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Abstract—Code and design smells are poor solutions to recurring implementation and design problems. They may hinder the

evolution of a system by making it hard for software engineers to carry out changes. We propose three contributions to the research

field related to code and design smells: 1) DECOR, a method that embodies and defines all the steps necessary for the specification

and detection of code and design smells, 2) DETEX, a detection technique that instantiates this method, and 3) an empirical validation

in terms of precision and recall of DETEX. The originality of DETEX stems from the ability for software engineers to specify smells at a

high level of abstraction using a consistent vocabulary and domain-specific language for automatically generating detection algorithms.

Using DETEX, we specify four well-known design smells: the antipatterns Blob, Functional Decomposition, Spaghetti Code, and Swiss

Army Knife, and their 15 underlying code smells, and we automatically generate their detection algorithms. We apply and validate the

detection algorithms in terms of precision and recall on XERCES v2.7.0, and discuss the precision of these algorithms on 11 open-

source systems.

Index Terms—Antipatterns, design smells, code smells, specification, metamodeling, detection, Java.
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1 INTRODUCTION

SOFTWARE systems need to evolve continually to cope with
ever-changing requirements and environments. How-

ever, opposite to design patterns [1], code and design smells
—“poor” solutions to recurring implementation and design
problems—may hinder their evolution by making it hard
for software engineers to carry out changes.

Code and design smells include low-level or local
problems such as code smells [2], which are usually
symptoms of more global design smells such as anti-
patterns [3]. Code smells are indicators or symptoms of
the possible presence of design smells. Fowler [2]
presented 22 code smells, structures in the source code
that suggest the possibility of refactorings. Duplicated
code, long methods, large classes, and long parameter lists
are just a few symptoms of design smells and opportu-
nities for refactorings.

One example of a design smell is the Spaghetti Code
antipattern,1 which is characteristic of procedural thinking
in object-oriented programming. Spaghetti Code is revealed

by classes without structure that declare long methods
without parameters. The names of the classes and methods
may suggest procedural programming. Spaghetti Code
does not exploit object-oriented mechanisms, such as
polymorphism and inheritance, and prevents their use.

We use the term “smells” to denote both code and design
smells. This use does not exclude that, in a particular context,
a smell can be the best way to actually design or implement a
system. For example, parsers generated automatically by
parser generators are often Spaghetti Code, i.e., very large
classes with very long methods. Yet, although such classes
“smell,” software engineers must manually evaluate their
possible negative impact according to the context.

The detection of smells can substantially reduce the cost
of subsequent activities in the development and mainte-
nance phases [4]. However, detection in large systems is a
very time and resource-consuming and error-prone activity
[5] because smells cut across classes and methods and their
descriptions leave much room for interpretation.

Several approaches, as detailed in Section 2, have been
proposed to specify and detect smells. However, they have
three limitations. First, the authors do not explain the
analysis leading to the specifications of smells and the
underlying detection framework. Second, the translation of
the specifications into detection algorithms is often black
box, which prevents replication. Finally, the authors do not
present the results of their detection on a representative set
of smells and systems to allow comparison among
approaches. So far, reported results concern proprietary
systems and a reduced number of smells.

We present three contributions to overcome these
limitations. First, we propose DEtection & CORrection2

(DECOR), a method that describes all the steps necessary
for the specification and detection of code and design
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1. This smell, like those presented later on, is really in between
implementation and design.

2. Correction is future work.
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smells. This method embodies in a coherent whole all of the
steps defined by previous work and thus provides a means
to compare existing techniques and suggest future work.

Second, we revisit in the context of the DECOR method
our detection technique [6], [7], now called DETection
EXpert (DETEX). DETEX allows software engineers to specify
smells at a high level of abstraction using a unified
vocabulary and domain-specific language, obtained from
an in-depth domain analysis, and to automatically generate
detection algorithms. Thus, DECOR represents a concrete
and generic method for the detection of smells with respect
to previous work and DETEX is an instantiation or a
concrete implementation of this method in the form of a
detection technique.

Third,we validateDETEXusingprecision and recall on the
open-source system XERCES and precision on 11 other
systems. We thus show indirectly the usefulness of DECOR.
This extensive validation is the first report in the literature of
both precision and recall with open-source software systems.

These three contributions take up and expand our
previous work on code and design smells [6], [7] to form
a consistent whole that provides all the necessary details to
understand, use, replicate, and pursue our work. Therefore,
we take up the domain analysis, language, underlying
detection framework, and results of the recall on XERCES.

The paper is organized as follows: Section 2 surveys
related work. Section 3 describes the DECOR method and
introduces its instantiation DETEX. Section 4 details each
step of the implementation of DETEX illustrated on the
Spaghetti Code as a running example. Section 5 describes
the validation of DETEX with the specification and detection
of three additional design smells: Blob, Functional Decom-
position, and Swiss Army Knife, on 11 object-oriented
systems: ARGOUML, AZUREUS, GANTTPROJECT, LOG4J,
LUCENE, NUTCH, PMD, QUICKUML, two versions of
XERCES, and ECLIPSE. Section 6 concludes the paper and
presents future work.

2 RELATED WORK

Many works exist on the identification of problems in
software testing [8], databases ([9], [10]), and networks [11].
We survey here those works directly related to the detection
of smells by presenting their existing descriptions, detection
techniques, and related tools. Relatedwork ondesign pattern
identification (e.g., [12]) is beyond the scope of this paper.

2.1 Descriptions of Smells

Several books have been written on smells. Webster [13]
wrote the first book on smells in the context of object-
oriented programming, including conceptual, political,
coding, and quality assurance pitfalls. Riel [14] defined
61 heuristics characterizing good object-oriented program-
ming that enable engineers to assess the quality of their
systems manually and provide a basis for improving design
and implementation. Beck, in Fowler’s book [2], compiled
22 code smells that are low-level design problems in source
code, suggesting that engineers should apply refactorings.
Code smells are described in an informal style and
associated with a manual detection process. Mäntylä [15]
and Wake [16] proposed classifications for code smells.

Brown et al. [3] focused on the design and implementation
of object-oriented systems and described 40 antipatterns
textually, i.e., general design smells including the well-
known Blob and Spaghetti Code.

These books provide in-depth views on heuristics, code
smells, and antipatterns aimed at a wide academic
audience. However, manual inspection of the code for
searching for smells based only on text-based descriptions
is a time-consuming and error-prone activity. Thus, some
researchers have proposed smell detection approaches.

2.2 Detection Techniques

Travassos et al. [5] introduced a process based on manual
inspections and reading techniques to identify smells. No
attempt wasmade to automate this process, and thus, it does
not scale to large systems easily. Also, the process only covers
the manual detection of smells, not their specification.

Marinescu [17] presented a metric-based approach to
detect code smells with detection strategies, implemented in
the IPLASMA tool. The strategies capture deviations from
good design principles and consist of combining metrics
with set operators and comparing their values against
absolute and relative thresholds.

Munro [18] noticed the limitations of text-based descrip-
tions and proposed a template to describe code smells
systematically. This template is similar to the one used for
design patterns [1]. It consists of three main parts: a code
smell name, a text-based description of its characteristics,
and heuristics for its detection. It is a step toward more
precise specifications of code smells. Munro also proposed
metric-based heuristics to detect code smells, which are
similar to Marinescu’s detection strategies. He also per-
formed an empirical study to justify the choice of metrics
and thresholds for detecting smells.

Alikacem and Sahraoui [19] proposed a language to detect
violations of quality principles and smells in object-oriented
systems. This language allows the specification of rules using
metrics, inheritance, or association relationships among
classes, according to the engineers’ expectations. It also
allows using fuzzy logic to express the thresholds of rules
conditions. The rules are executed by an inference engine.

