
DECOR: a Distributed Coordinated Resource
Monitoring System

Shan-Hsiang Shen
University of Wisconsin, Madison

Aditya Akella
University of Wisconsin, Madison

Abstract—Network resources are often limited, so how to
use them efficiently is an issue that arises in many important
scenarios. Many recent proposals rely on a central controller to
carefully orchestrate resources across multiple network locations.
The central controller gathers network information and relative
levels of usage of different resources and calculates optimized
task allocation arrangements to maximize some global benefit.
Examples of architectures that use this framework include
coordinated sampling (CSAMP [1]) and redundancy elimination
(SmartRE [2]). However, a centralized solution creates practical
problems as it is susceptible to overload, and the controller is a
single point of failure.

In this paper, we present a distributed solution called DECOR
that achieves global optimization based on local information
that closes to centralized approaches in terms of performance.
In DECOR, the responsibility of resource monitoring and in-
formation gathering is spread among multiple nodes; thus, no
single point is overloaded. Allocation of tasks is also done in a
similar distributed fashion. DECOR can easily scale up to large
networks, and the partial network failures do not affect DECOR’s
functioning in other parts of the network.

DECOR can be applied to most of path-based applications.
We describe in detail how to apply it to distributed SmartRE
and implement it in the Click software router.

I. INTRODUCTION

Coordinated resource monitoring has become an important
problem in large networks. Network device resources such as
computation power, memory access time, storage size, and
bandwidth are limited and expensive. Thus, resources must
be efficiently managed to extract maximal benefit in various
application scenarios [3], [2], [1], [4].

Many network solutions rely on coordinated resource mon-
itoring. For example, redundancy elimination (RE) [2], [5],
[6], [7] consumes computation power to encode and decode
packets and needs memory access time to cache packets.
Coordinated sampling, or CSAMP [1], is a flow monitoring
system using small amounts of memory and processing on
network elements to retrieve network-wide traffic features. The
performance of RE and CSAMP strongly depend on effective
network resource management.

The conventional approach to solving the coordinated re-
source monitoring problem is to use a central controller [2] [1]
[8]. This controller queries network devices (e.g., routers
or switches) for traffic and resource availability information.
It then calculates a network-wide allocation of tasks (e.g.,
flow monitoring and caching responsibilities) to coordinate

resources and extract maximal benefits for their respective ap-
plications. For example, SmartRE relies on a central controller
to gather traffic redundancy profiles and arrange decoding
responsibilities across a collection of network caches. Network
resources can be used efficiently under the close monitoring
of the controller.
The centralized approaches rely on a central controller to

make the decision of resource coordination. Network devices
provide the overview of resources and traffic in a whole
network. Thus, a central controller can make right resource
coordination to maximize benefit. Finally, the decision will be
delivered to each network device. Network devices follow the
decision to deal with traffic.
However, there are some limitations to solutions with a

central controller, as described below.

1) Controller bottleneck: Coordinated resource monitoring
is an optimization problem and most solutions rely on
linear programming. In large topologies, the number of
constraints in linear programming is critical. Thus, com-
putation time in a central controller becomes a bottleneck.

2) Control message delay: Before solving the linear pro-
gram a central controller gathers all traffic profiles from
the entire network. As some nodes are far away from
the controller, the delay in gathering information may be
long. In addition, this delay is variable, so the controller
must either wait for control packets with the greatest
delay or act on incomplete information.

3) Single point of failure: If a controller fails or gets
disconnected from the system, the entire network’s re-
source monitoring will go down and applications relying
on it will be affected. In the case of SmartRE, encoded
packets may no longer be decodable; hence the network
as a whole becomes non-functional. Some studies add
duplicate controllers to solve this problem; however, there
is high overhead from keeping traffic status consistent in
multiple controllers and replacing broken controllers.

This paper presents a distributed coordinated resource mon-
itoring framework called DECOR. This solution uses nodes
distributed throughout the entire network (these could be
forwarding elements or caches themselves) to release the
pressure on a single point. As a result, each node needs to solve
a smaller scale optimization problem which consumes less
computation time. In addition, control messages are exchanged
locally, so control message delay is short and predictable.
When a node responsible for coordinating resources is down,978-1-4673-1298-1/12/$31.00 2012 IEEE

2

selecting a replacement is easier because coordination work-
loads are light-weight and local.
Three main issues arise in the design of DECOR: (a) it must

reach a globally optimal allocation which can achieve global
benefit even without a global view of the entire network from a
central optimizer, (b) it should make effective use of resources
in nodes, and (c) it should converge quickly and be robust to
link failures.
The basic idea of our algorithm starts with each path

first requesting resources from its nodes, trying to optimize
resource assignments to maximize benefit to itself. The benefit
is defined differently in different applications. However, to
achieve global optimization, each node in a topology also
coordinates resource requests received from different paths,
and it arranges resources to maximize the benefit it can provide
to the network-wide traffic received. This resource allocation
process starts at the exit node and is repeated node-for-node
back to entry nodes. This approach runs through multiple
iterations until an optimal allocation is found. Therefore,
DECOR naturally expands optimization from a “local” to a
“global” view without relying on a central controller.
We apply this algorithm to SmartRE [2], resulting in a

system we called distributed SmartRE. We implement this
in a Click software router [9], [10] with encoder, decoder,
and control modules added to this router. We benchmark the
modules and showed that the encoder reaches 485.6 Mbps and
the decoder reaches 633.33 Mbps. The benchmark is run in
the user space and includes the overhead of the Click module,
so higher speed could be achieved if distributed SmartRE was
implemented in hardware such as NetFPGA [11].
Evaluations using realistic ISP topologies and traffic traces

