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Deconvolution of single-cell multi-omics layers
reveals regulatory heterogeneity
Longqi Liu1,2,3, Chuanyu Liu1,2,4, Andrés Quintero 5,6, Liang Wu1,2,4, Yue Yuan1,2,4, Mingyue Wang1,2,4,

Mengnan Cheng1,2,4, Lizhi Leng7,8, Liqin Xu1,2, Guoyi Dong1,2, Rui Li1,2,3, Yang Liu1,2,4, Xiaoyu Wei1,2,4,

Jiangshan Xu1,2,4, Xiaowei Chen2, Haorong Lu2, Dongsheng Chen1,2, Quanlei Wang1,2,4, Qing Zhou1,2,

Xinxin Lin1,2, Guibo Li 1,2, Shiping Liu 1,2, Qi Wang5, Hongru Wang9, J. Lynn Fink1, Zhengliang Gao10,

Xin Liu 1,2, Yong Hou 1,2, Shida Zhu1,2, Huanming Yang1,11, Yunming Ye3, Ge Lin7,8,12, Fang Chen1,2,13,

Carl Herrmann5,6, Roland Eils 6,14, Zhouchun Shang 1,2,10 & Xun Xu1,2,15

Integrative analysis of multi-omics layers at single cell level is critical for accurate dissection

of cell-to-cell variation within certain cell populations. Here we report scCAT-seq, a tech-

nique for simultaneously assaying chromatin accessibility and the transcriptome within the

same single cell. We show that the combined single cell signatures enable accurate con-

struction of regulatory relationships between cis-regulatory elements and the target genes at

single-cell resolution, providing a new dimension of features that helps direct discovery of

regulatory patterns specific to distinct cell identities. Moreover, we generate the first single

cell integrated map of chromatin accessibility and transcriptome in early embryos and

demonstrate the robustness of scCAT-seq in the precise dissection of master transcription

factors in cells of distinct states. The ability to obtain these two layers of omics data will help

provide more accurate definitions of “single cell state” and enable the deconvolution of

regulatory heterogeneity from complex cell populations.
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T
he rapid proliferation of single-cell sequencing technolo-
gies has greatly improved our understanding of hetero-
geneity in terms of genetic, epigenetic, and transcriptional

regulation within cell populations1. We, and others, have devel-
oped single-cell whole genome2, exome3,4, methylome5, and
transcriptome6,7 technologies and applied these approaches to
analyzing the complexity of cell populations in tumorigenesis,
developmental process, and cellular reprogramming8. Meanwhile,
single-cell epigenome techniques, including single-cell ChIP-seq9,
ATAC-seq10,11, DNase-seq12, and Hi-C13,14, have been developed
to decipher histone modifications, transcription factor (TF)
accessibility landscapes, and 3D chromatin contacts, respectively,
in single cells. These techniques provide important information
on regulatory heterogeneity by assessing chromatin structure
across various cell types.

Measuring the epigenomic and transcriptomic characteristics
of single cells is important for understanding the maintenance
and conversion of cell fates, as well as manipulating cell fates into
different lineages15. The regulation of these processes involves
sequential events including the binding of TFs to cis-regulatory
elements (CREs) and the recruitment of chromatin regulators,
resulting in changes of chromatin structure and activation or
repression of cell-type-specific genes15. Single-cell ATAC-seq and
RNA-seq represent a great opportunity to study how TFs and
epigenomic features induce transcriptional outcomes that influ-
ence cell fate determinations. For example, combined analyses of
datasets by these two approaches have enabled characterization of
subtypes in mouse tissues16 or during human hematopoietic
differentiation17. However, it still remains challenging to integrate
the two approaches experimentally in individual cells, thus
hampering a full understanding of regulatory association between
these two layers. Here, we present scCAT-seq (single-cell chro-
matin accessibility and transcriptome sequencing), a technique
that integrates single-cell ATAC-seq and RNA-seq to measure
chromatin accessibility (CA) and gene expression (GE) simulta-
neously in single cells. scCAT-seq employs a mild lysis approach
and a physical dissociation strategy to separate the nucleus and
cytoplasm of each single cell. Thereafter, the supernatant cyto-
plasm component is subjected to the Smart-seq2 method as
described previously7. The precipitated nucleus is then subjected
to a Tn5 transposase-based and carrier DNA-mediated protocol
to amplify the fragments within accessible regions (Fig. 1a).
Beyond parallel CA and GE profiling in the same single cell,
scCAT-seq will be particularly useful for analyzing samples when
the amount of input material is limited.

Results
Simultaneous profiling of accessible chromatin and gene
expression in single cells. We applied scCAT-seq to the K562
chronic myelogenous leukemia cell line, which has been widely
used in the ENCODE project. We sorted single-cell and multi-cell
samples (e.g., 500 cells) into wells of 96-well plates using flow
cytometry. Empty wells were used as negative control. Samples
were then processed using the scCAT-seq protocol. qPCR ana-
lysis confirmed the successful capture of single-cell nuclei during
library preparation (Supplementary Figure 1a). We generated
combined CA and GE profiles from a total of 192 samples. Of the
176 single-cell profiles, 74 (42.0%) of them passed both CA and
GE data quality control criteria (Supplementary Figure 1b and
Methods).