Some approaches for complex software analysis use
visualization techniques [20], [21]. Such semi-automatic
approaches are interesting compromises between fully
automatic detection techniques that can be efficient but
loose track of context, and manual inspection that is slow
and inaccurate [22]. However, they require human expertise
and are thus still time-consuming. Other approaches per-
form fully automatic detection of smells and use visualiza-
tion techniques to present the detection results [23], [24].

Other related approaches include architectural consis-
tency checkers, which have been integrated in style-
oriented architectural development environments [25],
[26], [27]. For example, active agents acting as critics [27]
can check properties of architectural descriptions, identify
potential syntactic and semantic errors, and report them to
the designer.

All of these approaches have contributed significantly to
the automatic detection of smells. However, none presents a
complete method including a specification language, an
explicit detection platform, a detailed processing, and a
validation of the detection technique.
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2.3 Tools

In addition to detection techniques, several tools have been
developed to find smells and implementation problems
and-or syntax errors.

Annotation checkers such as ASPECT [28], LCLINT [29],
or EXTENDED STATIC CHECKER [30] use program verifica-
tion techniques to identify code smells. These tools require
the engineers’ assistance to add annotations in the code that
can be used to verify the correctness of the system.

SMALLLINT [31] analyzes Smalltalk code to detect bugs,
possible programming errors, or unused code. FINDBUGS

[32] detects correctness and performance-related bugs in
JAVA systems. SABER [33] detects latent coding errors in
J2EE-based applications. ANALYST4J [34] allows the identi-
fication of antipatterns and code smells in JAVA systems
using metrics. PMD [35], CHECKSTYLE [36], and FXCOP

[37] check coding styles. PMD [35] and HAMMURAPI [38]
also allow developers to write detection rules using JAVA or
XPATH. However, the addition of new rules is intended for
engineers familiar with JAVA and XPATH, which could
limit access to a wider audience. With SEMMLECODE [39],
engineers can execute queries against source code, using a
declarative query language called .QL, to detect code smells.

CROCOPAT [40] provides means to manipulate relations
of any arity with a simple and expressive query and
manipulation language. This tool allows many structural
analyses in models of object-oriented systems including
design pattern identification and detection of problems in
code (for example, cycles, clones, and dead code).

Model checkers such as BLAST [41] and MOPS [42] also
relate to code problems by checking for violations of
temporal safety properties in C systems using model
checking techniques.

Most of these tools detect predefined smells at the
implementation level such as bugs or coding errors. Some
of them as PMD [35] and HAMMURAPI [38] allow engineers

to specify new detection rules for smells using languages

such as JAVA or XPATH.

3 DECOR AND ITS INSTANTIATION, DETEX

Although previous works offer ways to specify and detect

code and design smells, each has its particular advantages

and focuses on a subset of all the steps necessary to define a

detection technique systematically. The processes used and

choices made to specify and implement the smell detection

algorithms are often not explicit: They are often driven by

the services of the underlying detection framework rather

than by an exhaustive study of the smell descriptions.
Therefore, as a first contribution, we propose DECOR, a

method that subsumes all the steps necessary to define a

detection technique. The method defines explicitly each

step to build a detection technique. All steps of DECOR are

partially instantiated by the previous approaches. Thus, the

method encompasses previous work in a coherent whole.

Fig. 1a shows the five steps of the method. The following

items summarize its steps:

. Step 1. Description analysis: Key concepts are
identified in the text-based descriptions of smells
in the literature. They form a unified vocabulary of
reusable concepts to describe smells.

. Step 2. Specification: The concepts, which constitute
a vocabulary, are combined to specify smells
systematically and consistently.

. Step 3. Processing: The specifications are trans-
lated into algorithms that can be directly applied
for the detection.

. Step 4. Detection: The detection is performed on
systems using the specifications previously pro-
cessed and returns the list of code constituents
(e.g., classes, methods) suspected of having smells.
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. Step 5. Validation: The suspected code constitu-
ents are manually validated to verify that they
have real smells.

The first stepof themethod isgeneric andmustbebasedon
a representative set of smells. Steps 2 and 3must be followed
when specifying a new smell. The last two Steps 4 and 5 are
repeatable and must be applied on each system. Feedback
loops exist among the stepswhen the validation of the output
of a step suggests changing the output of its precursor.

During the iterative validation, we proceed as follows: In
Step 1, we may expand the vocabulary of smells; in Step 2,
we may extend the specification language; in Step 3, we
may refine and reprocess the specifications to reduce the
number of erroneous detection results. The engineers
choose the stopping criteria depending on their needs and
the outputs of the detection. Steps 1, 2, and 5 remain manual
by nature.

Fig. 1a contrasts the DECOR method with previous work.
Some previous works [2], [3], [13], [14] provided text-based
descriptions of smells but none performed a complete
analysis of these descriptions. Munro [18] improved the
descriptions by proposing a template including heuristics
for their detection. However, he did not propose any
automatic process for their detection. Marinescu [17]
proposed a detection technique based on high-level speci-
fications. However, he did not make explicit the processing
of these specifications, which appears as a black box.
Alikacem and Sahraoui [19] also proposed high-level
specifications but did not provide any validation of their
approach. Tools focused on implementation problems and
could provide hints on smells, and thus, implement parts of
the detection. Although these tools provide languages for
specifying new smells, these specifications are intended for
developers, and thus, are not high-level specifications. Only
Marinescu [17] and Munro [18] provide some results of their
detection but only on a few smells and proprietary systems.

As our second contribution, we now revisit our previous
detection technique [6], [7] within the context of DECOR.
Fig. 1b presents an overview of the four steps of DETEX,
which are instances of the steps of DECOR. It also
emphasizes the steps, inputs, and outputs specific to
DETEX. The following items summarize the steps in DETEX:

. Step 1. Domain analysis: This first step consists of
performing a thorough analysis of the domain
related to smells to identify key concepts in their
text-based descriptions. In addition to a unified
vocabulary of reusable concepts, a taxonomy and
classification of smells are defined using the key
concepts. The taxonomy highlights and charts the
similarities and differences among smells and their
key concepts.

. Step 2. Specification: The specification is performed
using a domain-specific language (DSL) in the form
of rule cards using the previous vocabulary and
taxonomy. A rule card is a set of rules. A rule
describes the properties that a class must have to be
considered a smell. The DSL allows defining proper-
ties for the detection of smells, specifying the
structural relationships among these properties and
characterizing properties according to their lexicon

(i.e., names), structure (e.g., classes using global
variables), and internal attributes using metrics.

. Step 3. Algorithm generation: Detection algorithms
are automatically generated from models of the rule
cards. These models are obtained by reifying the
rules using a dedicated metamodel and parser. A
framework supports the automatic generation of the
detection algorithms.

. Step 4. Detection: Detection algorithms are ap-
plied automatically on models of systems obtained
from original designs produced during forward
engineering or through reverse engineering of the
source code.

DETEX is original because the detection algorithms are
not ad hoc, but are generated using a DSL obtained from an
in-depth domain analysis of smells. A DSL benefits the
domain experts, engineers, and quality experts because they
can specify and modify manually the detection rules using
high-level abstractions pertaining to their domain, taking
into account the context of the analyzed systems. The
context corresponds to all information related to the
characteristics of the systems including types (prototype,
system in development or maintenance, embedded system,
etc.), design choices (related to design heuristics and
principles), and coding standards.

4 DETEX IN DETAILS

The following sections describe the four steps ofDETEXusing
a common pattern: input, output, description, and imple-
mentation. Each step is illustrated by a running example
using the Spaghetti Code and followed by a discussion.