suggest that distributed SmartRE works better than other RE
methods such as Hop-by-hop and Edge-based. The perfor-
mance of distribued SmartRE is close to SmartRE with a
central controller. Even compared to the ideal case, distributed
SmartRE can save half of the ideal redundancy.
We also apply the DECOR framework to CSAMP [1]. Our

evaluations show that DECOR can help CSAMP distribute the
process of range assignments. We re-do the evaluation in the
CSAMP paper and show that distributed CSAMP can work
much better than other sampling mechanisms and is close to
the centralized variant.
DECOR provides a solution to coordinate network re-

sources, and avoids controller bottleneck, message delay, and
a single point of failure. The contributions of this paper
include description of the algorithm for distributed coordinated
resource monitoring (Section III) and proof of its conver-
gence (Section V). Other contributions are the application of
the DECOR framework to distributed SmartRE (Section IV)
and CSAMP and experimental validation of the effectiveness
and robustness of the scaled approach (Section VI and Sec-
tion VII).

II. MOTIVATING SCENARIOS

Our goal is to build a distributed system called DECOR
to monitor and use network resources efficiently. DECOR do

not rely on a central controller, so it can avoid controller
bottleneck, control message delay, and single point of failure
problems.
Network resources are often limited and distributed among

network devices. These network resources can be assigned to
some particular jobs such as traffic sampling. If these network
resources cannot be coordinated well, some of them may be
wasted. We take traffic sampling for example. Traffic sampling
relies on network devices to collect traffic profiles. Without
good coordination, multiple network devices may sample the
same flow and gather the same data which is a waste of
resources.
DECOR can be applied to any path-based network applica-

tions which means the network can be divided into multiple
paths. A path is defined as a route from a ingress node to a
egress node. . DECOR optimizes resource coordination along
each path, and then extend the optimization globally. The
design detail will be provided in the next section.
There are five goals DECOR needs to achieve: (a) reach

global optimization, (b) avoid depletion of resources, (c)
achieve a converged state, (d) scalability, and (e) robustness.
To create more benefit for applications, the system needs to

achieve global optimality. However, in a distributed solution,
there is no single point that gathers a global view of traffic
profiles and computes a globally optimal solution. Each part
of a network, called an optimization unit, instead runs a
separate optimization algorithm. Thus, we need a mechanism
to expand local optimization to achieve a global optimal
goal. Unfortunately, the resource requirements of different
optimization units may conflict. For example, one optimization
unit may maximize its local benefit by using computation
resources also required by another optimization unit.
Network resources are often limited. For example, each

node processes a maximum number of packets per second.
Depleting these resources will cause nodes to drop packets or
information they cannot handle. Because our design does not
have a central controller to globally monitor resource usage,
it needs to ensure that network resources are not depleted in
each node and link, and optimization units coordinate with
each other.
As a distributed solution, the system adjusts resource ar-

rangement to increase global benefit. If the system cannot
converge, decisions oscillate ,and the system repeatedly re-
computes the arrangement, wasting computation power.
With the growing scale of networks, the amount of resources

that need coordination is increasing rapidly, which increases
the time required for a centralized system to solve network-
wide optimization problems. For example, CSAMP shows that
the time to compute the optimal sampling manifest for the
router-level NTT graph is 44.5 seconds [1]. Control message
delay is also a problem in large networks. The number of
hops from each node to a controller increases with growing
network scale. DECOR scales down this optimization problem
to a “path” level, where a “path” refers to a ingress-egress pair
of routers in the network.
Resource monitoring is expected to be robust enough for

3

systems to work even when particular nodes are down or
disconnected. If a system relies on a central controller, and this
controller breaks, the entire network may malfunction. Some
studies add duplicate central controllers to enhance robustness;
however, if these central controllers keep network status, a
mechanism is needed to make the status consistent which
adds extra overhead. In addition, fault recovery approaches
that switch functions to backup controllers impose a high
performance cost (to fail over when a primary controller
is broken) and/or a high replication cost. DECOR runs its
algorithm locally; thus, a broken part of a network will not
affect other parts.

III. DESIGN

The basic idea of DECOR is to divide a network into
smaller pieces called optimization units. We achieve local
optimization in each optimization unit, and then extend to
global optimization.
A network is divided into optimization units according to

ingress-egress pairs, and each unit calculates optimized re-
source assignment locally. In this paper, we assume that flows
belonging to the same ingress-egress pair follow the same hops
in a network, and these ingress-egress pairs are called “paths”.
Paths form the optimization units in our framework.
A path is composed of network devices called nodes. Each

node along a path can provide some resources; therefore, to
create more benefit, these resources need to be allocated across
paths. For example, in CSAMP [1], each node is assigned
a hash range to decide how to use its resources to monitor
traffic for a path. In DECOR, an egress node is responsible for
arranging these resources of the paths it belongs to. DECOR
also use hash ranges of packet headers to assign each node
the fraction of traffic it is responsible for.
DECOR can be divided into two parts: (a)hash range

arrangement: assign hash range to nodes along a path to
achieve local optimization, and (b) quota distribution: nodes
assign resource quota to paths going through them to avoid
the conflict of local optimizations.
To make the right decision of resource arrangement, neces-