For scCAT-seq-generated CA data, we obtained an average of
2.1 × 105 uniquely mapped, usable fragments from single cells
(Supplementary Data 1 and Supplementary Figure 1c, d). Similar
to bulk ATAC-seq18, the CA fragments showed fragment-size
periodicity corresponding to integer multiples of nucleosomes

(Supplementary Figure 1e) and are strongly enriched on
accessible regions (Fig. 1b and Supplementary Data 1). We
found that about 9% of the fragments were mapped to the
mitochondrial genome (Supplementary Figure 1f), which is
largely reduced in comparison with standard bulk ATAC-seq
studies (typically over 30%)18. Pearson correlation analyses
revealed our single-cell profiles could reproduce features of bulk
profiles (Supplementary Figure 1g). In comparison with the
published scATAC-seq profiles by Buenrostro et al.10, we
obtained a higher number of usable fragments per single cell
but with lower signal-to-noise ratio (Supplementary Figure 1h).
However, the correlation between single cells increases remark-
ably (Supplementary Figure 1h), suggesting that scCAT-seq is
able to capture the chromatin features more accurately.

For mRNA data generated by scCAT-seq, we obtained an
average of 4.6 million reads covering over 8000 genes (GEN-
CODE v19, TPM > 1), which is comparable with published
scRNA-seq profiles by Pollen et al.19 (Supplementary Figure 1j
and Supplementary Data 1). Consistent with published Smart-seq
profiles, our mRNA data showed full coverage of the transcript
body (Fig. 1b), enabling identification of transcript isoforms and
not merely gene expression quantification. The aggregate profile
was close to the RNA-seq profile obtained from 500 cells (Pearson
correlation value > 0.9, Supplementary Figure 1i), suggesting that
scCAT-seq is able to accurately quantify GE of single cells. The
density of CA and GE reads of all single cells surrounding a
constitutively accessible region showed that scCAT-seq data
could recapitulate major features obtained by separately
performed bulk ATAC-seq and RNA-seq (Fig. 1c).

GE regulation is associated with the structure of the CREs (e.g.,
histone modifications, DNA methylation) and the binding of trans-
factors (e.g., TFs, epigenetic modifiers)20. Therefore, we examined
the overall distribution of single-cell CA fragments across different
genomic contexts, as well as the expression levels of the putative
regulated genes. We observed that the CA fragments were enriched
at CREs with active histone modifications (e.g., H3K27ac, H3K9ac,
and H3K4me3), whereas repressive or inaccessible regions (e.g.,
H3K27me3 and H3K36me3-associated regions) showed lower
fragment density (Fig. 1d). We also observed other association
patterns between CA and GE. For example, we found low levels of
CA fragments on H3K36me3-associated regions but high levels of
GE fragments. This is not surprising because H3K36me3 is known
to be enriched on the active gene body which is occupied by
nucleosomes and rendered inaccessible20. Notably, genes with
bivalent marks (co-enrichment of H3K4me3 or H3K4me1 and
H3K27me3) showed similar level of accessibility as active genes
(co-enrichment of H3K4me3 or H3K4me1 and H3K27ac, but lack
of H3K27me3), and both of them showed higher levels of
accessibility than inactive genes (enrichment of H3K27me3, but
not H3K27ac, H3K4me1, and H3K4me3). Conversely, the
expression levels of bivalent genes were remarkably lower than
active genes and were similar to those of inactive genes. We also
investigated the distribution of CA fragments across genomic
contexts bound by different TFs and found an overall consistent
pattern between CA and GE level. Notably, we observed substantial
decrease of expression levels of genes associated with binding of
EZH2 while the accessibility level showed just a moderate change
(Fig. 1e). This pattern is similar to that of bivalent genes and is
consistent with the role of EZH2 which, as part of the repressive
polycomb complex, catalyzes H3K27me3. Thus, the combined
signatures from scCAT-seq well reflect known processes and are
useful to assess the transcriptional state of genes within different
genomic contexts. This approach is undoubtedly of high value for
many biological applications, for example, studying the hetero-
geneous transition of bivalent genes during development or cellular
reprogramming.
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Fig. 1 scCAT-seq provides an accurate genome-wide measure of both chromatin accessibility and gene expression. a Overview of the scCAT-seq protocol.

b Top panel: chromatin accessibility read enrichment around the transcription start site (TSS). Bottom panel: coverage of mRNA reads along the body of

transcripts. Titration series (one single-cell, 5 cells, 50 cells, 500 cells) were marked by the indicated colors. All profiles were generated using the scCAT-

seq protocol with the indicated number of cells as input. c A representative region showing a consistent pattern of chromatin accessibility and gene

expression across datasets generated using different number of input cells. The bulk ATAC-seq track was generated using 50,000 K562 cells. The DNase-

seq and bulk RNA-seq data of K562 cells were downloaded from ENCODE. The scCAT-seq tracks are chromatin accessibility (upper) and gene expression

read density (bottom) from a total of 74 K562 single cells. d Top panel: mean chromatin accessibility read density around regions that are enriched by the
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indicated transcription factors. Bottom panel: mean expression level of genes associated with regions that are bound by the indicated transcription factors
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We further validated our approach by generating different
batches of scCAT-seq profiles from two additional ENCODE cell
lines: HeLa-S3 cervix adenocarcinoma and HCT116 colorectal
carcinoma cell lines (Supplementary Data 1). To test the
feasibility of scCAT-seq in real tissue samples, we also generated
profiles from two lung cancer patient-derived xenograft (PDX)
models (Supplementary Data 1). One is derived from a
moderately differentiated squamous cell carcinoma patient
(PDX1) and the other one from a large-cell lung carcinoma
patient (PDX2). Principal components analysis (PCA) on both
CA and GE profiles resulted in separation of cells from different
origin (Supplementary Figure 2a, b). A comparison of our
datasets with published profiles revealed that the differences
across protocols and batches had a substantially smaller effect
than difference across cell types (Supplementary Figure 2c, d).

Establishment of regulatory relationships between CREs and
genes in single cells. Next, we explored the dynamic associations
between the two omics layers across single cells. We first tested
the correlation between accessibility level of single CREs and their
expression of the putative target genes in each of the three cell
lines, and the hypothetical cell population merged from them. As
expected, we identified remarkably more positive correlations
(Pearson correlation > 0; FDR < 10%) than negative correlations
(Supplementary Figure 3a), which is consistent with the known
relationship between CA and GE in bulk profiles21.