4.1 Step 1: Domain Analysis

The first step of DETEX is inspired by the activities
suggested for domain analysis [43], which “is a process by
which information used in developing software systems is
identified, captured, and organized with the purpose of
making it reusable when creating new systems.” In the
context of smells, information relates to smells, software
systems are detection algorithms, and the information on
smells must be reusable when specifying new smells.
Domain analysis ensures that the language for specifying
smells is built upon consistent high-level abstractions and is
flexible and expressive. This step is crucial to DETEX

because its output serves as input for all the following
steps. In particular, the identified key concepts will be
specified as properties and values in the next two steps.

4.1.1 Process

Input: Text-based descriptions of design and code smells
in the literature, such as [2], [3], [13], [14].

Output: A textual list of the key concepts used in the
literature to describe smells, which forms a vocabulary for
smells. Also, a classification of code and design smells and a
taxonomy in the form of a map highlighting similarities,
differences, and relationships among smells.

Description: This first step deals with identifying,
defining, and organizing key concepts used to describe
smells, including metric-based heuristics as well as
structural and lexical data [7]. The key concepts refer to
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keywords or specific concepts of object-oriented program-
ming used to describe smells in the literature ([2], [3],
[13], [14]). They form a vocabulary of reusable concepts to
specify smells.

The domain analysis requires a thorough search of the
literature for key concepts in the smell descriptions. We
perform the analysis in an iterative way: For each
description of a smell, we extract all key concepts, compare
them with already-found concepts, and add them to the
domain avoiding synonyms and homonyms. A synonym is
a same concept with two different names and homonyms
are two different concepts with a same name. Thus, we
obtain a compilation of concepts that forms a concise and
unified vocabulary.

We define and classify manually smells using the key
concepts. Smells sharing the same concepts belong to the
same category. The classification limits possible misinter-
pretation, avoiding synonyms and homonyms at any level
of granularity. We sort the concepts according to the
types of properties on which they apply: measurable,
lexical, or structural.

Measurable properties are concepts expressed with
measures of internal attributes of constituents of systems
(classes, methods, fields, relationships, and so on). Lexical
properties relate to the vocabulary used to name constitu-
ents. They characterize constituents with specific names
defined in lists of keywords or in a thesaurus. Structural
properties and relationships define the structures of
constituents (for example, fields corresponding to global
variables) and their relationships (for example, an associa-
tion relationship between classes).

Figs. 2 and 3 show the classifications of the four
antipatterns of interest in this paper, described in Table 1,
and their code smells. These classifications organize and
structure smells consistently at the different levels of
granularity.

We then use the vocabulary to manually organize all
smells with respect to one another and build a taxonomy
that puts all smells on a single map and highlights their

relationships. The map organizes and combines smells,
such as antipatterns and code smells, and other related key
concepts using set operators such as intersection and union.

Implementation: This step is intrinsically manual. It
requires the engineers’ expertise and can seldom be
supported by tools.

4.1.2 Running Example

Analysis of the Spaghetti Code. We summarize the text-
based description of the Spaghetti Code [3, page 119] in
Table 1 along with those of the Blob [page 73], Functional
Decomposition [page 97], and Swiss Army Knife [page 197].
In the description of the Spaghetti Code, we identify the key
concepts (in italic in the table) of classes with long methods
with no parameter, with procedural names, declaring global
variables, and not using inheritance and polymorphism.

We obtain the following classification for the Spaghetti
Code: Its measurable properties include the concepts of long
methods, methods with no parameter, inheritance; its lexical
properties include the concepts of procedural names; and its
structural properties include the concepts of global variables
and polymorphism. The Spaghetti Code does not involve
structural relationships among constituents. Such relation-
ships appear in Blob and Functional Decomposition, for
example, through the key concepts depends on data and
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Fig. 2. Classification of some code smells. (Fowler’s smells are in gray.)

Fig. 3. Classification of antipatterns.

TABLE 1
List of Design Smells

The key concepts are in bold and italics.



associated with small classes. Measurable properties are
characterized by values specified using keywords such as
high, low, few, and many, for example, in the textual
descriptions of the Blob, Functional Decomposition, and
Swiss Army Knife, but not explicitly in the Spaghetti Code.
The properties can be combined using set operators such as
intersection and union. For example, all properties must be
present to characterize a class as Spaghetti Code. More
details on the properties and their possible values for the key
concepts are given in Section 4.2, where we present the DSL
built from the domain analysis, its grammar, and an
exhaustive list of the properties and values.

Classification of code smells. Beck [2] provided a
catalog of code smells but did not define any categories
of or relationships among the smells. This lack of
structuring hinders their identification, comparison, and
consequently, detection.

Efforts have been made to classify these symptoms.
Mäntylä [15] proposed seven categories, such as object-
orientation abusers or bloaters, including long methods,
large classes, or longparameter lists.Wake [16] distinguished
code smells that occur in or among classes. He further
distinguished measurable smells, smells related to code
duplication, smells due to conditional logic, and others.
These two classifications are based on the nature of the
smells. We are also interested in their properties, structure,
and lexicon, as well as their coverage (intra and interclasses
[45]) because these reflect better the spread of the smells.

Fig. 2 shows the classification of some code smells.
Following Wake, we distinguish code smells occurring in
and among classes. We further divide the two subcategories
into structural, lexical, and measurable code smells. This
division helps in identifying appropriate detection techni-
ques. For example, the detection of a structural smell may
essentially be based on static analyses, the detection of a
lexical smell may rely on natural language processing, and
the detection of a measurable smell may use metrics. Our
classification is generic and classifies code smells in more
than one category (e.g., Duplicated Code).

Classification of antipatterns. An antipattern [3] is a
literary form describing a bad solution to a recurring design
problem that has a negative impact on the quality of a
system design. Contrary to design patterns, antipatterns
describe what not to do. There exist general antipatterns [3]
and antipatterns specific to concurrent processes [46], J2EE
[47], [48], performance [49], XML [48], and other subfields
of software engineering.

Brown et al. [3] classified antipatterns in three main
categories: development, architecture, and project manage-
ment. We focus on the antipatterns related to development
and architecture because they represent poor design choices.
Moreover, their correction may enhance the quality of the
systems and their detection is possible semi-automatically.

Fig. 3 summarizes the classification of the antipatterns.We
use the previous classification of code smells to classify
antipatterns according to their associated code smells. In
particular, we distinguish between intraclass smells—smells
in a class—and interclass smells—smells spreading overmore
than one class. This distinction highlights the extent of the
code inspection required to detect a smell. For example, we
classify the Spaghetti Code antipattern as an intraclass design
smell belonging to the structural, lexical, and measurable
subcategories because its code smells include long methods
(measurable code smell), global variables (structural code
smell), procedural names (lexical code smell), and absence of
inheritance (another measurable code smell).

Taxonomy of design smells. Fig. 4 summarizes the
classifications as a taxonomy in the form of a map. It is
similar to Gamma et al.’s Pattern Map [1, inside back cover].
We only show the four design smells, including the
Spaghetti Code, used in this paper for the sake of clarity.

This taxonomy describes the structural relationships
between code and design smells and their measurable,
structural, and lexical properties (ovals in white). It also
describes the structural relationships (edges) between de-
sign smells (hexagons) and some code smells (ovals in
gray). It gives an overview of all key concepts that
characterize a design smell. It also makes explicit the
relationships between code and design smells.
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Fig. 4 presents the taxonomy that shows the relationships
between design and code smells. This map is useful to
prevent misinterpretation by clarifying and classifying
smells based on their key concepts. Indeed, several sources
of information may result in conflicting smell descriptions
and the domain experts’ judgment is required to resolve
such conflicts. Lanza and Marinescu [23] introduced the
notion of correlation Webs to also show the relationships
among code smells. We introduce an additional level of
granularity by adding antipatterns and include more
information related to their properties.