sary information needs to be passed around nodes. Depending
on the application, this information can include traffic features,
redundancy profiles, or available resources. Control packets
called HELLO packets are sent by an ingress node to gather
the necessary information along a path and accepted resource
request from each node in this path. HELLO packets finally
are received by an egress node.
Hash range arrangement: The egress node decides on an

optimized resource arrangement according to the information
provided by HELLO packets. This resource arrangement de-
cision represented by hash ranges is passed to nodes along the
path, letting them know how to use their resources. Another
kind of control packets called ACK is sent back into the
network by the engress node to inform the whole path of the
resource allocation.
Quota distribution: Each node can belong to multiple

optimization units (paths), so conflict may occur when all

units try to maximize their benefit and request resources from
a node. To achieve global optimization, a node in conflict
decides the amount of its resources each optimization unit can
use according to the benefit each unit provides to the network
as a whole. This decision is inserted into HELLO packets.
The benefit can be defined differently in different application.
SmartRE [2] defines benefit as the amount of traffic that can
be reduced.

To give a more concrete idea of how a distributed coor-
dinated resource monitoring system works, we apply it to
SmartRE and build a system called distributed SmartRE. This
is described in the next section.

IV. DISTRIBUTED SMARTRE

SmartRE is a redundancy elimination (RE) system. Unlike
other RE system, SmartRE distributes decoding responsibility
among multiple downstream nodes. There is a central con-
troller to monitor and rearrange the decoding responsibility
according to traffic profiles collected by nodes in the system
and the amount of resources which can be provided by the
nodes. In this section, we apply DECOR to SmartRE called
distributed Smart without central controller.

Despite the lack of a central controller, distributed SmartRE
maximizes benefit by arranging decoding responsibility among
nodes according to redundancy and traffic patterns. This sec-
tion describes the basic concept, and shows an algorithm for
decoding responsibility arrangement.

Data packets are incoming packets that traverse a path.
These packets are encoded in ingress nodes by replacing
redundancies by small shims, and then recovered by interior
or egress nodes. The goal of RE is to reduce the amount of
data traffic between ingress and egress nodes. This is realized
by Distributed SmartRE through the use of DECOR spreads
decoding responsibility across interior and egress nodes. It
means shims may be recovered by different nodes.

The main goal of SmartRE is to use resources more effi-
ciently and avoid redundant traffic. Interior and egress nodes
decide which packets to decode based on the hash value
of packet headers. Thus, if each Interior or egress node is
assigned a hash range, decoding responsibility can be spread
out appropriately.

Distributed SmartRE use DECOR to arrange the hash
ranges. As described in Section III. HELLO packets gather
traffic features such as the amount of traffic and number of
redundancy matches collected in the ingress nodes. Interior
nodes also insert the amount of available computation and
memory quota resources into HELLO packets.

After receiving HELLO packets, egress nodes calculate the
best assignment of hash ranges, and these hash ranges are
passed to nodes along a path. By this mechanism, interior
nodes know their assigned hash ranges. An ingress node has
an overview of the hash range assignment and knows which
encoded packets can be later decoded in some interior or
egress nodes.

4

V. ANALYSIS

In this section, we describe DECOR in more detail, in-
cluding hash quota distribution, hash range arrangement, and
proof of convergence. A path in this section is defined as an
ingress-egress pair in a network. We describe the general case
of DECOR and use distributed SmartRE as an example to
show how it fits into a real situation.
The goal of our algorithm is to achieve the best benefit. For

distributed SmartRE, this is the greatest bandwidth savings.
Thus, it is critical to assign appropriate hash ranges to interior
and egress nodes.
Interior nodes must determine how to distribute their allotted

computation power and memory space, called quotas, among
different paths. Additionally, as mentioned in Section III,
egress nodes must calculate a hash range assignment for each
node along a path, and interior nodes use this assignment to
update their hash range.
The following section presents quota distribution and hash

range assignment. In addition, a convergence issue is dis-
cussed.

A. Quota distribution

Assume that there is a new path, p. To obtain resources,
path p needs to negotiate with nodes along the path by sending
HELLO packets.
However, resources of the nodes are limited. For example,

the maximum number of packets per second that nodes can
deal with must be carefully considered. The speed of memory
access also creates some limitations. In addition to resources,
it is also critical to consider the benefit each path can provide
is also. Thus, to avoid depleting resources, the interior node
needs to decide how to distribute limited resources among
paths that require them. Assuming that node r receives a
HELLO packet, the following paragraphs show how r cal-
culates quota distribution.
Interior nodes first need to figure out the unit estimated

benefit that can be provided by each path per unit resource.
For example, this is the amount of traffic reduced in distributed
SmartRE if node r assigns each unit resource to a particular
path.
Before calculating the unit estimated benefit, node r cal-

culates the maximum possible benefit each path can provide,
Bp,r. The definition of benefit depends on the application.
For CSAMP, benefit is the amount of traffic a system can
sample. However, in distributed SmartRE, estimated benefit
can be derived from the following equation:

Bp,r = distancep,r ×matchp,q,r ×matchlenp,q,r

The benefit, Bp,r, is the amount of traffic in bytes that can
be reduced by a particular path in node r. This depends on
many factors: (1) matchp,q,r is the number of times node r
observes that the content of packets in path q matches the
content of packets in path p; notice that q can be other paths
or p itself; (2) matchlenp,q,r is the average match length,
which is the traffic that can be saved from each match; and

(3) distancep,r is the number of hops from an ingress node
to node r, which is the distance encoded packets traverse.
However, different paths may require different amounts of

computation power and memory access quotas. Thus, unit
estimated benefit is derived from dividing maximum possible
benefit by the quota needed to satisfy all requirements as in
the equations below.