An earlier study showed the co-variability of accessibility
between CREs across single cells defines regulatory domains
highly concordant with observed chromosome compartments,
which provides an alternative approach to the discovery of
regulatory links10. However, it still remains impossible to directly
infer the transcriptional outcomes of each chromatin accessible
region. Given the overall positive correlation between CA and GE,
we reasoned that the co-variability between accessibility of
individual elements and expression of genes could enhance
discovery of regulatory links that influence transcription. To this
end, while employing the reported strategy using scATAC-seq10

(strategy 1, Fig. 2a), we proposed two additional strategies for
inferring regulatory relationships (strategies 2 and 3, Fig. 2a). For
strategies 1 and 2, regulatory relationships between chromatin
accessible regions and target genes were identified based on
scATAC-seq and scCAT-seq data, respectively. Based on the scA-
TAC-seq data, regulatory relationships for every gene were
assigned when the Spearman correlation of the accessibility of
CREs located at the promoter and distal peaks was above 0.25
(strategy 1, Fig. 2a and Methods). Likewise, for the scCAT-seq
data, the regulatory links were assigned if the Spearman
correlation between the GE and the accessibility of distal CREs
was above 0.25 (strategy 2, Fig. 2a and Methods). However, these
regulatory relationships were defined across all cells. In order to
more accurately depict the regulatory relationship between
chromatin and genes, in strategy 3, single-cell-specific regulatory
relationships between genes and their nearby accessible regions
were assigned using the scCAT-seq data as follows: (i) identifica-
tion of active TFs for every cell by SCENIC22 using the normalized
GE matrix; (ii) identification of active accessible regions by
matching the binding motifs of active TFs to accessible chromatin
regions; and (iii) assignment of regulatory relationships after
applying a Wilcoxon test to determine if the presence of a nearby
active accessible region was associated with a significant change in
the target GE (P-value < 0.05) (Fig. 2a and Methods).

By applying the 3 strategies to single cells of the 3 cell lines, we
found that strategy 3 identified the largest number of regulatory
relationships (62,769), compared to strategy 1 (46,813) and
strategy 2 (21,219) (Fig. 2b). Over 1/3 of the regulatory

relationships from scATAC-seq based method (strategy 1) were
shared by those from scCAT-seq based method (strategies 2 and
3), suggesting strong synergistic effects between regulation at
chromatin and transcriptome levels. Nevertheless, although a
similar correlation approach was used in strategies 1 and 2,
strategy 2 identified a lower number of regulatory relationships,
suggesting a possible decoupling between accessibility at the
promoter and the expression of the gene. Notably, we also
observed a large fraction of regulatory relationships specifically
identified by each method, which suggests that different
information can be obtained from single-omics and combined
analysis.

To assess the accuracy of the regulatory links inferred by each
method, we next counted the regulatory relationships that could be
verified by chromatin interaction analysis by paired-end tag
sequencing (ChIA-PET)23. Encouragingly, using the ChIA-PET
interactions of the three widely used cell types (K562, HeLa-S3, and
HCT116)24, we observed higher proportion of validations in
scCAT-seq based method (strategies 2 and 3) than that in scATAC-
seq based method (strategy 1) in all three cell types (Fig. 2c). These
suggest that the co-variability between CA and GE layers could
better reflect higher-order chromatin structure than co-variability
between CREs. One explanation is that regulatory relationships
inferred from scATAC-seq may result from either chromatin
interactions or from co-binding of master TFs without interaction,
while those inferred from scCAT-seq could be considered to be
“functional” regulatory relationships as including information from
both chromatin interactions and co-binding of master TFs.
Therefore, based on the largest number of validated regulatory
relationships, strategy 3 outperformed the other strategies (here-
after, the “regulatory relationship” indicates those identified only by
strategy 3). The distribution of distance between each pair of peak
and gene in all regulatory relationships showed higher enrichment
in proximal regions than distal regions (Supplementary Figure 3b),
suggesting that GE tends to be regulated by proximal elements
which is consistent with earlier findings25.

To assess whether the regulatory relationships in each single
cell reflect cell type-specific features, we generated a binary matrix
where columns represent single cells and rows represent all
identified regulatory relationships between accessible sites and
genes, and the entries indicate the on or off state of each
regulatory relationship in each cell. We applied a non-negative
matrix factorization (NMF) method, implemented in the R
package Bratwurst26, to decompose the matrix into different
signatures that could distinguish single-cell identities. As
expected, NMF clustering of the regulatory relationships
identified signatures containing numerous cell type-specific
regulatory relationships, resulting in clear separation of the three
cell types (Fig. 2d, e, and Supplementary Figure 3c). For example,
SAMSN1 is a known oncogene, preferentially expressed in the
blood cancer, multiple myeloma27. We observed highly specific
regulatory relationships around SAMSN1 in K562, a myelogenous
leukemia cell line (Fig. 2e), revealing a strong association between
its expression and accessibility of CREs. This observation again
reconfirmed the importance of epigenetic mechanisms during
progression of tumors. Likewise, we generated regulatory
relationship matrix for single cells from PDX tissues and
clustering of the matrix clearly separated these two type of cells
(Fig. 2f, g, and Supplementary Figure 3d). Interestingly, we also
observed a subpopulation of cells showing specific regulatory
relationships in PDX2 (Fig. 2f, g), likely reflecting the regulatory
heterogeneity present in real tissues.

