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The optic nerve limits how much visual information the eye can 

 transmit to the brain. Early researchers postulated that the retina is 

designed to use that limited information capacity efficiently, reduc-

ing the redundancy in natural scenes by discarding information 

that the brain has already received from another source in space or 

time1,2. Subsequently, this idea was formalized mathematically3–8; 

images from the natural world have strong, uninformative correla-

tions between the signals carried by different pixels9. An efficient 

encoder could suppress these by spatially filtering the image and 

thus optimize information transmission. Based on a model of the 

retina with several simplifying assumptions, one can compute the 

optimal spatial filter, which resembles the familiar center-surround 

receptive fields of retinal ganglion cells (RGCs)5,10. By comput-

ing the difference between the intensity at a point and the aver-

age intensity at nearby points, this filter indeed removes spatial 

correlations in the retinal image, up to some limit determined by 

photoreceptor noise. This idealized retina model correctly predicts 

the spatial sensitivity of human vision6 and several other psycho-

physical laws8.

Despite the decorrelation theory’s successful predictions, there 

has been no experimental test of whether neural activity is in fact 

decorrelated at the putative bottleneck of the optic nerve. One 

study confirmed that neural firing in the cat’s lateral geniculate 

nucleus is decorrelated in time11, but there was no test of correla-

tions across space. Another reported both spatial and temporal 

decorrelation by second-order fly visual neurons7. However, the 

stimuli in this study were still images scanned over the retina, con-

founding the spatial and temporal contributions to visual process-

ing. A third study found that RGCs oversample visual space, 

resulting in substantial redundancy12, but this oversampling may 

exist either with or without decorrelation relative to the stimulus.  

Thus, one is still left with these basic questions: does retinal 

processing indeed decorrelate signals at different spatial locations? 

If so, does this decorrelation improve coding efficiency?

We inspected spatial and temporal decorrelation in the retina by 

recording from a population of RGCs while presenting a stimulus with 

the spatio-temporal correlation structure of natural scenes9. We then 

compared the correlations among RGC spike trains to the correla-

tions between corresponding image locations. To understand how the 

decorrelation occurs, we separately analyzed the contributions from 

center-surround receptive fields, noise and sparsifying nonlinearities 

in the retinal network. We conclude that the dominant effect comes 

not from the receptive field, but from the nonlinear stimulus-response 

relationship. These nonlinearities exhibited high response thresholds 

that led to sparse firing rates. We found that these attributes permitted 

neurons to transmit information with nearly optimal efficiency.

RESULTS

Our goal was to test whether retinal circuits remove the spatio-

 temporal correlations present in natural scenes and, if so, to explain 

whether this helps encode the stimulus efficiently. We measured corre-

lation as a function of distance and time lag in both the visual input 

and the RGC output. We recorded spike trains from many ganglion 

cells in the isolated salamander retina under two visual stimuli: nat-

uralistic, which consisted of pseudo-random Gaussian flicker with 

long-range spatio-temporal correlations such as those of natural 

scenes (Fig. 1a and Supplementary Fig. 1), and white noise, which 

consisted of a flicker stimulus without correlations (Fig. 1b). The 

stimuli were bright in the photopic regime, where the efficient coding 

theory predicts that decorrelation is the optimal strategy4,7.

RGCs decorrelate the visual input

The typical ganglion cell responded to such displays with precisely 

timed bursts of spikes separated by complete silence (Fig. 1c). 
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Decorrelation and efficient coding by retinal  
ganglion cells

Xaq Pitkow1 & Markus Meister2

An influential theory of visual processing asserts that retinal center-surround receptive fields remove spatial correlations in  

the visual world, producing ganglion cell spike trains that are less redundant than the corresponding image pixels. For bright, 

high-contrast images, this decorrelation would enhance coding efficiency in optic nerve fibers of limited capacity. We tested the 

central prediction of the theory and found that the spike trains of retinal ganglion cells were indeed decorrelated compared with 

the visual input. However, most of the decorrelation was accomplished not by the receptive fields, but by nonlinear processing in 

the retina. We found that a steep response threshold enhanced efficient coding by noisy spike trains and that the effect of this 

nonlinearity was near optimal in both salamander and macaque retina. These results offer an explanation for the sparseness of 

retinal spike trains and highlight the importance of treating the full nonlinear character of neural codes.
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We measured each neuron’s spatio-temporal receptive field (Fig. 1d,e) 

using the standard reverse-correlation method13 and then com-

puted the correlation function between the spike trains of any two 

neurons (Fig. 1f). These correlation functions generally showed a 

central peak ~50 ms wide; this was also the characteristic timescale 

for variations in the firing rate (Fig. 1c). We therefore focused our 

analysis on the correlations of spike counts in 50-ms time windows  

(see Online Methods).

We plotted the firing correlation for every pair of ganglion cells 

against the retinal distance between their receptive field centers 

(Fig. 1g,h). This can be compared with the spatial correlations in 

the stimulus. During white-noise stimulation, the correlation in the 

firing of ganglion cells greatly exceeded the stimulus correlation out 

to ~300 µm (Fig. 1g). This is because the receptive field centers of 

nearby RGCs overlap (Fig. 1e), and they therefore receive correlated 

input from their shared photoreceptors. In contrast, under the natural-

istic stimulus, neural responses were markedly less correlated than 

the stimulus pixels (Fig. 1h). The ganglion cells exhibited correla-

tions only to ~400 µm distance, whereas the stimulus correlations 

extended at least twice as far. These observations held for distinct cell 

types14,15 that were analyzed separately (data not shown). Thus, the 

retina decorrelates stimuli with natural image statistics while intro-

ducing excess correlation under the unnatural white-noise ensemble. 

This much is consistent with the classical efficient coding theory.

Decorrelation is primarily achieved by retinal nonlinearities

However, the theory also specifies a decorrelation mechanism, namely 

RGC receptive fields with antagonistic center and surround regions2–4,7. 