4.1.3 Discussion

The distinction between structural and measurable smells
does not exclude the fact that the structure of a system is
measurable. However, structural properties sometimes
express better constraints among classes than metrics.
While metrics report numbers, we may want to express
the presence of a particular relation between two classes to
describe a smell more precisely. In the example of the
Spaghetti Code, we use a structural property to characterize
polymorphism and a measurable property for inheritance.
However, we could use a measurable property to char-
acterize polymorphism and a structural property for
inheritance. Such choices are left to domain experts who
can choose the property that best fits their understanding of
the smells in the context in which they want to detect them.
With respect to the lexical properties, we use a list of
keywords to identify specific names, but in future work, we
plan to use WORDNET, a lexical database of English to deal
with synonyms to widen the list of keywords.

The domain analysis is iterative because the addition of a
new smell description may require the extraction of a new
key concept, its comparison with existing concepts, and its
classification. In our domain analysis, we study 29 smells
including 8 antipatterns and 21 code smells. These 29 smells
are representative of the whole set of smells described in the
literature and include about 60 key concepts. These key
concepts are at different levels of abstraction (structural
relationships, properties, and values) and of different types
(measurable, lexical, and structural). They form a consistent
vocabulary of reusable concepts to specify smells. In this step,
we named the key concepts related to the Blob, Functional
Decomposition, Spaghetti Code, and Swiss Army Knife. We
will further detail these concepts in the next two steps.

Thus, our domain analysis is complete enough to
describe a whole range of smells and can be extended, if
required, during another iteration of the domain analysis.
We have described without difficulty some new smells that
were not used for the domain analysis. However, this
domain analysis does not allow the description of smells
related to the behavior of system. Current research work
[50] will allow us to describe, specify, and detect this new
category of smells.

4.2 Step 2: Specification

4.2.1 Process

Input. A vocabulary and taxonomy of smells.
Output. Specifications detailing the rules to apply on a

model of a system to detect the specified smells.

Description. We formalize the concepts and properties
required to specify detection rules at a high level of
abstraction using a DSL. The DSL allows the specification
of smells in a declarative way as compositions of rules in
rule cards. Using the smell vocabulary and taxonomy, we
map rules with code smells and rules cards with design
smells (i.e., antipatterns). Each antipattern in the taxonomy
corresponds to a rule card. Each code smell associated in
the taxonomy with an antipattern is described as a rule. The
properties in the taxonomy are directly used to express the
rules. We make the choice of associating code smells with
rules and antipatterns with rule cards for the sake of
simplicity but without loss of generality for DETEX.

Implementation. Engineers manually define the speci-
fications for the detection of smells using the taxonomy
and vocabulary, and if needed, the context of the
analyzed systems.

As highlighted in the taxonomy, smells relate to the
structure of classes (fields, methods) as well as to the
structure of systems (classes and groups of related classes).
For uniformity, we consider that smells characterize classes.
Thus, a rule detecting long methods reports the classes
defining these methods. A rule detecting the misuse of an
association relationship returns the class at the source of the
relationship. (It is also possible to obtain the class target of
the relationship.) Thus, rules have a consistent granularity
and their results can be combined using set operators. We
chose class as level of granularity for the sake of simplicity
and without loss of generality.

We define the DSL with a Backus Normal Form (BNF)
grammar, shown in Fig. 5. A rule card is identified by the
keyword RULE_CARD, followed by a name and a set of rules
specifying the design smell (line 1). A rule describes a list of
properties, such as metrics (lines 8-11), relationships with
other rules, such as associations (lines 14-16), and-or
combination with other rules, based on available operators
such as intersection or union (line 4). Properties can be of
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three different kinds: measurable, structural, or lexical, and
define pairs of identifier-value (lines 5-7).

Measurable properties. Ameasurable property defines a
numerical or an ordinal value for a specific metric (lines 8-
11). Ordinal values are defined with a five-point Likert scale:
very high, high, medium, low, and very low. Numerical
values are used to define thresholds, whereas ordinal values
are used to define values relative to all the classes of the
system under analysis. We define ordinal values with the
box-plot statistical technique [51] to relate ordinal values
with concrete metric values while avoiding setting artificial
thresholds. Metric values can be added or subtracted. The
degree of fuzziness defines the acceptable margin around
the numerical value or around the threshold relative to the
ordinal value (line 5). Although other tools implement the
box-plot, such as IPLASMA [52], DETEX enhances this
technique with fuzzy logic, and thus, alleviates the problem
related to the definition of thresholds.

A set of metrics was identified during the domain
analysis, including Chidamber and Kemerer metric suite
[53], such as depth of inheritance DIT, lines of code in a
class LOC_CLASS, lines of code in a method LOC_METHOD,
number of attributes in a class NAD, number of methods
NMD, lack of cohesion in methods LCOM, number of
accessors NACC, number of private fields NPRIVFIELD,
number of interfaces NINTERF, or number of methods with
no parameters NMNOPARAM. The choice of the metrics is
based on the taxonomy of the smells, which highlights the
measurable properties needed to detect a given smell. This
set of metrics is not restricted and can easily be extended
with other metrics.

Lexical properties. A lexical property relates to the
vocabulary used to name a class, interface, method, field, or
parameter (line 12). It characterizes constituents with
specific names defined in a list of keywords (line 6).

Structural properties. A structural property relates to the
structure of a constituent (class, interface, method, field,
parameter, and so on) (lines 7 and 13). For example, property
USE_GLOBAL_VARIABLE checks that a class uses global
variables while NO_POLYMORPHISM checks that a class that
should use polymorphism does not. The BNF grammar
specifies only a subset of possible structural properties,
others can be added as new domain analyses are performed.

Set operators. Properties can be combined using multi-
ple set operators including intersection, union, difference,
inclusion, and negation (line 4) (the negation represents the
noninclusion of one set in another).

Structural relationships. System classes and interfaces
characterized by the previous properties may also be
linked with one another with different types of relation-
ships including: association, aggregation, and composition
[54] (lines 14-16). Cardinalities define the minimum and
maximum numbers of instances of each class participating
in a relationship.

4.2.2 Running Example

Fig. 6 shows the rule card of the Spaghetti Code, which
characterizes classes as Spaghetti Code using the inter-
section of six rules (line 2). A class is Spaghetti Code if it
declares methods with a very high number of lines of
code (measurable property, line 3), with no parameter
(measurable property, line 4); if it does not use

inheritance (measurable property, line 5), and polymorph-
ism (structural property, line 6), and has a name that
recalls procedural names (lexical property, line 7), while
declaring/using global variables (structural property,
line 8). The Spaghetti Code does not include structural
relationships because it is an intraclass defect. An
example of such a relationship exists in the Blob, where
a large controller class must be associated with several
data classes to be considered a Blob. Such a rule can be
written as follows:

RULE: Blob {ASSOC FROM ControllerClass ONE TO DataClass
MANY};

4.2.3 Discussion

The domain analysis performed ensures that the specifica-
tions are built upon consistent high-level abstractions and
capture domain expertise in contrast with general purpose
languages, which are designed to be universal [55]. The DSL
offers greater flexibility than ad hoc detection algorithms. In
particular, we made no reference at this point to the
concrete implementation of the detection of the properties
and structural relationships. Thus, it is easier for domain
experts to understand the specifications because they are
expressed using smell-related abstractions and they focus
on what to detect instead of how to detect it, as in logic
metaprogramming [56]. Also, experts can modify easily the
specifications at a high level of abstraction without knowl-
edge of the underlying detection framework, either by
adding new rules or by modifying existing ones. They
could, for example, use rule cards to specify smells
dependent on industrial or technological contexts. For
example, in small applications, they could consider as
smells classes with a high DIT but not in large systems. In a
management application, they could also consider different
keywords as indicating controller classes.