Integrated single-cell epigenome and transcriptome maps of
human pre-implantation embryos. We next explored the
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potential of scCAT-seq in the characterization of single-cell
identities in continuous developmental processes. The human
pre-implantation embryo development is a fascinating time that
involves dramatic changes in both chromatin state and tran-
scriptional activity. However, it has only been investigated at
either the chromatin or the RNA level due to the lack of truly
integrative approaches28. By using clinically discarded human

embryos (Methods), we generated scCAT-seq profiles for a total
of 110 individual cells, and successfully obtained 29 quality-
filtered profiles from the morula stage and 43 from the blastocyst
stage (success rate 65.5%) (Fig. 3a, Supplementary Figure 4a and
Supplementary Data 1). To explore the regulation relevant to
each stage, we identified ~100 K regulatory relationships and
generated a matrix of regulatory relationships across all single
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Fig. 2 Inferring regulatory relationships between CREs and genes by scCAT-seq. a Overview of three strategies for inferring regulatory relationships.

Strategy 1: regulatory links for every gene were assigned when the Spearman correlation of the signal of peaks located at the promoter and distal peaks was

above 0.25. Strategy 2: the regulatory links were assigned if the Spearman correlation between the gene expression and the signal of distal peaks was

above 0.25. Strategy 3: active transcription factors for every cell were identified by SCENIC, then active regions were identified by matching the binding

motifs of active transcription factors to accessible regions. Then regulatory relationships were assigned after applying a Wilcoxon test to determine if the

presence of a nearby active accessible region was associated with a significant change in the target gene expression (P-value < 0.05). b Venn plot showing

the number of overlapping regulatory relationships identified by the three strategies. c Proportion of ChIA-PET validated regulatory relationships identified

by the three strategies in K562 (left), HeLa-S3 (middle), and HCT116 (right) single cells. d, f Heatmaps showing exposure scores of all cells to each

signature identified by the NMF clustering of regulatory relationship binary matrices of cell lines (d) and PDXs (f). The exposure score represents the

contributions of the signatures to the different samples. e, g Regulatory relationships for the indicated genes in single-cell groups of the cell lines (e) and

PDX2 (g). Each panel contains three tracks: the top track shows the regulatory relationship between one peak and the gene (linking them with an arch),

where the height and color of the arch show the proportion of cells that share the regulatory relationships; the middle track shows the genomic location of

the gene and the associated peaks, where the color of the gene shows the mean expression in each cell type; the bottom track shows the accessible states

(on and off) for each peak in each single cell
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cells as described above. NMF clustering analysis of the matrix
showed separation of all single cells into two main groups (groups
1 and 2), corresponding to these two stages (Fig. 3b). The heat-
map of exposure scores to each signature revealed activation of
regulatory relationships of pluripotency markers (such as
NANOG and KLF17) in the morula, and trophectoderm (TE)
markers (such as CDX2 and GATA3) in the blastocyst stage28

(Fig. 3b, c and Supplementary Figure 4b, c), which strongly
suggests that the expression of these markers is activated/main-
tained by epigenomic states28.

The transition between cell fates largely depends on TFs, which
bind to CREs and recruit chromatin modifiers to reconfigure
chromatin structure15. Single-cell chromatin accessibility data
provide a great opportunity to find the key TFs in individual
cells10,17. However, TFs of the same family often share similar
motifs, which makes it difficult to determine the key TFs of
functional specificity. Previous efforts have proposed computa-
tional algorithms to integrate CA and GE data, but the accuracy
remains uncertain because the analyses are based on separate
multi-omics datasets16,17.
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Fig. 3 scCAT-seq enables precise characterization of single-cell identities in human pre-implantation embryos. a A workflow showing the generation of

scCAT-seq profiles of human pre-implantation embryos. b Heatmap showing exposure scores of all cells to each signature identified by the NMF clustering

of regulatory relationship binary matrix of human embryos. Example genes are shown. c Regulatory relationships for the indicated genes in single cells of

the morula and blastocyst stage. d Heatmaps showing accessibility deviation (left) and expression level (right) of the indicated TFs. The TFs colored in

green were the ones showing consistent patterns in accessibility and gene expression. e Immunofluorescence imaging of the human blastocyst stage

embryo using the indicated antibodies (left to right: NANOG, SOX17 and merged DAPI/NANOG/SOX17). Scale bar represents 50 μm. f Top and middle

panels: Heatmaps showing the accessibility deviation (top) and expression level (middle) of the indicated TFs in single cells of blastocyst-stage embryos.

Bottom panel: heatmap showing the expression level of the indicated genes. The TFs coloured in green were the ones showing consistent patterns in

accessibility and gene expression
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We reasoned that functionally relevant master TFs in each cell
type should be determined by integrated omics data obtained by
scCAT-seq. We applied chromVAR29, a method for inferring TF
accessibility with single-cell CA data, to compute the deviations of
known TFs across all single cells. This method identified TF
motifs with high variances (Supplementary Figure 4d), dividing
all single cells into two main groups (Supplementary Figure 4e),
in agreement with the clustering results on regulatory relation-
ships (Fig. 3b). We observed that motifs from the POU-
Homebox, SOX-HMG, and KLF-zf families showed high
deviation scores in cells of the group 1, while motifs from
GATA-zf and GRHL-CP2 families showed high deviation scores
in cells of the group 2 (Fig. 3d). To determine the master TF from
each family, we next integrated the expression level of these TFs.
Interestingly, we found that the well-known pluripotency factors
(such as NANOG, POU5F1, SOX2, KLF4, and TBX4), as well as
early markers (such as KLF17), both showed relatively high levels
of CA and GE in cells of the group 1, whereas other TFs of the
same families (such as POU3F1, SOX5, KLF7, and TBX1) showed
opposite trends (Fig. 3d). These results are highly consistent with
the features of the pluripotent morula cells, which are the main
component of group 1. We also found GATA3, but not GATA4
and GATA6, to show a specific role in the group 2, which
contains cells from the blastocyst stage. This is in agreement with
the important role of GATA3 during differentiation of tropho-
blast30. In addition, we also observed similar results from other
TFs of the same families, such as SOX9, HOXD4, MEF2C, and
GRHL1, suggesting they likely playing critical roles in these two
groups (Fig. 3d). Overall, these results suggest that our integrated
method could increase the power of discovery of functionally
relevant TFs at single-cell resolution.