Owing to this antagonism, a RGC fires less to stimuli with low spatial 

frequency, which drive center and surround equally, and more to those 

with high spatial frequency16. But the low-frequency patterns are precisely 

those that synchronize nearby neurons. Consequently, a center-surround 

receptive field should reduce spatial correlations in the retinal output.

To test this, we measured how much decorrelation could be attri-

buted to receptive field filtering. We convolved each spatio-temporal 

receptive field (Fig. 1d) with the naturalistic visual stimulus and ana-

lyzed the remaining correlations (Fig. 2). Filtering by the receptive 

field center alone extended the range of correlations, but the addition 

of the antagonistic surround reduced them below the correlations in 

the stimulus (Fig. 2a), as predicted by the theory, especially at distances 

beyond one center diameter, ~300 µm (Fig. 2a). However, unlike the 

theoretical prediction, this decorrelation was far from complete. Under 

the high-contrast stimuli that we used, the optimal linear filters should 

reduce the correlations to nearly zero4 for distances greater than the 

center diameter. Instead, the experimentally measured receptive fields 

left substantial correlations out to distances twice as great (Fig. 2a,b), 

falling far short of the theoretical prediction.

In comparison, the actual decorrelation achieved by the retina was 

very efficient. The measured correlations between ganglion cell spike 

trains were suppressed by a factor of ~3 even inside the receptive field 

center, and by more than tenfold outside (Fig. 2a,b). Clearly, some-

thing other than receptive field filtering is responsible.

Each ganglion cell fired in short stimulus-locked episodes, with 

some trial-to-trial variation (Fig. 3). The correlation between two 

such spike trains depends on the similarity of their firing events, and 

therefore on timing, sparseness, and trial-to-trial fluctuations or noise 

in each firing event (Fig. 3d).

The timing of a ganglion cell’s firing events is largely determined 

by its spatio-temporal receptive field, as confirmed by comparing the 

peaks in the filtered stimulus to those in the firing rate (Fig. 3b,c). 

However, measured firing events were narrower than the positive 

excursions of the linear model (Fig. 3b,c), presumably resulting from 

the many documented nonlinearities in the retina’s response, including 

synaptic rectification, depression, gain control, spiking threshold and 

refractoriness17–20. This sparsification means that firing events over-

lap in time much less than expected from receptive field processing. 
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Figure 1 Decorrelation of naturalistic stimuli. 
(a,b) Sample frames of naturalistic and white 
noise stimuli, projected onto a 3.4-mm square 
on the retina. (c) Responses of two RGCs to 
a short segment of the naturalistic stimulus, 
displayed as rasters of spikes on 250 identical 
repeats. (d) A sample spatio-temporal receptive 
field for an OFF ganglion cell, measured as the 
spike-triggered average stimulus and integrated 
over one spatial dimension for ease of display. 
Note the spatial center-surround antagonism 
(red regions above and below blue) and the 
biphasic time course (red region left of blue). 
(e) Spatial receptive fields of two OFF cells, 
including 1-s.d. outlines of the receptive field 
centers (solid) and surrounds (dotted). (f) Cross-
correlation function between two ganglion cell 
spike trains, indicating the frequency of spike 
pairs as a function of their delay. The shaded 
area encompasses most of the central peak and 
indicates the range of delays used to compute the  
quoted correlation coefficients. (g,h) Correlation 
coefficient between the responses of two 
ganglion cells as a function of their distance 
under a white noise (g) or naturalistic (h) 
stimulus. Each pair of cells contributes a point; 
lines represent median correlation for pairs at 
similar distance. Comparisons are restricted 
within a cell type (solid lines) or across cell types 
(dashed lines). For reference, the correlation 
between stimulus pixels is shown (thin lines).
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Indeed, correlations of the trial-averaged firing rates (Fig. 3b) lay far 

below those of the stimulus and those predicted from receptive field 

filtering alone (Fig. 2a). The effect is especially notable for neurons  

of opposite response polarity, where the retinal nonlinearities  

effectively abolish the pairwise correlations (Fig. 2b). Finally, we 

determined that the trial-to-trial fluctuations in different neurons 

were largely independent under the present stimulus conditions 

(Supplementary Fig. 2). This noise further decorrelates the ganglion 

cell output (Fig. 2a,b). Such noise-induced effects are detrimental to 

efficient coding, but downstream circuits in the brain cannot distin-

guish decorrelation by noise from that achieved by other means.

One can now compare how much the different aspects of  

retinal processing contribute to decorrelating the retinal output. For 

instance, at a distance of 300 µm, the natural stimulus contained 

strong correlations, but retinal processing subsequently reduced 

them by a total of 92% (Fig. 2a). Of this, the receptive field sur-

round contributed ~25%, the sparsifying nonlinearities contributed 

~60% and noise was responsible for ~15% (Fig. 2c). Thus, nonlinear 

processing in retinal circuits is by far the largest contributor to  

decorrelation at the retinal output, whereas the much-touted center-

surround receptive field makes only a minor contribution.

These observations applied to temporal correlations as well. 

Filtering the stimulus through the receptive field produced a mild 

reduction in the autocorrelation at short time delays, but also intro-

duced strong anticorrelations at long delays (Fig. 2d). This was a 

result of the biphasic time course of the receptive field (Fig. 1d), 

analogous to the spatial antagonism between center and surround. 

In comparison, both the trial-averaged firing rate and noisy spike 

trains showed almost complete decorrelation, down to delays <100 ms 

(Fig. 2d). Again, one concludes that the filtering by receptive fields 

reduces stimulus correlations only marginally, whereas the sparsify-

ing nonlinearities account for the bulk of temporal decorrelation in 

the retina.

To assess the generality of these results, we asked whether they also 

extend to primate retinas and, thus, to our own visual processing. 