The DSL is concise and expressive and provides a
reasoning framework to specify meaningful rules. More-
over, we wanted to avoid an imperative language where,
for example, we would use a rule like method[1].

parameters:size ¼ 0 to obtain classes with methods with
no parameters. Indeed, using the DSL should not require
computer skills or knowledge about the underlying frame-
work or metamodel, to be accessible to most experts. In our
experiments, graduate students wrote specifications in less
than 15 minutes, depending on their familiarity with the
smells, with no knowledge of the underlying framework.
We provide some rule cards in [57].

Since the method is iterative, if a key concept is missed,
we can add it to the DSL later. The method as well as the
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language is flexible. The flexibility of the rule cards depends
on the expressiveness of the language and available key
concepts, which has been tested on a representative set of
smells, eight antipatterns and 21 code smells.

4.3 Step 3: Generation of the Algorithms

We briefly present here the generation step of algorithms
for the sake of completeness; details are available in [7].

4.3.1 Process

Input. Rule cards of smells.
Output. Detection algorithms for the smells.
Description. We reify the smell specifications to allow

algorithms to access and manipulate programmatically the
resulting models. Reification is an important mechanism to
manipulate concepts programmatically [58]. From the DSL,
we build a metamodel, Smell Definition Language
(SMELLDL), and a parser to model rule cards and
manipulate these SMELLDL models programmatically.
Then, we automatically generate algorithms using tem-
plates. The detection algorithms are based both on the
models of the smells and on models of the systems. The
generated detection algorithms are correct by construction
of our specifications using a DSL [59].

Implementation. The reification is automatic using the
parser with the SMELLDL metamodel. The generation is
also automatic and relies on our Smell FrameWork
(SMELLFW) framework, which provides services common
to all detection algorithms. These services implement
operations on the relationships, operators, properties, and
ordinal values. The framework also provides services to
build, access, and analyze system models. Thus, we can
compute metrics, analyze structural relationships, perform
lexical and structural analyses on classes, and apply the
rules. The set of services and the overall design of the
framework have been directed by the key concepts from
the domain analysis and the DSL.

Metamodel of rule cards. Fig. 7 is an excerpt of the
SMELLDL metamodel, which defines constituents to repre-
sent rule cards, rules, set operators, relationships among
rules, and properties. A rule card is specified concretely as
an instance of class RuleCard. An instance of RuleCard is
composed of objects of type IRule, which describes rules
that can be either simple or composite. A composite rule,
CompositeRule, is composed of other rules, using the
Composite design pattern [1]. Rules are combined using set
operators defined in class Operators. Structural relation-
ships are enforced using methods in class Relationships.
The metamodel also implements the Visitor design pattern.

A parser analyzes the rule cards and produces an instance

of class RuleCard. The parser is built using JFLEX and

JAVACUP and the BNF grammar shown in Fig. 5.
Framework for detection. The SMELLFW framework is

built upon the PADL metamodel (Pattern and Abstract-level

Description Language) [12] and on the POM framework

(Primitives, Operators, Metrics) for metric computation [60].

PADL is a language-independent metamodel to represent

object-oriented systems [61], including binary class relation-

ships [54] and accessors. PADL offers a set of constituents

(classes, interfaces, methods, fields, relationships, etc.) to

build models of systems. It also provides methods to

manipulate these models and generate other models, using

theVisitor design pattern.We choose PADL because it has six

years of active development and is maintained in-house. We

couldhaveused anothermetamodel such as FAMOOS [62] or

GXL [63], or a source model extractor, such as LSME [64].
Fig. 8 sketches the architecture of the SMELLFW frame-

work, which consists of two main packages, sad.kernel

and sad.util. Package sad.kernel contains core

classes and interfaces. Class SAD represents smells and is

so far specialized into two subclasses, AntiPattern and

CodeSmell. This hierarchy is consistent with our taxon-

omy of smells. A smell aggregates entities, interface

IEntity from padl.kernel. For example, a smell is a

set of classes with particular characteristics. Interfaces

IAntiPatternDetection and ICodeSmellDetection

define the services that detection algorithms must provide.

Package sad.util declares utility classes that allow the

manipulation of some key concepts of the rule cards.
Set Operators. Class Operator package sad.util

defines the methods required to perform intersection,

union, difference, inclusion, and negation between code

smells. These operators work on the sets of classes that are

potential code smells. They return new sets containing only

the appropriate classes. For example, the code below

performs an intersection on the set of classes that contain

methods without parameter and those with long methods:

1 final Set setOfLongMethodsWithNoParameter =

2 CodeSmellOperators.intersection(

3 setOfLongMethods,

4 setOfMethodsWithNoParameter);
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Measurable Properties. Properties based on metrics are
computed using POM, which provides 44 metrics, such as
lines of code in a class LOC_CLASS, number of declared
methods NMD, or lack of cohesion in methods LCOM, and is
easily extensible. Using POM, SMELLFW can compute any
metric on a set of classes. For example, in the code below, the
metric LOC_CLASS is computed on each class of a system:

1 final IClass aClass = iteratorOnClasses.

next();

2 final double aClassLOC =

3 Metrics.compute(“LOC_CLASS”, aClass);

Class BoxPlot in package sad.util offers methods to
compute and access the quartiles for and outliers of a set of
metric values as illustrated in the following code excerpt:

1 double fuzziness = 0.1;

2 final BoxPlot boxPlot =

3 new BoxPlot(LOCofSetOfClasses,

fuzziness);

4 final Map setOfOutliers = boxPlot.

getHighOutliers();

Lexical Property. The verification of lexical properties
stems from PADL, which checks the names of classes,
methods, and fields against names defined in the rule cards.
The following code checks, for each class of a system, if its
name contains one of the strings specified in a predefined list:

1 String[] CTRL_NAMES =

2 new String[]{“Calculate”,

“Display”,...,“Make”};

3
4 final IClass aClass = iteratorOnClasses.

next();

5 for (int i = 0; i < CTRL_NAMES.length; i++) {

6 if (aClass.getName().contains(CTRL_

NAMES[i])) {

7 // do something

8 }

9 }

Structural Properties. Any structural property can be
verified using PADL, which provides all the constituents
andmethods to assess structural properties. For example, the
method isAbstract() returns true if a class is abstract:

1 final IClass aClass = iteratorOnClasses.

next();

2 boolean isClassAbstract = aClass.

isAbstract();

Structural Relationships. PADL also provides constituents
describing binary class relationships. We can enforce the
existence of certain relationships among classes being
potentially a smell, e.g., an association between a main
class and its data classes as illustrated by the following
code excerpt:

1 final Set setOfCandidateBlobs =

2 Relations.associationOneToMany

(setOfMainClasses,

3 setOfDataClasses);

Algorithm generation. An instance of class RuleCard is
the entry point to a model of a rule card. The generation of
the detection algorithms is implemented as a visitor on
models of rule cards that generates the appropriate source
code, based on templates and the services provided by
SMELLFW, as illustrated in the following running example.
Templates are excerpts of JAVA source code with well-
defined tags to be replaced by concrete code. More details on
the templates and generation algorithm can be found in [7].