BM,p,r =
Bp,r

NM,p,r

BL,p,r =
Bp,r

NL,p,r

BM,p,r is the benefit per maximum memory access quota
provided by path p and BL,p,r is the benefit per maximum
computation quota provided by path p. In addition, if node
r wants to serve all traffic of the path p, the path p will
request both memory quota NM,p,r and computation quota
NL,p,r with node r. Distributed SmartRE defines these as

NM,p,r = vp
NL,p,r =

vp
avgpktsize +matchp,q,r

vp is the volume of traffic in bytes going through this
path. Because node r caches the packets that go through it,
node r needs memory quota of vp to handle the caching
process. avgpktsize is the average packet size in path p, so

vp
avgpktsize is the number of packets that are the computation
power needed to cache these packets, and while matchp,q,r is
the computation power needed to scan redundancy content.
Thus, the sum of these two terms is the total amount of
computation power requested. In addition, because of different
inter traffic redundancy patterns among nodes in a network
topology, NM,p,r and NL,p,r may be different in different
nodes.
After receiving HELLO packets, the interior nodes insert

available quotas into them. The available quotas include un-
used quotas plus the quotas occupied by paths with lower
BM,p,r and BL,p,r. The benefits of path p are compared with
the benefits of other paths consuming some quotas, and paths
that provide less benefit release some quota for path p to use
in the next iteration. The iteration is defined as an exchange
of a HELLO packet and an ACK packet.
The equations below are used to compute available memory

access quota, Mp,r, and available computation power quota,
Lp,r, which are inserted into HELLO packets.

Mp,r =
∑p−1

i=1
(xi,rNM,p,r) +Mu

Lp,r =
∑p−1

i=1
(xi,rNL,p,r) + Lu

Mu is unused memory access quota and Lu is unused
computation power quota. Moreover,

∑p−1

i=1
(xi,rNM,p,r) and∑p−1

i=1
(xi,rNL,p,r) are sums of quotas that will move to path

p where path 1, 2, ..., p-1 are paths with less benefit (both of
less BM,p,r and BL,p,r than path p. xi,r is the fraction of total
assigned responsibility of path i that is handled by node r.

B. Hash range arrangement

A primary job of egress nodes is to determine the hash
range for each node along a path. This process is triggered
by HELLO packets that provide essential information such as

5

traffic volume and redundancy patterns. Using this informa-
tion, an egress node can calculate the hash range with linear
programming.
There are some constraints to be satisfied. The memory

access quota usage cannot surpass the limit of each node. Thus,
the memory access constraint on each node can be modeled
as follows:

∀r, xp,r ×NM,p,r ≤ Mp,r

Mp,r is the memory access quota assigned to path p by
node r. xp,r specifies the fraction of traffic on path p that
node r deals with. Thus, xp,r ×NM,p,r becomes the expected
memory access in node r that should not surpass the memory
quota. In addition, the computation power limit should also be
considered. Lp,r is the computation power quota assigned to
path p:

∀r, xp,r ×NL,p,r ≤ Lp,r

The total number of calculations should not be more than
the limit.
The hash ranges can be represented by xp,r and the total

hash range should be equal to or less than 1, which is a natural
constraint shown by the following equation:

∑V
i=0

xi ≤ 1

where V is the total number of nodes along a path. The
total benefit along a path can be computed as:

Sp =
∑V

i=0
Bp,ixp,i

For path p, linear programming will try to maximize Sp and
derive xp,r.

C. New path negotiation

When the traffic of a new path joins a network with some
existing paths, the new path should negotiate with interior and
egress nodes for the quotas it needs. HELLO packets and ACK
packets are used for this negotiation.
When an interior or egress node receives a HELLO packet

from a new path, it follows this procedure:

a) Calculates the benefit of this new path using the equation
shown in SectionV-A.

b) Compares the benefit of this new path to benefits of existing
paths.

c) Calculates the amount of quotas this node can provide,
including computation power and memory access.

d) Assigns the new path using unused quotas as well as quota
used by other paths with less benefit. The value of total
available quota is inserted into HELLO packets.

e) After the nodes receive ACK packets, the node adjusts the
hash range to prevent paths from depleting resources, if the
available quotas are still occupied by other paths.

f) In the case where a interior node receives two successive
HELLO packets and the latter one belongs to a path with
higher benefit, the interior node may use ACK packets to
reject resources for the earlier HELLO packet, even if the
resources are accepted in the HELLO packets.

D. Proof of convergence

DECOR uses control packets to arrange and adjust respon-
sibilities, which makes stability important.
There is no convergence issue when the first path joins the

system, because no other path competes with it. This first path
can thus use all resources it needs. Therefore, we discuss the
convergence issue only when a new path joins a network with
existing paths. The flow of proof is as follows:
We calculate the change of benefit each node can provide

between iterations and define this change as $Br. If $Br is
monotonically non-decreasing, the benefit B will get closer to
maximal benefit BMAX,r .