Published spike trains show that macaque RGCs similarly produce 

sparse bursts separated by silence21,22, an indication that substantial 

nonlinear processing occurs in the macaque retina. By analyzing the 

Figure 2 Nonlinearity accounts for much of 
decorrelation. (a,b) Spatial correlation functions 
for neurons and models under naturalistic 
stimulation. Cells with the same polarity 
preference (OFF-OFF or ON-ON pairs) have 
positive correlations (a) and those with opposite 
polarity preferences (OFF-ON pairs) have 
negative correlations (b). Curves are presented 
as in Figure 1h for the stimulus, trial-averaged 
firing rates, spike trains and linear models.  
The stimulus correlations are shown with 
opposite sign for ease of comparison in b.  
Results from many cell pairs are summarized 
by the median correlation for pairs at similar 
retinal distance; error bars indicate the central 
quartiles. L: center and L: center-surround 
designate linear models using receptive 
fields including the center component only or 
both center and surround. (c) The origins of 
decorrelation in different response components. 
The full circle represents the median correlation 
present in the stimulus after filtering by the 
receptive field centers at a retinal distance of 
300 µm (arrowheads in a). The empty wedge 
(C) is the much smaller remaining correlation 
between the ganglion cell spike trains. The  
red wedge represents the decorrelation  
caused by lateral inhibition from receptive field 
surrounds. The difference between the linear 
response and the observed firing rate is a result 
of nonlinear processing and is responsible for 
over half the decorrelation implemented by the 
retina (green wedge). The trial-to-trial variation 
contributes an additional small amount of  
decorrelation (blue wedge). (d) Decorrelation  
in the time domain. Autocorrelation functions  
of salamander ganglion cell responses and  
linear models are plotted as a function of delay 
during naturalistic stimulation. The linear  
filter’s first lobe, ~100 ms wide (inset, black), 
introduced excess correlation beyond that in  
the stimulus. The antagonistic second lobe (inset, red) counteracted those, but overcompensated, introducing anticorrelations at long delays.  
The observed correlations in the firing rate were much smaller still. (e,f) Spatial (e) and temporal (f) correlations in macaque RGCs, displayed as in a, b  
and d. Macaque RGC responses were approximated by an LN model13,23, using published spatio-temporal receptive field parameters36 (equations 
(4–6)) and sigmoidal nonlinearities23 (equation (10)). The output noise was modeled as sub-Poisson variation (equation (11)) with parameters derived 
from published spike trains21 (see Online Methods). The stimulus was scaled in space and time to compensate for the different scales of primate and 
salamander receptive fields. L, receptive field filter only; LN, including the nonlinearity; LN + noise, including the noise.
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shapes of ganglion cell receptive fields23,24, 

we confirmed that the center-surround filter  

explains only part of the decorrelation at 

the retinal output (Fig. 2e,f). On the other hand, the sparsifying 

nonlinearities in the response23 make a substantial contribution. 

Again, they strongly decorrelate responses of opposite polarity  

(Fig. 2e) and they suppress negative temporal correlations at long 

delays (Fig. 2f).

Decorrelation, sparseness and efficient coding in LNP models

To build intuition for these effects and to prepare for further ana-

lysis, we considered a simple, tractable model of neural signaling that 

has enjoyed some popularity in the study of retina, visual cortex and 

other sensory modalities25. In the so-called LNP model, the visual 

stimulus is first convolved with a linear receptive field (L), producing 

a time-varying input signal. That signal is passed through an instan-

taneous nonlinearity (N), typically of sigmoid shape, producing a 

time-dependent firing rate from which the spike train is generated 

by a Poisson process (P). The LNP model offers perhaps the simplest 

instance in which one can analyze the contributions of receptive field, 

nonlinearity and noise to visual coding.

Consider two such neurons that process a Gaussian-distributed 

stimulus with different receptive field filters (Fig. 4). The outputs 

of the two filters will be jointly Gaussian variables with a statistical  

dependency that is fully characterized by the correlation coeffi-

cient. Passage through the subsequent nonlinearity always reduces 

the correlation of the two signals (Fig. 4b–d), regardless of the 

shape of the nonlinearity26. For a monotonic sigmoid nonlinear-

ity, a higher threshold produces greater decorrelation (Fig. 4c,d). 

An increase in threshold also lowers the mean firing rate, account-

ing for earlier observations that correlations decrease when firing 

rates are low27. Note that a nonlinearity with a high threshold has 

qualitatively different effects from one with low threshold: although 

it suppresses positive correlation coefficients to a certain extent, it 

almost completely eliminates negative correlations (Fig. 4c,d). This 

is because two signals of opposite sign cannot cross threshold at the 

same time. These effects are very robust under different shapes of 

the nonlinearity (Fig. 4c), and likely explain why the observed anti- 

correlations between ON and OFF cells are so strongly suppressed by 

retinal nonlinearities (Fig. 2b). Finally, the effect of output noise is 

simply to reduce the correlation coefficient by a further factor (Fig. 4e).  

In sum, the basic relationships that we found for actual retinal spike 

trains can be understood in the context of a simple model of non-

linear stochastic processing.

The classical theory of retinal decorrelation attributed that pheno-

menon to filtering by center-surround receptive fields and explained 

its purpose as serving the efficient transmission of visual information 

through the optic nerve. Given that most of the observed decorrela-

tion is instead furnished by the nonlinear response function of the 

retina, one wonders whether this version of decorrelation is equally 

beneficial for efficient coding. We explored this in the context of the 

LNP model and compared the resulting predictions with the mea-

sured spike trains.

In the LNP model, the nonlinearity decorrelates if it has a high 

threshold (Fig. 4d), ensuring that each neuron spends much of the 

time silent except for sharp and sparse firing events. This sparse-

ness is prominent in the ganglion cell responses (Fig. 1c) and has 

been observed across species11,21,22,28,29. This seems to be counter-

productive for efficient information transmission. Why don’t  

ganglion cells modulate their firing rate continuously to encode dif-

ferent stimulus values? Suppose a neuron must transmit an input 

signal that changes every time interval ∆t by producing spikes during 

each interval according to a Poisson process with some firing rate. 

What mapping from input to firing rate maximizes the information 

rate in the spike train?