The blastocyst stage consists of inner cell mass (ICM) and TE
lineages. During the maturation of blastocysts, the ICM
segregates into pluripotent epiblast (EPI) and primitive endoderm
(PE) cells31. The number and size of ICM cells vary across
blastocysts, and are important for the grading of embryos that
determine the success of implantation32. Notably, the clustering
of both regulatory relationships and TF accessibility deviation
showed that 3 (#504, #539, #522) out of the 43 blastocyst cells are
similar to morula cells (Fig. 3b). This reveals the pluripotency
feature of these three single cells in the blastocyst stage and
suggests that they might be from ICM cells (hereafter termed
ICM-like cells). This result is also supported by our data based on
immunostaining in a human blastocyst embryo, which showed a
comparable small proportion using the known, lineage-specific
markers NANOG (EPI) and SOX17 (PE) (Fig. 3e).

We next sought to validate the ICM-like cells by molecular
features based on their two omics signatures. It is known that
OCT4 is initially expressed in all cells within the ICM, and
becomes restricted to the EPI in the late blastocyst31. Interest-
ingly, although OCT4 is not a general marker of the blastocyst
stage (Fig. 3d), it has a higher deviation score in the three single
cells compared with other cells in the blastocyst (Supplementary
Figure 4f). Notably, two of them (#504 and #539) showed even
higher deviations from the other single cell (#522) (Supplemen-
tary Figure 4f), which may describe the segregation into EPI
(#504 and #539) and PE (#522) lineages (hereafter termed “EPI-
like” and “PE-like” cells).

We next attempted to support this hypothesis by identifying
the key TFs in the EPI- or PE-like cells. Encouragingly, in
addition to enrichment of OCT4, we also observed specific
enrichment of the well-known EPI-specific regulators, such as
NANOG, and KLF17, in EPI-like cells (Fig. 3f), while the PE-like
cell showed high activity of the well-known PE regulators, such as
SOX17, HNF1B, and FOXA2 (Fig. 3f). The other members of the
same families (such as SOX9, FOXA1, and HNF1A) are not likely

to be the key regulators because of the inconsistent patterns of CA
and GE. Further supporting this conclusion, the well-known non-
TF markers were also found to be highly specific to each cell type,
including GDF3, TGDF1, DPPA2, DPPA5, and ARGFX in EPI-
like cells and BMP2, PDGFRA, FN1, COL4A1, and LINC00261 in
PE-like cells33 (Fig. 3f). Although the EPI- and PE-like cells are
similar to morula cells, the above markers tend to be
transcriptionally active in EPI- or PE-like cells based on CA
and GE profiles (Supplementary Figure 4g), suggesting distinct
pluripotent states in the morula and blastocyst stages. Taken
together, these results indicate that our integrated approach can
faithfully identify the two distinct subtypes from the same origin.
The robustness of scCAT-seq in the precise definition of single-
cell identities would be particularly useful for characterization of
cells that are rare within complex cell populations.

Discussion
In summary, our work demonstrates that scCAT-seq is able to
provide high resolution epigenomic and transcriptomic portraits
of individual cells. We showed that the accessibility levels of both
regulatory elements and particular TFs are positively correlated
with the GE program. This provides a highly relevant insight into
regulatory relationships, one which is not possible based on
individual omics profiles. We proposed a method to establish
regulatory relationships by linking CREs to the putative target
genes, resulting in a larger numbers of high-confidence regulatory
interactions compared with state-of-the-art methods. The cell-
specific regulatory relationship is a new feature that enables the
direct discovery of gene centered 3D regulatory patterns in cer-
tain cell populations, thus providing the basis for a more com-
prehensive study of regulatory mechanisms at the single-cell level.
Moreover, we generated the first integrated single-cell epigenomic
and transcriptomic maps during pre-implantation embryo
development. The robustness of scCAT-seq in the characteriza-
tion of distinct cell states reveals the great potential of scCAT-seq
in faithful identification of new cell types in complex cell popu-
lations, which enables a better understanding of developmental
abnormalities caused by either genomic variants or environ-
mental influences. Overall, we show that scCAT-seq is a highly
promising tool for the joint study of multimodal data of single
cells, paving the way to a thorough assessment of regulatory
heterogeneity in a variety of clinical applications, including pre-
implantation screening.

Methods
Cell culture. K562 chronic myelogenous leukemia cells (ATCC) were cultured in
RPMI-1640 medium (Gibco) supplemented with 1x penicillin–streptomycin (Pen-
Strep, Invitrogen) and 15% fetal bovine serum (FBS, Gibco). HCT116 colorectal
carcinoma cells (ATCC) were cultured in Iscove’s Modified Dulbecco’s Medium
(Gibco) supplemented with 1x Pen-Strep and 15% FBS. HeLa-S3 cervix adeno-
carcinoma cells (ATCC) were cultured in medium containing Dulbecco’s Modified
Eagle Medium (Gibco) supplemented with 1x Pen-Strep and 15% FBS.

Bulk ATAC-seq library preparation. Bulk ATAC-seq libraries were generated
using a modified protocol based on previous study18. Briefly, 50,000 cells were
collected and washed with cold 1x PBS. Cells were centrifuged and resuspended
using 50 μl of ice-cold lysis buffer (10 mM Tris-HCl, pH 7.5, 10 mM NaCl, 3 mM
MgCl2, and 0.1% IGEPAL CA-630 (Sigma)). Then the lysate was centrifuged and
resuspended in 50 μl of transposition reaction mix (10 μl 5 X TAG buffer (50 mM
TAPS-NaOH, pH 8.5, 25 mM MgCl2, 50% DMF), 1.5 μl in-house Tn5 transposase
(0.8 U/μl) and nuclease-free water (NF-water)), and incubated for 30 min at 37 °C.
The subsequent steps of were performed as previously described18.