BMAX,r = MaxP
i=1

(Min(MrBM,i,r, LrBL,i,r))

BMAX,r is the maximal possible benefit when node r give
all quotas to a path that can provide maximal benefit per quota.
Because both memory and computation constraints need to be
satisfied, we consider the minimum benefits that memory and
computation quota can create.
In DECOR, each node attempts to increase benefit by as-

signing quotas to different paths. Thus, each iteration increases
some benefit in a node. Iteration is defined as a control packet
that sets hash range in a node. According to the algorithm,
each node tries to satisfy the maximum amount of quota that
is requested by the path with highest benefit.
Consider an iteration where a control packet belongs to a

particular path p that navigates quotas in a node r, which
can be an interior or an egress node. The extra hash range it
requests is

$xp,r = xp,r − x
′

p,r

xp,r is the total hash range that path p asks for on node
r. This hash range is represented by the fraction of traffic
inside path p. In addition, xp,r is derived from the linear
programming calculated in an egress node. x

′

p,r is the hash
range this path obtained in a previous iteration in this node.
Thus, $xp,r is the extra range requested in this iteration.
The extra computation and memory quotas needed for this

range are

Mp,r = $xp,rNM,p,r

Lp,r = $xp,rNL,p,r

Mp,r is the memory quota needed, while Lp,r is the
computation quota for the extra hash range. The extra hash
range is multiplied by NM,p,r and NL,p,r, the total resources
path p needs.
Because path p can get quotas that are owned by paths with

lower benefit, the available quotas that can be used by path p

in this node are

Ma =
∑p−1

i=1
(xi,rNM,p,r) +Mu

La =
∑p−1

i=1
(xi,rNL,p,r) + Lu

Mu = Mr −
∑P

i=1
(xi,rNM,p,r)

Lu = Lr −
∑P

i=1
(xi,rNL,p,r)

Where
∑p−1

i=1
(xi,rNM,p,r) and

∑p−1

i=1
(xi,rNL,p,r) are mem-

ory and computation quotas used by the paths with lower

6

benefit than path p. Mu and Lu are unused quotas, and Mr

and Lr are total available quotas provided by node r. P is the
total number of paths going through node r.

There two possible cases: case 1 is where available quotas
can satisfy the amount that path p requests, and case 2 is where
only part of the quota can be satisfied.

Case 1: The available quotas can satisfy the amount re-
quested by path p. The quotas move from paths with benefit
lower than path p benefit. The benefit change from the memory
quota view is

$Br = Mp,r ×BM,p −
∑k

i=1
(Mi,r ×BM,i)

> Mp,r ×BM,p −
∑k

i=1
(Mi,r ×BM,max)

= Mp,r ×BM,p − (
∑k

i=1
Mi,r)BM,max

> (BM,p −BM,max)Mp,r > 0

Where path 1, 2, ..., k are selected to move quota to
path p. BM,p is the benefit per unit memory quota path p
can provide. BM,max is the maximum among BM,i noted
as BM,max = Maxk

i=1
(BM,i). Moreover,

∑p−1

i=1
Mi,r is the

total memory quotas move from path 1, 2, ..., k to path p, so
Mp,r =

∑p−1

i=1
Mi,r. Because all per memory quota benefit

among BM,i is smaller than BM,p, BM,p > BM,max implies
that (BM,p −BM,max)Mp,r > 0.

The computation quota equation is similar. It is obtained
by replacing notations for memory quota by notations for
computation quota. Because of space limitations, this is not
shown in detail.

We conclude that in case 1, each iteration will increase some
total benefit in node r.

Case 2: The available remaining quotas cannot satisfy
the amount path p requests. This means that one or both
of the memory and computation quotas cannot satisfy the
requirement, and the short quota is the critical quota. Thus,
path p depletes the available remaining critical quota:

If Ma×BM,p < La×BL,p, then memory space is a critical
quota.

$Br = Ma ×BM,p −
∑p−1

i=1
(Mi,r ×BM,i)

> Ma ×BM,p −
∑p−1

i=1
(Mi,r ×BM,max)

= Ma ×BM,p − (
∑p−1

i=1
Mi,r)BM,max

= (BM,p −BM,max)Ma > 0

If La × BL,p < Ma × BM,p, then computation space is
a critical quota. this equation is similar to the equation for
memory quota and is obtained by replacing notations for
memory quota by notations for computation quota. Because
of space limitation, this is not shown in detail.

According to cases 1 and 2, if quota assignment changes,
$Br will be monotonically non-decreasing and benefit will
never decrease with iterations. In addition, because the re-
sources each node can provide are limited, there is an upper
boundary for benefit, BMAX,r. Thus, benefit will keep ap-
proaching the upper bound, implying that the range assignment
process will converge.

E. Global optimization

Even without a central controller, global optimization, the
achievement of maximum benefit, is still expected. We discuss
two aspects of this issue.

1) Each optimization unit tries to maximize its local benefit.
Conflicts between optimization units may happen if they
request resources in the same nodes.

2) Each interior or an egress node resolves the conflict by
giving quota to the path that creates the greatest benefit.

In summary, each path tries to reach local optimization,
while interior and egress nodes limit the resources used by
paths to achieve global optimization.

VI. IMPLEMENTATION

To show how DECOR works, we implement distributed
SmartRE which is one of the instance of DECOR. First, we
modify data packet headers and add two kinds of control
packets.

A. Packet format

Packets can be categorized into data packets, HELLO pack-
ets, and ACK packets.
A SmartRE shim header is inserted between a transport

header and a packet payload. A shim header shows how this
packet is encoded and is a clue to decode this packet. It
includes multiple shims composed of path ID that shows the
path that original content belongs to, hash values, offset in
original packets, and original length.
The payload of a HELLO packet is divided into several

fields. The fields number of bytes and number of packets
are traffic patterns which is filled by ingress nodes. They
are followed by some fields of the number of content match,
average match length, and available resources that are filled
by interior nodes.
The payload of an ACK packet provides multiple hash

ranges that are calculated by egress nodes and may be modified
by interior nodes.