To explore this, we compared different monotonic sigmoid nonlin-

earities, as are often observed in fitting the LNP model to visual neu-

rons23,30. These can be described by three parameters: threshold, gain 

and peak rate (Fig. 4b). We took the filtered stimulus to have a nor-

mal distribution; this is guaranteed by construction for our Gaussian 

naturalistic stimulus and by the central limit theorem for the white 

noise stimulus because the receptive fields extend over many stimulus 

values in space and time. Next, we compute the mutual information 

between stimulus and spike train for any shape of the nonlinearity. 

The information can be increased arbitrarily by simply raising all of 

the firing rates, so we fixed the mean firing rate to a realistic value for 

RGCs. That constraint leaves only two free shape parameters for the 

nonlinearity, for example, the threshold and the gain.

At very high thresholds, the information transmission is poor 

(Fig. 4f). In this regime, the neuron reports only the rare thresh-

old crossings, firing a burst of spikes each time to match the mean  

firing rate. Notably, transmission also drops at low thresholds. In this 

condition, the neuron fires in many of the time bins, and the spike 

counts must therefore be low to satisfy the average rate constraint.  

In a Poisson process, however, low spike counts are associated with 

high relative variability. Thus, the choice of threshold involves a trade-

off between rarely using reliable symbols, such as high spike counts, 

or frequently using unreliable symbols, such as low spike counts.  

The optimum is found at an intermediate threshold value.

b
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a

Spikes

500 ms

Time

c
Linear

response Time

d

Timing

Noise

Sparseness

Figure 3 Sparseness in retinal responses.  
(a) Spike rasters for two salamander ganglion 
cells over ten repetitions of a naturalistic 
stimulus. Firing events are brief, separated 
by long silences, and have some trial-to-trial 
variability. (b) Mean firing rates for the same 
neurons, with shading that indicates the s.d. 
about the mean in time bins of 50 ms.  
(c) The linear response generated from 
convolving the stimulus with the spatiotemporal 
receptive fields of those two cells. This linear 
model generally captures the times of firing 
events, but differs markedly in sparseness. 
(d) Depiction of three factors contributing to 
decorrelation between two caricatured neural 
responses: event timing, sparseness and noise.
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The optimal gain of the model neuron was infinite (Fig. 4f), 

with complete silence for stimuli below threshold and maximal 

firing rate for those above. This result runs counter to the conven-

tional view of neural coding as a graded modulation of the firing 

rate, although related predictions have been in the theory literature 

for some time31,32. For the parameters that characterize a typical  

salamander ganglion cell from our experiments (coding window 

∆t=50 ms, average firing rate = 1.1 Hz), the optimal neuron should 

remain silent 94.5% of the time and fire at 20 Hz the remaining 5.5% 

of the time. Thus, efficient coding theory predicts that, under the 

present constraints on firing rate and dynamics, a neuron should 

indeed fire sparsely, with brief firing events being separated by  

periods of silence.

Sparse firing enhances coding efficiency of ganglion cells

How close do empirically observed firing rates come to optimal per-

formance? We made the approximation that the dominant source 

of noise in ganglion cell responses arises at the output, after all of 

the retina’s nonlinear processing has occurred, for example, during 

spike generation. In that case, the information transmission rate 

about the stimulus only depends on the probability distribution  

of the ganglion cell’s firing rate, and not on how it is generated 

(equation (18)). Inspecting that distribution (Fig. 5a) reveals  

that, in most time bins, the measured rate was exactly zero, followed 

by a long tail in the distribution out to high values. These distribu-

tions are fit well by a three-parameter expression (equation (19)). 

How efficient are these distributions of the firing rate for informa-

tion transfer?

For comparison, we identified the firing rate distribution with the 

same mean that used spikes most efficiently. Because real ganglion 

cell spike trains do not conform exactly to Poisson statistics17,21,33,  

we used an empirically fit noise model (equation (11), Supplementary 

Fig. 2). The optimum firing rate distribution, as for the LNP model 

considered above, was a binary distribution that uses just two firing 

rates (Fig. 5b). But there was a corridor of high efficiency leading to 

that point, and almost all of the measured rate distributions lay in 

that domain. Indeed, when we computed the information transmis-

sion directly from the spike trains (Online Methods), the median 

RGC had a coding efficiency of 73% compared with the theoretical 

optimum (Fig. 5c).

Again, we found that these results extend to responses from primate 

RGCs. Although their mean firing rates were higher, the correlation 

time of the response, and thus the effective bin width, for spike train 

signaling was shorter, on the order of ∆t = 10 ms21. We analyzed 
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and contour lines). The average firing rate was fixed at 1.1 Hz (the median over the salamander ganglion cells). Threshold and 1/gain are measured 
in s.d. of the input signal distribution. Insets illustrate nonlinearities (solid lines) at different thresholds and gains relative to the input distribution 
(shaded area). (g,h) When multiple neurons receive correlated inputs, raising the threshold makes their outputs more redundant (g) even as the total 
information increases (h) and correlation decreases (d). All neurons had pairwise correlation coefficients of 0.9, equal thresholds, optimal (infinite) gain 
and a fixed mean firing rate of 1.1 Hz. The optimal threshold varies only weakly with population size (N = 1,...,8).
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published distributions of the firing rate and the trial-to-trial noise21 

and computed information transmission rate as described above. The 

sparse responses of macaque neurons allowed a transmission rate 

close to the optimum, with a median efficiency of 81% (Fig. 5d). In 

summary, we found that a treatment of efficient coding theory that 

incorporates nonlinear transforms and noisy spike trains can explain 

the paradoxical nature of high-threshold nonlinearities and sparse 

responses in retinal processing.

DISCUSSION

Our findings extend the application of efficient coding theory in the 

retina to considerably more realistic conditions. The classic approach 

treated the early visual system as a linear filter, with graded output 

signals, Gaussian noise and an average power constraint4,7, none of 

which describes the real retina. We allowed for nonlinear processing, 

a spiking output with stochastic noise and a constraint on the overall 

firing rate, as might be dictated by metabolic cost34. These extensions 

deliver new insights into the nature of retinal processing.

Two forms of redundancy reduction

We viewed the prominent decorrelation of signals in the retinal output 

as deriving primarily from two very different mechanisms (Figs. 2–4).  