Single-cell isolation from patient-derived xenograft. The human lung cancer
patient-derived xenograft (PDX) models were bought from Shanghai LIDE Biotech
Co., Ltd. with written informed consent and institutional approval. The PDX
samples used in this study were approved by the Institutional Review Board (IRB)
on Human Subject Research and Ethics Committee in the Shanghai LIDE Biotech
Co., Ltd., China. One of the PDX models is derived from a moderately
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differentiated squamous cell carcinoma patient and the other one from a large-cell
lung carcinoma patient. In brief, 50–90 mg PDX tumor pieces were implanted
subcutaneously on the right flank of each mouse. The tumor tissues were isolated
when the mean tumor size reached ~400 mm3 and then enzymatic digested to
single-cell suspension for FACS sorting.

Collection of human pre-implantation embryos. All embryos were obtained from
the donors undergoing in vitro fertilization (IVF) treatments at in compliance with
the Ethics Committee of Reproductive & Genetic Hospital of CITIC-XIANGYA
using standard clinical protocols as described previously34. All volunteers signed an
informed consent document.

The morula- and blastocyst-stage embryos were produced by conventional
intracytoplasmic sperm injection (ICSI) of these donated oocytes by donated sperm
from the same couple. Embryos were transferred to the wells of pre-equilibrated
EmbryoSlide (Vitrolife, Sweden) and cultured in G-1 Plus media (Vitrolife) and
were transferred to G-2 Plus media (Vitrolife) on day 3. Slides containing embryos
were placed into the Embryoscope chamber immediately and cultured at 37.5 °C in
6% CO2, 5% O2, and 89% N2. The morula- and blastocyst-stage embryos were
collected at day 4 or day 6 after fertilization. All of the embryos used in this study
have good morphology with appropriate developmental speed. The embryonic
assessment was performed as described previously35. The embryos were transferred
into Acidic Tyrode’s Solution to remove the zona pellucida. Zona-free embryos
were incubated for 20 min (for morula) or 30 min (for blastocyst) in Accutase
medium before dissociating into single blastomeres by careful pipetting. Then
washed thoroughly in PBS with 0.5% (m/v) BSA. Single blastomeres were isolated
by gentle, repeated pipetting. The separated blastomeres washed 3–5 times in PBS
with 0.5% BSA and placed into 200-μl PCR tube for scCAT-seq library preparation.

Immunofluorescence staining. The blastocyst embryos were first treated with
acidic Tyrode’s solution to remove the zona pellucida. After washing, the blas-
tocysts were fixed with 4% paraformaldehyde (Sigma, #30525-89-4) for 30 min at
the room temperature and washed three times in PBS supplemented with 0.1%
BSA, and then subjected to membrane permeabilization with 1% Triton X-100
(Sigma, #T8787) for 30 min. After washing, the blastocysts were blocked in a
blocking solution containing 5% donkey serum albumin (Jackson ImmunoR-
esearch, #017-000-121) and 2% BSA in PBS. After blocking at 4 °C overnight,
blastocysts were incubated with rabbit anti-NANOG (1:100; Abcam, #Ab109250)
and goat anti-SOX17 (1:40; R&D, #AF1924) at 4 °C overnight. After washing five
times, the samples were incubated with Alexa Fluor 488 donkey anti-rabbit IgG (1:
1000, Thermo, #A21206) or Alexa Fluor 594 donkey anti-goat IgG (1: 1000,
Thermo, #A11058) for 1 h at 37 °C. DNA was stained (15 min incubation, 37.5 °C)
with DAPI dye (1 μg/ml, Invitrogen, #D1306). Fluorescent cells were visualized and
digital images were captured using the inverted confocal microscope.

Single-cell CAT-seq. The scCAT-seq protocol can be done manually or by con-
ventional liquid-handling robots for parallel processing of multiple single cells (e.g.,
96 cells in this study). Single cells were sorted by flow cytometry into a 96-well plate
and lysed in a 7 μl mild lysis buffer (10 mM NaCl, 10 mM Tris-HCl, pH 7.5, 0.2%
IGEPAL CA-630 (0.4% for single blastomeres), 10 U RNase-inhibitor (NEB)) for
15 min at 4 °C (note that the concentration of IGEPAL CA-630 could be optimized
for different cell types). The lysate was vortexed for 1 min and was then centrifuged
at 2000 g for 5 min in a refrigerated centrifuge to leave the nucleus at the bottom of
the well. 4 μl of lysis product supernatant (containing the RNA content) was
carefully transferred into another 96-well plate supplemented with 0.5 μl ERCC
spike-in mixture (1: 250,000 dilution, Ambion), 1 μl of 10 mM dNTP mix (Enzy-
matics), and 1 μl of 10 μM modified oligo-dT primer (5ʹ-AAGCAGTGGTA
TCAACGCAGAGTACT30VN-3ʹ, where V is either A, C, or G, and N is any base)
and then incubate at 72 °C for 3 min.

Note that the physical separation procedure is critical for the successful capture
of chromatin and RNA content. The single nucleus in the bottom of each well
could be validated by qPCR using a two-step amplification strategy: (1) amplify the
whole transposed DNA for eight cycles using primers targeting Tn5 adaptor (for:
5ʹ-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3ʹ, rev: 5ʹ-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3ʹ); (2) amplify the DNA
fragment within a generally accessible region PCR primers (for: 5ʹ-
GGTCTGAACTGTTGGGTGCT-3ʹ, rev: 5ʹ-GGGCTGTGAATTCAGGCTTA-3ʹ).