B. Implementation environment

Distributed SmartRE was implemented on a Click software
router [9] [10], which is the advantage that new modules can
be easily added. Distributed SmartRE was implemented on an
Intel(R) Core(TM)2 Quad CPU Q6700 computer with 3 GB
of memory.

C. Click modules

We created encoding, decoding, cache, and control modules.
The encoding module searches each incoming packet to find
redundant content and replace it with shims. It also sends
packets to the cache module. The goal of the decoding
module is to recover shims included in packets to restore
the original content. The decoding module also calculates the
hash value of the packet headers. If the value is in some
predetermined range, the decoding module sends these packets
to the cache module, which buffers the packets and creates
a hash table to help search the content. Finally, the control

7

Category Encoding module decoding module
Mbps 485.6 633.3
Kpackets/sec 43.4 56.7

TABLE I
PERFORMANCE ON CLICK

module periodically sends HELLO and ACK control packets
and rearranges the hash ranges among the nodes.

D. Capacity test

The encoder and decoder modules implemented in the
Click experience some hardware and software overhead, in
addition to Click overhead. In this section, we discuss how
we determined the amount of traffic the modules could handle.
The volume of test traffic was 1.821 GB with 1303 K packets.
The packets were fed into the modules as quickly as possible,
and we measured the output traffic.
Based on table I, the encoding module can encode pack-

ets as quickly as 60.7 MBytes per second, which is about
485.6Mbps and 43.4 K packets. Because the decoding module
only needs to replace shims with original content for en-
coded packets, it can accept faster traffic than the encoding
module. Decoding was measured at 79.2 Mbytes per second
(633.3Mbps) with 56.7 K packets per second.

E. Correctness issue

The cache in both encoding and decoding nodes must be
consistent to correctly decode data packets.
The caches in ingress nodes are divided into buckets. Each

bucket corresponds to the cache in a particular interior or
egress node for a particular path. Each bucket ensures that
the packets buffered in the upstream nodes are also buffered
in the downstream nodes. The number and the size of buckets
are adjustable and depend on the number of paths, topology,
and overlap matrix.

F. Recovery from route failure

When a link is broken, a path may change its route, and
some interior nodes may be replaced by other nodes. Thus,
to maintain correct coding in this situation, packets cached
in the buckets belonging to substituted interior nodes can
no longer be used to encode incoming packets. Otherwise,
encoded packets cannot be decoded.
Therefore, when an ingress node notices a route is changed,

buckets are replaced. The ingress node deletes the buckets
belonging to the substituted interior nodes and the packets
cached in those buckets. Then, the ingress node creates buckets
for the new interior nodes, and Incoming packets are cached
and encoded with the new buckets.

VII. EVALUATION

To show that distributed SmartRE can also perform well in
a larger topology, we evaluated it on an ISP topology. More
paths feed into this topology, and they share some common
interior nodes. This allows us to observe how paths compete
with each other for resources provided by interior nodes.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

100 300 500 1000

T
h
e
 a

m
o
u
n
t

o
f
sa

ve
d
 t
ra

ff
ic

 (
%

)

Memory space (Mbytes)

Hop by hop RE
Edge-based RE

Centralized SmartRE

Distributed SmartRE
Ideal RE

Fig. 1. The amount of saved traffic

In this section, we discuss our evaluation of the efficiency
of our algorithm. We then present the convergence of the hash
arrangement followed by a comparison of distributed SmartRE
with other RE methods. Finally, we apply DECOR to CSAMP
and evaluate the performance.

A. Distributed SmartRE

The ISP topology of Sprint was used, which included 51
nodes and 167 links. Moreover, 2GB traffic from 1569 K
packets travels through the network from 15 ingress nodes
to 15 egress nodes with some overlapping interior nodes. The
paths compete with each other for resources within nodes. The
sending period of control packets was on second.

1) Traffic reduction: Saving traffic is the goal of all RE
system. Thus, we compared distributed SmartRE with hop-
by-hop solution, centralized SmartRE, edge-based RE, and an
ideal case.

1) Distributed SmartRE: a DECOR-based SmartRE ap-
proach. This approach uses control packet exchanges
among nodes to arrange decoding responsibilities.

2) Hop-by-hop RE: nodes, including ingress, interior, and
egress, encode and decode incoming packets on each hop.
This approach consumes more resources.

3) Centralized SmartRE: a SmartRE approach with a cen-
tralized controller that gathers traffic and redundancy
patterns and arranges decoding responsibilities among
nodes.

4) Edge-based RE: uses ingress nodes to encode incoming
packets and egress nodes to decode them. Interior nodes
do not have any responsibilities; encoding/decoding hap-
pen in edge nodes. This approach cannot benefit by inter
path redundancies.

5) The ideal case: unlimited resources in each node, in-
cluding computation power, memory access, and cache
size; thus, the node can figure out all possible traffic
redundancies. Four cases are considered. In each, interior
nodes are assigning different resources of computation
power and memory space.

We vary the memory space in each node from 100MBytes
to 1000 MB. Each node can access 3.52 MB of memory per
secend and perform 4000 coding computations.
Figure 1 shows the percentage of traffic each solution can

save. We summed the amount of total traffic that goes through
all links and the traffic saved on all links.