4.3.2 Running Example

The following code excerpt presents the visit method that
generates the detection rule associated to a measurable
property. When a model of the rule is visited, tag
<CODESMELL> is replaced by the name of the rule, tag
<METRIC> by the name of the metric, tag <FUZZINESS> by
the associated value of the fuzziness in the rule, and tag
<ORDINAL_VALUES> by the method associated with the
ordinal value:

1 public void visit(IMetric aMetric) {

2 replaceTAG(“<CODESMELL>”, aRule.

getName());

3 replaceTAG(“<METRIC>”, aMetric.

getName());

4 replaceTAG(“<FUZZINESS>”, aMetric.

getFuzziness());

5 replaceTAG(“<ORDINAL_VALUE>”,

aMetric.getOrdinalValue());

6 }

7 private String getOrdinalValue(int value) {

8 String method = null;

9 switch (value) {

10 case VERY_HIGH : method =

“getHighOutliers”;

11 break;

12 case HIGH : method = “getHighValues”;

13 break;

14 case MEDIUM : method =

“getNormalValues”;

15 break;

16 default : method = “getNormalValues”;

17 break;

18 }

19 return method;

20 }

The detection algorithm for a design defect is declared as
implementing interface IAntiPatternDetection. The
algorithm aggregates the detection algorithms of several
code smells, implementing interface ICodeSmellDetec-

tion. The results of the detections of code smells are
combined using set operators to obtain suspicious classes
for the antipattern. Excerpts of generated Spaghetti Code
detection algorithm can be found in [7] and on the
companion Website [57].

4.3.3 Discussion

The SMELLDL metamodel and the SMELLFW framework,
along with the PADL metamodel and the POM framework,
provide the concrete mechanisms to generate and apply
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detection algorithms. However, using DECOR we could
design another language and build another metamodel with
the same capabilities. Detection algorithms could be
generated against other frameworks. In particular, we could
reuse some of the tools presented in the related work in
Section 2.3.

The addition of another property in the DSL requires the
implementation of the analysis within SMELLFW. We
experimented informally with the addition of new proper-
ties and it took from 15 minutes to one day to add a new
property, depending on the complexity of the analysis. This
operation is necessary only once per new property.

SMELLDL models must be instantiated for each smell but
the SMELLDL metamodel and the SMELLFW framework are
generic and do not need to be redefined. Models of systems
are built before applying the detection algorithms, while
metric values are computed on the fly and as needed.

4.4 Step 4: Detection

4.4.1 Process

Input. Smell detection algorithms and the model of a
system in which to detect the smells.

Output. Suspicious classes whose properties and rela-
tionships conform to the smells specifications.

Description. We automatically apply the detection
algorithms on models of systems to detect suspicious
classes. Detection algorithms may be applied in isolation
or in batch.

Implementation. Calling the generated detection algo-
rithms is straightforward, using the services provided by
SMELLFW. The model of a system could be obtained using
reverse engineering by instantiating the constituents of
PADL, sketched in Fig. 8, or from design documents.

4.4.2 Running Example

Following our running example of the Spaghetti Code and
XERCES v2.7.0, we first obtain a model of XERCES, based on
the constituents of PADL. We then apply the detection
algorithm of the Spaghetti Code on this model to detect and
report suspicious classes, using the code exemplified below.
In XERCES v2.7.0, we found 76 suspicious Spaghetti Code
classes among the 513 classes of the system.

1 IAntiPatternDetection

antiPatternDetection =

2 new SpaghettiCodeDetection(model);

3 antiPatternDetection.performDetection();

4 ...

5 outputFile.println(

6 antiPatternDetection.

getSetOfAntiPatterns());

4.4.3 Discussion

Models on which the detection algorithms are applied can
be obtained from original designs produced during forward
or from reverse engineering because industrial designs are
seldom available freely. Also, design documents, like
documentation in general, are often out-of-date. In many
systems with poor documentation, the source code is the
only reliable source of information [65] that it is precise and

up-to-date. Thus, because the efficiency of the detection
depends on the model of the system, we chose to work with
reverse-engineered data, which provide richer data than
usual class diagrams, for example, method invocations.
DETEX would also apply to class diagrams, yet certain rules
would no longer be valid. Thus, we did not analyze class
diagrams directly and let such a study as future work.

5 VALIDATION

Previous detection approaches have been validated on a
few smells and proprietary systems. Thus, as our third
contribution, in addition to the DECOR method and DETEX

detection technique, we validate DETEX. The aim of this
validation is to study both the application of the four steps
of DETEX and the results of their application using four
design smells, their 15 code smells, and 11 open-source
systems. The validation is performed by independent
engineers who assess whether suspicious classes are smells,
depending on the contexts of the systems. We put aside
domain analysis and smell specification because these steps
are manual and their iterative processes would be lengthy
to describe.

5.1 Assumptions of the Validation

We want to validate the three following assumptions:

1. The DSL allows the specification of many different smells.
This assumption supports the applicability of DETEX

on four design smells, composed of 15 code smells,
and the consistency of the specifications.

2. The generated detection algorithms have a recall of
100 percent, i.e., all known design smells are detected,
and a precision greater than 50 percent, i.e., the detection
algorithms are better than random chance. Given the
trade-off between precision and recall, we assume
that 50 percent precision is significant enough with
respect to 100 percent recall. This assumption
supports the precision of the rule cards and the
adequacy of the algorithm generation and of the
SMELLFW framework.

3. The complexity of the generated algorithms is reasonable,
i.e., computation times are in the order of one minute.
This assumption supports the precision of the
generated algorithms and the performance of the
services of the SMELLFW framework.

5.2 Subjects of the Validation

We use DETEX to describe four well-known but different
antipatterns from Brown et al. [3]: Blob, Functional
Decomposition, Spaghetti Code, and Swiss Army Knife.
Table 1 summarizes these smells, which include in their
specifications 15 different code smells, some of which
described by Fowler [2]. We automatically generate
associated detection algorithms.

5.3 Process of the Validation

We validate the results of the detection algorithms by
analyzing the suspicious classes manually to 1) validate
suspicious classes as true positives in the context of the
systems and 2) identify false negatives, i.e., smells not
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reported by our algorithms. Thus, we recast our work in the
domain of information retrieval to use the measures of
precision and recall [66]. Precision assesses the number of
true smells identified among the detected smells, while
recall assesses the number of detected smells among the
existing smells:

precision ¼
jfexisting smellsg \ fdetected smellsgj

jfdetected smellsgj
;

recall ¼
jfexisting smellsg \ fdetected smellsgj

jfexisting smellsgj
:

We asked independent engineers to compute the recall of
the generated algorithms. Validation is performed manu-
ally because only engineers can assess whether a suspicious
class is indeed a smell or a false positive, depending on the
smell descriptions and the systems’ contexts and character-
istics. This step is time-consuming if the smell specifications
are not restrictive enough and the number of suspected
classes is large.

5.4 Objects of the Validation

We perform the validation using the reverse-engineered
models of 10 open-source JAVA systems: ARGOUML,
AZUREUS, GANTTPROJECT, LOG4J, LUCENE, NUTCH,
PMD, QUICKUML, and two versions of XERCES. In contrast
to previous work, we use freely available systems to ease
comparisons and replications. We provide some informa-
tion on these systems in Table 2. We also apply the
algorithms on ECLIPSE but only discuss their results.

5.5 Results of the Validation

We report results in three steps. First, we report the
precisions and recalls of the detection algorithms for
XERCES v2.7.0 for the four design smells using data
obtained independently. These data constitute the first
available report on the precision and recall of a detection
technique. Then, we report the precisions and computation
times of the detection algorithms on the 10 reverse-
engineered open-source systems to show the scalability of

DETEX. We illustrate these results by concrete examples.
Finally, we also apply our detection algorithms on ECLIPSE
v3.1.2, demonstrating their scalability and highlighting the
problem of balance among numbers of suspicious classes,
precisions, and system context.

