
use of some additional information about the original
signal that is not present in the observed distorted
signal and should be taken from a priori knowledge or
from somewhere else. So the practical solution of
the deconvolution problem requires a solution to the
problem of defining the ways that natural redun-
dancy of the images can be used for compensation of
the lack of the degrees of freedom. And this problem
is much more involved then the deconvolution prob-
lem itself.

Recently a new essential advance in the problem of
signal deconvolution was made in the research of
Berenstein and his colleagues,*5 who addressed the
problem from a new position. They considered sig-
nal deconvolution from multiple sensors. The main
idea of this approach was, of course, the idea of
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supplying information lost in one sensor from infor-
mation in another sensor. Berenstein proved a fun-
damental mathematical result that, while deconvolu-
tion of a single convolution equation is generally an
ill-posed problem, the inversion of a set of simulta-
neous convolution equations can be made into well-
posed one. Moreover, they provided an exact solu-
tion of the following problem: Under what conditions
do the compactly supported convolution kernels

{S1, Ss, . . ., S} have associated with them compactly
supported deconvolution kernels {Fy, Fy, . . ., F,,} such
that

m

2 S, ®F, =3, (1)

A=l

where 3 is the identity kernel (Dirac delta function)
and ® denotes convolution?

However, this mathematical result is not sufficient
for most image processors and physicists. As a
matter of fact, for physicists it has always been clear
that exact signal restoration is never possible because
of the inevitable measurement errors, or sensor noise,
while restoration with some restricted accuracy is
always possible. So the more realistic questions are
the following: (i) What is potentially the highest
restoration accuracy under the given circumstances?
(ii) In which way can this ultimate accuracy be
achieved? Answering these questions is an objective
of this paper.

In order to answer these questions one should first
of all select a measure for the restoration accuracy.
In this paper we attack the problem by use of the
classical least-squares (Wiener) approach, which in
image-restoration problems goes back to the study by
Helstrom.® In the image-processing community it is
commonly accepted that the criterion of the least
squares is not appropriate for estimation of the image
quality. However, we use this criterion because of
the following reasons: (i) it is simple to use for
analytical treatment; (ii) it gives results that are
transparent and well fitted to intuitive expectations,
and it contains classical results as a specific case; (iii)
it permits straightforward generalization of the re-
sults to the practically important case that occurs
when original signals for different sensors (sensor
channels) are not identical but are only more or less
correlated. As far as the authors know, this case has
not been investigated before. Moreover, one of the
reasons for why the least-squares criterion has ap-
peared not to be appropriate for image-processing
problems is the fact that it usually involves averaging
of the squared restoration error not only over the
sources of measurement errors, or noise, but also
over a set of possible images, or an image ensemble, as
well. This results in neglect of the individual fea-
tures of the images. Many restoration algorithms
attempt to generate an image as close to an ensemble
average image as possible, while just the opposite is
required: we need to restore image features distinc-
tive from the average ones. Therefore we eliminate
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averaging over an image ensemble, and in this way we
provide a potential opportunity for the design of
adaptive filters that are optimal in the sense of a
least-squares criterion for each specific image.”

The paper is arranged in the following order. In
Section 2 we review briefly the image-deconvolution
problem and the least-squares approach to it modified
as mentioned above to permit adaptation. In Sec-
tion 3 we give a least-squares solution of the multiple-
image deconvolution problem and illustrate it with
the results of computer simulation. In Section 4 we
extend the solution to the case of nonidentical images
in different sensor channels. In conclusion we give a
summary of the results. )

2. Image-Deconvolution Problem

Imaging (both good and bad) can be approximated as
a linear operation. In particular,

i(x, y) = s(x, y) ® o(x, y). (1)

That is, image i is the object or perfect image o
convolved with some spread function s. A more
realistic description is (dropping the variables)

i=s®o +n, 2)

where n is unknown noise, which is always present in
any imaging system. The image-restoration prob-
lem is a typical inverse problem: given i, and know-
ing s and something about the expected noise, find a
good estimate of o. The obvious first step is the
Fourier transformation of both sides of Eq. (2).
With obvious notation this becomes

I=S0 +N. (3)

We then select a filter F such that the inverse Fourier
transform of FI is a good estimate of 0. As are most
inverse problems, this one, called image deconvolu-
tion, is ill conditioned. This means that it cannot be
solved uniquely without additional definition of what
we mean by a good estimate.