8

Topology(AS#) PoPs #Test Flows #Iterations
NTT(2914) 70 34 6
Level3(3356) 63 30 5
Sprint(1239) 52 26 4
GEANT 22 10 3
Internet2 11 4 3

TABLE II
THE NUMBER OF ITERATIONS NEEDED FOR CONVERGENCE

The performance of RE is affected by cache size excepting
the ideal case, so distributed SmartRE can save half to one-
third of the amount of traffic that the ideal case can save.
However, distributed SmartRE is 18 to 63 times better than the
hop-by-hop approach, especially in cases of lower resources.
Distributed SmartRE also works better than edge-based RE,
because distributed SmartRE can benefit from inter-path re-
dundancy, while edge-based RE can consider only intra-path
redundancy.
Therefore, we conclude that distributed SmartRE can save

lots of trafic even if it does not perform as well as ideal case,
and it is also superior to the hop-by-hop approach. Edge-
based RE cannot benefit from inter-path redundancy, so it
reduces less traffic than distributed SmartRE, especially when
the cache size is large. We also can observe that even without
a central controller, distributed SmartRE can work as well as
centralized SmartRE.
Moreover, distributed SmartRE is less affected by limited

resources than the hop-by-hop approach, which means that it
can consume less resources and still perform well.

B. Convergence

Distributed SmartRE relies on control packets to adjust
hash range assignments and can reach an optimized decoding
responsibility assignment after several iterations. Thus, we
evaluate the number of iterations needed to reach convergence.
One iteration is defined as one HELLO and ACK packets
exchange for each path.
To avoid the effect of traffic variance, stable traffic is

used. We measure convergence time in Rocketfuel-based [12]
topologies of different scale as shown in Table II. We pick
up one fourth of nodes as ingress nodes and each ingress
nodes start a pair of flows that provide 4 Mbytes/s and 3000
packets/s traffic with different redundancy levels. One flow
includes 84 matches/s with 282 bytes average redundancy
length, and the other includes 270 matches/s with 544 bytes
average redundancy length. The pair of flows show some
overlap hops, so they compete with each other for resources.
We compare hash range arrangement in the current iteration

to the one in previous iteration. If they are consistent, we
can say it have converged. Table II shows that the number
of iterations needed for convergence tends to be higher in
larger ISP. However, even in the largest ISP such as NTT,
the iteration is acceptable. The size of NTT is about seven
times larger than Internet2, but the number of its iterations for
convergence is only double. Thus, convergence time is not a
critical problem in DECOR.

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

E
lim

in
a
te

d
 r

e
d
u
n
d
a
n
cy

p
e
rc

e
n
ta

g
e
 (

%
)

The sending period of control packets (s)

Fig. 2. Different sending rate of control packets
NTT Level3 Sprint GEANT Internet2

Flows(×106) 51 46 37 16 8

TABLE III
CSAMP EXPERIMENT SETUP

 0

 0.2

 0.4

 0.6

 0.8

 1

NTT Level3 Sprint GEANT Internet2

T
h
e
 f
ra

ct
io

n
o
f
co

ve
re

d
 f
lo

w
s

Topologies

DECOR-based cSAMP
Flow sampling

Packet sampling

Edge packet sampling
Max sampling

Fig. 3. The total flow coverage of different sampling methods

In Figure 2, the percentage of detected redundancy increases
with the decreasing sending period of the control packets.
However, a shorter sending period means more control pack-
ets, which increase traffic per unit time. Thus, adjustment of
the sending period will require trade-off.

C. CSAMP

The DECOR framework can also be applied to CSAMP, as
CSAMP is also a resource assignment problem. CSAMP is a
traffic sampling system which tries to sample as much traffic
as possible under some resource constraints. In this section,
we evaluate how our algorithm works in CSAMP.
We consider five different AS topologies in PoPs level with

different scales as in the CSAMP paper [1]. We use a traffic
generator to create traffic, the amount of which is proportional
to the scale of each topology, and the packet size is 1,000
bytes. In addition, each node can monitor 60,000 packets per
second. The topologies are Rocketfuel-based [12] (Table III).
We measure the fraction of flow each sampling method

can cover. We compare five sampling methods: (a) CSAMP:
assigns each node different hash ranges to avoid redundant
monitoring, (b) flow sampling: every node pick up one packet
per 100 packets in each flow, (c) packet sampling: every
node pick up one packet per 100 packets of all traffic, (d)
edge packet sampling: edge nodes pick up one packet per 50
packets of all traffic, and (e) maximal flow sampling: every
node samples as many packets as possible until it depletes its
resources.
The performance is shown in Figure 3. CSAMP and

maximal flow sampling work much better than the other

9

methods, as both use their resources more efficiently. Further-
more, CSAMP can arrange monitor responsibilities to avoid
monitoring redundant traffic; thus, it can cover more flows
than maximal flow sampling. Therefore, we can conclude that
DECOR-based CSAMP is superior to other methods.