5.5.1 Precision and Recall on XERCES

We asked three master’s students and two independent
engineers to manually analyze XERCES v2.7.0 using only
Brown’s and Fowler’s books as references. They used an
integrated development environment, ECLIPSE, to visualize
the source code and studied each class separately. When in
doubt, they referred to the books and decided by consensus,
using a majority vote, whether a class was actually a design
smell. They performed a thorough study of XERCES and
produced an XML file containing suspicious classes for the
four design smells. A few design smells might have been
missed by mistake due to the nature of the task. As future
work, we will ask other engineers to perform this same task
again to confirm the findings and on other systems to
increase our database.

Table 3 presents the precision and recall of the detection of
the four design smells in XERCES v2.7.0. We perform all
computations on an Intel Dual Core at 1.67 GHzwith 1 GB of
RAM.Computation times do not include building the system
model but include computing metrics and checking struc-
tural relationships and lexical and structural properties.

The recalls of our detection algorithms are 100 percent
for each design smell. We specified the detection rules to
obtain a perfect recall and assess its impact on precision.
Precision is between 41.1 percent and close to 90 percent
(with an overall precision of 60.5 percent), providing
between 5.6 and 15 percent of the total number of classes,
which is reasonable to analyze manually, compared with
analyzing the entire system of 513 classes. These results also
provide a basis for comparison with other approaches.

5.5.2 Running Example

We found 76 suspicious classes for the detection of the
Spaghetti Code design smell in XERCES v2.7.0. Out of
these 76 suspicious classes, 46 are indeed Spaghetti Code
previously identified in XERCES manually by engineers
independent of the authors, which leads to a precision of
60.5 percent and a recall of 100 percent (see the third line
in Table 3).

The result file contains all suspicious classes, including
class org.apache.xerces.xinclude.XIncludeHand-
ler declaring 112 methods. Among these 112 methods,
method handleIncludeElement (XMLAttributes) is
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typical of Spaghetti Code because it does not use inheri-
tance and polymorphism but uses excessively global
variables. Moreover, this method weighs 759 LOC, while
the upper method length computed using the box-plot is
254.5 LOC. The result file is illustrated below:

1.Name = SpaghettiCode

1.Class = org.apache.xerces.xinclude.

XIncludeHandler

1.NoInheritance.DIT-0 = 1.0

1.LongMethod.Name =

handleIncludeElement(XMLAttributes)

1.LongMethod.LOC_METHOD = 759.0

1.LongMethod.LOC_METHOD_Max = 254.5

1.GlobalVariable-0 = SYMBOL_TABLE

1.GlobalVariable-1 = ERROR_REPORTER

1.GlobalVariable-2 = ENTITY_RESOLVER

1.GlobalVariable-3 = BUFFER_SIZE

1.GlobalVariable-4 = PARSER_SETTINGS

2.Name = SpaghettiCode

2.Class = org.apache.xerces.impl.xpath.

regex.RegularExpression

2.NoInheritance.DIT-0 = 1.0

2.LongMethod.Name = matchCharArray(Context,

Op,int,int,int)

2.LongMethod.LOC_METHOD = 1246.0

2.LongMethod.LOC_METHOD_Max = 254.5

2.GlobalVariable-0 = WT_OTHER

2.GlobalVariable-1 = WT_IGNORE

2.GlobalVariable-2 = EXTENDED_COMMENT

2.GlobalVariable-3 = CARRIAGE_RETURN

2.GlobalVariable-4 = IGNORE_CASE

...

Another example is class org.apache.xerces.impl.
xpath.regex.RegularExpression declaring method
matchCharArray (Context, Op, int, int, int) with
a size of 1,246 LOC. Looking at the code, we see that this

method contains a switch statement and duplicated code
for 20 different operators (such as ¼; <;>; ½a-z� . . . ), while
class org.apache.xerces.impl. xpath.regex.Op ac-
tually has subclasses for most of these operators. This
method could have been implemented in a more object-
oriented style by dispatching the matching operator to Op

subclasses to split the large method into smaller ones in the
subclasses. However, such designs would introduce poly-
morphic calls into the method traversing all characters of an
array. Therefore, XERCES designers may not have opt for
such a design to optimize performance at the cost of
maintainability.

The 46 Spaghetti Codes represent true positives and
include “bad” Spaghetti Code such as method handleIn-

cludeElement but also “good” Spaghetti Code such as
method matchCharArray. The “good” smells were not
rejected because they could represent weak spots in terms
of quality and maintenance. Other examples of typical
Spaghetti Code detected and checked as true positives are
classes generated automatically by parser generators. The
30 other suspicious classes were rejected by the indepen-
dent engineers and are false positives. Even if these classes
verified the characteristics of Spaghetti Code, most of them
were easy to understand, and thus, were considered false
positives. Thus, it would be necessary to add other rules or
modify the existing ones to narrow the set of candidate
classes, for example, by detecting nested if statements and
loops, characterizing complex code.

5.5.3 Results on Other Systems

Fig. 9 provides for the nine other systems plus XERCES V2.7.0

the numbers of suspicious classes in the first line of each
row, the numbers of true design smells in the second line, the
precisions in the third, and the computation times in the
fourth. We only report precisions: recalls on other systems
than XERCES are future work due to the required time-
consuming manual analyses. We have also performed all
computations on an Intel Dual Core at 1.67 GHzwith 1 GB of
RAM.

32 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO. 1, JANUARY/FEBRUARY 2010
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5.5.4 Illustrations of the Results

We briefly present examples of the four design smells. In
XERCES, method handleIncludeElement (XMLAttri-

butes) of the org.apache.xerces.xinclude.XIn-

cludeHandler class is a typical example of Spaghetti
Code. A good example of Blob is class com.aelitis.

azureus.core.dht.control.impl.DHTContro-

lImpl in AZUREUS. This class declares 54 fields and
80 methods for 2,965 lines of code. An interesting example
of Functional Decomposition is class org.argouml.uml.

cognitive.critics.Init in ARGOUML in particular
because the name of the class includes a suspicious term
init that suggests a functional programming. Class
org.apache.xerces.impl.dtd.DTDGrammar is a
striking example of Swiss Army Knife in XERCES, imple-
menting four different sets of services with 71 fields and
93 methods for 1,146 lines of code.

5.5.5 Results on ECLIPSE for the Scalability

We also apply our detection algorithms on ECLIPSE to
demonstrate their scalability. ECLIPSE v3.1.2 weighs
2,538,774 lines of code for 9,099 classes and 1,850 interfaces.
It is one order of magnitude larger than the largest of the
open-source systems AZUREUS. The detection of the four
design smells in ECLIPSE requires more time and produces
more results. We detect 848, 608, 436, and 520 suspicious
classes for the Blob, Functional Decomposition, Spaghetti
Code, and Swiss Army Knife design smells, respectively.
The detections take about 1 h 20 m for each smell, with
another hour to build the model. The use of the detection
algorithms on ECLIPSE shows the scalability of our
implementation. It also highlights the balance between
numbers of suspicious classes and precisions. Indeed, if the
choice is to maximize recall, the number of suspicious
classes may be high, even more so in large systems, and
thus, precision will be low. Conversely, if the choice is to
minimize the number of suspicious classes, precision will
be high but recall may be low. In addition, it shows the
importance of specifying smells in the context of the system
in which they are detected. Indeed, the large number of
suspicious classes for Blob in ECLIPSE, about 1=10th of the
overall number of classes, may come from design and
implementation choices and constraints within the ECLIPSE
community, and thus, the smell specifications should be
adapted to consider these choices. With our method and
detection technique, engineers can easily respecify smells to
fit their context and environment and get greater precision.