If no noise is present, a pure inverse filter

Fyy = 1/8 = 8*/|8|? (4)

is an obvious solution. But the inverse filter has two
insurmountable problems. First, if | S| 2 goes to zero
at one or more spatial frequencies, F},, is not defined
at or near those zeros. Second, F;,, takes no account
of the expected noise. Precisely at and near zeros,
we observe a double disaster with Fy,,. That is, F,,
becomes very large precisely when the signal-to-noise
ratio SNR becomes small. Thus it turns out that
Fy,y is a perfect filter for extraction of pure noise from
the signal-plus-noise image.

Helstrom® was able t show that the optimum
(minimum-least-squares restoration error, or Wiener-
type) filter is

F—l SNR 5
W=S1+SNR' (5)



where SNR is the ratio of the signal 0 = s * i power
spectrum |S|2(|O|2), to the noise n power spectrum
{|N|?), on a corresponding frequency:

SNR = |SIX|0[%)o/{IN|?)x (6)

with ( ) and ( ), denoting statistical averaging
over initial images and noise ensembles, respectively.

The meaning of this formula is transparent: when
SNR > 1,
Fy = Fiy = 1/5, ()
and when SNR <« 1,
F,—0, (8)

which means that at these frequencies the signal is
not restored but suppressed even more, although
noise is suppressed as well.  Of course, for implemen-
tation of the filter [Eq. (5)] one should know a priori
the statistical power spectra of the noise and image
ensembles. The power spectrum of the noise em-
semble is not usually a problem. It usually can be
derived from the physical description of the source of
the noise. In many practical cases a model of white
Gaussian noise with known noise spectral density is
appropriate. As for the image statistical power spec-
trum, it is usually assumed that it can be found by
averaging of power spectra of individual images taken
from a set of images similar to the one expected after
restoration.

Numerous experiments with filters of the type
described by Eq. (5) have shown that the restoration
results are far from acceptable. It suppresses noise
efficiently, but at the same time it suppresses the
weak signal spectrum components even more, and
these components are the most important part of the
signal since they are responsible for image contours
and other key features that distinguish one image
from another. The solution to this problem lies in
adaptation to the image under restoration. It means
that we should look for the filter that minimizes the
squared restoration error for the given observed
image. That is, we should eliminate averaging of the
error over an image ensemble. It was shown’ that in
this case the optimal restoration filter has the same
frequency response [Eq. (5)] except that, instead of
the averaged power spectrum of the image ensemble
(|0]2)o, one should use for the filter design the power
spectrum of the initial image itself, |O|2. Of course,
this spectrum is not known since we observe only the
signal i distorted by blur and additive noise. There-
fore the design of the restoration filter one should
first estimate the true signal power spectrum from
the observed mixture signal i. If we denote the
estimate of the signal power spectrum without noise
as |S|?| 0|2 we obtain the following formula for the
frequency response of the optimal restoration filter:

1 SNR

F = - 9
"~ S1+SNR ®)

where SNR is the corresponding estimated signal-to-
noise ratio:

SNR= [S[*|0*/(IN|*). (10)
There exist different ways for obtaining a good estima-
tion of the spectrum. A detailed analysis of them is
out of the scope of the present paper. We confine

ourselves to only an illustration of the simplest
zero-order estimation:

ISI?|0]?
112 = (|N] 2) if this diﬁ'epence is
= n nonnegative (11)
0 otherwise

for the case of signal-independent white Gaussian
noise.

3. Changing the Problem and lts Solution:
Deconvolution of Multiple Images of the Same Object

Adaptation to the observed image based on the estima-
tion of the initial image power spectrum can improve
restoration quality in comparison with the nonadap-
tive filtering,® but of course it is not able to solve the
problem of restoration of the signal frequency compo-
nents with low SNR. A radical solution of this
problem is possible only if additional information
about these components is available from a source
other than the observed distorted signal, in particu-
lar, from another image sensor or multiple sensors.
If we have a multiple-sensor system, and if the
sensors are not identical, we can choose, for signal
restoration on each specific frequency signal, from
the sensor with the highest SNR on this frequency.
This is basically the main idea of multiple-image
deconvolution. We now extend the above least-
squares approach to this case. For the sake of
simplicity we consider first the case of two sensors
generating two images of the same object:

i1 =8 %0+ ny,
Iy = Sg %0 + Ng. (12)

Following to Berenstein,%5 we assume that the re-
stored image 6 is obtained as a sum of the restored
images from channels 1 and 2. If the frequency
responses of the restoration filters in the channels are
F, and F, spectrum O of the restored image is then

O = F\I, + F,I,. (18)

Our goal now is to find filters F'; and F, that minimize
lel = {0 =61 )yn,= {10 =01)u)n,

= ({110 = FiI; + Fyls |l )y )y (14)

where || || is the vector norm and ( >"1 and (),
denote statistical averaging over the noise in each
channel. Let us assume for simplicity that the noise
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in two channels is uncorrelated:
((N:lkN2)n1)n2 = <<N1N§>n1>n2 =0. (15)

From these noise terms and some bulky but simple
algebra we arrive at expressions for the two deconvo-
lution filters:

Fio = &R ___ (16)
'™ 8,1 + SNR, + SNR,
where
SNRuz) = |Sl(2)|2|0|2/<|N1(2)|2) (17)

n12)

are estimated signal-to-noise ratios in each channel.
The meaning of this result is straightforward: each
channel contributes, to the restored signal, the signal
restored by the corresponding inverse filter, and this
contribution is proportional to the signal-to-noise
ratio in the channel. This is exactly what one would
expect intuitively.

