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Decorrelating Semantic Visual Attributes by Resisting the Urge

to Share
Supplementary material for CVPR 2014 submission ID 0824

In this document, we provide supplementary material for our CVPR 2014 submission “Decorrelating Semantic

Visual Attributes by Resisting the Urge to Share”(Paper ID 0824). Sec 1 gives additional details for our experi-

mental setup (Sec 4 of the paper). Sec 1.1 lists the groups used in all three datasets in our experiments. Sec 1.2

discusses the details of the image descriptors used for each dataset. Sec 2 discusses how attributes are localized

for our experiments in Sec 4.1 in the paper. Sec 3 discusses how it is posible to set parameters that generalize well

to novel test sets, using only training data. Sec 4 discusses the details of the optimization of our formulation (Eq 4

in the paper).

1 Datasets

1.1 Groups

(see para on Semantic groups in Sec 4 in the paper)

Fig 1, 2 and 3 show the attribute groups used in our experiments on the CUB, AwA and aPY datasets

respectively. The 28 CUB groups come pre-specified with the dataset [6]. The groups on AwA match exactly the

groups specified in [5]. Those on aPY also match the groups outlined in [5] on the 25 attributes (see paper) used

in our experiments (aPY-25). In each figure, attribute groups are enclosed in shaded boxes, and phrases in larger

font labeling the boxes indicate the rationale for the grouping.

1.2 Features

(see also Sec 3.2 and para on Features in Sec 4 in the paper)

Base level features (before PCA) : For aPascal, we extract features with the authors’ code [3] for each of

1x1+3x2=7 windows (again as in [3]). We append histograms of color (128 words), texture (256 words), HOG

(1000 words), edge (9 words). For CUB, we use the same feature extraction code but instead of dividing the

image in a rectangular grid as for aPY, we use windows centered at each of the 15 parts ((x, y) annotations

provided with the dataset). The window dimensions at each part are set to 1/3rd (in both width and height) of the

bird bounding box. Here, our histogram lengths are 150, 250 and 500 respectively for color, texture and HOG

on each window. For AwA, we use the features supplied with the dataset ((1) global bag-of-words on SIFT, RG-

SIFT, SURF, local self-similarity, together with (2) 3-level pyramid with 4×4+2×2+1=21 windows on PHOG,

RGB color histograms).

2 Experiments: Learning the right thing for attribute detection

(see also Sec 4.1, para “Evidence of learning the right thing” in the paper)

We now explain the details of the attribute localization experiment described in the paper. To find locations on

instance number n that contribute to positive detection of attribute m, we take the absolute value of the element-

wise product of descriptor xn with the attribute weight vector w
m—denote this h. Each feature dimension is

mapped onto the bird part it was computed from, in a mapping f . For each part p, we then compute its weight as

lp =
∑

f(i)=p |hi|. These part weights are visualized as highlights in Fig 10 in the paper.
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Fig 1: Attribute grouping on CUB. The color and pattern groups, condensed above, are to be interpreted as follows.

Each part on the left, coupled with the term in the middle (color/pattern) represents the title of an attribute group.

The predicates on the right applied to each part constitute the attributes in the its group, e.g., the “belly-color”

attribute group has attributes “belly-color-blue”, “belly-color-brown” etc.

Fig 2: Attribute grouping on AwA
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Fig 3: Attribute grouping on aPY-25
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Fig 4: (a) “Hard seen” performance is a much better predictor of “unseen” set performance than “all seen” perfor-

mance. (b) The optimal parameter λ on hard seen data (unlike all seen data) is also nearly optimal on unseen data.

The vertical dashed lines pass through the peaks of the two performance curves. Solid horizontal lines through

the intersection of these with the generalization performance curve mark the generalization performance of the

corresponding models.