5.6 Discussion of the Results

We verify each of the three assumptions using the results of
the validation of DETEX.

1. The DSL allows the specification of many different smells.
We described four different design smells of inter-
and intraclass categories and of the structural,
lexical, and measurable categories, as shown in
Fig. 3. These four smells are characterized by 15 code
smells also belonging to six different categories,
shown in Fig. 2. Thus, we showed that we can
describe many different smells, which support the
efficiency of our detection technique and the gen-
erality of its DSL.

2. The generated detection algorithms have a recall of
100 percent and a precision greater than 50 percent.
Table 3 shows that the precision and recall for
XERCES v2.7.0 fulfill our assumptions with a preci-
sion of 60.5 percent and a recall of 100 percent. Fig. 9
presents the precisions for the other nine systems,
which almost all comply with our assumption, with
a precision greater than 50 percent (except for two
systems), thus validating the usefulness of our
detection technique.

3. The complexity of the generated algorithms is reason-
able, i.e., computation times are in the order of one
minute. Computation times are, in general, less
than a few seconds (except for ECLIPSE which took
about 1 hour) because the complexity of the
detection algorithms depends only on the number
of classes in a system, n, and on the number of
properties to verify on each class: ðcþ opÞ � OðnÞ,
where c is the number of properties and op the
number of operators.

The computation times of the design smells vary with the
smells and the systems. During validation, we noticed that
building the models of the systems took up most of the
computation times, while the detection algorithms have
short execution times, which explains the minor differences
between each system, in the same line in Fig. 9, and the
differences between each design smell, in different col-
umns. The computation times for PADL models are not
surprising because the models contain extensive data,
including binary class relationships [54] and accessors.

The precisions also vary in relation to the design smells
and the systems, as shown in Fig. 9: First, the systems have
been developed in different contexts and may have unequal
quality. Systems such as AZUREUS or XERCES may be of
lesser quality than LUCENE or QUICKUML, thus leading to
greater numbers of suspicious classes that are actually
smells. However, the low number of smells detected in
LUCENE and QUICKUML leads to a low precision. For
example, only one Functional Decomposition was detected
in LUCENE, but it was a false positive, thus leading to a
precision of 0 percent and an average precision of
38.2 percent. The smell specifications can be over or
underconstraining. For example, the rule cards of the Blob
and Spaghetti Code specify the smells strictly using metrics
and structural relationships, leading to a low number of
suspicious classes and high precisions. The rule cards of the
Functional Decomposition and Swiss Army Knife specify
these smells loosely using lexical data, leading to lower
precisions. Thus, the specifications must not be too loose,
not to detect too many suspicious classes, or too restrictive,
to miss smells. With DETEX, engineers can refine the
specifications systematically, according to the detected
suspicious classes and their knowledge of the systems.
The choice of metrics and thresholds is left to the domain
experts to take into account the context and characteristics
of the analyzed systems.

The number of false positives appears quite high;
however, we obtained many false positives because our
objective was 100 percent recall for all systems. Using
DETEX and its DSL, the rules can be refined systematically
and easily to fit the specific contexts of the analyzed
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systems, and thus, to increase precisions if desired, possibly
at the expense of recall. Thus, the number of false positives
will be low and engineers will not spend time checking a
vast amount of false results. As future work, we propose to
sort the results in critical order, i.e., according to the classes
that are the most likely to be smells, to help engineers in
assessing the results. The numbers of suspicious classes
obtained are usually orders of magnitude lower than the
overall number of classes in a system; thus, the detection
technique indeed eases engineers’ code inspection.

We also indirectly validated the usefulness of DECOR by
validating DETEX. Indeed, DECOR is the method of which
one instantiation is DETEX. Therefore, the validation of
DETEX showed that the DECOR method provides the
necessary steps from which to derive a valid detection
technique. As a metaphor, we could assimilate DECOR to a
class and DETEX to one of its instances that has been
successfully tested, thus showing the soundness of its class.

5.7 Threats to Validity

Internal validity. The obtained results depend on the
services provided by the SMELLFW framework. Our current
implementation allows the detection of classes that strictly
conform to the rule cards and we only handle a degree of
fuzziness in measurable properties. This choice of imple-
mentation does not limit DETEX intrinsically because it
could accommodate other implementations of its under-
lying detection framework. The results also depend on the
specifications of the design smells. Thus, we used for the
experiments a representative set of smells so as not to
influence the results.

External validity. One threat to the validity of the
validation is the exclusive use of open-source JAVA

systems. The open-source development process may bias
the number of design smells, especially in the case of
mature systems such as PMD v1.8 or XERCES v2.7.0. Also,
using JAVA may impact design and implementation
choices, and thus, the presence of smells. However, we
applied our algorithms on systems of various sizes and
qualities to preclude the possibility for all systems to be
either well or badly implemented. Moreover, we performed
a validation on open-source systems to allow comparisons
and replications. We are in contact with software companies
to replicate this validation on their proprietary systems.

Construct validity. The subjective nature of identifying
or specifying smells and assessing suspicious classes as
smells is a threat to construct validity. Indeed, our under-
standing of smells may differ from that of other engineers.
We lessen this threat by specifying smells based on general
literature and drawing inspiration from previous work. We
also asked the engineers in charge of computing precision
and recall to do so. Moreover, we contacted developers
involved in each of the analyzed systems to validate our
results and improve our smell specifications. So far, we
have received a few answers but enthusiastic interest.
Engineers analyzed independently our results for LOG4J,
LUCENE, PMD, and QUICKUML, and confirmed the results
in Fig. 9. We thank M. Adamovic, C. Alphonce, D. Cutting,
T. Copeland, P. Gardner, E. Ross, and Y. Shapira for their
kind help. We are in the process of increasing the size of our
library of smells due to their support. We believe important

to report the detection results to the communities develop-
ing the systems.

Repeatability/reliability validity. The results of the
validation are repeatable and reliable because we use
freely open-source programs that can be freely down-
loaded from the Internet. Also, our implementation is
available upon request, while all its results are on the
companion Web site [57].

6 CONCLUSION AND FUTURE WORK

The detection of smells is important to improve the
quality of software systems, to facilitate their evolution,
and thus, to reduce the overall cost of their development
and maintenance.

We proposed the following improvements to previous
work. First, we introduced DECOR, a method that embodies
all the steps necessary to define detection techniques. Second,
we cast our detection technique, now called DETEX, in the
context of the DECOR method. DETEX now plays the role of
reference instantiation of our method. It is supported by a
DSL for specifying smells using high-level abstractions,
taking into account the context of the analyzed systems, and
resulting from a thorough domain analysis of the text-based
descriptions of the smells. Third, we applied DETEX on four
design smells and their 15 underlying code smells and
discussed its usefulness, precision, and recall. This is the first
such extensive validation of a smell detection technique.

Our detection technique and the inputs, outputs, pro-
cesses, and implementations defined in each step can be
generalized toother smells.Also, it canbe implementedusing
other techniques as long as they provide relevant data for the
considered steps.Wehavenot comparedour implementation
with other approaches but will do so in future work.

Future work includes using the WORDNET dictionary,
using existing tools to improve the implementation of our
method, improving the quality and performance of the
source code of the generated detection algorithms, comput-
ing the recall on other systems, applying our detection
technique to other kinds of smells, comparing quantita-
tively our method with previous work. With respect to the
last work, we are currently conducting a study on smells
detection tools including several tools such as RevJava,
FindBugs, PMD, Hammurapi, or Lint4j to our detection
technique against existing tools. A first comparison is
available in the related work.
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Université de Montréal and the FQRNT (Fonds Québécois
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