The first is a linear spatio-temporal filter that implements lateral  

inhibition in space and biphasic responses in time. This conforms to 

the classic notion that the retina seeks to reduce redundancy between 

parallel channels in space and in a channel across time2, although this 

reduction is incomplete (Fig. 2).

The second, more substantial contribution derives from nonlinear 

processing in each individual channel (Figs. 2 and 3), which efficiently 

matches visual signals to the available coding symbols (Figs. 4 and 5).  

This second stage reduces the coding redundancy in each output  

channel resulting from inefficient symbol use. These observations 

apply for ganglion cells of multiple types in different species, such as 

salamander and macaque (Figs. 2 and 5), suggesting that our exten-

sion of the efficient coding framework has some general utility.

Validity of the assumptions

Although the model of retinal processing that we used is considerably 

more realistic than that described in the classical linear decorrelation 

theory, it is worth inspecting the remaining approximations. For our 

first claim, that the receptive field filters contribute only a fraction of 

the decorrelation, we used a standard method to measure receptive  

fields, namely reverse correlation of the response to white noise 

stimuli13. Although receptive fields can adapt to the pattern of 

stimulation35, we found that surrounds estimated under naturalistic 

stimulation narrowed only slightly and did not decorrelate any more 

than those obtained with white noise (data not shown).

Our second claim, that high-threshold nonlinearities enhance effi-

cient coding, assumes that photoreceptor noise is negligible. This is 

the regime in which the classical theory predicts decorrelation of the 

retinal output. We also used this assumption to estimate the infor-

mation rates in spike trains. The high light levels that we used in the 

experiments were designed to favor low photoreceptor noise. Any 

remaining input noise would be shared by ganglion cells with over-

lapping receptive fields, but we found noise correlations to be very 

small (Supplementary Fig. 2). This suggests that most of the noise 

in the RGC responses arises close to the output, rather than in shared 

presynaptic sources.

Our analysis of information transmission follows a classic 

approach31 and requires choice of a coding window ∆t, the timescale 

on which RGCs can completely change their firing rates to differ-

ent values. We adopted ∆t = 50 ms for salamander ganglion cells on 

the basis of the observed width of firing events (Fig. 3a,b) and their 

autocorrelation function (Fig. 2f). We varied ∆t in the analysis and 

found that the general conclusions were insensitive to small changes 

in this parameter; sparse firing provides the most efficient code as 

long as the mean spike count remains considerably less than one spike 

per time bin.

Our models of signal and noise in the coding window do not specify 

a particular mechanism of spike generation. However, it is worth not-

ing that the experimentally observed distributions of the firing rate 

(Fig. 5a) and the noise (Supplementary Fig. 3) are readily reproduced 

by mechanistic models such as a leaky integrate-and-fire neuron with 

Gaussian subthreshold noise (data not shown).

Incomplete decorrelation by receptive fields

We found that the spatial receptive fields of ganglion cells failed to 

decorrelate retinal signals as completely as would be expected from 
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Figure 5 Efficiency of stimulus coding by RGCs. (a) Cumulative distribution of the spike count in 50-ms time bins, averaged over multiple repeats of 
the stimulus. Data (thin lines) for three sample ganglion cells and their fit with a model (thick lines) parametrized by θ, g and K (equation (20)).  
(b) The information transmitted by model firing rate distributions with a fixed mean firing rate of 1.1 Hz, whose shape is parametrized by θ and g.  
Noise was assumed to be sub-Poisson as observed empirically (equation (11), Supplementary Fig. 3). The blue dot indicates the globally maximal rate 
of information transmission at this mean rate. Red dots indicate the parameters of the rate distribution measured from salamander ganglion cells. These 
cells have widely varying mean firing rates. The contour plot of information transmission varies slightly with mean rate, but is shown here for illustration 
purposes only at one typical mean rate. (c) Histogram of information efficiencies over the population of salamander RGCs. For each cell, the information 
rate is calculated directly from the empirical spike counts. To calculate efficiency, we compared this information rate to the maximal information rate 
possible for the measured mean firing rate (Online Methods). (d) Information transmission estimated for macaque RGCs, displayed as in b. Red dots are 
parameters describing the firing rate distribution obtained from published spike rasters in response to white noise stimulation21. The contour plot shows 
the information transmission for different firing rate distributions while fixing the mean rate and time window to typical values, namely 30 Hz and  
10 ms, respectively.
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the classical theory (Fig. 2a). Basically, the antagonistic surround of 

the receptive field is weaker than predicted. With the high luminance 

and high contrast that we used, the theory predicts that the integrated 

strength of the surround should precisely cancel the center (equation 

(2.4) of ref. 10). The receptive fields that we observed have much 

weaker surrounds, and thus decorrelate less. This is also evident in 

preceding work. In macaque RGCs, the surround amounts to only 

~50% of the center (see Fig. 10 of ref. 36). Note that, although the 

original studies always wrote about “retinal filters” for spatial decor-

relation, their tests of the theory used comparisons to human psycho-

physics, and therefore included post-retina stages of decorrelation 

(see Figs. 1 and 4 of ref. 4).

A plausible explanation of why the linear receptive fields fail to 

decorrelate much is that they don’t entirely reflect what these RGCs 

compute. Many of these neurons are selective for quite specific vis-

ual features, such as motion in a particular direction37, differential 

motion38 or local edges39. This selectivity arises from diverse nonlin-

earities40 and is poorly represented in the spatio-temporal receptive 

field. Thus, even neurons with strongly overlapping receptive fields 

may nonetheless never fire together. This recalls another feature of 

retinal organization that (so far) cannot be explained by efficient cod-

ing principles: the profusion of different ganglion cell types that each 

appear to compute a different visual message41.

Nonlinearity and sparseness

Regardless of what a RGC computes, it must communicate the result 

downstream via noisy spike trains. To optimize information transmis-

sion using such a spiking process with a low mean activity, we found 

that RGCs should be silent most of the time and fire at a high rate only 

rarely. This expectation holds over all of the experimental conditions 

that we analyzed, for all of the salamander ganglion cells and for all 

but one of the macaque neurons. The actual measured nonlinearities 

were not quite infinitely sharp, but matched the expected threshold 

closely (Fig. 5).