Immediately after the separation step, 8.5 μl of a reverse-transcription master
mix (150 U SuperScript II reverse transcriptase (Invitrogen), 15 U RNase-inhibitor,
1x SuperScript II First-Strand buffer, 0.75 μl of 0.1 M DTT, 3 μl of 5 M betaine
(Sigma), 0.09 μl of 1 M MgCl2 (Millipore), 0.15 μl of 100 μM Template-Switching
Oligo (5ʹ-AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-3ʹ, where “r”
indicates a ribonucleic acid base and “+” indicates a locked nucleic acid base,
Exiqon) and NF-water) was added to each well. The mixture was then thermal
cycled as follows: 42 °C for 90 min, 10 cycles of 50 °C for 2 min, 42 °C for 2 min,
and finally 70 °C for 15 min. Afterward the PCR master mix (15 μl KAPA HiFi
HotStart ReadyMix with 0.3 μl of 10 μM PCR primer (5ʹ-AAGCAGTGGTATCA
ACGCAGAGT-3ʹ)) was added to the reverse-transcription reaction mixture and
thermal cycled as follows: 98 °C for 3 min, 18 cycles of 98 °C for 20 s, 67 °C for 20 s,
72 °C for 6 min, and finally 72 °C for 5 min. Amplified cDNA was purified using

KingFisher Flex purification instrument with using a 1: 1 volumetric ration of
AMPure XP beads (Beckman Coulter) and eluted into 25 μl NF-water.

During the RNA library preparation process, the precipitated nuclei were
resuspended in a 4 μl transposase reaction mix (1x TAG buffer, 0.3 μl Tn5
transposase (0.8 U/ul) and NF-water). The transposition reaction was carried out
for 15 min at 37 °C. Then 3.5 μl mix of stop buffer (2.1 μl of 0.1 M EDTA, pH 8.0,
0.42 μl of 0.1 M Tris-HCl, pH 8.0, and NF-water) was added and the reaction was
maintained at 50 °C for 15 min. To minimize the DNA loss and maximize the yield
of the extremely small amount of transposed DNA (<0.1 pg) from single nucleus,
we added a large amount of plasmid DNA (30 ng) as a carrier DNA together with
3 μl of RLT Plus buffer (QIAGEN) to the mixture immediately after the stop step.
The lysis process was performed with shaking on a thermomixer for 15 min at
37 °C. Afterward, the DNA was purified using KingFisher Flex with a 1:1.8
volumetric ration of XP beads. Finally, the DNA was eluted with 25 μl NF-water.
We used a 50 μl PCR amplification mix (transposed DNA, 25 μl NEBNext High-
Fidelity 2x PCR Master Mix, 0.5 μl of 20 μM transposase adapter 1 (5ʹ-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3ʹ), 0.5 μl of 20 μM
adapter 2 (5ʹ-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3ʹ)) to
amplify the DNA and then proceeded to perform eight cycles of PCR using the
following conditions: 72 °C for 5 min; 98 °C for 1 min; and thermocycling at 98 °C
for 15 s, 63 °C for 30 s, and 72 °C for 1 min. The pre-amplified transposed DNA
was harvested using KingFisher Flex with a 1:1 volumetric ration of XP beads and
finally eluted in a total of 25 μl NF-water.

For chromatin accessibility libraries, DNA was amplified for another 10–16
cycles (The number of cycle could be evaluated by qPCR analysis for different cell
types18, but based on our experience the appropriate number of cycles are 8 cycles
for samples of 500 cells, 12 for samples of 10 cells, and 15 for samples of single cell)
using the following PCR reaction mixture: pre-amplified transposed DNA, 25 μl
NEBNext High-Fidelity 2x PCR Master Mix, 1 μl of 20 μM universal primer, 1 μl of
20 μM barcode primer. For sequencing, DNA were size-selected with XP beads for
fragments between 150 and 700 bp in length according to the manufacturer’s
instruction, and finally eluted with 25 μl of TE buffer. For RNA libraries, 2 ng
cDNA were used for the tagmentation reaction carried out with 10 μl mixture
containing 0.3 μl transposase, 1x TAG buffer and NF-water. The tagmentation
reaction was incubated at 55 °C for 10 min and released Tn5 with 2.5 μl of 0.1%
SDS. The transposed cDNA was then used for PCR amplification and library
preparation according to the Smart-seq2 method described previously7.

All libraries were further prepared based on BGISEQ-500 sequencing
platform36. In brief, the DNA concentration was determined by Qubit (Invitrogen).
After that, 2 pmol pooled samples were used to make single-strand DNA circle
(ssDNA circle). Then DNA nanoballs (DNBs) were generated with the ssDNA
circle by rolling circle replication to enlarge the fluorescent signals at the
sequencing process as previously described36. The DNBs were loaded into the
patterned nanoarrays and sequenced on the BGISEQ-500 sequencing platform
with pair end 50-bp read length.

Transcriptome data processing. The raw reads of transcriptome data were firstly
aligned to Human rRNA sequence including 28S (NR_003287.2), 18S
(NR_003286.2), 5S (NR_023379.1), and 5.8S (NR_003285.2) using SOAP237. The
mapped reads were filtered using custom script. The retained reads were mapped to
hg19 genome using HISAT238 with the parameters: --sensitive --no-discordant
--no-mixed –I 1 –X 1000. Reads with mapping quality less than 30, and duplicate
reads were discarded using samtools. The number of read within each gene in each
single cell (GENCODE, v19) were counted using GenomicAlignments package39

with parameters below: mode= “Union”, inter.feature= TRUE and singleEnd=
FALSE. The count matrices were supplied as supplementary data files (Supple-
mentary Data 4 and 6).