We shall illustrate the above results with a simple
numerical experiment. We choose for demonstra-
tion of the restoration effect an impulse of Gaussian
shape with the spectrum in some frequency scale

O(f) = exp(—f?/3500),

which was blurred by the two imaging systems with
frequency responses, respectively,

sin(2mwf/33)
in(2wf/47
8o f) = S—--“gwf;";? )

and that was observed at the output of these systems
in mixture with additive white noise with spectral
densities, respectively,

(IN1(f)|%)n, = 0.00L, (|Ny(f)|?),, = 0.002.

Figure 1 shows the result of restoration of the
impulse in the spectral domain by the optimal filter
[Eg. (16)] in comparison with the result of indepen-
dent restoration in each of two channels by an
appropriate Wiener filter [Eq. (5)] and subsequent
summation of the restored images. The distored
signals in each channel are also illustrated in Fig. 1 by
their spectra. The effect of optimal restoration is
obvious. It is especially high in the vicinity of zeros
of the distorting transfer functions, whereas separate
Wiener filters fail to restore the signal effectively.
The restoration is somewhat defective only when
zeros of the distorting transfer functions occur close
to each other. This means that it is desirable to
choose the two transfer function in such a way that
their zeros coincide or are close to each other at the
highest possible frequencies. Alternatively we can
use three or more transfer functions. Figure 2
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Fig. 1. Comparison of the image restoration from two blurred

images by an optimum filter and by two independent Wiener filters
in each of two channels.

shows the frequency responses of the distorting sys-
tems, while Fig. 3 presents the frequency responses of
the optimal restoration filters in each channel and
demonstrates how the filters share the job of signal
restoration. These figures seem to be self-explana-
tory.

We see therefore that two images with different but
known point spread functions can yield a much better
combined estimate of the true image than either
alone can. Naturally the more image channels we
have, the better. Extending these results to three or
more images is straightforward. Let us observe a set
of images

{Ik=SkO+Nk; k=1,2,...,K}

in K channels, subject each image to filtering F}, and
generate the restored image as

K
0 = > Ful,. (18)
=1

From the criterion of minimization of averaged
squared restoration error [Eq. (14)] one can obtain
the following system of equations:

-

K .
F,S, + SNR, D, F\S, = SNR,!, (19)
=1 '

1-frequency response of the first channel
2-frequency response of the second channel

magnitude
(=]
wn
T

frequency

Fig. 2. Frequency responses of the two distorting channels.
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Fig. 3. Frequency responses of the two restoration filters.

where
SNR,, = |S;12|01%/(N ), (20)

is the signal-to-noise ratio in the kth channel esti-

mated from the corresponding observed image. The
obvious solutions of this system are
1 SNR,
Fk=§-———; k=12,...,K|. (21)

2 K ____
1+ > SNR,
k=1

It is instructive to substitute Eq. (22) into Eq. (18)
and to see how the restored object looks in compari-
son with the true object:

K K
> SNR, > N.SNR,/S,
0=—" 0+5— . (22)
1+ > SNR, 1+ > SNR,
k=1 k=1

The first term in this expression describes the re-
stored image, and the second one describes the resto-
ration noise. The ratio of the image energy to the
noise energy on each frequency in the restored imag
can be easily found from .

: K
image energy
restoration noise energy ,;1 SNR;.  (23)

Equations (22) and (23) show that any desirable
restoration quality is possible given an appropriate
choice of different image sensors and their number.

In the Wiener formulation the defect of restoration
and remaining noise are considered with equal weights
when the root-mean-squared error of restoration is
calculated. Generally in image restoration it is bet-
ter to evaluate the error of restoration with different
weights for the defect of restoration and for the
remaining noise and even to take these weights
frequency dependent. The corresponding generaliza-
tion is straightforward, but it goes out of the scope of
this paper.