The theory behind this was developed already some time ago.  

It was discovered by numerical methods that a Poisson process trans-

mits maximal information using a discrete set of firing rates—only two 

if the maximal rate is strongly limited31. The result was later proved 

analytically in studies of fiber-optic communication32. Nevertheless, 

these facts are poorly appreciated among neuroscientists, even though 

Poisson models are used ubiquitously. Most of us (ourselves included) 

assumed that neurons should modulate their firing rate continuously to 

benefit from all possible rates. This intuition was formalized in an influ-

ential study42 that derived a smooth sigmoid as the optimal shape of 

the response function. But that treatment was for a continuous output 

signal, such as membrane potential, and a constant additive noise level. 

The fact that the spike train is a point process with output-dependent 

noise ultimately leads to the counter-intuitive step-shaped nonlinearity.  

This behavior has been derived under a constraint on the maximal 

firing rate32. We found that discrete firing rate distributions also arise 

when the constraint applies instead to the mean rate (Fig. 4f).

The sparse responses of RGCs under naturalistic stimulation can be 

seen as maximizing coding efficiency in single spike trains in the optic 

nerve bottleneck. In the cortex, sparse coding has been interpreted 

differently, as a useful strategy for learning and processing spike 

 patterns43 or to extract large signals from background noise44. These 

arguments are plausible for highly overcomplete representations, 

where, unlike in the retina, the number of neurons greatly exceeds 

the stimulus dimensionality. Still, one might imagine that, even in 

the cortex, the driving force for sparseness is really communicating 

efficiently with Poisson spike trains45.

Decorrelation and efficient coding

Correlation is often considered to be a proxy for information-theoretic  

redundancy, with the implication that decorrelation somehow 

improves efficiency. Certainly high correlation does imply strong 

statistical dependence, but weak correlation need not imply weak 

dependence; correlation is a second-order measure and fully reflects 

the redundancy between two signals only if they are normally distri-

buted. For highly non-Gaussian signals, such as neural spike trains and 

natural images, correlation may be only weakly related to redundancy. 

For example, the nonlinearity of the LNP model markedly decreases 

the correlation between neural responses (Fig. 4d) while actually 

increasing their statistical dependency (Fig. 4g,h). Correlation and 

efficiency also have a complex relationship. For instance, if two signals 

are affected by independent noise, this decorrelates them without 

improving coding efficiency. Nonlinearities invariably decorrelate two 

Gaussian signals, but may not improve coding efficiency. Nonetheless, 

many studies of neural signaling simply measure correlation and leave 

the impression that decorrelation alone is evidence of improved effi-

ciency46–50.

These examples illustrate that all decorrelations are not created 

equal. Although many neural circuits perform some decorrelation 

of their inputs, one must distinguish the various forms of this pheno-

menon, as they are implemented by very different mechanisms and 

have different roles for the neural code.

METHODS

Methods and any associated references are available in the online version 

of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Recording. Experiments were performed on the isolated retina of the larval 

tiger salamander, superfused with oxygenated Ringer’s solution, following  

protocols approved by the Institutional Animal Care and Use Committee at 

Harvard University. Action potentials from RGCs were recorded extracellu-

larly with a multi-electrode array51. Neurons were selected for analysis if they 

maintained steady firing rates throughout the 2-h experiments and their spike 

waveforms could be sorted unambiguously. 103 cells from 9 retinas satisfied this 

criterion. Classification into different cell types was achieved by agglomerative 

maximum-linkage clustering according to the Euclidean distances between tem-

poral receptive fields52. Of the recorded cells, 6 were classified as ON cells, 18 as 

slow OFF cells, and 79 as fast OFF cells. Altogether, this yielded 5,356 response 

pairs, including comparisons across experiments.

Stimulation. Light was projected from a computer monitor onto the photo-

receptor layer. The stimulus was a square grid with fields of size 54 µm2 covering 

a total area of 3.4 mm2. The monitor refresh interval was 15 ms. The mean light 

level at the retina (7 × 10−3 W m–2) was in the regime of photopic vision51.

The decorrelation theories assumed that light intensities in visual stimuli are 

drawn from a correlated multivariate normal distribution exhibiting the spatial 

power spectrum measured for natural scenes, which varies with spatial frequency 

k as 1 2
k . These assumptions neglect objects, edges and textures, but capture 

pairwise intensity correlations in the visual world. To address these theories 

directly, we designed spatiotemporal stimuli that approximated the pairwise 

correlations in natural stimuli and neglected all higher order structure.

We generated the spatial structure of the stimulus S(x,t) by drawing spatial fre-

quency coefficients S t0 k,( ) independently every 15 ms from a Gaussian distribu-

tion with variance proportional to 1 2
k . Temporal correlations were introduced 

by low-pass filtering the spatial frequency coefficients with an exponential of time 

constant t n= 1 k , where v is a constant with units of velocity that determines the 

scaling between space and time. This constant was set to v = 10° s–1, correspond-

ing to a typical velocity that elicits neural and behavioral responses in salamanders 

in visual tasks53. The spatial frequency coefficients were given by

  S t Ae S t
t

k k, ,
/( ) = ( )− t

0

where  represents a temporal convolution and the constant A fixed the overall 

contrast (the ratio of s.d. of luminance to mean luminance) at 35%. An inverse 

spatial Fourier transform generated each image frame for display (Fig. 1a).  

The overall spatiotemporal power spectrum at spatial frequency k and temporal 

frequency ω is 
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(Supplementary Fig. 1). This spectrum closely approximates that of natural  

movies54; in the limit of low spatial frequency it becomes k k
− ( )3 f w /  for a 

function f peaked at zero in the ratio w / k . In this limit the power varies with tem-

poral frequency approximately as ω–2, as observed54. The stimulus has qualitative 

similarities with natural scenes: Large features are more prominent, and persist 

longer than small details. To compare the results from macaque and salamander, 

we used the same stimuli, except that the stimulus checker size was scaled in 

proportion to the mean ganglion cell receptive field radius.