3 Experiments: Target-agnostic parameter selection

As mentioned in the paper, the aim of decorrelating attributes while learning attribute classifiers is to be able

to generalize better to datasets different in distribution from the training dataset. In practice though, traditional

parameter validation as a method of model selection requires access to (a subset of) the target dataset. Specifically,

one selects parameters that produce best results when tested on a validation set drawn from the target distribution.

We argue that parameter selection tailored to a specific validation set distribution is not useful in real world

situations where test distributions are (1) different from the training distribution and (2) unavailable during training

and model selection. In this section, we study whether it is possible to select parameters for attribute-learning

methods that generalize well to unknown novel distributions (different from the training distribution) even without

any prior knowledge of/access to the test dataset distribution. Specifically, we show empirically that such target-

agnostic parameter-selection is viable for our attribute decorrelation approach.

In Fig 4, we plot unseen test set performance at various regularization weights λ for the proposed method

on CUB-200-2011 against equal-sized subsets (200 instances) of the hard seen and all-seen sets. While all-seen

performance correlates poorly with generalization performance, hard-seen set performance is a much better indi-

cator of unseen set performance. We verified that empirically determined optimal λ on the hard seen set is almost

exactly optimal over the unseen set, for all three datasets - CUB, AwA and aPY-25. Further, we observed that such

target-agnostically selected parameters over hard seen data for other methods were often highly suboptimal over

the unseen set.1

These observations are explained as follows. For a learning method that decorrelates attributes, the best model

in terms of generalization to an unknown test set is one that resolves correlations in the training set—this is not

adapted to the test distribution, but instead only avoids tailoring to the training distribution. This is as true for

the unseen test set distribution as it is for the hard-seen distribution which is constructed (from a carefully biased

subsampling of the training distribution) to be different from the training distribution itself. On the other hand,

for methods that do not resolve training set correlations, best model selection (for a specified target) consists of

tailoring the parameters to that same target set.

Thus, our observations constitute further evidence that the proposed technique succeeds in resolving training

data correlations better than our baselines, and further demonstrate that target-agnostic parameter validation may

be used successfully in conjunction with our method.

4 Optimization details

(See also Sec 3 of the paper for notation and formulation)

We now describe in detail the optimization of our objective, closely following the scheme suggested in [4] for

1For all other results in the experiments in the paper and in this document, we use “traditional” parameter selection with the validation set

drawn from the test distribution.
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the tree-guided group lasso. Our objective is (Eq 4 from the paper):

L(W|X,Y) + λ
∑

d

∑

g

‖w
Sg

d ‖2 (1)

where L is the logistic regression objective
∑

m

∑

n log(1 + exp(−ya
n(xT

n · wm))).
Specifically, the non-smooth mixed-norm regularizer poses a non-trivial optimization problem. In the context

of the group lasso, Bach et. al. [2] suggest squaring a similar mixed-norm regularizer before optimization. Since

the regularizer is positive, squaring represents a smooth monotonic mapping. As such it preserves the same path

of solutions during optimization while making the objective easier to optimize:

L(W|X,Y) + λ

(

∑

d

∑

g

‖w
Sg

d ‖2

)2

. (2)

This objective can be approximated using the following upper bound on the squared ℓ2,1 norm, due to Argyriou

et. al. [1]:

(

∑

d

∑

g

‖w
Sg

d ‖2

)2

≤
∑

d

∑

g

(

‖w
Sg

d ‖2

)2

δd,g

, (3)

where the dummy variables δd,g are positive and satisfy
∑

d,g δd,g = 1. Equality holds when δd,g are set to:

δd,g = ‖w
Sg

d ‖2/
∑

d,g

‖w
Sg

d ‖2. (4)

Our objective function now becomes:

L(W|X,Y) +
∑

d

∑

g

(

‖w
Sg

d ‖2

)2

δd,g

. (5)

Similar to [4], this final objective is then minimized by alternatively optimizing with respect to (1) the dummy

variables δd,g (update equation is simply the equality condition in Eq 3 for the bound in Eq 2) and (2) the weight

vector w (updated by computing the appropriate gradient descent derivative).
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