VIII. RELATED WORK

In the recent OpenFlow proposal OpenFlow [13], [14], a
central controller such as NOX [15] is used to control network
switches. Yu et al. find that limited CPU resources in the
controller limit OpenFlow throughput to only 50K single-
packet flow/s in a topology with 10 switches [16]. Therefore,
DIFANE reduces controller loads by installing rules into mul-
tiple authority switches. Authority switches process policies on
partial incoming flows instead of all flows in networks; thus,
the controller is only responsible for partitioning global rules
into local rules for authority switches. DIFANE achieves 800K
single-packet flow/s throughput. However, because traffic is
dynamic, the controller still needs to compute and adjust rule
partitions according to traffic and resource profiles to avoid
depleting authority switche resources. With highly variable
traffic, the controller still becomes a bottleneck, and represents
a single failure point. We believe that even modest support
within switches for the distributed coordinated resource moni-
toring as envisioned in DECOR could help approaches such as
DIFANE scale significantly better even under highly variable
traffic.
Another study, TeXCP [17], provides an online distributed

traffic engineering (TE) protocol that balances load in realtime
and minimizes maximum utilization in the network [18], [19].
TeXCP assign an agent residing in an ingress node for each
ingress-egress pair. This agent gathers explicit feedback [20]
from core routers in the network and selects an appropriate
path. The system balances load throughout the network based
on local information. Evaluation shows that TeXCP can reach
the same utilization as traditional offline TE, but can balance
load in realtime. TeXCP provides an approach for TE, but
DECOR supports a more general solutions that can apply to
a wider range of problems. In addition, our solution supports
finer-grained engineering: TeXCP can only decide how ingress
nodes deal with traffic, but our solution can also expand
decision to each internal node in the network.

IX. CONCLUSIONS

Coordinated resource monitoring systems are a solution to
manage the network resources used by many network appli-
cations today. Existing solutions rely on central controllers
to optimize the usage of different resources, but they fail
to consider that controllers can be bottlenecks that reduce
scalability and introduce a single point of failure.
We present DECOR, a distributed solution that can monitor

different resources even without a central controller. In contrast
to current solutions, DECOR successfully spreads the load of
computing resource allocation among multiple nodes; thus,
there is no critical point that may become a bottleneck. We
demonstrated that DECOR can achieve global optimization

and work as well as current centralized solutions. In addition,
we also applied DECOR to various applications such as
SmartRE and cSAMP and showed that DECOR converges in
practical scenarios.

REFERENCES

[1] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and
D. G. Andersen, “Csamp: a system for network-wide flow monitoring,”
in Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation, ser. NSDI’08. Berkeley, CA, USA:
USENIX Association, 2008, pp. 233–246.

[2] A. Anand, V. Sekar, and A. Akella, “Smartre: an architecture for
coordinated network-wide redundancy elimination,” in ACM SIGCOMM,
2009.

[3] R. Egashira, A. D. Yahaya, and T. Suda, “Market-based cooperative
resource allocation for overlay networks,” in Proceedings of the 28th
IEEE conference on Global telecommunications, ser. GLOBECOM’09.
Piscataway, NJ, USA: IEEE Press, 2009, pp. 5943–5948.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM, 2008.

[5] A. Anand, C. Muthukrishnan, A. Akella, and R. Ramachandran, “Re-
dundancy in network traffic: Findings and implications,” in ACM SIG-
METRICS, 2009.

[6] A. Anand, A. Gupta, S. S. A. Akella, and S. Shenker, “Packet caches
on routers: The implications of universal redundant traffic elimination,”
in ACM SIGCOMM, 2008.

[7] B. Aggarwal, A. Akella, A. Anand, A. Balachandran, P. Chitnis,
C. Muthukrishnan, R. Ramjee, and G. Varghese, “Endre: an end-system
redundancy elimination service for enterprises,” in Proceedings of the
7th USENIX conference on Networked systems design and implementa-
tion, ser. NSDI’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 28–28.

[8] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. McK-
eown, and S. Shenker, “Sane: a protection architecture for enterprise
networks,” in Proceedings of the 15th conference on USENIX Security
Symposium - Volume 15. Berkeley, CA, USA: USENIX Association,
2006.

[9] Click software router, http://read.cs.ucla.edu/click/.
[10] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The

click modular router,” ACM Transactions on Computer Systems, vol. 18,
no. 3, pp. 263–297, 2000.

[11] Netfpga website, http://www.netfpga.org/.
[12] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP

topologies with rocketfuel,” Networking, IEEE/ACM Transactions on,
vol. 12, no. 1, pp. 2–16, 2004.

[13] Openflow website, http://www.openflow.org/.
[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, p. 69, 2008.

[15] Nox an openflow controller, http://www.noxrepo.org/wp/.
[16] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based

networking with DIFANE,” in Proceedings of the ACM SIGCOMM 2010
conference on SIGCOMM - SIGCOMM ’10, New Delhi, India, 2010, p.
351.

[17] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope:
responsive yet stable traffic engineering,” in ACM SIGCOMM Computer
Communication Review, vol. 35. New York, NY, USA: ACM, Aug.
2005, pp. 253–264, ACM ID: 1080122.

[18] D. Applegate, L. Breslau, and E. Cohen, “Coping with network failures:
routing strategies for optimal demand oblivious restoration,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 32. New York,
NY, USA: ACM, Jun. 2004, pp. 270–281, ACM ID: 1005719.

[19] D. Applegate and E. Cohen, “Making intra-domain routing robust to
changing and uncertain traffic demands: understanding fundamental
tradeoffs,” in Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer communications,
ser. SIGCOMM ’03. New York, NY, USA: ACM, 2003, pp. 313–324,
ACM ID: 863991.

[20] L. L. H. Andrew, S. H. Low, and B. P. Wydrowski, “Understanding
XCP: equilibrium and fairness,” IEEE/ACM Transactions on Networking
(TON), vol. 17, pp. 1697–1710, Dec. 2009, ACM ID: 1721712.