Correlation. The correlation between two signals, x and y, was quantified by the 

second-order correlation function 

C
x t y t

x t y t
xy t

t
( ) =

⋅ +∆ ∆

∆ ∆

( ) ( )

( ) ( )
2 2

where ∆x and ∆y represent deviations of x and y from their respective means 

and ⋅  symbolizes an average over time. To reduce high-frequency noise, we first 

binned each signal into windows of width ∆t = 50 ms for salamander neurons  

and 10 ms for primate neurons. This sets the time resolution on which the neural  

responses are analyzed. These values were chosen because they reflect the 

timescale on which ganglion cell firing varies: the typical duration of a  

(1)(1)

(2)(2)

(3)(3)

stimulus-evoked burst of spikes (Fig. 1c) and the width of the peak in the tem-

poral receptive field (Fig. 1d).

As the shared noise sources were small (Supplementary Fig. 2), we focused on 

stimulus-driven correlations, by presenting the same stimulus twice and comput-

ing correlations between the spike trains across the two repeats. The correlation 

measure (equation (3)) was computed the same way for pairs of stimulus values, 

trial-averaged firing rates, spike trains or the outputs of various functional models.  

In graphs of correlation versus spatial distance, we plotted the correlation at zero 

delay, Cxy(0). For visualization, we binned the cell pairs by distance into groups 

of 100 and plotted the median for each group (Figs. 1g,h and 2). Distances were 

quantified as the separation between the midpoint of the receptive fields.

Receptive fields. To map the receptive fields, we applied a random checkerboard 

stimulus51 with a temporal sampling rate of 22 Hz and (54 µm)2 black or white 

checkers. To reduce noise in the receptive field estimate, we fitted each neuron’s 

spatiotemporal receptive field with a direct product of a spatial receptive field 

and a temporal kernel 

F t X T tx x,( ) ≈ ( ) ( )

using singular value decomposition. Each neuron’s position was assigned as  

the midpoint of a two-dimensional Gaussian fit to its spatial receptive field  

X(x) (Fig. 1e).

For modeling primate receptive fields, we parametrized X(x) and T(t) as
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with spatial parameters drawn from a previous study55 for the parafovea  

(5°–10° eccentricity) and temporal parameters drawn from ref. 56.

Given a receptive field F(x,t), we computed the linear prediction r(t) for the 

neural response by convolution with the stimulus 

r t d d F S t( ) = ( ) −( )∫∫∫ 2
x x xt t t, ,

Nonlinearities. In the LNP model, the linear prediction r(t) is transformed into 

a firing rate ρ(t) by an instantaneous nonlinearity N ⋅( ),

r t N r t( ) = ( )( )

and then into a spike count n by drawing from a Poisson distribution with  

that rate 

P n
e t

n

t n

r
rr

( ) =
( )− ∆ ∆
!

where ∆t is the time bin. We parametrized the nonlinearity as a sigmoid using 

the logistic function 

N r K e g r( ) = +( )− −( )
1

q

with peak firing rate K, gain g and threshold θ.

If the linear input r(t) follows a normal distribution, one can constrain the 

mean firing rate of the model neuron to a value µ by setting the peak rate to

K dr e e
r g r= +( )− − −( ) −

∫m p q
2 1

1

2

2 1

Noise. Large bursts of spikes from ganglion cells are more regular than expected 

from Poisson statistics57,58, so the Poisson model generally overestimates the 

noise. For some computations (Fig. 5b–d) we used a noise distribution that was 

measured empirically. For a given mean spike count ρ at a given time during 

the trial, the measured spike count distributions P n r( ) had a width that stayed  

constant with ρ after an initial Poisson-like growth (Supplementary Fig. 3). 

(4)(4)

(5)(5)

(6)(6)

(7)(7)

(8)(8)

(9)(9)

(10)(10)
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These distributions were well-described as a Gaussian distribution on non- 

negative integer spike counts

P n
n n

nr
r

s
( ) ∝ −

− ( )( )











=exp , , ,
0

2

22
0 1 2…

where

n a e
t a

0 1r r( ) = +( )log
/∆

is the center of the Gaussian and σ is the width of the noise distribution. For each 

σ, the parameter a was set so the conditional mean of the model noise distribution 

closely approximated the desired mean ρ. The noise width σ was fit by numeri-

cally maximizing the log-likelihood, 

log , ;
,

P n t i t
t i

( ) ( )( )∑ r s

where n(t,i) is the measured spike count in bin t during stimulus repetition i.
Our models assume that noise affects the spiking of each neuron independ-

ently, whereas nearby ganglion cells share certain noise sources, especially at 

low light levels59. We found that noise correlations at photopic intensities were 

very small, <0.01 for 90% of pairwise comparisons (Supplementary Fig. 2). This 

justified the independent noise approximation for the great majority of cells, 

which simplifies the treatment of optimal coding. Another study reported that 

response models that account for noise correlations in ganglion cell spike trains 

can extract additional (~20%) visual information60.

Decorrelation by nonlinearities and noise. The correlation between two LNP 

model neurons depends on both the nonlinearities and the noise (Fig. 4). Suppose 

that the inputs x and y to two neurons are both normally distributed with zero 

mean and unit variance and correlation coefficient c. After transformation by the 

nonlinear function N(·), the correlation coefficient becomes 

C
N x N y

N x N y( ) ( ) =
( ) ( ) − m

s

2

2

where the nonlinear output has mean m = ( )N x  and variance s m2 2 2= ( ) −N x ,  

and where  is an expectation over the input distribution

P x y
c

x xyc y

c
, exp( ) =

−
− − +

−







1

2 1

1

2

2

12

2 2

2
p

We computed these expectation values by numerical integration (Fig. 4b–d).

Response noise increases the variance without altering the covariance, lower-

ing the correlation. For two conditionally independent signals x and y with (time 

dependent) trial averages of x  and y , the noise is dx x x= −  and d y y y= − .  