4. Deconvolution of Multiple but Nonidentical Images
of the Same Object

The practical significance of the above result is the
possibility of producing an image with any desirable
image quality with real, imperfect image formation
devices. However, this requires special design of
multiple imaging devices for one object instead of a
single device. There are, however, many practical
situations when multiple imaging of the same object
is performed for other reasons with no regard for the
restoration problem. The most evident example is
color images formed from three components: red,
blue, and green. Among others examples, one can
mention multispectral imaging for remote sensing
and multimodality medical imaging. Of course, im-
ages in individual channels are not identical in these
cases, but they are still the images of the same object,
and therefore they are more or less correlated. This
correlation creates potential for mutual correction of
the images in the channels.

Let us assume that we observe a set of images
ik =1,2,...,K}suchthat

{I = 8,0, + N}, (24)

with the same denotations as above except now {Oy}
are the spectra of true images in the corresponding
channels. We can take advantage of the cross-
channel image correlation if we restore the images in
each channel by appropriate filtering and subsequent
summation of the filtered images of all the channels:

K

Ox = 2, Fiil (25)
For the same criterion of least squares in each
channel we then obtain, assuming that noise in the
channels is uncorrelated, that the optimal interchan-
nel filters {F},,} are defined by the following relation-
ship:

1 0,05 SNR,

Fk,z='S_1|01|2 LK
1+ > SNR,
m=1

, (26)

with * denoting complex conjugation. This formula
is a natural generalization of Eq. (22) and requires for
its implementation knowledge of the cross correla-
tions {0,0%/]01|?} between true image spectra in
individual channels in each frequency. Within a
statistical approach these cross correlations should be
measured a priori over an appropriate set of images.
There exists, however, a possibility of adaptive estima-
tion of them from the observed signals; this possibil-
ity was discussed above for the adaptive Wiener filter.

5. Conclusion

Within the least-squares approach we have shown
that deconvolution of images subjected to linear blur
is possible with arbitrary accuracy from multiple-
sensor data provided that an appropriate choice of
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number of sensors is made. The deconvolution is
performed by a set of deconvolution filters acting in
each sensor’s channel whose outputs are summed up
to form a restored image. Each filter produces an
inverse filtered image in the corresponding channel,
weighted in the spectral domain proportional to the
channel’s signal-to-noise ratio on the corresponding
frequency. The formulas are given for potential
restoration accuracy. A similar result is obtained
for restoration of multiple-sensor images when true
images in the individual channels are nonidentical.
The frequency-domain weights of the inversely fil-
tered images in the channels are additionally propor-
tional in this case to cross-correlation coefficients
between true images in the corresponding channels.
All results are obtained under the assumption that all
the parameters needed for the restoration filter de-
sign should be estimated from the observed distorted
images, and some methods for such estimation are
briefly outlined.:

L. Yaroslavsky gratefully acknowledges the partial
support of the Deutsche Forschunggemainschaft
through contract ER16/94-1. H. J. Caulfield was
partially supported by the U.S. Air Force Office of
Scientific Research under contract F49620-93-1-0123.

2162 APPLIED OPTICS / Vol. 33, No. 11 / 10 April 1994

References and Notes

1. A K. Jain, Fundamentals of Digital Image Processing (Prentice-
Hall, Englewood Cliffs, N.J., 1989).

2. A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd ed.
(Academic, New York, 1982), Vol. 1.

3. B.R.Frieden, introduction in The Computer in Optical Research.:
Methods and Applications, B. R. Frieden, ed. (Springer-Verlag,
Berlin, 1980).

4. C. A. Berenstein and E. V. Patrick, “Exact deconvolution for
multiple convolution operator: an overview,” Proc. IEEE 78,
723-734 (1990).

5. N. Sidoropoulos, J. Baras, and C. Berenstein, ‘“Two-dimen-
sional signal deconvolution: design issues related to a novel
multiple sensors based approach,” in Stochastic and Neural
Methods in Signal Processing, Image Processing, and Com-
puter Vision, S. Chen, ed., Proc. Soc. Photo-Opt. Instrum. Eng.
1569, 356-366 (1991).

6. C. W. Helstrom,” Image restoration by the method of least
squares,” J. Opt. Soc. Am. 57, 297-303 (1967).

7. L. P. Yaroslavsky, Digital Imaging Processing: An Introduc-
tion, Vol. 9 of Springer Series in Information Sciences (Springer-
Verlag, New York, 1985).

8. R.Yu. Vitkus and L. P. Yaroslavsky, “Recursive algorithms for
local adaptive linear filtration,” in Computer Analysis of Images
and Patterns, L. P. Yaroslavsky, A. Rosenfeld, and W. Wilhelmi,
eds., Vol. 40 of Mathematical Research (Academie Verlag,
Berlin, 1987), pp. 34-39.