Chromatin accessibility data processing. The raw reads of chromatin accessi-
bility data were trimmed by custom script and aligned using Bowtie40 (parameter:
-X 2000 -m 1). Reads with mapping quality less than 30, and reads mapped to the
mitochondria genome or the hg19 consensus excludable region (http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/)
were filtered out. Duplicate reads were removed using Picard MarkDuplicates
function (http://broadinstitute.github.io/picard/). To obtain a unique peak list of all
cell lines, we first adopt the model-based analysis of ChIP-seq (MACS2)41 to call
peaks using bam files from each bulk ATAC-seq profiles with the following
parameters: --nomodel --nolambda --keep-dup all --call-summits. Afterward, the
peaks from different cell lines were merged as a unique peak list. For human
embryos, bam file merged from those of all usable single cells was used for peak
calling. The number of raw fragment within each peak in each single cell were
counted using ChromVAR29. Peaks that were detected (with number of fragment
more than 1) in less than 10% single cells were filtered out. The count matrices
were supplied as supplementary data files (Supplementary Data 3 and 5).

Calculating the single-cell chromatin accessibility fragment density in dif-

ferent genomic contexts. The peak regions of ChIP-seq profiles for histone
modifications and transcription factors (TFs) in this study were downloaded from
ENCODE (Supplementary Data 2). The chromatin accessibility peaks overlapping
each ChIP-seq region were determined by bedtools42 intersection function. Genes
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located 5 kb upstream or downstream each peak are assigned as putative target
genes of the peak. Genes were defined as active, bivalent, inactive gene classes based
on the enrichment of H3K4me3, H3K27ac, and H3K27me3 at their regulatory
regions:20 (1) active genes, which show the co-enrichment of H3K4me3 or
H3K4me1 and H3K27ac, and the absence of H3K27me3; (2) bivalent genes, which
show the co-enrichment of H3K4me3 or H3K4me1, and H3K27me3; (3) inactive
genes, which show the enrichment of H3K27me3, but the absence of H3K4me3,
H3K4me1 and H3K27ac. The fragment density was determined by computing
CPM (counts per million) values of each peak at each single cell.

Inferring regulatory links between genomic features. Regulatory links between
chromatin accessible regions and target genes were identified based on scATAC-
seq data and scCAT-seq data. Only expressed genes and accessible peaks in more
than 10% of the cells were used and normalized by deconvolving size factors from
cell pools43. For scATAC-seq data, we assigned regulatory links based on the
correlation between the signal of distal peaks and peaks in the promoter. For
scCAT-seq data, we used the correlation between the signal of distal peaks and the
target gene expression. To avoid underestimating the computed correlation as a
consequence of intrinsic differences between cell subpopulations, we computed a
weighted Spearman correlation using the R package wCorr44. A weighted Spear-
man correlation was computed for each NMF signature, using the corresponding
exposure to the NMF H matrix as weights, and a regulatory link was assigned if at
least one of the computed correlation was greater than 0.25.

Inferring scCAT-seq based regulatory relationships. Single-cell-specific reg-
ulatory relationships between genes and their nearby accessible regions (1Mb
upstream-downstream) were assigned using the scCAT-seq data following a three
steps strategy: (1) identification of active TFs for every cell by pySCENIC22, using
the normalized gene expression matrix: regulons were defined based on the co-
expression of TFs and their target genes across cells. Regulon enrichment was
characterized in each cell by measuring the area under the recovery curve (AUC) of
the genes that defined each regulon. Finally, individual TFs were defined as active
or inactive in each cell based on the bimodal distribution of the AUC scores of the
corresponding regulon. (2) Identification of active, accessible regions: The binding
motifs of active TFs were matched to accessible regions using the Biostrings R
package45. Accessible regions were labeled as active for each cell when at least one
motif matched with at least 95% of the highest possible score for the given motif
Position Weight Matrix (PWM). (3) Regulatory relationships assignment: a Wil-
coxon test was applied for each gene to determine if the presence of a nearby active,
accessible region was associated with a significative change in its expression. All
regions around 1Mb of each gene were tested to assign a regulatory relationship
between them when the resulting p-value was less than 0.05. Accordingly, each
gene could have more than one regulatory relationship, reflecting the complexity of
the cell regulatory landscape. Finally, to recover genomic signatures based on the
regulatory patterns shared between cells, NMF was applied to the binary matrix of
regulatory relationships using the R package Bratwurst26.

NMF clustering analysis. We used a new implementation of the NMF algorithm
in the R package Bratwurst26, in order to decompose each matrix into a exposure
matrix H and a signatures matrix W, for factorization ranks K∈ℤ:K∈ [2,6]. The
optimal factorization rank was selected as the K that best satisfies the quality
metrics criteria: minimize the Frobenius error and the mean Amari distance, while
maximizing the cophenetic correlation coefficient. Subsequently, K signatures were
identified from the H matrix, and specific features were identified for each sig-
nature after performing feature extraction from the W matrix. These specific
features contribute exclusively to one single signature. To evaluate the similarity
between signatures at different factorization ranks, the normalized non-negative
linear least squares estimates were computed across all factorization ranks’ W
matrices to the next factorization rank W matrix, with the Bratwurst package26.

Computing the chromatin accessibility deviations for TFs. The R package
ChromVAR29 was applied to compute the chromatin accessibility deviation scores.
The candidate TF motifs are from MotifDB database46. The variability of each TF
was computed by the computeVariability function. The deviation score of each TF
was computed using the computeDeviations function.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All raw data were deposited in the Sequence Read Archive (SRA) of NCBI
(accession code: SRP167062). These data were also deposited in the CNGB
Nucleotide Sequence Archive (accession code: CNP0000213). All other relevant
data are available upon request.
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