The correlation between the noisy signals x and y is then

C
xy x y

x x x y y y

C
NR SNR

xy

xy

x y

=
−

− + − +

=
+( ) +( )

2 2 2 2 2 2

1

1 1 1 1

d d

/ /S

where Cxy  is the correlation of the trial-averaged responses and 

SNR x x xx = −( )2 2 2d  is the ratio of signal variance to noise variance (Fig. 4e).

Information and efficiency for a single neuron. To analyze the role of non-

linearity in efficient coding, we computed the mutual information between the 

stimulus and the ganglion cell spike count in single windows of width ∆t. This 

approximation neglects correlations between spike counts in different bins and 

spike timing within a bin. The mutual information between stimulus s and the 

spike count n is

I n s H n H n s;( ) = ( ) − ( )

(11)(11)

(12)(12)

(13)(13)

(14)(14)

(15)(15)

where the unconditional entropy H(n) is

H n p n p n

n

( ) = − ( ) ( )
=

∞
∑ log

0

and the conditional entropy H n s( ) is

H n s ds p s p n s p n s

n

( ) = − ( ) ( ) ( )
=

∞
∑∫ log

0

We calculated the mutual information in two ways: directly from neural 

responses, and using a response model. For the former, the integrals over all 

possible stimuli were replaced by temporal averages over the stimulus presenta-

tion. For the latter, the integrals over the high-dimensional stimulus ensemble are 

intractable. However, the model responses depend on the stimulus only through 

the time-varying firing rate ρ(t). Assuming again that input noise is negligible, 

this firing rate is a deterministic function of the stimulus. Thus, the conditional 

entropy given the stimulus equals the conditional entropy given the firing rate, 

H n s H n( ) = ( )r , and the mutual information is fully specified by the distribution 

of firing rates p(ρ), regardless of how those rates arise

I n s H n H n s H n H n I n; ;( ) = ( ) − ( ) = ( ) − ( ) = ( )r r

Thus we compute entropies (equations (16–17)) using p n d p n p( ) ( )= ( )∫ r r r  

and p n r( ) instead of p n ds p n s p s( ) ( )= ( )∫  and p n s( ).
For the LNP model, the firing rate distribution is produced by the sigmoid non-

linearity N(r) (equation (10)) acting on the Gaussian distributed linear input r.  

These distributions are parametrized like the logistic function, by the peak rate 

K, gain g and threshold θ 

p

K
g

K

g K
r

r q

p r r
( ) =

− −( ) −


















−( )

exp log /

/

1

2

1
1

2 1

2

2

This family of distributions encompasses a wide range of unimodal and  

bimodal shapes, including binary rate distributions when g = `.

To fit each ganglion cell response distribution (Fig. 5b,d), we minimized the 

mean squared difference between the cumulative distribution of the parametric 

model (equation (19))

D
K g

g
r

r q( ) =
−( ) −





1

2

1

2
erfc

log /

and the cumulative distribution of the measured firing rates. The median  

parameters over the recorded salamander cells were K = 48 Hz, g = 5.8 and θ = 2.0.  

For primate neurons, fits were derived from published spike rasters58, with 

median parameters K = 72 Hz, g = 2.8 and θ = 0.95.

We numerically calculated the mutual information for the response model 

(Figs. 4f and 5b,d) by substituting the rate distribution (equation (19)) and noise 

model (equation (11)) into equations (15–17).

Given a neuron’s mean firing rate µ, we determined the firing rate distri-

bution that optimizes information transmission by numerically maximizing  

mutual information (equation (18)) over the parameters g and θ in  

equation (19), setting

K dr e e
r g r= +( )− − −( ) −

∫m p q
2 1

1

2

2 1

to preserve the mean firing rate. Finally, we computed coding efficiency  

(Fig. 5c) by dividing the mutual information for the measured neural responses 

by this maximal information.

(16)(16)

(17)(17)

(18)(18)

(19)(19)

(20)(20)

(21)(21)
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Information and redundancy for multiple correlated neurons. To compute 

the mutual information for a population of N LNP model neurons (Fig. 4g,h),  

we allowed the spike counts and firing rates in equations (15–17) to be  

N-dimensional vectors. We made several simplifications for tractability. First, 

all models had identical thresholds θ, gains g and peak firing rates K. Next, we 

assumed the input to the nonlinearities was a multivariate Gaussian with uniform 

correlation matrix Σ = + −( )c c1 I. Finally, we restricted the nonlinearity to have 

optimal (infinite) gain; each neuron was either silent or fired at a maximal rate 

K in each time bin.

Given these simplifying assumptions, we can calculate the mutual informa-

tion for the population. The unconditional probabilities of the vector of binary 

firing rates are

p dN
N

O





( ) = − − −( )−

( )
∫ r r r

1

2 2 1 2
1
2

1

( )
exp ( ) ( )

/ /p
q q

Σ
ΣT

with integration over orthants 

O ri
K

ii
( ) = −( ) >{ }sgn r 2 0∩

We computed these integrals numerically, exploiting the model’s permutation 

symmetry to reduce the number of integrals.

The model neurons are silent and have zero noise entropy if ρi = 0, and emit 

spikes with probability

p n K
q n

q ni i
i

i
r =( ) =

=
− >





0

1 0

and noise entropy

h q q q q q( ) = − − −( ) −( )log log1 1

(22)(22)

(23)(23)

(24)(24)

otherwise, with q = exp(–K∆t) for Poisson noise. The conditional entropy  

(equation (17)) is the average noise entropy across all firing rate patterns

H p h q
K
i

i

n  


( ) = ∑∑ ( ) ( )
r

The unconditional entropy (equation (16)) is computed from the marginal 

spike count probability over spikes and silences,

p p p ni ii
n( ) = ( ) ( )∏∑ 


r

Redundancy (Fig. 4g) measures the difference between the total informa-

tion conveyed by each neuron considered independently and the information all  

neurons convey together, compared to the information that could be conveyed 

if all neurons were independent, 

R I s I s I sii ii
= −( )∑ ∑( ; ) ( ; ) ( ; ).r r

(25)(25)
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